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Strategy for automated dense parking: how to navigate in narrow lanes*

Philip Polack1, Louis-Marie Dallen1 and Aurélien Cord1

Abstract— This paper presents the architecture of a high-
density parking solution based on car-like robots specifically
designed to move cars. The main difficulty is to park the
vehicles close to one another which implies hard constraints
on the robot motion and localization. In particular, this paper
focuses on navigation in narrow lanes. We propose a Lyapunov-
based control strategy that has been derived after expressing
the problem in a Configuration Space formulation. The current
solution has been implemented and tested on Stanley Robotics’
robots and has been running in production for several months.
Thanks to the Configuration Space formulation, we are able
to guarantee the obstacles’ integrity. Moreover, a method for
calibrating the GPS orientation with a high-precision is derived
from the present control strategy.

I. INTRODUCTION

In recent years, the “parking difficulty” problem in modern
cities has become more and more notable. Parking is one of
the key links between the urban planning and transportation
operation. The parking choice has a close relationship with
holiday travel behavior [1].

Autonomous driving capabilities are of special interest
considering the parking process as they relieve the user
from the time-consuming task of finding a parking space.
Furthermore, autonomous parking allows the vehicles to be
arranged in a more dense geometric layout, as nobody needs
to be able to access the car doors while they are parked.
This increases the parking facility’s capacity. Car makers pay
much attention to automatic parking system and this driving
technology has become one of the research hotspots [2], [3].

Therefore, Stanley Robotics proposes a new solution
to address the parking problem: an automated parking
management using robots. It comprises two main parts: at
the higher-level, an intelligent parking management system
(PMS) deals with the vehicle storage and the flow of vehicles.
At the lower-level, a robot named Stan handles all the
motions of the vehicles in the parking lot. The combination
of these two parts increases the parking capacity significantly
by densely storing the vehicles. However, this implies strong
constraints on the robot motion in order to ensure the
integrity of all the surrounding vehicles.

This paper deals with the navigation problem inside
narrow lanes as shown in Figure 1 for our robot Stan. The
focus is set on backwards driving in order to drop off or pick
up a vehicle. A lane is composed of consecutive aligned
parking spots. On each side of the lane, there are parking
spots that may or may not be occupied as shown in Figure 2.

*This work was supported by the company Stanley Robotics
1Philip Polack, Louis-Marie Dallen and Aurélien Cord are
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Fig. 1. Parking block with narrow lanes operated by Stanley Robotics.

As Stan is a car-like robot, it is subject to the slip-free
rolling conditions which are non-holonomic constraints [4].
Due to its complexity, non-holonomic motion planning has
been an attractive research field [5].

The motion planning of a car-like robot can be interpreted
as a problem of finding a feasible path that connects the
initial and the goal configurations while satisfying the non-
holonomic constraints. Additional constraints are imposed
due to obstacles [6], [7]. Non-holonomic and obstacle
constraints are hard to consider simultaneously because
conventional methods for the path planning of a car-like
robot are not designed for dealing with obstacle regions
[8]. Especially, in a narrow lane, where the robot’s direction
changes from forwards to backwards and vice versa, obstacle
constraints cause major difficulties in path planning [9], [10].

Fig. 2. Organisation of the parking spots. The black cars represent occupied
parking spots (representation not at scale). Two robots and their associated
path are shown in green and orange: the robot #09 (green) is in normal
navigation mode while the number #10 (orange) is in narrow-lane navigation
mode.



In our solution, the motion planning problem is composed
of two steps. At the high-level, the PMS provides to the robot
a collision-free path to the parking spot of the vehicle. In
particular, the parking spaces are composed of long straight
line corridors with a given width. However, the PMS does not
provide how to navigate in narrow lanes without collision.
Real-world scenarios require high-precision controllers that
can guarantee the collision-free motion. In particular, they
need to be robust to modeling errors of the path planner and
external disturbances. In [11], an adaptive sliding controller
robust to disturbances and model uncertainty is presented for
a quadrotor. [12] introduces a Lyapunov stable control-law
for parking of a car-like robot that guarantees global limits
of the system under bounded state estimation uncertainties.

In our case, at the low-level, the robot is composed of a
Lyapunov-based control-law which stabilizes the system on
the path. The Lyapunov control law also ensures the integrity
of the robot by preventing from overshooting the lane limits.
One of the novelties of our approach is the reformulation of
the problem in the Configuration Space (CS) which enables
it to predict the future position of the robot.

This paper is organized as following. There are two aspects
of the vehicle that have to be taken into account during
the obstacle avoidance process: shape and kinematics. The
shape is a geometric problem that we tackle in section II
by expressing the problem in the Configuration Space. The
kinematics involves choosing a safe and stable control-law
that is described in section III. Section IV presents the
implementation of this control strategy on our robots. One
interesting application is that it provides a simple and cheap
method for high-precision GPS calibration. At last, section V
concludes this paper.

II. FORMULATION OF THE PROBLEM
In order to achieve a high-density parking, the architecture

of our system is organized in two main layers. At the higher-
level, the PMS sends a path to the robot in order to get to the
right parking spot as shown for the two robots in Figure 2.
Indeed, the PMS knows all the available parking spots and
how to reach them. The parking spots are organized into
blocks of several lanes. Figure 2 represents one of these
blocks composed of free and occupied parking spaces. At the
lower-level, the robot follows the path thanks to two different
control-laws. On the one hand, moving around between
blocks is a classic control problem that has been studied
widely in the literature: see for example [13] and references
therein. On the other hand, moving inside the blocks is a
challenging problem since the lane widths are small with
respect to the size of the robot. Thus, it is necessary to design
a high-accuracy controller that maintains the robot inside its
lane at all time. Inside a block, the PMS provides a straight
path corresponding to the middle of the lane as shown in
orange in Figure 2. This path is feasible as long as the width
of the robot, denoted by wrobot

1 is strictly smaller than the
width of the lane wlane minus the localization errors.

1If the vehicle is larger than the robot, we consider the robot’s size to be
the union of the vehicle and the robot.

Designing a control law that prevents the robot from
overshooting the lane limits is a complicated task due to
on the one hand the geometric shape of the robot and on the
other hand the non-holonomic constraints. While the primer
makes it complicated to check whether a given position of
the robot collides with the lane limits, the second restricts
the admissible motion of the car-like robot.

A. Formulating the problem in the Configuration Space

Studying the motion of a two or three-dimensional object
is a complicated task due to its geometry, in particular to
check for collision-avoidance. This has lead to the famous
piano-mover problem, introduced in [14]: given a map of
the environment with obstacles, and an initial and a goal
configurations of an object, is it possible to find an admissible
collision-free path between these two configurations? In [15],
the author has shown that any admissible motion of a three-
dimensional mechanical system appears as a collision-free
path for a point in the Configuration Space (CS), i.e. the
space of all the possible configurations of the object. This
greatly simplifies the problem as it transforms the problem
into searching if the initial and goal configurations belongs
to the same connected component.

In the case of narrow lane navigation, the robot footprint
is entirely defined by three configurations: its longitudinal
error x̃, its lateral error ỹ and its angular error θ̃ as shown in
Figure 3. These configurations are expressed at the control
point which is the middle of the rear axle (represented by
a red dot on the figure). As the robot has to remain in
its lane, the two adjacent lanes are considered as obstacles
and represented in gray on the figure. Moreover, due to
the symmetry of the problem along the x̃-axis, in order to
check if a configuration is collision-free, we can focus on
the projection of the Configuration Space on the (θ̃ , ỹ) plane.
The x̃ will be only necessary to check whether the goal, i.e.
the parking spot of the vehicle, has been reached.

Fig. 3. The three configurations (x̃, ỹ, θ̃) that determine the robot’s footprint
(light gray). The dark gray rectangles represent the beginning of the adjacent
lanes

In order to determine CS f ree, the set of all the
configurations in CS that are collision-free, we compute its
limits corresponding to the case where the robot is in contact
with one of the adjacent lanes. This leads to Equations (1-
4) where f r, f l, rr and rl correspond respectively to the
cases where the front-right, front-left, rear-right and rear-left



corner of the robot touches one of the lane limits:

ỹ f r =
wlane

2
−Asin(θ̃ f r +α) (1)

ỹ f l = Asin(θ̃ f l +α)− wlane

2
(2)

ỹrr =
wlane

2
−Bsin(θ̃rr +β ) (3)

ỹrl = Bsin(θ̃rl +β )− wlane

2
(4)

where A, B, α and β are given by Equations (5-8) and
depend on some dimensions of the robot (see Figure 4): its
wheelbase Lwb, its width wrobot and the distance between the
middle of the front (resp. rear) axle and the front (resp. rear)
of the robot p f r (resp. prr).

A =

√(wrobot

2

)2
+(Lwb + p f r)2 (5)

B =

√(wrobot

2

)2
+ p2

rr (6)

α = arctan
(

wrobot

2(Lwb + p f r)

)
(7)

β = arctan
(

wrobot

2prr

)
(8)

Fig. 4. General robot description.

In the case considered, as wlane is small compared
to the dimensions of the robot, θ̃ remains small
(typically less than 3◦). Thus Equations (1-4) can be
approximated by affine functions given by Equations (9-
12) as Asinα = Bsinβ = wrobot/2 and Acosα = Lwb + p f r
and Bcosβ = prr. This approximation error is negligible
compared to the localization noise and greatly simplifies the
shape of CS f ree:

ỹ f r =

(
wlane−wrobot

2

)
− (Lwb + p f r)θ̃ f r (9)

ỹ f l =

(
wrobot −wlane

2

)
−(Lwb + p f r)θ̃ f l (10)

ỹrr =

(
wlane−wrobot

2

)
+prrθ̃rr (11)

ỹrl =

(
wrobot −wlane

2

)
+ prrθ̃rl (12)

Thus CS f ree is described by Equation (13) and shown in
Figure 5. The configuration (0, wlane−wrobot

2 ) called C1 in

Figure 5 corresponds to the case where the robot is at
contact on the whole right side as shown in Figure 6;
the configuration

(
wlane−wrobot
Lwb+p f r+prr

, wlane−wrobot
2 (1− 2prr

Lwb+p f r+prr
)
)

called C2 corresponds to the situation where the robot is at
contact with the obstacles at both the rear-right and front-left
corners as shown in Figure 7.

CS f ree = (13)
{(θ̃ , ỹ) s.t. ỹ f l(θ̃)≤ ỹ≤ ỹ f r(θ̃), ỹrl(θ̃)≤ ỹ≤ ỹrr(θ̃)}

Fig. 5. Collision-free Configuration Space CS f ree and occupied
Configuration Space CSocc.

Fig. 6. Configuration C1: the right edge of the robot (light gray) touches
the limit of the lane. The gray rectangles represent the beginning of the
adjacent lanes

Fig. 7. Configuration C2: two opposite corners of the robot (light gray)
touch the limits of the lane. The gray rectangles represent the beginning of
the adjacent lanes

B. Handling the non-holonomic constraints

A non-holonomic constraint for a system is a constraint
that does not reduce the dimension of its Conguration Space:
given an initial configuration, the robot can still reach any
other configuration. In other words, it is a non-integrable
constraint. In the case of a car-like robot, the slip-free
rolling condition is a non-holonomic constraint. However this
constraint restricts the admissible motions: for example, a



car-like robot cannot reduce its lateral error while keeping
its angular error at zero.

This has a strong impact on the design of a control law
as any collision-free path in the configuration space does not
necessarily correspond to an admissible collision-free path in
the physical space. In particular, one interesting observation
is that the closer the angular error is to zero, the longer the
lateral error takes to converge.

In order to take into account the non-holonomic
constraints, we designed the control-law based on a
kinematic bicycle model [16]. This model is a good
approximation of the robot behavior as we are only
considering low speed applications where dynamics effects
can be neglected. As the reference heading θr remains
constant, considering a frame where the x-axis is aligned
with the central line of the lane, the kinematic bicycle model
can be expressed as in Equations (14-16) where Vr is the
robot speed on the rear axle and δ f r the front steering angle.

˙̃x = Vr cos θ̃ (14)
˙̃y = Vr sin θ̃ (15)
˙̃
θ =

Vr

Lwb
tanδ f r (16)

This model takes into account the slip-free rolling
condition given by Equation (17):

x̃sin θ̃ − ỹcos θ̃ = 0 (17)

III. CONTROL STRATEGY FOR NARROW LANE
NAVIGATION

Once the problem has been reformulated in the
Configuration Space, it becomes easier to design a control
law that is guaranteed to be collision-free. Starting from
any configuration (θ̃0, ỹ0) in the free-configuration space, we
need to design a response that converges to (0,0) without
exiting the collision-free configuration space CS f ree while
respecting the kinematic bicycle model.

A. Lyapunov Stability

For that purpose, we used a control-law based on
Lyapunov stability as in [17] where a control strategy to
move a car-like robot to a desired posture within prescribed
boundaries is presented. Assuming that the robot has a
constant speed Vr, the control-law implemented on our robots
is given by Equation (18).

δ f r = arctan
(
−Lwb

(
kangsign(Vr)θ̃ + klatsinc(θ̃)ỹ

))
(18)

Consider the function V given by Equation (19). V is
a Lyapunov function associated to the system given by
Equations (14-16).

V (θ̃ , ỹ) =
1
2
(
klat ỹ2 + θ̃

2) (19)

Proof:
• V (0,0) = 0
• ∀(θ̃ , ỹ) ∈ R2,(θ̃ , ỹ) 6= (0,0)⇒V (θ̃ , ỹ)≥ 0

• Let’s proove that ∀(θ̃ , ỹ) ∈ R2,(θ̃ , ỹ) 6= (0,0) ⇒
V̇ (θ̃ , ỹ)≤ 0

V̇ = klat ỹ ˙̃y+ θ̃
˙̃
θ (20)

= Vr

(
klat ỹsin θ̃ +

θ̃

Lwb
tanδ f r

)
(21)

Choosing δ f r such as in Equation (18), one obtains that V
is a Lyapunov-function as (we assume that Vr is constant
during the motion):

V̇ = −kangθ̃
2 < 0 (22)

Thus, for all pair (kang,klat) ∈ R∗+2, the system is stable for
all (θ̃ , ỹ) ∈R2 using the control-law given by Equation (18)
and converges to zero. However, in order to ensure that the
robot stays inside CS f ree, it is necessarily to tune the gains
klat and kang correctly.

Remark 1: If we consider different gains for forwards
and backwards driving, we end up with a switched system
where each subsystem is Lyapunov-stable. However, the
global system has no guarantee to be stable as explained in
[18]. This problem can be overcome by choosing the same
value of klat in both directions as the function V given by
Equation (19) is a Lyapunov function for the whole system
in that case.

B. Theoretical Tuning of the Gains

The tuning of the control gains klat and kang is a
complicated but important task. The choice is a compromise
between many criteria such as noise sensitivity, convergence
speed and overshoots. In our case, it becomes also critical
for the safety of the robot and its environment.

Backwards driving is a more challenging task than
forwards driving due to the lever arm of the robot as the
control point is located close to the rear of the robot. Thus,
we focus this paper on the response in the CS to different
gains klat and kang as shown in Figures 8 to 11 for backwards
driving. More precisely, a grid of initial configurations in
CS f ree is generated; then for each initial configuration, the
evolution of the path during the next 3m is simulated using
the kinematic bicycle model. It is interesting to notice that
whatever the gains are, many initial configurations belonging
to CS f ree lead to a path that does not remain inside CS f ree.
This becomes the case for almost all initial configurations
in CS f ree as the value of klat increases towards the value of
kang (see Figures 10 and 11).

For a better understanding, the iso-steering levels have
been added on each figure. They correspond to the case
where δ f r is constant. Considering Equation (18) and only
first order terms in θ̃ (as θ̃ << 1), the different iso-steering
levels are given by the following affine function:

ỹ = −
kang

klat
sign(Vr)θ̃ −

tanδ f r

klatLwb
(23)

Hence, for backwards driving, the slope of the iso-steering
0 is given by the ratio kang/klat . We observe that the paths in
the configuration space all tends toward this line, meaning



Fig. 8. Theoretical response of the control-law for backwards driving with
klat = 0.2 and kang = 1.6.

Fig. 9. Theoretical response of the control-law for backwards driving with
klat = 0.6 and kang = 1.6.

Fig. 10. Theoretical response of the control-law for backwards driving
with klat = 1.0 and kang = 1.6.

Fig. 11. Theoretical response of the control-law for backwards driving
with klat = 0.5 and kang = 0.8.

that the robot finishes converging with almost no steering.
Thus, the response depends mostly on the ratio kang/klat .
The higher it is, the more initial configurations will remain
inside CS f ree. However, higher ratio also leads to a slower
response as the system will correct the errors with a smaller
δ f r value. Thus, as the length of the lane is not infinite, it
is important to choose a good trade-off between these two
properties.

At last, Figures 10 and 11 show the response of the system
with two pairs of gains having the same ratio. The response
are quite similar but the convergence is slower in the cases
where the gain are smaller as the paths converge faster to
the zero error configuration.

As mentioned earlier, it is not possible to tune the gains
for backwards driving in order to converge to zero from all
configurations in CS f ree without collision. Thus, it is critical
to check before the robots enter a lane whether the initial
configuration leads to a collision-free path or not. In the case
the path does not remain inside CS f ree, the robot needs to
maneuver outside of the lanes, where there is no obstacles.
This maneuver is out of the scope of the present paper.
However, choosing a good tuning enable to maximize the
chance that the initial configuration of the robot leads to a
path that remains inside CS f ree: for that purpose, the higher
the ratio kang/klat is, the better it is. However, this is at a
cost of a slower convergence rate. A good tuning is thus a
compromise between these two criteria.

IV. IMPLEMENTATION ON ROBOT

The control strategy presented in the previous section has
been applied on the robot Stan. The localization is based
on the fusion between a 50Hz dual antennas Real-Time
Kinematic GPS, a SLAM and odometry. The control point
is located at the center of the rear axle.

A. Initial experimental trials

First, we run some experiments where the robot had to
follow a straight line outside of a lane, starting with an initial
lateral and angular error (θ̃init , ỹinit). The measurements
obtained are shown in blue dots on Figure 12. Then, we
compared these results with the theoretical ones, which are
displayed in cyan: the two curves do not match as the
experimental results converge to a configuration (θ̃∞, ỹ∞)
that is not (0,0) which should not be possible in theory.
Repeating the same experiment starting from a different
initial configuration, we observed that the path converges
again to the same final configuration.

Going further in the analysis, it turns out that this
configuration lies on the curve δ f r = 0.0. This means that
from this configuration (θ̃∞, ỹ∞), the robot should converge
to zero “naturally”, without any steering angle applied. Thus,
this proves a misalignment between the GPS and the wheels
of the robot of θ̃∞. Hence, we added in Figure 12 the
theoretical results obtained by fixing this angular offset,
simply by changing θ̃ by θ̃ + θ̃∞ in the control-law: the
results are shown in orange. This angular offset was very
small on each of our robots (less than 1◦) but sufficient



Fig. 12. Comparing experimental results (blue dots) with the theory before
(cyan) and after (orange) GPS offset was added. The red cross indicates the
configuration (θ̃∞, ỹ∞) where the experimental results converge to.

to decrease the performance and the safety of the control-
law in the narrow lanes given the small margins available.
Thus, this initial experiment enabled us to correct the
misalignment between the GPS and the wheel with an
easy and accurate method, hence being robust to industrial
assembly imperfections.

B. Results after GPS calibration

After aligning the GPS on the wheel orientation,
the experiments were run again. Starting from an
initial configuration (θ̃init , ỹinit), Figure 13 shows that the
experimental results (in blue dots) match perfectly the
theoretical ones (in cyan) and converge to zero. Only a small
overshoot of the experimental results in the top right dial can
be observed and is caused by an unmodeled actuator delay.

Fig. 13. Comparing experimental and theoretical results after GPS offset
was added.

The presented control strategy has thus been implemented
on all the robots operated by Stanley Robotics. The tuning
of the control gains is the same on all robots but the GPS
calibration changes. Before entering a narrow lane, we check
whether the configuration will remain inside CS f ree: this is
done using the simulation model given by Equations (14-
16) to which we add some measurement noise. This noise
is a Gaussian noise that has the same characteristic as
our localization module. After running several months in
production, no major issue has been reported. A video of
a robot moving inside a narrow lane is available at the
following link: shorturl.at/cjwGW

C. Comparison with a pure-pursuit controller

Figure 14 compares the experimental results for the
present Lyapunov control method (in blue dots) with a pure-
pursuit controller [19] (in red dots) starting from the same
initial configuration. The theoretical results for the Lyapunov
controller have been added in cyan. We observe not only that
the Lyapunov method is safer as it remains better confined
in CS f ree, but also that the pure-pursuit does not converge to
(0,0) accurately. This has been confirmed by several other
experiments and can be explained by the fact that the pure-
pursuit controller draws a circular arc from the rear axle of
the robot to a look-ahead point. In our case, as the path is a
straight line, the circular arc is “degenerated”.

Fig. 14. Comparison between the presented Lyapunov-based controller law
(in blue) and a pure-pursuit controller (in red). The theoretical results using
the Lyapunov-based control law are represented in cyan.

V. CONCLUSIONS
This paper presented a control strategy adapted to narrow

lane navigation. By reformulating the problem in the
Configuration Space, we were able to design a Lyapunov-
stable control-law that guarantees the integrity of the robot
and its environment at all time. By considering the adjacent
lanes as obstacles, the robot is able to handle not only static
environments but also dynamic ones if another robot operates
in the adjacent lane. The obstacle integrity is achieved by
predicting the future configurations of the robot using a
kinematic bicycle model. Thus, it is possible to predict at the
entrance of the lane whether the robot will remain inside the
lane or not. These theoretical results have then been validated
in practice on real robots. Moreover, a simple, cheap and
highly-accurate method for calibrating the GPS heading with
the zero of the wheels is proposed.

Future works will be focusing on one hand on the
maneuver strategy to enter a lane whatever the initial
configuration is and on the other hand on an automatic gain
tuning method using optimal control. Deriving a procedure
for automatic tuning of the GPS offset would also be of high
interest.
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