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REFINED PROBABILISTIC GLOBAL WELL-POSEDNESS FOR THE

WEAKLY DISPERSIVE NLS

CHENMIN SUN, NIKOLAY TZVETKOV

ABSTRACT. We continue our study of the cubic fractional NLS with very weak dispersion
«a > 1 and data distributed according to the Gibbs measure. We construct the natural
strong solutions for a > ag = % ~ 1.124 which is strictly smaller than %, the
threshold beyond which the first nontrivial Picard iteration has no longer the Sobolev
regularity needed for the deterministic well-posedness theory. This also improves our
previous result in Sun-Tzvetkov [28]. We rely on recent ideas of Bringmann [§] and Deng-
Nahmod-Yue [I7]. In particular we adapt to our situation the new resolution ansatz in
[17] which captures the most singular frequency interaction parts in the X *® type space.
To overcome the difficulties caused by the weakly dispersive effect, our specific strategy
is to benefit from the “almost” transport effect of these singular parts and to exploit
their L> as well as the Fourier-Lebesgue property in order to inherit the random feature
from the linear evolution of high frequency portions.
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1. INTRODUCTION

1.1. Motivation. In this article, we continue our study of the defocusing cubic fractional
nonlinear Schrédinger equation (FNLS)

(1.1) i0pu 4 | Dy|u + |u)?*u =0, (t,2) €eRx T,

where u is complex-valued and |D,|* = (—02)*/? is defined as the Fourier-multiplier

~

|Dy|*f(k) = |k|*f(k). The parameter o measures the strength of the dispersion. In this
article, we are always in the weak dispersive regime where 1 < a < 2. The equation (|1.1]
is a Hamiltonian system with conserved energy functional

o 1
H(u):/HDxPu\de—i—/\u!4d:c.
T 2 T

Moreover, the mass M(u) = [;|ul*dz is also conserved along the flow of (L.I). The
fractional Schrédinger equation was introduced in the theory of the fractional quantum
mechanics where the Feynmann path integrals approach is generalized to a-stable Lévy
process [24]. Also, it appears in the water wave models (see [19] and references therein).
In addition, we refer to [23] where the fractional NLS on the line appears as a limit of the
discrete NLS with long range interactions.

The motivation in our previous work [2§] is to provide macroscopic properties for the
solutions of , and in particular to detect the strength of the dispersion in the construc-
tion of the Gibbs measure. In that work, we construct global solutions on a full measure
set with respect to the Gibbs measure by different methods, depending on the value of a.
More precisely, when o > g, we construct the global strong solution satisfying the recur-
rence properties and show that the sequence of smooth solutions for FNLS with truncated
initial data converges almost surely to the constructed strong solution. When 1 < a < g,
we rely on a simple method of Bourgain-Bulut [5 [6, [7] to prove the convergence of the
Galerkine approximation scheme for the FNLS with truncated both data and nonlinearity.
However, we were not able to show that the limit constructed by that method satisfies
the flow property and therefore it is a natural question to investigate whether there exists
global strong solution in the full range « > 1 on the support of the Gibbs measure and if
the strong solution coincides with the limit constructed by the Galerkine approximation
scheme.

1.2. Setup and the main result. To present the main result and to explain the different
methods of constructing solutions, we recall the standard randomization procedure. Let
(9x)kez be a sequence of independent, standard complex-valued Gaussian random variables
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on a fixed probability space (£, F,P). Denote by u the Gaussian measure on H QT_I_e(']I‘)
for any € > 0 induced by the map

(1.2) W () =Y 9{’;3” ex (@),
keZ

where e;(z) = ¢** and [k]2 = (1 + |k:|a)% Set E,, = span{e; : |[k| <n}. We denote by

I, : HT ~(T) — E,

the corresponding spectral projection. When o > 1, it is well-known that for any 0 <
oo < 25%, |I[D|7°ul| peo(Ty is p-almost surely finite. Then the Gibbs measure p associated

with is

dp(u) = e*%f|“‘4du(u).
This measure can be viewed as the limit of p,, the Gibbs measure associated with the
truncated Hamiltonian

a 1
Hy(u) = / || Dy 2 Myul?de + / L, ul|*dx
T 2 Jr
whose associated Hamiltonian flow is the truncated FNLS (ODE):
(1.3) i0yon + | Dg|*vn + I ([pvn|*) =0, vpli—o = ¢

Once the Gibbs measure p is constructed, we need to construct the dynamics on the
support of the measure, namely to solve with randomized initial data .

There are two ways to solve the dynamical problem, the first is to prove the convergence
of , since for each fixed n, the truncated FNLS admits a global solution, as it is a
Hamiltonian ODE on the finite dimensional space E,. In [2§], using the Bourgain-Bulut
argument, we have proved:

Theorem 1 ([28]). Assume that o > 1 and oo < %5L. The sequence (v%)nen of solutions
of (L.3) with randomized initial data (1.2) converges a.s. in C(R; H°°(T)) to some limit
v which solves (1.1|) in the distributional sense.

The second approximation, more natural from the PDE view-point, is to consider the
convergence of the sequence of smooth solutions u,, of

(1.4) 10ty + | Dy |“up, + |un|2un =0, upli=0=1,¢.

Note that for each fixed n, the global well-posedness of is guaranteed, thanks to a
theorem proved (in the range o > %) in [29] or [13] (in the range a > 1). The major
difference of the aforementioned approximations is that for the PDE approximation, we
need to establish a probabilistic local well-posedness which provides us more information
on the structure of the solution. While only to prove the convergence for the first approx-
imation, some probabilistic compactness methods exploiting the invariance of the finite
dimensional Gibbs measure p,, are sufficient, see for example [5],[6],[7],[10],[26] in the con-
text of nonlinear Schrédinger and nonlinear wave equations. Therefore, a natural question

can be formulated as follows:

Question 1.1. Can we show that for o > 1, the sequence (u¥)nen of solutions of
with randomized initial data converges a.s. in C(R; H7(T)) to some unique limit
u which coincides with the limit obtained in Theorem 1| 2 Moreover, can we define the
solution map ®(t) satisfying the flow property and Poincaré’s recurrence property on a full
measure set with respect to the Gibbs measure ¢

We will call strong solutions those obtained when giving a positive answer of Ques-
tion The threshold o > 1 is designed for two reasons. Firstly, we do not need to
renormalize the equation as the initial data lives in L almost surely. Secondly, as we
will see later, for & > 1, the second Picard’s iteration enjoys some smoothing effect, due
to the presence of the dispersion.



4 CHENMIN SUN, NIKOLAY TZVETKOV

The main result of this article is the following partial answer of Question which
improves our previous result in [28] for a > 9

Theorem 2. Assume that o > oy = 31_17 ”4233 and oy < O‘Tfl Then the sequence of smooth
solutions (u¥)pen of

gk

10y, + |Dy|“upy + |un|2un =0, Uplt=o =
|k\<n

converges almost surely in C(R; H°(T)) to a limit which solves (1.1).

Let us give a brief explanation about the number o appearing in the above statement.
The important feature is that the number ag appearing in Theorem [2|is smaller than 8/7
which is the threshold beyond which the first nontrivial Picard iteration has no longer the
Sobolev regularity needed for the deterministic well-posedness theory (see the discussion
below for more details). For this reason we find that the progress made in this paper is at
a conceptual level.

Following the argument in [28], we are able to show that the unique limit satisfies the
flow property and the Gibbs measure p is invariant under the flow. The key point is to
establish a probabilistic local well-posedness result which provides a fine structure of the
solution of (L.I). Let us mention that when a > %, the above theorem is proved in [I5]
using only the deterministic theory without appealing to any random oscillation effect. In
[28], when 8 s <ac< 4, we go beyond the available deterministic theory by adapting the
Da Prato-Debussche afﬁne decomposition in conjugation with a gauge transformation to
prove the probabilistic local well-posedness.

1.3. Boundedeness of the Picard iterates in L°°. To motive the necessity of a refined
analysis and to compare with the context of parabolic equations, let us look at the formal
Picard iteration scheme associated with our equation. Denote by

(1) = Mg,

where ¢ is given by (|1.2). By formally expanding the solution of ([1.1)) as power series in
terms of the initial data, we write

o0
Z 23+1
Jj=0

Formally inserting into the equation (id; + |D,|*)Z% + |Z¥|?Z% = 0 and comparing the
coefficients, 23, ; should satisfy the equation:

- (0% w _ w W . w —
(10 + [ D )sz+1 = - E Z2k1 +1%2j5+1%2j3+1> 2’2j+1\t:0 =0.
 J1,J2,J320
Jitgetis=j—1
By induction we see that 25;,; is a (2j + 1)-multilinear form of Gaussians:
(1.5)

Z§Jj+1(t7 .’L‘) = Z Cj (t7 kl? Ty k?j—l—l)

k1, koj+1

gklgkg o 'gk,‘gjngj-‘—l

[kl]% e [kQ '-H]% Chy—ko+-—koj+k2j11 (z).
J

The following proposition shows that every finite order of Picard’s iteration is bounded in
C([0,T7; L>(T)):

Proposition 1.2. There exists Cy > 0, such that for any j e N, t e R,z € T, we have

(2j — 1)!!)2.

BlJaf (8 )] < Cot™ (2 + 1)} (=
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In particular, for any T > 0 sufficiently small, there exists Qp C Q, with P[Qp] =1, such
that for any w € Qr and any j, the partial sum of the Picard iteration satisfies

J
Z81(1) = 37 2544 (1) € C(0,T]; L(T)).
/=0

Though the partial sum of the formal expansion Z is bounded in L°°, this proposition
does not tell anything about the convergence of the remainder in the formal expansion
Z(t) = > ;-0 #5;4+1(t). Much effort has to been addressed to in order to prove the conver-
gence of the remainder.

Let us also mention a comparison with parabolic equations. For a > 1, a typical
function with respect to p is an L° function. As a consequence, if we were dealing with
a similar problem for a parabolic PDE then thanks to the nice L mapping properties
of the heat flow, the analysis would become essentially trivial. On the other hand, since
we are dealing with a dispersive PDE, the linear problem is only well-posed in L? in the
scale of the LP spaces which makes that even at positive regularities, refined detereministic
estimates and probabilistic considerations are essential in the analysis.

1.4. Difficulties and the Strategy. Let us consider two extreme situations o = 1 and
a = 2. When a = 2, the equation is the classical cubic Schrodinger equation which
has nice dispersive properties. In particular, the L* Strichartz estimate holds with no loss
of spatial derivative. When a = 1, the equation is the cubic half-wave equation. If
we ignore the nonlocal issue and consider only the transport equation

(1.6) 10y + i0,u = |u*u

we can solve this equation simply in the space L®. These facts indicate that in the
intermediate case 1 < a < 2, we should balance the dispersive effect and the transport
property of the solutions according to different regimes. However, when « is very close
to 1, there are two major difficulties. Unlike the classical Schrodinger case o = 2, the
L* Strichartz estimate loses almost % derivatives (due to the degeneracy of the resonant
function). Moreover, the fractional dispersion |D,|% is non-local which prevents us to use
directly the transport property like (1.6]).

Our strategy is based on the following observations. Firstly, the most singular parts in
X space come from the high-low-low type frequency interactions. These parts satisfy
morally the transport equation. Secondly, the loss of derivatives in the Strichartz inequal-
ity occurs in the high-high-high or high-high-low frequency interaction regimes. Hence we
should place the most singular part in the space L™ instead of X*? in these regimes when
estimating tri-linear expressions. To realize this strategy, we use the refined resolution
ansatz introduced by Deng-Nahmod-Yue in [I7]. Roughly speaking, it concerns refining
the affine ansatz and decomposing the solution roughly as e’1P=1" % + ¥ + w with a “ran-
dom averaging operator” term W which captures the most singular frequency interactions.
Additionally in our situation, the term W can be further decomposed into different parts
carrying relatively “good” L property and relatively “good” X** and Fourier-Lebesgue

property.

The threshold o > g for the affine decomposition structure. To be more precise,
we breifly recall the decomposition due to Bourgain [4] and Da Prato-Debussche [14] used
in our previous work [28]. By using the gauge transformation

v(t,z) = u(t, x)e% Jolupdz
we transform the FNLS as
(1.7) 100 4 |Dy|“v = N(v),  vli=o = ¢,
where the Wick-ordered nonlinearity is given by

N (W) := =Ns(v,v,v) + No(v,v,v),
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and the trilinear forms N3(-,-,-) and Ny(+,-,-) are defined as

N3(f1, f2, f3) E Fi(k) f k2)f3(k?3)ek1 R
k1,k2,k3
(1.8) ko#k1,k3

No(fr, f2, f3) : Zfl fa(k)er.

keZ
To solve (|1.7)), we used the affine ansatz

v(t) = Sa(t)d” +w(?),
where S, (t) = elP=I* is the linear propagator. It turns out that the Duhamel s integration
of the first Picard’s iteration ZN (S (t )(Z)w) has the spatial regularity H . Yet, if we

place it into the X*? space, it is bounded a.s. in X@D=3+ In both these spaces, the
spatial regularity for the first Picard’s iteration is better than the initial data which merely
lives in H“> ~. In order to close the fix-point argument, we should place the error term
into some X3+ space. Due to the weak dispersive effect, when a < 2, it was proved in
[13] (see also [28]) that the Duhamel’s integration of the tri-linear operator is bounded on

X3t only if s > % — 4. Therefore, this affine decomposition ansatz is suitable in X 8,b
type space only if &« — 1 > % — ¢ which gives us the constraint o > g

Even if we do not place the first Picard’s iteration in the X type space, the other
place that gives us the constraint o > g is the high-low-low frequency interaction for the

crossing terms of the form

fN = IN(Sa (t)PN¢w, P<<Nw, P<<Nw).

By ignoring the issue of the modulation, the above term can be written formally as

Gk,
D Lkl kel sl Lo fkafo ks o~ Ho=0(1) s THE: w(ka)w(ks).
k,k1,k2 k3 1
k1—ko+ks=k
From a counting argument, the X*° norm of the above quantity can be bounded by
NGO By | || | 2,

hence we should require s < a—1 to ensure that the above expression is bounded. It turns
out that this high-low-low frequency interaction is the most singular part in the analysis.
In order to improve the constraint of «, a better understanding of this singular part is
necessary.

1.5. Refined resolution ansatz. Refined resolution ansatz to treat the singular high-low
type interaction has been recently introduced by Bringmann [8] for the wave equation and
by Deng-Nahmod-Yue [I7] for the 2D NLS in very different ways. The common feature
in both these work is the observation that the low frequency component is independent
with the high frequency linear evolution and the most singular interactions (high-low type)
are removed by viewing them as part of the linear evolution for the high-frequency data
and isolating them from w(t) in the previous affine ansatz u(t) = S, (t)¢p* + w(t). More
importantly, the authors in [I7] exploits the fact that the low frequency components are
also random, and this randomness of low frequency components is exactly what is captured
by the matrix/operator norms introduced there. To better explain the idea in the context
of FNLS, we need to introduce an extra term ¢ such that ¥ = S, (t)¢* + ¢ solves

10;V + | Dy |*V = IN (PpighV, Plowts, Plowt),  ¥|i—g = Prpignd”.

Through this decomposition, on the one hand, the new remainder will solve some nonlinear
equation with essentially no high-low-low type frequency interaction. On the other hand,
since the isolated singular part ¥ solves roughly a linear transport equation with some
“potential” independent of the high frequency initial data, it will inherit the randomness
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from the initial data ¢“. Though ¥ is no more regular than X (@=D)=3+ iy general, it has
its own random structure though captured by certain matrix-norms.
Now we recall the precise resolution ansatz of [I7] in our context. Set yy = vy — vn.
2

Then yy solves the equation
(iat + ’Dz‘a)y]v ZN(U% +yN) —N('I}%),
Ynlt=0 = Pno*~.

For fixed N, we denote by Ly the largest dyadic number L such that L < N'=%, For L <
Ly, we introduce the function WLV which captures the high-low-low frequency interaction:

(i0; + | Dg|* Y = —2lNN3 (VY  Tpvr, Hv),
Y=o = Pyo~.
When L = %, we define 1/11%\’ = So(t)Pno”. Set wy = yn — WLVN, then wpy solves the

equation
(1.10)
{(iat + ‘Dx’a)w]v = N(wN + 1/)£VN + U%) —N(U%) + QHNNg(ijVN,HLNULN,HLNULN),

wn |¢t=0 = 0.

(1.9)

Denote by fy = 9% the free evolution part and Civ = WLV — g if % <L<Ly, =0
2 2

Then ’

(1.11) yn(t) = fn(t) + Z (r (1) + wn (t),

lar<in
and the full resolution ansatz is
ot) =Sa®)s” +D 0 D )+ wn().
N %<L§LN N
Remark 1.3. vy — vy, is pretended to have frequencies greater than Ly and wy is pre-
2

tended to have frequencies comparable to N, and Civ is pretended to contain the portion of
frequency interaction from (~ N) x (~ L) x (< L). Therefore, by expanding the right hand
side of , all the multi-linear forms essentially do not have bad frequency interaction
of the form (~ N) x (€ Ly) x (K Ly).

The second parameter L quantifies the range of “low-frequency” perturbation for the
linear evolution of the high frequency data. It can be viewed as a deformation from
the random oscillation effect to the time-oscillation effect (dispersive effect). When L
is relatively small, Civ behaves like the first Picard iteration of the linear evolution of
Gaussian variables whose random effect is dominant. When L is relatively large, Civ
behaves like the error wy whose X%b-regularity is much better.

Structure of wi\] in terms of operators. Given vy, the equation of 1/J]LV is linear with
respect to the initial data. Therefore, we can write

oY = WV Pye?).
The operator H™'* is the random averaging operator and F, H"-*F.~! has kernel (Hggf (t)),

thus we have ()
N N,L,\ 9k* W
vl = 3 HOT0s

N <jk*|<N

In other words, H ,?,QL (t) is the k-th Fourier mode of the solution to

(i0; + | Dg|*)p = =2 NN3(p, v, vg),
Qli—0 = 1%<‘k*‘§Nek*-
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Obviously,
* N *
suppk,k*(f—[g’i) C {(k,k*): k| < N’? < |k*| < N}.

When L = %, we use the convention H,i\,;% = ¢k, _,.. Similarly, we denote by
RN = L HN’%, hence Civ = hWVE(Py¢*). The kernel of F,hV"L'F ! is denot-
ed by (hi\;f) and hi\;f has the same k, k* support property as H ,i\,i*L . The key point here
is that H,i\,iL,hZC*L belong to the Borel o-algebra B<j, generated by {gx(w) : |k| < L},
hence H ,?,;L , h%ﬂf are independent of o-algebra B N generated by {gx(w) : |k| > N/2}.
The random oscillation effect will be captured in terms of suitable norms for the operators
HNE BNE | as explained in [17]. In this article, we need the Hilbert-Schmidt type norm
to capture the X*P-regularity as well as the L™ size of 1/J]LV and a Fourier-Lebesgue type
norm to measure the size of the Fourier-coefficients of WLV .

Probabilistic local convergence. To prove Theorem [2] the key point is a local conver-
gence result for dyadic sequences which we will describe below:

Theorem 3. Let o > «ag. Then there exist Cy > 0 and sufficiently small numbers 6 >
0,e > 0, such that for each sufficiently small T > 0, there exists a set Qp C Q with the
following properties:

(i) P[QS] < Coe™T™".

(ii) Yw € Qr, the sequence of unique smooth solutions (vn)yeon Of
i@tvN + ’Dx’a’UN = N(’UN)
with initial data vy |i=o = IIn@Y given by (1.2)) is a Cauchy sequence in C([—T,T]; H?(T)).
More precisely, for all |t| < T and N, vy admits a decomposition
un(t) = SN + N+ W, where (V=Y > ¢
M<N 1<L<Ly
l,g+6 l+€
with the property that (Wn)yeon is a Cauchy sequence in X7 * 72
each N, L,

and for

—(a—1)—e7 L—p
||<£VHL;1([—T7TLLOO('H‘)) S CON ( 1) L2 7
Hciv”LOO([fT,T};H(a—l)—e(rﬂ*)) < C’OL_”N_g,

with v = min{3 — ¢, 7(a4_1)} — €.

(iii) The sequence (vn)nen of unique smooth solutions of
10¢vp, + ‘Dm‘avn = N(Un)7 'Un’t:O = Hn¢w

converges in C([=T,T]; H?°(T)).

Note that by undoing the gauge transform
un(t) = vn(t)o™ = Frlenle,

the unique solution w, € C(|—T,T]; H?°(T)) of the original FNLS equation is also a
Cauchy sequence in C([—T,T]; H°(T)), which proves Theorem [2| (locally in time). Unlike
[17] where the dispersive effect is very strong while the nonlinearity can be arbitrarily
large, we deal with the NLS model with a fixed nonlinearity but with very weak disper-
sion. Another different feature is that we do not need to renormalize the equation which
makes the problem more natural from a purely PDE perspective. Therefore the type of
probabilistic well-posedness we get in this paper is close in spirit to the line of research
initiated by Burq and the second author in [11, [12]. More importantly, we perform the
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multi-linear estimates in a very different manner compared with [I7]. Indeed, in [I7], all
the analysis was performed in the Fourier space, thanks to the strong linear and multi-
linear smoothing effect. However, in our situation, the deterministic smoothing is very
weak (for Strichartz we loose almost é derivative) and we rely more on the linear random
oscillation effect. It is at this point that we need to define an extra Fourier-Lebesgue type
operator norm S%? in Section

We believe that the constraint o > «y = 31_174 Y233

8 8 : 1« 3(a—1) a1,
ap < = where = is the threshold for the constraint 5 — 7 > === and H™ 2 is the

is technical. We point out again that

7 7
regularity of the first Picard’s iteration ZN (S (t)¢*). The technical constraint o > a
is mainly caused by the condition v < @. Indeed, this comes from the upper bound

7(a—1)
4

N-(a=D+1- * of the X% norm of the expression

IN(PnSa(t)d, PLSa(t)e + (i, PLSa(t)e + C5)-

Note that ¢ Il% can be viewed as a size R perturbation of Gaussians with Fourier support ~
L. Compared with the expression ZN (P y S, (t)p, P1Sq(t)¢, PrSa(t)d), the non-resonant
relation ko # k1, k3 will be destroyed and consequently, the estimate for terms like

INPNSa(t)d, (R, Ch)y IN(PnSa(t)d, PrSa(t)e, Ch)

is worse than the formenll

Refined resolution ansatz in the context of nonlinear PDE in the presence of singular
randomness were used in many previous works. In [I], [27] ansatz taking contributions
from possibly infinitely many Picard iterations are introduced. In [22], [20], in the con-
text of parabolic equations, resolution ansatz exploiting randomness structure of certain
terms beyond the affine ansatz are introduced (the randomness is captured using cer-
tain linearisation operators). This type of ansatz was first introduced in the context of
dispersive PDE in [2I] and further developed in [9, 25]. Different ansatz, which involve
the randomness structure of operators and tensors, are introduced in [I7],[I8]. It should
be underlined that all these contributions are extensions of the ideas introduced in the
fundamental papers by Bourgain [2, [3], 4].

Organization of the article. In this article, we only address the proof of Theorem
since the remaining arguments of the proof of Theorem [2| follow from [2§]. In Section 2,
we recall some preliminaries and define the functional spaces for functions and operators.
In Section 3, following the iterative scheme in [I7], we first reduce the proof of Theorem
to an induction statement (Proposition . Then by assuming key multi-linear estimates
summarized in Proposition [3.7, we prove the induction Proposition [3:3] The remaining
sections are devoted to the proof of the statements in Proposition [3.7 In Section 4, we
deduce the L*° and Fourier-Lebesgue property for the “paracontrolled” terms which will
be used intensively. Next in Section 5, we prove the mapping properties of the random
averaging operators leading to the self-closeness of the fix-point problem for AN>Y'. Then in
Section 6, we reduce the key multi-linear operators to the low-modulation cases in order to
focus only on the discrete multi-linear summations later. In Section 7, we prove the bilinear
estimates for the kernels of random averaging operators which helps us to control the
source term of the fix-point problem for h™V-X. Finally in the remaining sections, we focus
on the tri-linear estimates used to close the fix-point problem for the error wy, in different
frequency interactions regimes. In all multi-linear estimates, we always describe available
algorithms first and then do the case-by-case analysis by implementing the algorithms.

Acknowledgment. We thank Tadahiro Oh for interesting discussions while the first
author visiting the University of Edinburgh. We thank Yu Deng for valuable comments
on the first version of the manuscript. The authors are supported by the ANR grant ODA
(ANR-18-CE40- 0020-01).

1 See (v) of Lemma and (ii) of Lemma|7.6
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2. NOTATIONS AND PRELIMINARIES

2.1. General notations. The capital numbers N, M, L, R represent dyadic numbers greater

than % For a finite collection of dyadic numbers {N1, No,-, Ny}, we denote by Ny >

Ny > N3y > -+ N be the non-increasing rearrangement of it.

For two quantities A, B, the asymptotic notation A < B (A 2 B) means that there
exists a constant C' such that A < CB(A > CB). The notation A ~ B means that A < B
and A 2 B. The notation A <x B(A Zx B) is used to specify that the constant C
depends on X.

For the Lebesgue exponents 1 < p,q,r < oo, we always use p’, ¢, to denote their
conjugate exponents such that % + z% = 1 with the canonical modification when p = 1 or
oo. For 1 < j <n, denote by (Z;, 11;) a finite sequence of measure space with the standard
LPi norm

176z = / £z Ipfdp)pﬂ.

We will simply denote by LE} L2 - - - LY to stand for LP*(Zy; LP?(Za; -+ - ; LPi(Z;) -+ +)). For
example, we denote by L{L7I] to stand for LI(Ry; L™ (Ty;19(7Z))). The Fourier-Lebesgue
space FL*9(T) is defined via the norm

(2.1) 1fllFLea = I1(R)F (R) -

We denote by Iy := F, 11 <y Fz, and Py := F, 'y jocp<nFe if N > 1 and Pyo1 =
y-1. Su(t) = e1P=I" The twisted spacetime Fourier transform is defined as

u(\, k) == (Frpu)(X+ || k).
We also denote by
Bike () 1= (Frhire )+ [K]*), - Opar (A, X) = 27(Fopr Opar )N + K[, =X — [K]*).

The definition of ékk/(/\, )') is such that if a operator is given by
W)t k) = [ O bt (Faw) (¢ Kt
k/

then

w)(\ k) = Z/(:)kk/()\, NN, K )dN.
™

Define the affine space for a given number k£ € Z
T(k) := {(k1, ko, k3) € Z® : ko # k1, ko # k3, k1 — ko + k3 = k},
and the resonant function on I'(k)

Dy o ks = (R — [Ral™ + [Ra|* — [K|%

2.2. Spaces for functions and operators. Denote by S, () = ¢//P=[*. Recall that the
Fourier restriction type space X*? is defined with the associated norm

leall s 1= ISal=t)ull ge(rasmvayy = 1N R TTN B) 2 13-
Similarly, the Fourier-Lebesgue restriction space Xp'J is defined via the norm
lullxgy = 10T R a(A B) g -

Note that XZS 3 X3P For finite time interval I C R, the localized restriction space X b
is defined via the norm

HUHX;,IJ = inf{HU”Xs,b : ’U|[ = u}

For X*® spaces, we have the following statements.
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Lemma 2.1. Let x € S(R). Then for 0 <T <1, s € R and —1 < b<b< i wehave

the estimate

3
/Tl o5 < Tl oo
Moreover, if u|i—o = 0, then the above estimate holds for 0 < b<b<l.
Note that the proof of the last statement can be found as Proposition 2.7 of [17].
Lemma 2.2. Let x € S(R). Then for s € R, % < b < 1, we have the estimate

Hx /S (t —t"YF(t)dt

For #(t), time-dependent linear operator on I with kernel (Hy+(t)), we introduce the
norms:

o S s -1

1#llyo 2= 1N e MVlliz. 1222
(2.2) 132 2= IOV e W)l 22

A kk*
26 ~
[Hl .0 == [N 7 Hgr (M) ll10 p222,

where %—i—% = 1,1 < ¢ < oo. For a linear operator © with kernel (O (t,t')), we introduce
the matrix norms:

1©1yarea 2= 1) XY ™60 (AN 12,4212
(2.3) 18010100 = IOV () 2 Gaae 0N 12 e

26y
1O 01.82.0 2= 1) 7 (X) 72Okt (A N)lie 13 12,2,

N k!
Note that when we ignore the k* variable, the S®¢ norm is just the restricted-type Fourier-

Lebesgue norm X, c?é,q with v = ?I—l,’. The reason for introducing of the space S%? is two-fold.

First it characterizes the Fourier-Lebesgue norm of the para-controlled term w]LV which is

morally N ~2 for small L. This allows us to carry out many multi-linear estimates simply

by Cauchy-Schwartz, as in our previous work [28]. The second reason is technical. When

we do the Wiener chaos estimate, in almost all the situations, leaving out ||

better than leaving out [|AN"F| 4 since the later losses N'~2 factor.
Sometimes we will abuse the notation and write simply

1©kks (A, ) - (e, ) somnime = [1F7 2 (Otr (A X Ym(e, B)) [ o o
for X =Y,Z or S.

Lemma 2.3. Let x € S(R), and recall that xr(t) := x(T 1t) for 0 <T < 1. Then for
u(t,z) and operator O(t,t") = (O (¢, 1)) satisfying u(t = 0,-) =0, O(t = 0,t') = 0, we
have

2(by —b)
Ixr(@ull xoo, ST Ml yomns X (O)®flspa ST (18] 51,0,
with1 < ¢ <00, 0 <y <y <1+ 5, and 0<b<b < 1.
Proof. The proof is essentially the same as in [I7]. We present a proof in the appendix. [

Fix a time cutoff y € C2°((—1,1)), we define the time truncated Duhamel operator

t
(2.4) IF(t) == X(t)/ Sa(t =) (x(E)F(t))dt'.
0
Lemma 2.4 ([16]). The twisted space-time Fourier transformation is given be

fﬂmm=AKmmﬁmmm
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where

XA —=o)x(o — X(A)x(o —
K(A,u)z/[( (o —p) _ X(WX( 'u)]da.
i i
Moreover, for any B > 1, we have

1 1
KOl S6 (5 + 5 m)

We will need an elementary lemma:

Lemma 2.5. Let 0 <o < 8 and o + 3 > 1. Then for any € > 0, we have

/ dy < 1
r (Y —2)7(y)P ~ (z)
where
c+p—-1, <1
v = oc—¢ =1
o, B>1

uniformly in z € R.

Proof. See Lemma 2.2 of [2§]. O

2.3. Counting lemmas and the Strichartz inequality. We need the following ele-
mentary counting principle:

Lemma 2.6. Let I,J be two intervals and ¢ be a real-valued C' function defined on I,

then
Bl

infees [¢/ ()]

Lemma 2.7. Assume that N > No V N3, then for fixed ko, ks such that |ka| ~ Na, |ks| ~
N3 and ko # k3, we have

NQfa
§ €
1(I>k17k2,k3:N+O(Ne) S’ N (1 + <k2 — ks))’
|k1|~N

HhelInNZ ¢pk)eJr<1+

and the implicit constant is independent of .

Proof. This follows from the fact that

0P _ a— a—
]w\ = afsgn(kr) k1|7 — sgn(ky — ka + k) k1 — ko + ks[> Y| 2 [ka — ks[> 2,
if |k1| ~ N > |ko| + |k3|. We conclude by the elementary counting principal. O

Lemma 2.8. Assume that Ny ~ Ny ~ N3 ~ N, then for fized ko, ks such that |ka| ~
Na, |ks| ~ N3 and ko # ks, we have
N?—a
< N¢€ -
>0 iy immromg SN(1+ o),
|k1|~Ny

and the implicit constant is independent of .
Proof. Arguing as in the proof of the previous lemma, when sgn (ki) #sgn(k; — ko + k3),

we have |0, ®| ~ N®~1. When sgn (k1) =sgn(k; — k2 + k3), we may assume that ki > 0,
hence

o9 max{ky,k1—(k2—k3)} d . 1 1
|M‘ :a(a—l)/ §Z|k2_k3|mln{‘kl‘2—a’ ’kl_k2+k3’2—a}'

Oky min{k1,k1—(ka—k3)} ’5‘2_(1
This completes the proof of Lemma [2.8 O

We need also the following Lemma proved in [28].
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Lemma 2.9. Denote by
/1&71,]\41,]\42 = {k eZ:M < |]€| <2Mi, M < \a — k’ < 2Mos,
Then for r >

k| + |a—k|* =1 <r}.
1 < a <2, we have

B Aqivn i (r) S min{ My, Mo} =573,

where the implicit constant is independent of a,l,r, My and M.

100’

Next we recall the following bilinear Strichartz inequality:
Lemma 2.10 ([28]). Let 1 <a <2 and s > % — 5. Then for any N > M, we have
(2.5) IPNf-Puglirz S MIPN S o3Pyl

2.4. Estimates for operators.

3.
x%%8

Lemma 2.11. Let A : [2 — [? be a bounded operator with kernel (okk )k krez- Then
1

1Al e < suplowl + (D lower?) .
k Py

Proof. For any a € 12,d € I?,
(ACL, d)lz = Z akk/akﬂk + Z O'kkakgk.
k£k! k
By Cauchy-Schwartz, we have

(ha,d)a] <( 3 1el?)? (Z] 3 lowelawd 2
k

kK k' £k

1
2
<lswlowsl + (3= lowwl®) " lalle e

kK kA

2
)"+ sup lowellale

In view of the duality, this completes the proof of Lemma [2.11 O
The same argument yields:

Lemma 2.12. Let A : 12 — 1% be a bounded operator with kernel (Okk )k wez- Then for
any L >0,

1

IMlose <L swp gl + (X o)’
k,k":|k—k'|<L K |k—k'|>L

Proof. The only difference is the estimate for the quantity

‘ Z akyk/akdk/ .

kk':|k—k'|<L

We first pull out supy, j.x—p/|<r |0k k| and then use Cauchy-Schwartz and Young’s convo-
lution inequality to estimate th, 1p—p|<pakdp as

lallzlldlliz 1< lln < Lllallizlld]]:.
This completes the proof of Lemma [2.12] O
Lemma 2.13. Let G : lllcl/,%1 — l,%2 1s a bounded operator defined via

k
bk,k1 — E Jk?klbkykl'
k1,k

Then

)

1
2
1611322 iz <sup(§j\akk1 ?) +iup( 3 !Zak, W

ki K,
(k1) # (K k1)
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Proof. One verifies directly that G* : l,%Q — l,‘fl,%l is given by
—k
ARy Z Ok, Oka
k2

and the matrix element of G*G is

o

Tk k1 Zakkl Tkl k-
For b € lklkl,d € l,il21, we have

G*Gb, dy| < bk d F M e d
K ,d)| < Zak,kl kk1 Ok ky | T Z Ok ky Ok K, Ak ey

k,k1 k,k1 k' kY
(kzkl);é(k/vkll)

1 1
k k’, 2 2
<sup o |- ow g, e e +Z( S o ) (Y e Pl )

k1 K1,k k1 ,k}
(K’ k) # (kK1)

1
R 2
<§cl,ﬁ|akk | Mok iz Mk ez +§€ug< ka: ey A ) 'ku’,k’l”l}ﬂ,li,l”dk,klnl}clil'
1,
(' ) £ k)

Using the fact that I! < [*°, this implies that

2
197Gl —iez < iUPZWkk | +§CUP( > ’Z%’ k"’k k1

ki ko k1,k]
(K’ k3)# (K K1)

N

)

1
From [[Gllpz 2 = GG,z _jecpp » We complete the proof of Lemma [2.13 O
k k1" kg kb, =l

Given h()), a A-dependent family of linaer operators on L?(T), we may identify it as a
A-dependent family of linear operators on [? with kernel (hg+())), where

hkk* ()\) = (h()\)(ek*),ek)

We will need two technical lemmas (in the proof of Proposition [3.3) concerning some
estimates of the kernel related to h(\):

Lemma 2.14. Let h be a \-dependent family of operators with kernel (hgi+(\)). Consider
the operator H with kernel

Hyger (N) = > / Ot O, N ) g (N )N,
;7 JR

where O (\, X) is supported in |k — k'| < L, then for any B > 0, we have
12,22,

(5 e (T mae ]y

Proof. See Proposition 2.5 of [17]. O

a /
e S 11Okrr (A X 2,2, 1202 -

Lemma 2.15. Consider the operator H with kernel
Hip= (V) = Z/Rékk'@» N ) hrgs (N)d X,
then we have '
@ I Hi Wlieraz, S 1O (A N) Mige 22,2, Wi N)lliz, 202,
(i) [ Hie Wiz, S 10r AN ez e W (Nlliz, 22,25

(i) [ Hue M2z, < 18np 0 N2 2,22 [ i (V) 12,12

ANETk* X’klk*
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where we mean
Hhk’k*( Hz2 —L2,12, "= Hh(/\/)HL%—wi,Lg'

Proof. (iii) is relatively simple. For fixed k*, viewing O (A, \) as the kernel of the
operator from Li,l,%, to Lili, we have

[ k= (Ml 2222 < 1Ok ke (A N 22,2, 202 ks (N 22,22,

Taking [2. to both sides and by Fubini, we obtain (iii).
To prove (i) and (i), recall that g (X) = (h(X)(ex+),ex) ;o- Denote by h*(X') the
adjoint of A(\'). By linearity, we have

ﬁkk* (/\) = Z / ékk’ ()\, )\/) (h()\’)(ek*), ek/)Lng
kl
:/ (ek*, ngk’()‘a A/)h*()\l)(ek/))L%d)\l
k./
= (ek* N / h* ()\I) ( Z gkk’ ()\, X)ek/) d)\) 2
k' v

Here we omit the issue of the legality of changing the order of the integration and the
summation, which can be justified by a standard density argument.

Denote by Fr(\, ) = 32, O (A, N)eps. For fixed k, A, viewing [ h*(N)Fx(X, N)dX as
a function in L?(T), we have

e V]2 . "L\, N )dN) —H/h*A’F)\)\d/\’
| e (), Z\ek/ JF(A, X) KO

9

thanks to Plancherel. Now viewing h as a linear operator from L2 to L3,L2 with kernel
i (X'), hence h* is from L3,L2 to L2 and

h(G) = /h*(X)(G()\'))dX.
By viewing Fj(),-) as a function (for fixed k,\) in L% L2, we have
/h*()\’)Fk()\, NYAX = I* (Fi(A, ).
Therefore,
1 Mz, =[187 (FeO D2 < 182, 22522 1FeO Xl 22, 12

=l z2z2,1 - || D2 Ot O N e
k/

12,13

=llhll 22,22 - [|Orr (A, X) HLi,li,'
Taking L4 and [{° or L3[2 to both sides, we obtain (i) and (ii), with respectively. The
proof of Lemma [2.15]is complete. O

2.5. Probability tool-box. We denote by B<y (Bsn), the Borel o algebra generated
by {gx(w) : |k| < N}( {gx(w) : |k| > N}), and By be the Borel o algebra generated by
{gr(w) : T <kl < N}. For a o algebra B, we use the notation X € B to mean that X is
B-measurable and X | B to mean that X is independent of B.

Let (2, F,P) be a probability space, (X, u) be a measure space and G C F be a sub o-
algebra. Let X, Y be two random variables and let f(z,w) be a random function with value
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on L™ (X, u). We recall the following classical inequalities for the conditional expectations:
(i) Holder:  E[|XY|g] < (E[X["I])7 - (E[Y|G) "
(ii) Minkowski: If p > r > 1, E[|| f (z,w)|7, 9] < [|(E[|f(= w)Plg))7 |

Ly’

(iii) Chebyshev: For any A > 0 and p € (0,00), P[|X]|> \|G] < EEHXWQ]'
Lemma 2.16 (Conditional Wiener Chaos). Let (gj(w))jce be a inpendent, identically
distributed complexr Gaussians and E is a finite index set. Let C be a o-algebra independent

of (gj(w))jer. Assume that (Cky ky, - k(W) (k1 kn)enm @8 @ sequence of C-measurable
random variables. Then for any finite subset S C E™ and p > 1, we have

El S s Ilbe)|d)”

(k1,k2, - km)€ES
m 1
<Cozp-1E(E[| Y s H 2 ‘ c])*.
(kl,kg,-'~,km)65 :

where gzjj (W) = gk, (w) or g, (w) and the uniform constant Cy is independent of the set S,
the o-algebra C and the number m and p > 1.

Proof. Since the conditional expectation can be viewed as partial integration for the prod-
uct probability space 2 = 1 x 9, the conclusion follows from the usual Wiener chaos
estimate. 0

Corollary 2.17. Assume that 1 < py1,pa,--- ,pn < 00 and E C N is a finite index set. Let
(95)jeE be a sequence of independent standard complex Gaussians. Let C be a o-algebra in-
dependent of the o-algebra generated by (gj)jer- Let (ckr .. ks (21, 7Znéw))(k§,---,k:n)eEm
be a sequence of C-measurable random wvariables with values in LP'(Zy) x --- LP»(Z,).
Consider the function

m
F(z1, -+, 2zp,w) = Z Ck;,-u,k:n(zla"' 7Zn§W)H9/:]J(W)
(kfv"'vk;;L)EEm ]:1

Assume that there exists some constant Ag > 0, such that
1
9 L
(2.6 |EIFPIE) .. < Ao,
2
then for any R > 0, outside an exceptional set of probabilitzﬂ < Ce B™ we have
[ g2r...pon < RAo.

Proof. Let p > 2max{p1, -+ ,pn}. By the conditional Chebyshev and the Minkowski
inequalities,

]P)[HFHLZ%LQQ >A|C] < 2 H ‘F(Zl,... s Zn, W ) p|C ZPHLpl LEn
By Lemma and the assumption (2 , we have
|EUF G- 2, w) PICD [Py < CF(20)™ AT

By choosing A = RAy and optimizing the choice of p, we obtain that
2
IP’[||F||L§%_._L§,I > RA[C] < Ce™cE™,

By taking the expectation once to the inequality above, the proof of Corollary is
complete. O

2This exceptional set depends on the random functions Chy e K,

m
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3. KEY ITERATIVE STEPS

Though the smooth solutions (vn)yean of with initial data IIy¢“ already exist,
the proof of Theorem [3] will be achieved by solving local-in-time fix-point problems. To
this end, we recall the iteration scheme introduced in [17] with a slightly different setting,
in order to solve the non-truncated equation.

3.1. Rigorous resolution scheme. Here we need to take into consideration of the time-
restriction issue. Recall that x € C2°(R) is a bump function which is 1 on [—31,1] and
is zero outside [—1,1]. For 0 < T' < 1, we define x7(t) := x(t/T). We now rewrite the
ansatz with time localization. We will use the notation A# to define the quantities after
time-localization procedure. In what follows, we describe inductive definition for the time-
restriction that gives the rigorous resolution schemeﬂ This contains four steps, including
two fix-point problems:

elnitial step: We define
wi (t) = wi(Oxr(t), V17 (t) = X(£)Sa(t)Prre”, Hkk?’# XM e,

for any dyadic number M >
eInduction assumption: Suppose that M > 1 is a given dyadic number and we have
defined:
wh(t), VN < M; BNV EB# VL < Ly, L < M.
We need to define wa and N M# for all N' > M1 (i.e. M < Lpv). First, note that
forall L< M,R < L'™% < M, C}Lz’# = sz{’# — wg’# are well-defined, since they can be
2

written in terms of the operators H%# (hence in terms of the operators h"%#). Thus
for all L < N, the following functions

vf = Z yr/,  where yf, = x()Sa(t)Pr¢” + Z C{%/’# + wp(t)
%SLISL (L’,R/):R’<L/1_5
are also well-defined.

eUniform bounds 1: Estimates for the linear operator: Next for L = M and

1 ’
N’ > M7= we define H,i\,;;M’# by taking the k-th Fourier mode of the solution ¢# to the
equation

(3.1)
. N’ .
# (1) = x(8)Salt)(ere) + 207 (1) Ty IN3 (0¥ Tagofy, Iharof),  where —- < [K*| < N'.

We note that knowing vy, for fixed N, the solution ¢ (t) exists and is unique, from a
simple Grownwall type argumentﬁ Since it is a linear equation, this will turn out to be
true, if T' > 0 is sufficiently small.

eUniform bounds 2: Estimates for the smooth remainder: We finally write down

the equation of wa to finish the induction step. Since Loy < (2M)'™0 < M (true
for large M, the case that we concern), the function wiﬁ}# = HAMLam# (Pyp ) s

well-defined. Now we define wa by solving the following equation:
wiy (t) = = ixe (L[N (w]y, + ng I ol) =N ()]
— 2ix (O oy INs (Wi # Ty, 07 T, 0f, ).

Lons

(3.2)

Note that to solve wa through (3.2)), we expand the right side of (3.2)), the resulting
terms can be grouped as follows:

3Since for the truncated initial data, the global smooth solution exists and is unique, the fix-point
procedure used here is only to establish required bounds in suitable function spaces.

4More precisely, we may multiply both sides by ¢# and doing the integration by part. This allows us
to control %Hgo#(t)ﬂizm) by C(N/aUM)”‘P#(t)HQLZ(T)'
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1) At least two entries in INg(-, - ) are szM# and the other one (if not the same)

is o7 ;
M
2) Exactly one entry in INg(-, - ) is ¢2M#, at least one v#/[ — HLQMUiM, and the

last one (if it is different from the two) is fuf};

2M,
3 N3(UM7wL2M#’ ]7\%4)
4) At least two w#M or exactly one wa and at least one 2™ Lons-

6) The projective term: HjMINg(z/JiVAZ#, v}@,vﬁ)

)
)
5) Exactly one w# v and all others equal o7 %
)
7) The diagonal nonlinear term TRy := ZNp(w?,, + IbLn# + ol — NG (V7).

3.2. Key multi-linear terms. First we describe the key multi-linear terms in order to
estimate the linear operators through (3.1)), Since the solution ¢# of (3.1)) is HN M# (e}),

by taking the difference HN'M-#(ep.) — W H# (eg+), we have
4 . ’ . 1 M
RN M# (e ) =2ix ()N N3 (BN M (e ), oy, Tavyy) + 2iPH v (HY 2 (exr)),
where the operator 77;{,, ; is defined by
(3.3) P]J{,,L(w) = XT(t) . IHN/ [Ng (w, HLUf, HL'U[#) — Ng (w, H%Uﬁ, H%’Uﬁ)]
2 2

for L > % and

o7 11

)

PN’ 1( ) = XT(t) IHN/N?,(U] II
We will need an analogue of the operator above later:

(3.4) P&,’L(w) = XT(t) . I[HM/Ng (HL’UE%, w, HLUf) — HN/./\/?, (H%’Uﬁ, w, H%U#L#)]
2

2

707,
2 2

1 1
2 2

for L > % and
P]:], l(w) = XT(t) IHN/N3(H II
2
Now (3.1)) is reduced to the following equation:
WV M# (o) =20 Y Pl (BN MH# () +2i D Pl (BN E# (o))
(3.5) L<M L<M
+2iPY, 4 (HN 2% (0 ).

To deal with (3.2)), we need to treat the terms of type 1)-7). By definition, we have the

decompositions

lU#,’U}, ;'U?é)-
2 2 2 2

# H# # R# # L #
Uy = Z (Q/)L ‘HUN) ”M Hr,nvr,, = Z (¢LR +w}) + 17,07,
NSM L21\4<RSM
N N
¢L;\,# = X(t)Sa(t)PNo* + Z L #*
L<Ln

We now precise the multi-linear terms according to their types. To simplify the notation,
we will not write (-)# for the time-restriction here, and we mean ¢?™ by a term of the
form C%M for some L < Loy or ¢2;M

2

1) IN3(C2M7C2M7*)a IN3(<2Ma*7C2M);

2) IN3(CM wy + 9l + T, vf x), IN3(CM s wy + 9N +T0E, o ),

(
I./\/g(wM + wLN + HL2M1)#2M,C2M, *) with some N > M1-9;
INg(*,C2N )
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4) INs(wanr), INs(wanr,*,wanr),  IN3(wanr, wanr, *),
IN?)(wM,CQMv*)’ IN3(C2M7w2M>*)7 IN3(C2M>*7w2M);

5) IN3(wanr,var,vnr),  IN3(var, wonr, var);
6) H%MINg(CZM,UM,UM);
7) Trivial resonances: ZRy.

where the input * stands for a term belonging to the set of functions

M
{UMu ]:[LQMULQA{7 <2 }
In summary, the only possible high-low-low interactions appear in the following situa-
tions:

e Case 3), but ¢ is in the "good” position.

e Case 5), but with wop; who has the dominated frequency. These terms can be
viewed as errors of certain linearization procedure and will be treated by the op-
erator P* defined later.

e Pseudo high-low interactionsEl: Terms in Case 2) and Case 5) involving the en-
try HinL2 u O HJ‘L/[UM. Though these are not high-low interaction, when we
decompose vy = Yy peps Y, the portions yy coming from M’ < M may not
have sufficient decay in the estimates, they behave like just ya; in a priori. This
is caused by the fact that the Fourier support of vy; is not bounded, when we
truncate only the initial data. Extra estimates for HﬁvM is needed.

3.3. Induction step. Now we summarize the induction step. First we define the linear
operators (with L < N179):

(3.6) P$7L(w) = xr(t) - Iy [Ng(w,Hva,Hva) —Ng(w,H%vg,H%vg)}
and
(3.7) PK,L(w) = xr(t) - Iy [Ng(Hva,w,Hva) —Ng(Hév?w,H%vg)]

for L < Ly = max{L' : L' < N'~°}. Denote by @kN;j(t,t’) the kernel of the operator

P ;. Note that on the support of @Q;,L(t,t’), |k — k'| < L. Following [I7], for a given
dyadic number M, we call Loc(M) the following uniform bounds: for all (L, N), such that
1<L<M,L<N79

@) BNEH e < D78 IBNE# | gy < NOLTY, [ RNVE# 5 < N T LTS

. N, - N, —(a— _
(W) NCN# o < N2L™, G H||yos < N7 Dr2L,
q

0,q

) I H s < N0Vt 3
;

o [y agee] <

(v) HP]%,LHXOJ’ﬁXO,b < T %:;

(1) [T s - OR EE) go < TONTT3FO LT

(viD) |2 gz O (61| o < TONOLTY

(

viii)  [[w¥ | xor < N5 (K, w ] xor < Ng° YN < M, Ny > N.

5This is the main different issue compared to the truncated FNLS.



20 CHENMIN SUN, NIKOLAY TZVETKOV

Remark 3.1. Hierarchy of numerical constants: Let o > 0 be the free small parameter to
choose.

bo =05+ b=05+2020, b =0.54+30%, § =0.016°", ¢t =0, k=07,

1
€1 =02 e =€ +1000°, § =%, 5y = o'", 3:5—%—%0;
.l a T(a-1)
v=min{y -, — )0

With these choices, for o > 0 small enough, we have

T(a—1 by — &
ngin{s, (a4)}—100(61+62>, 1, i<<q’—2b1<<1;
q —

1 1
61>100(b1—§—|—*—|—9), (a—1)+2sv—s5>0.
q

In the remaining part of this article, all these numerical constants are reserved to depend
only on the free small parameter o, which will be chosen small enough if necessary.

Remark 3.2. In the induction argument, the condition (i) for the next step is inherent
from (v), the condition (ii) is inherent from (vii), and the condition (iii) is inherent
from (vi). The condition (iv) means that the support of hfx;ﬁ s essentially restricted
on |k —k*| < L.

The key inductive proposition is the following:

Proposition 3.3. Assume that a € (ay, g] There exists o > 0, sufficiently small and
we fix the numerical constants as in Remark . Suppose that Loc(M ) is true for all
w € Q. Then there exists a measurable set QF C Q* with the property that (for some

6 >0)P[Q*\ Q] < Coe™T"M" " such that for all w € ), the statement Loc(2M ) is true.
Consequently, outside a exceptional set of probability < C’ge_Tie, the statement Loc(M )
holds true for every dyadic number M > %

Remark 3.4. The main reason for the constraint o > « is the condition
(3.8) (o —1)42sv —s > 0.

By numerical computation, one verifies easily that, for sufficiently small choice of the free
parameter o > 0, the above condition holds if a > «y.

Using Proposition we can easily deduce Theorem 3| (i) and (ii). Indeed, we first
delete a set of probability smaller than Cye~T"" such that the statements Loc(M) are true
for all dyadic M > % on the interval [T, T]ﬂ In particular, for each dyadic number M,

we have
v = > (S Pye +uwd) + Y Y

N<M NSM%<L§LN

satisfying the estimates (i) to (viii) listed in the hypothesis Loc(M). Therefore, w? =
DY w]\#4 is a convergent sequence in X%_%+e’%+6, and (¥ = ZML Civ’# is a convergent
sequence in L°([—T,T]; H*1=¢(T)) N L®([-T,T); FL2~“°(T)). Now for fixed N, the
smooth solution v, and Uff[ are both solutions of with the same initial data IIy¢“.
By uniquenss of the smooth solution, when restricting to a smaller time interval, say
[—T/2,T/2], we have U}E = vys. This allows us to decompose vy similarly as sums of
S(Hn¢?, (N and wy. Moreover, the same equations and hold for if we drop
the # notation and the time truncation yr(t). This shows that (&, wy coincide with
i\/,#’ wﬁ] on [—-T/2,T/2]. This proves Theorem (i) and (ii).

6Note that T is involved in the time cutoff functions to define C# RN T
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3.4. The key multilinear estimate. We make the following assumptions on v;(\;, k;):
oType (G) Gaussian:

~ gr; (W)
(i, ks Nis ki ~ R 0.y
Uj( ] ]) w% ( ]7 ) %<‘k]|SNj [l{b]f X( ])
with the bounds
(39) Juillxon < N7 T gl oy < NG
00,q

eType (C) Colored:

0N ky) =G Ny ky) = D hy s (Ag)

L <lkrI<N;
where 1 < L; < LNj < le_é,
5:Lj N *
Supp(hk kx ) - {‘k | < N]7 < ’k | < N]}

~N,,L; .
and hy 7.7 is B< L; measurable. Moreover, we assume that
VA -

b b7 —&3
(3.10) Y? norm: [|(A;) hk s ()\j) k*_ﬂiﬂij <L,
—,~N-,L _
(311) Sb7q norm: H<)\j>‘1 hkjjk* HZ‘X’L‘; li* < N;le v
b . b"N-,L 1-G+er
(3.12) Z” norm: H()\J) hkjjk;_ HL2 7 li* <N; * L}"
—(a—1)+ 2—v
(3.13) L% norm: [|v; a0 < Ny @7 QLJ?
—(a=1)+ —v
(3.14) X% norm: ||vj|xoe, < N; (a=1) “L;
0,20
(3.15) Xoog morm: [ug|| 2y < NjT2LY
Xooq
and the almost localization condition:
ki — EX|\s~n. 1.
b | J N;,L
(3.16) | (=Y W 0|, . <N
J Aj kjk;,

eType (D) Deterministic:
(317) ([ 55N k)l 2 < N;*, ||<>‘j>b5j()‘jvkj)1|kj|>No”l§jL§j < Ni*, VNo > N;.
J J

For functions v; of the form (G),(C) or (D), they are all associated with dyadic numbers
Nj (or (Nj, Lj) for the type (C)). In order to organize the terms in a unified way, we will
call that (Nj, L;) a characterized pair for a function v; of the form (G), (C) or (D), where
we use the convention L; = 3 if v; is of type (G) while L; = 2Ly, if vj is of type (D). We
will also call N; the characterized frequency of v;, in the sense that the Fourier support of
vj is essentially localized at scale N;. Recall that N(;) > Ng) > --- is the non-increasing
rearrangement of Ny, No,---, we Wlll denote by v(;), the function in the set {v1,va, -~}
with the characterized frequency N(;y. Yet, the order of L), L(2),-- - is not specified.
The proof of Proposition consists of solving the fix-point problem 1 and the fix-
point problem 2. The followmg two propositions are crucial for solving the ﬁrst ﬁx—point
problem. Recall that @k i L(¢,¢') is the kernel of the operator 73;{, ;. defined in
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A
e

Proposition 3.5. Assume that Qo C Q is such that (3.9)-(3.17) holds for all N; <
Then outside a set of probability < e~eLR gnd any N > Lﬁ, we have

N,L 100(L 4,701 4py -1y - _
195,k (B £ g oy > 2l gpr 000 < BN (e Y i

provided that v < min{s, T 1)} — 10(e1 + €2).

Proposition 3.6. Assume that Qg C Q is such that (| - - ) holds for all N; <
Then outside a set of probability < e<L’R gnq any N > L1 s, we have

100(2 45701 4p 1), —
H@kkl(t tl) k|, \k1|2%||2b1vb < RN (q " ! 2)L Va

/\
™

provided that v < min{s, M} — 10(e1 + €2).
The following proposition is crucial to solve the fix-point problem 2:

Proposition 3.7. Assume that o > «ag. There exists o > 0, sufficiently small in the
definition of the numerical constants in Remark[3.1], such that the following holds true:
Suppose that vy, va,vs are of type (G), (C) or (D) with characterized parameters (Nj, Lj),

_N° R3
7 = 1,2,3, with respectively. Then outside an exceptional set of probability < e Nn#? ,
independent of the choice of functions v; of type (D), we have

(1) If vy is of type (G) or (C) and N3y 2 N(lgé, we have
HI.N’:;('Ul,'UQ Ug)HXO b1 S RN( fN( ;SO
(2) If No > Ny, N3 and vy is of type (G) or (C), we have

| ZN3(v1, v2.03) || oo, S RN( )SN( 350

(3) For any No > Ny,
T, ZN3 (v1, v2.03) || oo S RN_SN(_sz
(4) If N1 > Na, N3 and vy is of type (G) or (C), then

||HJJ\71:Z’—N3(U17 V2, U3)||X0,b1 S RN_SN(_;SO

(5) The operator
P v ITN3(v,v9,v3)
satisfies
-5
1P og o < BNz V N3)™,
and similarly, the operator
P~ v IN3(vi,0,03)
satisfies
- -4
1PN og  cou, S RNV V Ng)™
and the implicit constants are independent of va, vs.
(6) When L < N'7°, we have
o NN b1a o Sb.ay
1Py 0 PnH)lsta S RL™™||H|

where f’N = f;11|k1|~fo is a Fourier projector similar as Py, and PJ—GL 18
given by (3.6).
(7) For all L < N'79,

£ -6
HPNvLHXO’%HXOvbl S RL™™.

(8) For the resonant terms, we have
”IN[)(’Ul, V2, '03)”Xo,bl fj RN(ISSN( ;50, HHJNO.'ZNo(Ul, V2, U3)HX0 b1 S RNO SN( ;SO
for all No > Ny).
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3.5. Proof of the main theorem. In this section, we assume Proposition Proposi-
tion [3.6] and Proposition [3.7] and proceed to prove Proposition [3.3]

Proof of Proposition[3.3. We assume Loc(M) is true for some large dyadic number M,

and we will show that Loc(2M ) holds. To make the argument clean, first we delete a set
2

of probability < e=2M *R% and we do not explicitly make any claim when there is necessary

to delete some exceptional set of of the same size of the probability.

e Step 1: For L = M, M < N'79 we first show that (v),(vi), (vii) holds. From the

decomposition

1 M,
AT U s e
1<L<M1-0

for any w, 73;(, 2 (w) is a sum of x7(t)ZI Ny N3(w, v2, v3) for ve, vs run over all terms of type
(G), (C) or (D) with characterized parameters (N2, L2), (N3, L3) satisfying
M
2
Hence by (5) of Proposition we have

<SNoVNs <M, Ly <N/7°<M, j=1,2

I NMHXOb_>Xob<Tb1 'R Z M~ 60<T M 62

Ney=% .M
Negy<M

provided that T < Rfﬁ is chosen small enough. The kernel estimates (vi), (vii) are
direct consequences of Proposition and Proposition with respectively.

eStep 2: Next we prove (i),(ii),(iii) and (iv) by using (3.5). Note that (ii),(iii) is a direct
consequence of (i) and (iv), see Section [4] for details. From (3.5]), we have

WM =90 N~ Pl o WNAMH# 420 Y Ly o BNEF
L<M L<M
+2iPY 0 HN2#,
Therefore,
||hN’M’#||Yb S Z ||,P]—|\},L”Xoab—>X0vb||hN7M’#”Yb + Z ”,P]—\FI,MHXO*baXOvb||hN7L7#HYb
L<M L<M
N1
+”7)?\LJ,M||X0,MX0»5HH 2 |y
SIRNMH# |y N L%+ ST TR L+ TN
L<M L<M
This implies that
IR # |y < MO

provided that T > 0 is small enough. This proves the first inequality of (i). Next we prove

(iv). From (3.5), we have

At () =20 Y /Z@fj,f A N)BEF (V)N +2i D /Zefjk,M (AN # () dN
L<M L<M
(3.18)

/ Z@ka,M ANV ()a.
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Note that @ZC’,L(IS, t') is supported at |k — k'| < L, from Lemma we have

Ky v

272
LAlk k*

b1—b b —b\N,L |k3, B k*| 7 N,M,#

ST Z NN T 050 (A, )\)HL? 12,1212 <T> XY i ™ () 12,2,
Lo MUKk

TP ST ) PONM (AN 2 2 gz <M>K(>\>thL#()\)

kk" L3, G — LG L Kk L2,12
L<M )\/ k:, k*
— — X\ K ’ 7#
+TOP N Y Pe M (A, Mgz 2,z K = k%) <A>”Hk,ki (M)l2,e2 2.

By using the induction hypothesis and the boundeness of 77;\“, 1+ (the property (v) that we
have just proved) for all L' < M, we obtain (iv), provided that T is chosen small enough.
Next we prove the third inequality of (i). From Lemma we have

b1—b
IRV 5y ST ST P L llxosssxom [N
LM

770> min{ )05 (4 t) | gon s |BYE# [yo, 1P aall o xoun B2 50}
L<M
Note that for the term
3 /Z@,@Vk,M (A N B (V)N
L<M

in (3.18), we may assume that |k — k*| < N and |k’ — k*| < N, since otherwise the bound
follows trivially from (vi) that we have just proved. In particular, we have |k|, |k'| > % as
|k*| > &. Using (vi) that we have just proved, we obtain the third inequality of (i).

Finally in this step, we prove the second inequality of (i). Again in , we may
assume that |k|, |k’| > I since otherwise we can use (vii) to obtain a better bound. After
this reduction, we could apply (6) of Proposition to treat the term

/ SN TONFO R F AN =21 Y PR o (PyhNM#) e (V).

L<M k L<M
Combining with Lemma Lemma and (6) or Proposition we have

2(by —b) -

N,M — 0 N,M N,M N,L
WV H# | goq SRT™ 7 > L70RNM# || g + > 0| go B EH# ]y
L<M L<M

1
1O M| goaa | HN 2|y,

and this is conclusive when 7' < 1 is chosen small enough.

eStep 3: We prove (viii) by solving the equation (3.2). We will construct the fix-point of
the equation (3.2) in the set Z9ys, where

Zy = {w: Jwlxor < N7°, |y wlxo0 < Ny, ¥Ng > N}

for dyadic numbers N. By hypothesis, we already know that wN € Zy for all N < M.
For N, we define the norm

[wllwy = max {Nusllxozu;up N3 |1, w]l xo. },

where the sup is taken over all dyadic integers greater than N. Then finding a fix-point
in the set Z9)s is equivalent to find a fix-point in the unit ball of Ws,s. Since it is not
difficult to verify that (with M fixed) || - ||y,, is @ norm on some Banach space embedded
in X0 (see Lemma , we can still apply the Banach fix-point theorem (contraction
principle).
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First we verify that the mapping induced by the right side of sends a unit ball
of Whs to itself, provided that T is sufficiently small (recall that 7" is involved to define
w? = w(t)xr(t)). Thanks to Lemma it suffices to estimate the X% norm for the
multi-linear terms without the time cutoff x7(¢) factor in front of the Duhamel operator Z.
From (changing wz’& W there to w?), the right side of the integration equation of w (t)
is a linear combination of multi-linear terms of types 1)-7) below . Since for § < 1,
M < (2M)'9, all the conditions (3.10), (3.11)), (3.12)) and ( are satisfies for type
(C) terms with characterized parameters (IN;, L;) satisfying N < 2M and L; < N; 1=
Moreover,

e, Ixor < N7, [ITIxgwn, [ xos < Ng*
for all N; < M and Ny > N;. Then the rest argument is a direct application of the
statements in Proposition[3.7] Next, to verify that the mapping defined by the right side of
is a contraction, the argument is similar. Indeed, we pick two different w,w’ € Zopy,
due to the tri-linearity of the right side of , there must be w — w’ appearing in at
least one place in each multi-linear expression N (-,-,-). Then applying (5) of Proposition
and Lemma we are able to leave out a factor 7% ~°||w — w’||,, when estimating
the Whr norm of the difference. From the Banach fix-point theorem, we are able to find
the unique fix-point w# (t) = w(t)xar(t) in Zops, supported in [t| < 27T
The proof of Proposition [3.3]is now complete.
O

Lemma 3.8. Assume that W is a Banach space with the norm | - ||and (T});en is a
sequence of bounded linear operators on X and Ty = Id. Consider another space
Wi i={weW: |w|. < +oo},

where
[[w]l« := sup [[Tjw].
jeN
Then with (W, || - ||«) is a Banach space.

Proof. The triangle inequality is trivial. We only need to show that W, is complete. Take
a Cauchy-sequence (w(*)) ¢ W, such that

lim [w® —w®)|, = o0.
k,k'—o00

(k) —

In particular, since 77 = Id and W is complete, there exists w € W such that ||w wl|| —

0. Since for any € > 0, there exists kg = ko(€), such that for all k, k" > ko,
sup | Tjuw® — Tjw®) | < e
jeN

Thus for each fixed j, passing k' — +o0, we have | Tjw*) — Tjw|| < e. This implies that
lim sup | Tjw® — Tjw| = 0.

k—>oo

The proof of Lemma is Complete. Il
3.6. Sketch of the convergence of the whole sequence. We now explain briefly how
to modify the arguments in this section to prove the convergence for the whole sequence
(Un)nen, satisfying

10pvy, + |Dx|avn = N(Un)a Un|t:0 = (Hn - Hﬂ)¢w7
Where < n < N. For this, we first define similar random averaging operator (as well as

their kernels) HvL pl Pi L @kk, and the corresponding “para-controlled” objects
Vi, =Y =YL by changing N to n while keeping the constraint L < N'=%. Then we
2

add the same bounds for these objects as HNL, BV:E| P]j\E,vL, @ZC’,L, z/J]LV, CIJ-JV in the definition
of Loc(M) for all (L,N) such that L < M,L < N'=° and all § < n < N. We need
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also to add X% bounds of w,, and vaown/ for all NTI <n' < N',Ng>Nand N < M
in the definition of Loc(M). Then to pass from Loc(M) to Loc(2M), we make use of
Proposition Proposition [3.6] and Proposition [3.71 Note that here we should prove
stronger statements in these pr0p081t10ns accordingly, providing estimates of Sb1:0:4 and
7t norms of the kernel @k 1, - Here the observation is that, the proof of Proposition
and Proposition [3.6[ (in Section @ is not specific to dyadic numbers N (in the definition of
O™~ the letter n appears only in the frequency truncation II,, in front of the multi-linear
expression N3) and the probability of the exceptional set that we delete each time can
depend only on the dyadic parameters L, N such that L < N'=9. Therefore, the results of
Proposition and Proposition are also true for all @Z:,fl such that % <n < N and
L < N'° Finally, to get desired bounds for w,, if M < m < 2M, the analysis is similar
as solving the Fix-point 2 for woys. Therefore, if % < n < N, through the decomposition

va(t) = vox (8) + SO, — Ty )¢ + > ¢F+walh),
%<L§LNM

we deduce that (v, (t))nen is also a Cauchy sequence in C([-T,T]; H°°(T)).
Once Theorem [3| is proved, we are able to deduce Theorem [2| as in [28], and we omit
the detail.

4. L*° AND FOURIER-LEBESGUE PROPERTY FOR PARACONTROLLED OBJECTS

In this section, we prove (ii) (iii) of the statement Loc(2M). Note that eq > 6 + 2y,
the key for the proof of (iii) is the following probabilistic pointwise bound:

Lemma 4.1. Assume that 0 < T < 1,% <L < Nl_‘s and

¢ k—k*
[N 4 < Ny DAL H<7| |> N ()| <N,
SUSS
1
then for any R > €, *, outside a set of probability < e_CNfRQ, we have

1 (v 1_
< C.TsRN; e Dtfr2arz=y
LiLg

NiLy 9k} iz
H xT(t)hy, e (t)—ae
> > i (05

[k1|<N1 |k |~N1

Proof. By abusing notation, we still denote by hVE(t) = x7(t)hNE(t). Assume that
2

61_1 < q1 < oo, then from Chebyshev’s inequality, Sobolev embedding I/V}Eﬂ1 — LS° and
Minkowski’s inequality, we have

07 e te o
R gy

[k1|<N1,|kf[~N1 1

1 N1L1 gk‘{ iklw q1
A 2 i () [k‘*]%e LU LiLg

|k1|<N1,|kf|~N1 1 t Lz
2

1 Ni1Ly <k1>ql gk)f ikt q1

A 2 i (t)We 1 LiL3La

|k:1|<N1,‘k*|NN1

Since gxx(w) and hiv 1kL*1 (w) are independent, we may write them as g+ (w1) and hy, 1kL*1 (wa).
Then for fixed ¢ and z, we have from Lemma [2.16] - 6] that

| ¥ %2 S gda e, sei] 3D S wda g

2 k
lkjl~Np U1 |k1]<N1 |k |~N1 (k] [k1]<N1

AR NiL 3
2 1 1 l
NV ( Z ‘ Z I (t ‘)

|k [~N1 - [k1]<N

wlQ
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Note that
; 1
e : > N L 3
S| 3 mel) (T wigr)
[ki[~N1  |ki[<Ny |k [~Nu, |k =k [<Li Nyt
+N1—€1f‘i< Z <M> |hN1L1(t)‘2)%
! L k1k* .
|ET[~N1,|k1|<N1,
|kt —k1|>L1 Nyt
Therefore,
NiLy gk? iki1x
P[H Z Peyier (t)|k*|%e N> A}
|k1|<N1,|k}|~Ny 1 t Lz
_aia
<M (L Nq)% hN1L1( ol N%—qlem ‘/{:1— 1 thLl() «
~ Aa 14Vy | kiky ’L412 Lo + Ny 7 e . . ‘

1
using again the Minkowski inequality and the Sobolev embedding H/ — Lf, for any
i,k (), we have

(=gl TR (1)

=lle

M2 as sz o
it|k N1 L 1N L NiLy
<l R O, L = N Al S I P
1

where to the last step, we use the fact that h]k\?k? (t) = xr(t )hivlkel( ) and the time-

localization property (Lemma [2.3]). Similarly,

k1 — ki NiLy 1|/ 1k = KT INF, Ny Ly
[ it (t)’wi P (Fz)mg o,
Therefore,
N1L, gk; k1T :|
el > omy e gz ™4
|k1|<N1,|k5[~N1 1
aq a
Q12 4242 @ —q1v ,q1(1—5+2€1) q1(1—e1k) q1 q1(1—a)+2q1e 4L a(3-v)
’SAtth 2 TS[L12 Nl 2 +N1 ]S"AQI h Tng 2 )

1
Since ke; > 1, by choosing R = RNfT%Nf(a_l)Hqu ” and optimizing the choice of
q1 ~ R? (thanks to the fact that R > 61_1/ 2), we obtain the desired estimate. This
completes the proof of Lemma O

Similarly, to prove (ii) for Loc(2M), it suffices to prove:

Lemma 4.2. Assume that 0 < T < 1, 7<L1<N1 S and

1
< N?

=

e < ony e (R Gy o)

272
LAlk k*

and

RN oy < N7 2T LT

h]kVIkL*l( ) 1 eka.
"2 ki Ol O

[k1|<N1 |k |~N1

Let

w|R

1
Then for any R > €, *, outside a set of probability < e_CngRz, we have

20 & e +0+1
lorll g e = 1) T 5O K epg ST RN, 0L
T 7

q
Xoo,q
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and
l|lv1 ||X0,b0 < Tb—bo RN;(afl)JrelH)LIV.

0,20
Proof. We only prove the bound Xoo ¢ and the bound for the norm X%% can be obtained
in the similar way. Since

ECOEED DR IO
k:|kt|~Ny (k]

Note that for fixed [k1| < Ni, applying Corollary outside a set Q, (depending on
k1) of probability < e*CngR%,
=ik
LHE

(4.1) ‘ 3 Eﬁlk?(xl)]% gCN"R-(EBSLH SR
1

ki kT |~ Ny [ ki kY |~ N

By deleting the union Uy, <, 2, for which the probability is smaller than

Z —cN{R? —c' N9 R?
e < e ey

|k1|<N1

above bound (4.1)) is uniform for |k;1| < Nj. Using the independence of hkN1 lkjffl and gg:, the
conditional expectation can be bounded by

—a+0 11T N1L —a+0 p| 7 N1L

Nyt RHhkllkfl()‘)le‘;lzT < NyUR[ B (M,
2bg

Noticing that ki is constraint in the set |k1| < Ni, multiplying by (A) ¢ to both sides of
(4.1) and taking the Lil and then [77, we have

—Ori‘e'i‘l @NN L —a+9+l N: L

[oall 20 < IV PRI Ryt M) lige g 2. = N CR[A [ 500
q

A1 k¥
XOO#I !

~

proof of Lemma is now complete. O

Using Lemma we have ||[hN1E| gy S TO700 || AN g since KNVEY]_g = 0. The

5. MAPPING PROPERTIES OF THE OPERATOR ,P]—\i}L

In this section, we will prove (3),(5),(6),(7) of Proposition
For given space-time functions wve, v3, consider the operator

Qs v (w) := I N3 (w, vz, v3)

and we denote by Oy (t,t') its kernel. Note that the operator Qs y depends on the
functions ve, v3 and N. By implicitly inserting w = x(¢)w, we have from Lemma that

Do (w) (A ) = /R K (A 1) (N5 (w, 0, 03)) (1, ).
Note that

Na(w, va, v3) (N, k)

1 ~ ~ = -
— (271_)3 Z X(A — )\1 + )\2 — /\3 — cI)kl,kQ,ks)w()‘l: kl)’Ug(Ag, kQ)’Ug()\g, kg)d)\ld)\gd)\g.
k|<N,k1,ka,k
(|k1|7€2,k31)€%(’:)

Denote by

(5.1)
Ekk/(A )\/) = 1k¢k/7‘k/|SN

E > /)?(A — XN 4 X2 = A3 = Ppr oy ks )02( A2, k2)U3(A3, k3)dAad A3,

ka,ks
ko#ks ko—ks=k—k’
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then from Lemma [2.4] the kernel of Q3 v is given by
(52) O A N) = [ KA 10Z 1 X

5.1. S¥%-mapping properties of the operator PF\L[L. In this subsection, we prove (6)

of Proposition (3. y decomposing vy as sums ol type , an terms in ,
f Proposition 3.7, By d ing v} f G), (C) and (D in Py,

it suffices to prove the estimate by changing 77;(, ;, to some operator
w — On(w) :=UNIN3(w,ve,v3)

for functions vy = I ve, v3 = I vs of type (G),(C) or (D) with characterized parameters
(Na, La), (N3, Ls) satisfying NoV N3 = L or % and Ny, N3 < N. We denote by (O, (t,1'))
the kernel of ©y. Let H(t) be a linear operator with kernel (Hyg«(t)). By abusing the

notation, we still denote by gz (¢) the matrix-element of the operator Oy o (PyH(\)).
Therefore,

G- (V) = / S S (0 M) Higie ().
[k1|~N

Note that on the support of f]klk* (A1), we have |k1| ~ N. Inserting (5.1]) and ( into
the expression above, we have

(k1,k2,k3)€l k)
k1 |~N
|kj|<N;,j=2,3

X /)?(/,L — AN+ A — A3+ (I)kl,kg,kg)g()\% k‘g)ﬁg()\g,, k‘g)d)\gd)\g,
where the kernel |K (A, p)| < (u) (A 710 + (X — 1) 719). Our goal is to estimate

26
KA« Qs (M) e 222, -

We will control it in two ways, according to the size of L.
2b1 a—1 (a—1)(q'—2b)
eCase 1: [« 2 "t <N o

In this case, we will integrate high modulations first.
By taking l,%* and using Minkowski, Holder, we have (here we hide the constraints on

k; by implicitly inserting some indicators to H keyk* s U2, and Vs )

e Wllz, S 3 / L) iaalba)ati)

10 _ b
(k1,k2,k3) €T (k) <)‘ M> <:U/ (I)k17/€2,k3> 0

since 2 > by > 2, where

a1 (ki) = H<>\1>7Hk1k*(>\1)||L§1z§*a aj(kj) = ||<)\j>b°'17j(>\jakj)|h§j7 J=23.
Note that here we used the fact that

X = A4 A2 = A3 = Py ko) | S (= A1+ A2 = A3 = Py ko)
and Lemma [2.5] Using Lemma [2.5] again, we have

/ du < 1
=22 ) = )10 — @y gy 1ig) % ™ (AN = Pry g kig)

/u Al<2/Al /u 3 /u A<l /u N>R B <y <apy

2 2 20

By writing
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we deduce from Lemma 2.5 that

/ du < 1
[u—=A|<2[A| <M> <)‘ - M>1O<M - (I)k1,k2,k3>b0 ~e <A> </\ - (I)kl,kz,k3>b0_6 ‘
Thus

1 1 1 1 1
7( w0+ 10)' by M Se Bo—e
<,U> <)‘> </\ - :u> <:u - q)kl,kz,k:s) 0 <)‘> <>‘ - q)k1,k2,k3> o
Next, by Holder’s inequality and Lemma we have

3
2 H i=1 aj(kj)
1A« @rr (Ml Loz, S > ’ e
(k1Ko ks) €L (R) (Phy koks) 7
1
s> 55y > ar(k)az(ka)as(ks)lg, oo,

pmi<10z 1+ (mNo=1)' "0 (ko kpyer)

provided that ¢’ > 2b;, where I = [(m — 1)N*~! mN*1], since for N > L, the value
. o N . _
of ®p, g, ks s constraint in U\m\gloLL(n ). Since Ok @y ko ks | |Okis Py oo ks ] = N1, we

have
1 <1 1 <1
Z @kl’k2,k3€ff,(nN) ~ Z @kl,k27k3elﬁi\’) ~
k2 k3
uniformly in m. Then by Schur’s test, for fixed k,

> ar(k + k — kg)ag(ko)as(ks)1

) S llax (k) [l llaa(k2)lliz, llas(ks)liz -
2 3
ka,k3

N
Pht kg —kg kg ks eIy

Thus from the elementary inequality

1 1oL dz < L
_— <142 _ 1 _—
||§L1+<mw—1>ﬂ =i /0 [+ (Ve 5)B ~ 0 T N
m|<

for0<ﬁ<1,Wehave(withﬁ:1—2%)

201

. (e (1=
17 G Wlergiz, (1427 N0 g oo sl oo

1_21

a— 2by a1 —(a—
(5.3) S(L_Tl-l-eg + L q,l - +52N (a 1)( 7 ))HHHSbvq?
since No V N3 ~ L and at least (when vq, v3 are both of type (G))

a—1 a—1
5 te2 5 te2

HUQHXOJ’O N N; ) ”U3HX0110 < N?:

Therefore, whenever

(a—1)(g'—2b7)
q/

~ Y

the upper bound (5.3)) is L™% ||| gb.q, which is conclusive.

261 a—1)(q' —2b7)

261 a—1 (
eCase 2: L@ 2 Tetd > N d

In this case, we will reduce to multi-linear sums of low modulations.
By duality, it suffices to estimate

2y _ _ ~
> T K w)ykke (A Hig ke (M)02( N2, b2)Ts(As, )
ke k1 o ks
(k1 ,k‘g,kg)er(k)

X 55(/1 — A+ Ay — )\3 — (I)khk%]%)d)\ld/\zd/\gdud/\
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where ||ygr+ () = 1. Summing over £* and using Cauchy-Schwartz, it suffices to

H 1742
. L Ly %k*
estimate the expression

201

(5.4) > / ) ;

Ky oo s (e
(kl ,kg ,kg)er(k‘)

( 1 + 1 )_gk()‘)fkl()\l)U)Q()\Q,kz)wg(/\3,k3)
NA T (p— XA D) ¥ ()0 (Ag)0

X ’X\(M — )\1 — )\2 + )\3 + (I)khk%k?’)|d)\1d)\2d)\3d,u,d)\,

26 ~
where A > 1, gr(A) = llyer Mz, > frr (M) = (M) 7 [[Hiyrr M)z, and w; (X, kj) =
[(Aj)b0T; (A, k)| for j = 2,3. From the rapid decay of X, the contrlbutlon from | — A +
Ao — )\3| > N~ 1L is negligible and can be simply controlled bym

(5.5) N™Yge(X Moo 1M Q) llige 19 llwa(A2s k2)lz iz llws(As, Es)lles iz

hence we may assume that the multiple integration is taken over |u—A1+Aa—A3| < N~ 1L
Denote by

Tiaddods = O, Gk i Q)IR(=A+Aa= A= Py gy k) [w2(Aa, ko) ws (N, ks).

k,k1,k2,ks
(k‘1 ,k2,k3)€F(k)

Note that for fixed |k| ~ N and pg € R,
T D Fitha ks ) L il <2 X0 + Py by ko) S [t ko =g A Lo s < llige s
2 k‘3

and

SUP > fitko—ks N Ljkgl s <2 R (10 + Pk ks k)| S ko ks M) Lo sl < llize

ks o
since [Ok; Phiky—ks ko ks| 2 N1 > 1 for j = 2,3. Applying Schur’s test, we have

Z fk-i—kz—ks ()‘1)|5<\(M0 + (I)k+k2—k3,k27k3) |w2(/\27 k2)w3(>\37 k3)

ka,ks

5.6
GO Sl ke O gizrisizr e O, ko)l s, k)l
k2,k3 2 3
< frto—ts Q) Ypo <t si<z s Nwa(ho k)2 lws(s, ks)llz
ko,k3 2 3

where to the last inequality, we use the embedding 17 — {*°. Writing ¢;(X) = ||w;(A;}, k;) Hlﬁ
i
for 7 = 2,3, by Holder we estimate the contribution from oA in (5.4) by

_ —A+2L -2 _ _
/1IuA1+A2A3|5Nc«—1L<M> LT )T () T ) TP s e s didAd A dAod

SelN€ Z/gk (/\1> (/\2>7b°<)\3) 002 (A2)3(A3)|| frrtha— k3(>\1)1|k2|<Lqu dAdA1dAadA3

|ks|<L F2:*3

SN S Il bea Ol leaOolag eonars <l o
1

ko,k
|ks|<L 3

SNEH%( My o lle2(2)lizz lles(As)llizz, [ ks(/\1)1|/€2\<LHZOOl‘1

k3| < k2,k3
2
SN Lallge)ly o le2(A2)llcg lles(s)leg i (A)lligers -

It remains to estimate the last contribution from m in (5.4). Note that the in-

q
LA

tegration over |\ — p| > N®"'L gives us an error like (5.5), hence we can assume that

Tsee the proof of Proposition ﬂ later for details.
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A — p| < N°'L, and in particular, |A — A1 + A2 — A3| < N®!L, since the region of
integration is |p — A1 + Ao — A3] < N®"!L. From Lemma
2b1
A 7 -1+
———————dp < (A a
/ (1) — X)4 e

Using (5.6)), the inequality above, and then Holder’s inequality for the integration in A,
we have

261 _2b
/ Ly axexgi<nve-1o(m) T O = ) 7O T )T (M) T () O T a ae da didAd A Ao d 3
|)\—)\1+)\2—/\3‘§NO‘71L

a’—2b;

SZ/lu—AHM—AsiW1L'9k()‘)<)\> v <)\1>%’7(/\2>_b0<>\3>_b0902(>\2)903(>\3)
k

X || frotka—ks (A1) Ly | <L ks | < HliQ o dAdA1dAadA3

! —2by

_q/
KOV (.

blflJf6 q’—2by—¢
)\ L/\

<legk Mg 11— jgna-tell

></<>\1>_‘1'<)\2>_b0<)\3>_b°@2()\2)@3()\3)ka+k2—k3(>\1)1|k2gL,kﬂgLHlZ . dA1dX2d)3,
2:k3

for € > 0 small and to be chosen later. Next we use Holder’s inequality for the integration
in A1, A2, A3, the above quantity can be bounded by

(—1)(2b1 —1+4¢€) 2b17

v legk Mg le2(A2)lzz lles(As)ls [ - k3(>‘1)1|k2|<Lqu
|ks|<L

k2,k3

q
L/\1

(a—1)(2b1—14€) 2by—14e

/ 7 +7
“ Lo T tllgrNly o lle2(A2)llzg lles(As)llzg 1 Ao lierg -

Since
< —aT71+52 .
leiAi)llzz = llvjllxoee S N; ,j=2,3
J

and Ny V N3 ~ L, we finally have (fixing € = €3, say)
(a-D@b1-140) _ac1 2y-lbey 2y s
(5.7 N7 G Migepaz, SN« Lz 7T L0 H | gn-

k*x 7
Recall that for the case 2,

2by (a—1)(a’~2b1)

2y a1 5
L7 +e2+00 > N a ,
then
La;lebé/ 173762*(50 > N%.(i)’l 7T1+62+6O)

By our definition of numerical parameters in (3.1)), if the free parameter o is chosen small
M.(%_%&+62+50)—1>%
q - q’

enough, we have 7 , in particular,

(a—1)(2b] —1+e€9)
LT—T—E—ez—éo > N%

This completes the proof of (6) of Proposition

5.2. X% -mapping property of the operator norm of Pzt. In this subsection, we
prove (3),(5),(7) of Proposition The key point is the following lemma:

Lemma 5.1. Assume that vi,ve,vs are of type (G), (C) or (D) with characterized pa-
rameters (Nj, L;),j = 1,2,3, then
N3 (0, 02, 03) || o1 S (N2 V- Na) ™ Jlo] g

and

N3 (01,0, 03) |01 S (N1 V N3) ™ [[ol] o g
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Moreover, the same estimate holds, with uniform implicit constants on the r.h.s., if we
replace v1,v2,v3 by Iy v1, Hpanve and Hpvs for any dyadic numbers My, Mo, M.

Proof. We will only prove the estimate for N5(v, ve, v3), since the other follows from the
same argument. By duality, it suffices to show thaiﬂ for every w € X101 |jw]| yo1-s, < 1,
we have

‘// VT3 -wdtdx‘ < (N2 V N3) ]| 3.
Splitting the functions as Littlewood-Paley pieces, v; = ZM], Pyjvj,j = 2,3 and v =
ZMI Pynv, w=>,,Pyw.

eCase 1: v9,v3 are both of type (D)
In this case, we have
IPar;vjllxo0 S (Mj VNG~ j=2,3.
By inserting x(¢) into w and using the bilinear Strichartz (Lemma , we have

‘// VU2V3 -@dtd:c‘
<

1l _a
S Y (Mg Me)T[Panvll oz Panvell oz IParvsl oz IParw] o g,
My ,Ma,Ms,M

MMV MV Ms
where M) > Mgy > M(3) is the non-increasing re-ordering of My, My, M3. Without loss
of generality, we may assume that My > Ms. Note that when M; > My V M3, we must
have M ~ M; in the sum , otherwise fPMlv - P, 02P v - Pryrwdr = 0. We estimate
this contribution as

1_a
> (M2)M(s))2" 7 [|Panvll o3 IParv2ll o3 [Pasvsll o3 [Parw]

x08
M, My, M2, M3
M~Mi>Mao>Ms
1

<)Y IPanvll o3 Parwl o3 > (MpMs)2™ 5 (Ny v Mp)~*(N3 v M3)~*

M, M,y Mz, M3

M ~M; Ms <Mook My

1

S(N2 v N3)2 75 |[oll o4

1 a

where to the final inequality, we use the fact that s — (5 — ) = o > 0, min{b,1 - b1} > %
and Cauchy-Schwartz for the sum ) -y, 5, - For the contribution of My < M>, we estimate
it as
1_a
ST (MM E [Panoll o s IPanvall o s [Pl o g [Pl o

M, My ,Ma,Ms
M3z<M>
M7M15M2

l1_o — —
S D (MaMy)a T (MzV No)"*(N3 vV M) ~*|[Pag,oll o g IParwll o8
M, My, Mz, M3
M3z <My
M, M <M

1_ o _ _
< > (MyMz)z2 5 log(My)?(My V Ny)~*(Ms v N3)~* - |||
Mo, Mz:M3<M>

1_a_ _
Se(N2V N3) 2= 174l 5 < (N2 V N3) ™o

3
X035

Xo,% s
by choosing 0 < € < o — §y (which is positive if 0 < 1) here. Therefore,

‘ // VUv3 - Wdxdt| < (NQ V N3)_60||U||X0,%'
e Case 2: One of vg,v3 is of type (D) and the other is of type (G) or (C)

8We omit the estimate for the diagonal nonlinearities Ng(v, v2,v3) here, since this term is always better
and will be treated in Section @
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Without loss of generality, we may assume that v is of type (D) and vs is of type (G)
or (C), thus

IPanv2l xos S (M V No)~°.

Using the bilinear Strichartz inequality, we have
| [ PanePasosen - Parwdodt] < [PasePavallse Joallon Parwol s

< 1 _a
S(My A M)~ 3 [Pagl] oz IPavsll o g [Paw] oy U5l s

We then take the dyadic summation in Mj, My and M. Since the Fourier support of vs is
constraint at |k3| < Ns, the contribution for M V M; V My < N3 is bounded by

1 o
3 SNZ 1 log(Ns)?|Jv

3.
XO,g ~ XO,g

1_a
Yo (M A M) E[Pagoll o g IParw] oy [Parel
M, M, ,Ma
M\/M1VM25N3
When M Vv My V Ms > N3, then one of the situations must happen: M ~ My ~ Ms, or
M ~ My > Ms, or M ~ Ms > My, or My ~ My > M. Therefore, we have

1_a 1l a 1
Yo (MiAM)TEPanoll o IPawl oy IPasvallos SeNE ol oz
M, My, M>
MV M1V Ms>Ns

Choosing 0 < € < §y — §, we obtain that

| [[ o wdodt] £ Ny ol ol o

Alternatively, we use the bilinear Strichartz inequality as for the Case 1 and obtain that

3.
x0%

1_a
S| [ PuePrPue Pamdnat] 85N sl ool
My, Ma,M,M3<N3

Therefore, we have

1_ «o
_ J— —4 . 571
| // w0y - widadt] S Nyl o g min {Jlesllzgzes N3~ sl gog -

a—1
7 T

When v3 is of type (G), then [vs| iz < N, ? which is conclusive. When v3 is of

type (C), we have

o

) 1_a ) (-1 1_ 1 (a—1)+ex . _
min { ol pazee, NE~* [lusl] o g b Smin{Ng @D Fepz™ g oy

SN:;(a71)+37231/+627(1+2y)a’

which is conclusive since €2 < (1 + 2v)o and
(5.8) (v —1)+2sv > s,

thanks to the choice of numerical parameters.
eCase 3: v9,v3 are both of type (G) or (C)
In this case, Py,v; = 0 when Mj; > N;. Therefore, by splitting as

// VUovsWdtdr = Z // Py, v0203P prwdtde,
My, M

we may assume that either M ~ M; > Ny V N3 or M, M7 < Ny V N3. By Holder,

| [ Pasvvsen - Paswdode] < [Pasollpasa IParwlsgrs foalsns sl

SIPan ol oy Paurwll o1 llvallpapee vsll e
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Therefore, we have

S 1Panol oy IParwll oy ol sl Sl oy ool gz sl o
My,M
M1~M1>>N2VN3
and
2
N %;N IPanvll o1 Paroll o1 llvallpapee lvsl papee Slog(N2 V N3) vl o1 llvall s poe lvsl o oo
1, ~L Y

Alternatively, using the bilinear Strichartz, we have

Z ‘// PMlvPMQWQPMQUg,PM@dtdx
M,My,Ma,M

< 1_a
S > IPan vl o3 IPrwll o3 (MaM3)2™ 5 [[Paryv2ll o3 [[Pasvsll
M, My, Mz,M3
M3<N2,M3<N3
M~M1>N2VN3

1 _a
+ Y (MaMy) T E(Panoll o g IPanv2ll og IPanvsl oz IParwl]
M, My, M2,Ms3
My<N2,M3<N3
M,M1SN2VN3
1 a
(N N5~ (log(Ne v No)) ol o g leall o g sl o g

Thus we have

’// VU9U3 '@dxdt‘

. 1«
(5:9)  Sellvll o, (N2 V Ny min {[val] pa peclvsll g oo (N2N3)2 ™5 [uall o 03] o3 }-

3
x0%

3
Xx%%8

When 3,03 are both of type (G), the bound [[vaspeellvsllpapee S (NaN3) ™7 T is
conclusive. When vy, v3 are both of type (C), we have the bound (choosing 0 < € < o —dp)
. 1l1_a
min {Joall s sl e (NaNo) 3~ % o sl o}

<min{(NyNg)~ @ D¥e ([, L5)27 (NoN3)z~ 5@ (LyL5) 7"}
5(N2N3)—(&—1)—28V+S+62—(1+2V)0'

Y

which is conclusive since (5.8) holds. Finally we assume that vy is of type (G) and v3 is
of type (C). Using the bilinear Strichartz inequality we have

‘// P voaPasyvs - PMdedt’ < [IPanoParvsllrz lvallpspe Parwlpars

1l o
S(MyAM3)2" 4 |[Panoll o3 [Parsvsll o3 [Parwll o1 o2l papee-

For the non-zero contributions, we must have M3 < Ny \V N3, thus when M; > No V N,
we must have M; ~ M > Ns V N3 > M3, hence

1 o

1 _«a 1 _a
T ANl P g PPl SHoly N sl
MNMll’>>§\7f2\/N3
M3< N3

The other contribution can be bounded by

1_a
Y. (MAM)ETEPago] g IPasusll o I Parwl]
My, M3,M
]\4,]\415]\72\/]\/37
M3<N3
1

SN * (log(N2 v N3))?[[vll o3 llvsll o2

1
x0z
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Combining with (5.9)), we obtain that

1_ o
| [[ s wdeat] ol oy Qo M) ol e min {eallne N5 el o}

ol . —(a—1)+ 1, 1o _(a—1), _
SNy 2 TH(No v Ng) o] o g min{ Ny DT LT N T
_a—1 1) €0 -
56N2 3 +62N3 (a—1)—2sv+s+ea—(1+2v) (Ng Vi N3)€HU||X0,%7
which is conclusive since (5.8]) holds. The proof of Lemma is now complete. Il

The proof of (5) and (7) of Proposition is an immediate consequence of the above
lemma. Now we prove (3) of Proposition Consider HJLVOINg(vl,vQ,vg) for vy, ve, v3
with characterized parameters (N1, L1), (N2, L2), (N3, L3) with No > Nj). If the projec-
tion HJNOINg(Ul,UQ,Ug) does not vanish, then at least one of vi,ve,v3 is of type (D),
say vi. Then we decompose vi as ) ,, Pyovi, then for M > No(> N;), we have
IParvr]| xoo < M™%, Applying Lemma to Ppsv; and using the triangle inequality,
we obtain (3) of Proposition

6. LOW MODULATION REDUCTION

6.1. Modulation reduction for the estimates of operator kernels. For given vo, v3
of type (G),(C),(D), recall that the kernel O (t,t’) of the operator Qs y :

w— Qg n(w) = ZIINyN3(w, va, v3)

is given by with Zgr(p, ') given by (5.1). In order to prove Proposition and
Proposition in this section, we will reduce the estimate of the kernel bounds ||© | gs..4
and ||©|| ;b6 to the low-modulation portion which consists of multi-linear expression of
discrete sums. Recall that the numerical parameters satisfy % < by < b< by, qfql—2b1 < 1.

We will use the notation Lj, , to stand for L o1<ne

Proposition 6.1. Assume that 03,03 are supported on |k;j| < N. Define w;(A\j, kj) =
2bg

17j()\j,kj)(/\j>73, for j =2,3 withr; =2 orr; =q. Then
Ok (A X[ o0 Ssup {N50(2b1_1)TN[2/0;w2>w3] i (A, )\/)HLi V2, S 1},
(6.1) Nl g 1l 0

and

H@kk/ ()\7 )\/) HSbl*b'q S sup {N50(2b1_1)AN [yoa w2z, w3] : ||y2k’()‘a A,)Hlqu’Lz 12 < 1}
ENNATY

—10|| ~ ~
(6.2) +N ”w2”L§21ﬁ||w3||L§3li7
where
Tl wsws) = 3 R0 — Bl ANV, k)T R) |
kK ko ks L3 v By Ly Lugs
(K k2,k3)€l (k)
|k|<N
and
Al wzws] = || ST R0 — Byl O X) - ToOha, k), )| Y
LY L2, L2 L3 L0
kK ko k3 X P b g g

(k/,kg,kg)el"(k)
k<N
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Proof. We only prove (6.1)), since (6.2 follows from the similar argument (with possible
changes of numerical parameters). By duality, it suffices to estimate

(6.3)
3= [0 ) )

X /I{()\7 ,u)d,u Z ygk,()\, )\,)SC\(M — )\, + )\2 — )\3 — (I)k:’,lcg,kg)@()\% kg)ﬁg()\g, ]433)
|k|§N7|k2|7|k3‘§N
(K’ k2,k3)€el (k)

2b _ 2bg

220 220
% (A3) 5 dAdAdAadAs

From Lemma and the triangle inequality, we have

(6.4)

1 1 1 bt NI by R R ,
fjsA/ 0 (oot ) Teavma (w, ws ) 0 V) 00) 7% Dhs) 7 dpdAdX drads
where
(6.5)

TN Ao xs (W2, W33 Y) = ‘ > e NN+ A= A3 =Py k) W2 (N2, ko) 3 (A3, k3|

|| <N, |kal,| k3| SN
(K ka,k3)eT (k)

Here and in the sequel, 7 stands for 7,, x x5, (v2, v3;y) when there is no risk of confusion.

e Contribution from the integration of 7 against <#>1

WA
We split (for fixed A, X', A2, A3) the integration as f\“—(/\/—,\2+,\3)|>>Na and f‘u_(/\,_/\2+/\3)|<NQ.

Note that for non-zero contributions in the summation of k, k", ko, k3, |®ps o is| S N, we
have from the rapid decay of X(-) that

(=N 4+ 2X2 = A3 — Ppr )| S (= (N = Az + Ag)) 4
if [ — (N — A2 + A3)| > N, hence
(6.6)

1
/|u—(>\’—)\2+>\3)>>Na <M></\>A
1.1
N-N2Nzdu ~ N
g w2 )\2,‘ 2 ||W3 )\3,' 2 yo ’ )\,)\I 2
/M(A/A2+A3)>Na <)\>A<H><,U/ — ()\/ — )\2 + )\3)>_AH ( )Hlk2H ( )HlkSH kk ( )Hlk,k’
SO TANZA s (Mo, )iz (13 (A3, )iz e X N ez -

_ 2b 2

Choosing A = 200, say, and multiplying by (A\)!*(A)~0(Xg) "2 (A3) "
in A\, M, A2, A3, this contribution for J is bounded by

=

W~

and integrating

The other term can be estimated as

1 1
TN/ WA Tdﬂ Sb,b i 7-7)\/7,\»\ A
/Iu(A’Asz)ISNa () (M)A 1()\>AH 2 BH

_4
251
pilp=(N =X +A3) | SN

_2bg _ 29

Again, choosing A = 200 and multiplying by (\)*'(\)~%(Xs) "2 (A\3) "5 and integrating
in A\, X', A2, A3, this contribution for J is bounded by the first term of the right side of (6.1]).

e Contribution from the integration of 7 against W:

As the previous case, we split (for fixed A, X', A2, \3) the integration in f|p|>>\>\'—)\2+)\3\+Na
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and flu|<\ Mot gl Na- Using Cauchy-Schwartz, we have

I oA X, 0 .
/ A —p)A AN S lyg e (A5 A )HLil;k, ()™

then by similar manipulations as in (6.6]), the contribution from the region [ — (X —
A2 + A)| > N¢ yields the second term of the right side of as an error. The main
contribution comes from the region | — (N — Ay + A3)] < N®.  We further split the
integration of J

n—b _% _% / O‘LI .
/ (X)) (Ag) TR dN drsdg / v / N ><,U><)‘_:U>A Tdud).

ln—=(N'=X2+A3) SN [t=(N =2+ Az) SN

Taking A = 200 and applying Hélder for the integration in p and using Lemma we
have
(6.7)

N

[A—p|< N A — u)A
|H‘*(A/"A24*A3)‘:5]Va' < lL> <ll>

(A)br=Lan,

e \u (N =Xa+X3)[SN™

T dpd) 5/ | Taxnsanall

‘)\ ()\/ )\2+/\3)|<N°‘

Alternatively, applying Cauchy-Schwartz for the integration in A and using Lemma
we have

b /
(A HT,)\ ,>\,>\27>\3||L§

————— - Tdpd\ < /
|>‘_ |<<Na _ A ~ , . 1—b
|N—(A/—§2+>\3)\§NO‘ </\ M> <’u> [e— (N =A24+A3)|SN <M> 1

(6.8)

_2b _ 25
Multiplying by (M)70(\2) ™2 (A3) "8 1x_xp42s/<n100 to the left side of and inte-
grating in X', Ao, A3, we have

_ 25 _2%
/<>\/>b<)\2> "2 <)\3> "3 1|>\/ Ao4Az|<N100 (th of )d)\/d)\zd)\g

_ 2bg 2bg

1 n—b TN /
g/AKNwO HT,N,A,AMHLQJ% R \Y7P0g) 2 (A3) B dAdN dhad)g

pilp—(N =X +A3)| SN

1
< 100(b1—§)
<N | Tv Ao s | s
PUSY A3 il p— (M =X+ Ag) SN

2bg 2b0
e
2

Multiplying by (M)70(X\g) "2 (A\3) "5 L)y aytrgl> 100 to the left side of (6.8)), we obtain
that

2b0

_2b
/()\'>_b<)\2> 2 (A3) "B Ly xpag)>ni00 - (rhus. of (6.8))dN dAadAs

||T,/\’,)\,)\ s ||L2 7@ 7@
5/| 100 - <u>1fbf L) e (Ag) 7B dpdN dAadAs
MN

—100(1—b
<NTOUIYTL 3 s v ez, o2 073 1103

By definition and Cauchy-Schwartz,

—100(1-b
N I)HT,A',A,AQ,MH@,% L3 LLLR
— —b ~ = ~
e D D 1 R P L]
KLIE] k2 s k3| SN ¥ .

< N2-10001-b1) \|ykk'(>‘ )\)”12 2 H@(/\Z,kg)HL;ngiQ\\@3(/\37163)”L§331§3,

hence it can be bounded by the second error term of the right side of (6.1)).
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For the integration over |\ —p| 2 N%, we further split it in three parts: [A| > 2|ul, || <
slul and glp| < Al < 2|ul. For |A] < glu|, we have |u] ~ [\ — p| Z N® thus

)™

/|\)‘M|2Na7|)‘l<1|y’|7 )\ - A
mf(X?AQHS)‘%Na( 1))

1 Tux A2 xsll 22
(Ao

- TdMdp < /

lp|Z N

_2g 2k
Multiplying by (N)7%(A2) 2 (A3) ™ and integrating in M, A2, A3 then using Cauchy-
Schwartz and Minkowski, the above term is bounded by the second error term of the right
side of (6.1). Similarly, for the case |A| > 2|u|, we have [A| ~ |X\ — p| = N®. This gives
us an error term as the second term of the right side of , provided that A is chosen
large enough. Finally, for the case 3|u| < |A| < 2|/, using Holder and Lemma (and

we write (A — )4 > (A — p)A2NA2/2 for A > 1), we have

A=plZN N A ) lu—(N =Xa+A3)|[ SN AACH
3l <IN <2yl
dp
<N_Aa/2/ 1o n T A o0 e
= (N —Aa+Ag) SN H [l ~ AL T s AT X Az, 3HL?\ <M>1—b1

SN M | i3 T d e xs l 3722
2bg _ 25

Multiplying by () "?(X2) "2 (A3) "3, integrating in X, A2, A3 and using Cauchy-Schwartz,
this contribution can be controlled by

_Aa - — N
NF[ Y RN de = ds = B )l O N )T O, k)T O k)|
KL ||, k2 | k3| SN L3 LG B i LY
_ 4o . 0 _ _
NE] T Rl OVl T k)@ On k)
|k|7|k/|7‘k2|7‘k3|§N s N A2 A3

_A ~ ~
SN2 Nz s T2kl 1880, k)l e

and it can be controlled by the second error term of the right side of (6.1))). This completes
the proof of Proposition [6.1 O

6.2. Modulation reduction for the trilinear estimates. Assume that v € X0bo N
2bg 2bg

0,2% _ (s P .
Xoo,q such that supp(v;) C {|k;| S N;}, for j =1,2,3. Let fwj(- i) = (A) "7 v, and without

loss of generality, we assume that v; = x1(t)v;, for j = 1,2,3, where x1 € C°(R). Let
X(t) be another time cut-off function such that xx1 = x1.

Proposition 6.2. Adapting to the notations above, we have for any e > 0,
(6.9)
3
N3 (01, v2,03) | o1 -1 Se Ny ™ T T gl xoo
j=1
< ~(r1) ~(r2) ~(r3)
HoOX R B O k) I e k)T Oa k)|

JAE A -
(k1,k2,k3) €D (k) M TA2 A3 ol SN Tk
|k;|<N;,j=1,2,3

Proof. Since there is no significant importance of the conjugate bar on v, we will omit it
in the proof. By duality, for v = x(t)v € X%1=01 |[(A\)1=01a( )\, k)HLili < 1, we need to
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estimate

(6.10)

Z /HUJ i k dTJ/a(M,k))?(Tl — Ty + 73 — T4)dTy

KISN (1), k[ <Njj=1,2,3
(k1,k2,k3)€l (k)

_ 2pg

3
_ > /(H B (g k) ) T RROL — Ao+ Ag = A= B g, k).

[EISN(1y|kj|<Nj,5=1,2,3 Jj=1
(kl,kz,k‘?,)er(k‘)

By Cauchy-Schwartz, (6.10) is bounded by
3

2b0
(6.11) / (TIO0> 77 a3z - 1N~ Mo o rg (01,02, 08) 222,

j=1
where
= Y (A, k) @y 2 (Aa, k)@ (s, k3) XA A+ Aa—Ag— P
Mo dons (V1,v2,08) = > (A1, k1)wy ™ (A2, k2)w05® (Ag, k) X(A=A1+A2 = A3 =Py ks k5)-

|k;|<Nj;,j=1,2,3
(k1,k2,k3)€T (k)

To simplify the notation, we denote My x, a,.z5(V1,v2,v3) simply by M, when there is no
risk of confusing. By Holder, we have

I~ IM 2 < (N0 bl)ll M| Se Ml

2 2 .
1—5 2b1+2e—1 ;9 2b1+2e—1 ;9
LA lk L)\ lk

)\
For fixed A1, A2, A3, we split the region of integration (in A) in |A — Ap + A2 — Ag| > N(Oi)
and |A — A1 + A2 — A3| S NGy For A=A+ A2 — Ag| > N{), using the rapid decay of
X(+), we have

ROV = A1+ A2 = Ag + @py k)| Sa (A= A+ do = A3) ™y, Na[>NG -

By taking A > 1, we have

—100
Mo <o N T i Akl
L 1 lz(l)\ A1 +Ao— )\3|>>N(1)) =1

provided that A > 1. Hence this contribution in ([6.10]) is an error and can be bounded
by the first term on the right side of . The other term can be bounded by

M|

2
2b1+2e—1
LT TR (A A2 - A3 SNG)

as desired. This completes the proof of Proposition O

7. MULTILINEAR ESTIMATE FOR THE KERNEL P} ;

The goal of this section is to prove Proposition and Proposition Recall that
@Nl’ (t,t1) is the kernel of the operator

'P]—\i}le = XT(t)HNII[Ng(HNl-, HLUL ,HL’Uf) — HNlNS (HN1‘7 HQ’UZE,HA'UZE)]

where L < N17°. Since we will only estimate the kernel restricted to |k|, \l{:l\ > =L, by
abusing the notation, we will sometimes regard @k}ﬁ (t,t1) as O, (t,t1)™M 1|k|,|k1|~N1~
By decomposing vf as sums of terms v; of type (D),(G) or (C) with corresponding char-
acterized parameters (N2, La), we can write @%{L(t,t1)1|k|7|k1|NN1 as the sum of kernels
of the linear combination of operators

Hn, ZN3(-, v, Hpvs),
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where vg, v3 are of type (G),(C) or (D) with characterized parameters (Na, L), (N3, L3),
with respectively, satisfying No V N3 ~ L. To prove Proposition and Proposition [3.6]
we will first provide estimates for each single piece and then sum them up.

7.1. Notational simplifications. We fix another numerical parameter (remember that
q is reserved in Remark :
2 q
O = p —1 % 20, — 1
in this section, which will be clear in different contexts. The importance is that go > 1. As
in the previous section, we will write Lj, , to stand for LITuolﬁ Ne- Let C; be the o-algebra

B<p,,; which is independent of the o-algebra generated by {gk; : |k;| ~ N;}, we denote by
B[] = E[(C)]
Before doing the estimates, we observe that modulo terms of

-1+10 ~ ~
0N T llfls Al 182000, o)l 15005, k)l
we may replace Xo(to — Pry ko ks) DY 1¢k1,k2,k3:uo+O(Nf) for any € > 0 and we denote by

Skikaks = Loy, o 1 =po+O(N) Loz ks

Note that Sk, k, k, depends on pg, but we will always have uniform estimates for Sk, i, ks
in pg. Therefore, we will not mention this dependence explicitly. Here € > 0 is another free
(small) parameter which will be fixed later, according to different contexts. Furthermore,
when v; is of type (C), we may replace it by

-~ ~N. L. gk (w)
Uj()‘j,kj) = Z 1|kj—k;|§LjN;hijk;J ()‘j) kj* 5
|k} |~N; [ j]

since the contribution coming from 14, |~ p ne is bounded by
J J

e \kj — K|\ r~nN;, L,
Ny o () I )

L2 2 .
Aj Tk ok

which by (3.16]) is much smaller than the main contributionﬂ from 1, hy—k3|<L NG provided

that €' < k=1 In particular, we may assume that |k;| ~ |k7| ~ Nj. Recall that type (C)
terms satisfy (3.10]), (3.11)),(3.12)). Slightly different from previous sections, we will denote
2bg

by wyj)()\j,/cj) = (Aj>T95j(Aj,/€j) for r; € {2,¢q}. In order to clean the exposition, we
introduce the following notations:

(7.1)
N1,N2,N3 o 0 —(r2) (rs3)

TN o) = || D Seaatin OB Oak)ul ™ Oaka)| Ly s
k1,k2,k3,k,|k1|~N1 AP Ag Pag ro*
(k1,k2,k3)€T (k)

and

(7.2)

—N1,N2,N3

—Lo,L3 (T27 T3) = ’ Z Sk1,k2,k3 yg,lﬂ ()‘7 )\1)@&”) ()‘27 kQ)wi(%rB) ()‘37 k3)‘
k1,k2 k3 k, k1| ~N1
(k1,k2,k3)€l (k)
|kj|<Nj,j=2,3
where vq, v3 are of type (G), (C) or (D) with characterized pairs (N2, Lo), (N3, L3), with
respectively. When v; is of type (G) or (C), we have the freedom to choose 7; = 2 or

/ Y
a2 T2 773 140
LYL3 L2 L3 L.

9The far-diagonal part |k; — k;| > LjN5 can be easily treated by the deterministic estimate (7.6).
However we need to be cautious when v2 and vs are both of type (C). In that case, we may slightly change
the constraint 1\kj _k;‘ \SL]'N; by 1|kj_k;f |[<L;(N2VN3g)e-
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rj = q, while if v; is of type (D) (equivalently, L; = 2Ly, ), it forces r; = 2. We will fix
No, N3 < Nllf‘; such that Ny V N3 ~ L. According to Proposition modulo an N—4
error, we have

(7.3)
N1,L 50(201 —1 . N1,Na,N. N N
1OM O X)Ly oy [z S NP0 S min {0025 (g, 1) < (g, ) € 12 x 1),
N2, N3<N}—?
L2<2LN,,L3<2Ln,
NoVN3~L
(7.4)
Ni,L 50(2b1—1 . (—=Njp,Na,N: N. N
O8O A Ly oy lsmna S NPT ST min {ZNTN2N (g, 1) (ra,mg) € 132 X 1),
Na,N3<N}~?
L2<2Ln,,L3<2Ln,
NoVN3~L

where the index set I,/ = {2,} if L; < L, (type (G) or (C)) and I/ = {2} if L; = 2Ly,
(type (D).

7.2. Algorithms and reductions. In order to clean up the arguments and to emphasize
the point, we describe several algorithms to be used that reduce the analysis to the multi-
linear summation.

Several algorithms to estimate the sum of the multi-linear expression

My Ny Ny (Y5 a2, a3) = ‘ > Yk ky Sk ko ks @2 (K2) a3 (K3)

K1,k k3 k,|k1]~N1
(k1,k2,k3)€l (k)

are at our proposal:

eAlgorithm Al: Deterministic estimates
We may assume that N3 < Nj. Using Cauchy-Schwartz, we have

My N2 Na (U5 2, 03) S| Yo +hapna3(Ra)lliz | lla2(2) Sk e hslli2

ko,k3 |

k1,k2,k3
1
2
<lips iz, sl [[lasE)2 D" Shupasea
k1 3 le’k3
k1 |~N1
1—a 1
(7.5) SNE(VL 2+ N9 iz, Nzl sl |
where we use the counting estimate
N2—a
S SN (14 )
Z k17k27k53 ~ 1 + <k‘2 _ k3>

k1

for fixed kg, kg such that |ka| < Ny < Ny, |k3| < N3 < Np. Alternatively, we have

My No N3 (Y5 02, 03) <[[Yky—katha ki 3(R3) iz [laz(R2)Sky ko kslliz
172,73 1,72,F3
S\ka,klllzgykl||a3||zg3Ha2||122||5k1,k2,k3\|l2 2,
k3'kg Tk

1

1 1_1 1—<
NNV 4 N D iz, sl llazllg

001 replacing gk, , az, az by ypy,, (A, A1), wég)()\m ka), w:(gQ) (A3, k3)

Choosing in particular ¢ = k™
or ygkl (A A1), wéq)()\g, ka), w:(f)()\g, k3) with respectively and then taking L3 AIL%L%\SLZ%*

or L} )\IL?\SL?\ZLZ%*, we obtain (note that agy ' < k~00%):
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Lemma 7.1. Assume that N1 > Na, N3, then we have
(7.6)
Nip,Na,N- —0.1 1-2 1
Trors "(2,2) SNF (N 2+ (N2 /\N3)2)||y2,k1()‘7>‘1)||L§7A1li’k1HU2HX07b0”v3HX0»b0-

Moreover, if N3 < Na, we have alternatively

(7.7)
Ni,Na,N- —o0.1 L 1 Ly a
TN g,2) S NFONG OV NN D, Al i, Tl sl o,
; ; q
00,q
if Na < N3,
(7.8)

4
2

N1,N2,N3 < nrT0t 3 (N3 % 1 0
TN 2, 0) S NE NV + NNl Dl g, el ol .

q
XOO»Q

Remark 7.2. We will use when vo,v3 are of type (D) or type (C) with large L;.
The estimate (7.7) or is useful when vg,vs are all of type (G) or (C) and the L;
parameter of one type (C) term is greater than the N; parameter of the other. Note that
this is the case where we are no not able to exploit Wiener chaos.

Similarly, we have

My N2 N3 (Y5 025 03) <[[Yk ko ks a3(R3) iz | lla2(k2) Skky—s ko ks llierz |
2,k3 2,k3

(7.9) Slyww e llazlle llaslle ,

where we use the counting estimate

sup Z Sk:—i—k‘z—k‘g,kg,k‘g 5 ]-7
k2l SN2 oy <

for fixed k, since |k| ~ N1 > Nj, N3. Alternatively, when N3 < N, we have

MN1,N2,N3(3/5 a2a(13) §|’yk7k+k2—k3a3(k3)||l]1€li A |’a2(k2)sk+k2—k3,k27k3ng"li X
2.k3 2:k3

Nyl Nas(ks)llz ozl 11Sksra—sodoisl]l 20
1 3 2 zg 132

1
SN ywnallizez Nlas(ka)lliz Nlazllig -

Substituting the bounds (T5), [T9) with yes = 424, (A A1), az(kz) = wy> (A2, k2), and
az(ks) = wi™ (A3, ks) and then taking LY L3 L3 L3 L, norm or LY L3 LY L3 L%, (af-
ter switching the order of LP spaces by Minkowski if necessary), we have proved:

Lemma 7.3. Assume that N1 > No, N3, then we have

—N1,Na,N:

(7.10) Enan 0 (2,2) Sk A A a2 o v2llxos llvs]l xo-
UL Lxllkl

Alternatively, when N3 < No we have

1 1
—~N1,Na,N: =01 3.5 A5
(1) =™ (@) S NN NG 0 Ay g o (o2l sl o
171 X q

0,q

and when No < N3, we have

712) VNN o) < NEUNINE [, (0
(712)  E0 "2 a) ST NSNSy, (A Ay o2 0 loallxosollusll 2
1R Xoo,g

eAlgorithm A2: One random input

2bg
Recall that w](-Tj)()\j, k;) = (A\;) "7 05(\j, kj). According to vy is of type (C),(G) or vs is
of type (C),(G), for fixed A\, A1, A2, A3, 1o, we have
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Lemma 7.4. We have
(7.13)
1_1
Lo
Mo o (o™ i) < [suplofly [+ (30 1o P) I O A0l ez )l
ko, kly:ka ks
(7.14)

1
2 .
Muv o (yos? wi?) < [swlol |+ (3 20 ) T I O A0l sl
ks, kfy:ka#k,

where
(7.15)
3
U,(Q)k./z = > wi (Ag,k + K — /ﬁ)wz(), Y(Nay ke + Ky — 1) Sk o e ka Sk kb kK —ki >
ko ik £k,
k1]~ [k|~N1
(7.16)
2
U,(f?))ké = > wy? (g, k1 + kg — k)ws? (o, by + K — k) Sky o1 4k ks Sk ey k4 —k by »
kot otk £k,
K1 |~[k|~N1

Note that the matriz elements algac;_ are functions of A\j, po.

Proof. We only prove (7.13]) since the proof for ((7.14) is similar. Consider the operator
(depending on g, 10):

12 2 ~
Go gy = Uy Uk = D Ykky W3(A3, K 4 k2 — K1) Sy o ket ko1
ok

where in the summation, we do not display the constraints ki # k, |k1| ~ |k| ~ N. By
Cauchy-Schwartz,

MNl,NQ,Ng(y7w§2)’w3 _’ Zgz ) (k2)wa(k2)| = [(G2(y°), W)

SHQQHZQ

2l ”ykl,klel’k ||ﬂ72||1§2‘

Note that ||Gal|?

2 2 = [|G2G3l;2 2 , and one verifies that matrix element of GoG3
kp.k ks kg ko

is exactly al(é)k,. Hence by Lemma [2.11, we obtain (7.13). The proof of Lemma is
2
complete. O

2b,
Denote by h (TJ)()\], ki) = (\j) 7 %i\;],ﬁ] (Aj, k;), and when there is no risk of confus-
J
ing, we will denote simply by h,(cjjlz*()\j, k;). When v3 is of type (G) or (C), we have
J
N1,Na,N:
TL217L32 *(2,9)

1 1
2 2 0
<ol o mo)lPy oy F ok Qa1 g M O M)lzz 2, ol xom

A3 HO* k2 A3 THO* kg KL
and when vs is of type (G) or (C), we have

N1,No,N-
T, *(a:2)

1 1
1 @) 3 0
§(||0k3k3(>\2,uo)||2% g Hakskg()\%lto)llcg#kgHz% aw ) ANz e llvsllxos,-

>\2L“0*lk3 A2 “0*lk37ké
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Note that
G @ —(q) 9k3 Ikl
IR DI WP ST DI NN PR
ok £k k31, k5[~ N B
[t | ~|k|~N1 ks —k%|<L3N%
|ky—k3" |<LsgNj
(2) B (q) 7(q) gk*?k’*
= X SamskohSuneron Y e s O Oo)
i kok £k k31, |k [~ N 2
|1 |~|k|~N7 |ke—k3|<LaN§

|k —k5 <L N

If we are able to establish the estimates:

(7.17)
1 1
sup (EC3[|U;(§);€2 %] )2 ( Z ES|] ;(;:Lf 2 )2 < AS(NlaN27NSaL27L3)||h](g?k§()\3)H12;012*,
|k2‘NN2 k‘g;’ék/ 3 k3
and
(7.18)
1 1
sup (E@Hgg)ks 2)2 ( SR g)k 2 )2 < Az(Nl,NQ,Ng,LQ,L3)||h,gg>k;(A2)Hfzo,2*,
|k3‘NN3 kg;ﬁk/ 2 ’“2

then from the estimate

175k )l ez, < G )y i lk*,quuh,i‘j)m Dz e,

and the large deviation property (Corollary [2.17] m, we deduce that outside a set of proba-
bility < e~ MR,

(7.19)
N1,Na,N: RN 1
NN 2, ) < RGO NG A (N1, N N, Lo L) B M Al i, 02l oo 15 g

and
(7.20)

N1,N2, N, w0 a 10 NoL
Yooy (@:2) SN Ny Aa(Ny, Nay N3, Lo, Ls)2 [y, (A Au)llzz | 2, [vsllxose 177272 5000
The algorithm to estimate Hgl ’i\;Q’Ng(Q q) and :gl ’ﬁQ’NS (2, q) is similar. Denote by

) (a) k3
Ok kiska — Z hk+k2_k1,k§()‘ )[k:*] & ki ka k+ha—k1
k3:|k3]~Ns
|ks—k3|<L3Ng
and
@  _ (q) k3
Ok kisks — Z hk1+k3_k,k§ (A2 )[k‘*] Sy k1 +hs— kks3-
k3:|k3|~Na2
ko —k3 |<La N§

Then by Lemma [2.13] and Corollary [2.17] if we are able to establish the estimates:
1
c c 3 -3 |*1\2
supZ[E 3 |Jk ko ’]+ sup ( Z E 3[ ng’,’k, ko O ko ke sk D
ks ‘g BRRLF N S -~
(k,k1)# (K K1)

(121)  <Ro(No, No, N L, L)l Ol e
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and

1
c 2 c e 21\ 2
sup Y E%(loy’) 7]+ sup ( > E 2[ Z%w sk sk D

/. /|~
ko ke[| K/ |~ N v
(k,k1)#(K' k1)

(722) <A2(N1)N27N37L25L3)Hhk k*(>\2)||l2ool2 9
2 ko k:;

then outside a set of probability < e™V IR
(7.23)

—N1,Na,N: RN 1
:'L21,L32 3(27q) S Rqu() N3qA3(N17N27N3?L27L3)2”ygkl()\7>\1)||l}€Lg\,Li li ||U2HXO7E’OHhNSL?)HSbqu
1 F1

, we have

and
(7.24)
=N1,N2, N, w0 e 1
=N (0.2) S RN NG Ra(Na, Noy N, o L) iy 0 M)y 2 o ol 1522 g
1 F1
eAlgorithm A3: Two random inputs
We only use this algorithm to deal with the case where vs and v are both of type (G) or

(C) with characterized parameters (Na, Ly) and (N3, Ls) satisfying (Lo V L3) < (N2 A N3).
Assume without loss of generality that No < N3, we have

Ni,Na,N.
TN (2,0)] < sy A Az, ks eGrs il

and
—N1,N2, N
Er  (2,0)] < ”yg,kl(A7A1)|’l,§zgl 22 Grr ke
where
Iks ks
(725) Gk k1(>\27)‘37.u0 Zsk‘l k1—Fk+k3,k3 Z hk’l —k+k3,k5 ()\2)h](€d)k*(>\ )m

k3 k3 k3

Note that hl(cz)kg and hl(ci)k;‘ are Cp,vr, measurable, independent of {gi; (w) : |k3| ~ N2} and
{9k (W) : |k3| ~ N3}. If we are able to show that

2
(7.26) > (Gl < Azo(N1, Nay Nay Loy L) s e 100
ki £k ?
and
2
(20 sup D EClGk ] < Aaa(Ni, No. N Lo La) i I Whici
~VT gy 279

where C = Cr,vr,, then from Corollary outside a set of probability < e~ N B we
have

a4 1
(7.28) \TNl’NQ’N“(2,q)|§RN1“° N{ Ay 3(Ny, Ny, N3, Lo, Ls) 2 [| BN || guo o | AV222 | g

and
(7.29)

—N1,Na,N:
=5, (2,9)] S RNy

K-
q0

l+0 1__ 1

* Ny Az 3(N1, Na, N3, Lo, L3) 2 || W33 gg o [| W22 5
We remark that when vy is of type (G) or wve,vs are both of type (G) (note that

Ny < N3), we should instead estimate TNl’Nf’M (¢,q) and :g; é\]; Ns(¢,q) and the norms

on the right side of ( and (7-29) should be modified by [|AN222 || goq,q |23 | gog..
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7.3. Implementing the algorithms. In this subsection, we compute

Ni1,N2,N3 —N1,N2,N3
TL27L3 and —L2,L3

wherd) N1,Na,N: Ni1,Na,N:
TLzl,’L;’ 8= min{TL;’L;’ 3(7‘2,7“3) : (?”2,7“3) S {Q,q} X {2,(]}}
and N1,Na,N: Ni,Na,N:
EL;,’L;’ 8= min{EL;:L;’ 3(?"2,7“3) : (’1”2,7“3) S {2,q} X {2,q}}
for all possible N1, Na, N3 such that N; > Na, N3 and L; < le_‘s,j = 2,3. This will be
done by executing the Algorithm A1l-Algorithm A3 that we have just described.
e¢Two random inputs
We begin with the case that ve, v3 are both of type (G) or (C).

Lemma 7.5. We normalize Hy,gkl()\, )\1)||L§ 2, = 1. Assume that vy, v3 are both of type
sAL FRT

(G) or (C) with characterized parameters (N2, La), (N3, L3) satisfying LoV Lz < (N2AN3).

Then outside a set of probability < e_ngR, we have:

(i) If Na <« N3 < N; and vy is of type (C), then

—0. « 1—-< 1 1—<
TN (2, )] S RNPF " (NoN3) "5 HI N, ™2 (N7 + Ny 2)(La A L3)2 (LaLs) ™

(ii) If N3 < Na < Ny and vs is of type (C), then

—o. a 1—2 1 1—2 1 —y
TN (g,2)] S RNPF " (NoN3) "5+ Ny ™2 (N + Ny 2)(La A L3)? (Lo Ls)

(iii) If No < N3 < Ny and vy is of type (G), then

1—a

—0. o 1 1
TN (g, q)| S RNPH37" (NoN3) "3 HONG (NZ + Ny ?)L3”

(iv) If N3 < Ny < N and vs is of type (G), then

—0. « 1 1 1_Q
03NN (g )| S RNPH " (N N3) ~ 5 HANG (N7 + Ny %)Ly

(v) If N9 ~ N3 < Niand at least one of va,vs is of type (C), then

1 1_a 7(a—1)

—0. = — = o
NN (2,9)) < RNPFTVIN TN, LoLs)™

(vi) If No ~ N3 < Niand ve,vs are both of type (G), then

+251 (

«

)

Proof. Since in the regime Ng, N3 < Nj, there is no significant difference between the
second and the third place in the multi-linear expression, so without loss of generality,
we may assume that No < N3. By executing Algorithm A3, it suffices to estimate the
input constant Ag 3(Ny, No, N3, Lo, L3) in ([7.28). Since in this step, we do not operate on
modulation variables X, A;, 1o, we will omit these variables below to simplify the notation.
Recall that the multi-linear expression Gy, is given by ((7.25)), we have
(7.30)
c 2 7(2) 52 () 79
Z E™[|Gry ]| < Z Z Peais Mgy g Pk s Pk e S oo e S e
k1#k k1,ko kb k3 Kkl kS5 kS kDY ELE

k‘Q—kJIQZkg—ké |ké—k"2* |<L2N§
|k}, —k* |<L3N§

g —0. —(a— 1—a 1_
‘ngl,é\[;’]vs(q? Q)‘ 5 RN16+3’{ 01‘]\72261 (N2 (=) + Nl 2]\]22

1
CHEHEHE

XE[Gps Irgr Irz Grsr] -

10For fixed vg,vs of characteristic parameters (L2, N2), (Ls, N3), we are free to choose 72,73 € {2, ¢},
meaning that we specify in a priori the norms of h™¥2'L2 and A™V3'L3 to be used. However, we are not able
to use both norms of A™V2:L2 pN3:L3 in ¢ single multi-linear expression.
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Note that the only non-zero contributions in the summation are k5 = k5, ki = k% and
ks = k3, k5 = k5. Denote by S; the contribution from k3 = k5 and k35 = k5 and by Sy
the contrlbutlon from ki = k3 and k5 . Note that Sy = 0 if No < N3 or vy, v3 are

both of type (G).
Estimate for S;: Denote by ag(ke) = ||h,(€22)k§| 2, and as(ks) = ||h,(€?k§
2

contribution we must have |ky — k5| < LoN§ and |ks — k5| < LgN§. Since ko — kS = ks — kb,
we may change the constraint to |kg — k5| = |ks — k5| S (L2 A L3)N§. By Cauchy-Schwartz,
we have

SUS(NaN3)™ > Ay S(LanLa) NS k1 ks Sky g it 02 (K2) az (k) ) as (ks) az (k)

k1,ka, kb k3 kb
ko —kly=ks K,

— € N
S(N2No)aslfe Y az(ka)az(ks) Ni Ly, sg<zansong (1 m)
Ko,k k3

2. For this
k3

2—«a
where to the last inequality, we use the counting bound Ek Sk ko ks S NT (1 + <N k;3)>

Using Young’s convolution inequality to the sum Zk%ké az(kQ)GQ(k2)1\k2—k'2|§(L2/\L3)N3’
we have

81 S (N2N3)™(La A L) N{“(Ns + N ™) [laz|| lasllize -
2
When vy is of type (G), we could estimate az(ks) by HaQHli‘; and

S1 S (NoN3)~*las |7 |aslf N§(No N3 + N~ Na).

Estimate for Ss: Note that Ss # 0 only if No ~ N3 and at least one of vs, v3 is of type
(C). Therefore, without loss of generality, we may assume that v is of type (C). Moreover,
we have the constraint |ko — k3| = |k — k4| < (L2 V L3)NS. By Cauchy-Schwartz,

S §(N2N3)‘0‘||a3ul2z§ > Ly kalS(LavLa) NS Sk ko ks Sy et i, G2 (B2) a2 (kD)
k1,ka,kb k3 kY

ko — ki =k — K,
1_a
N 2
S(NoN3) ™ lagllze Y Ly, k3|<(L2\/L3)N€Skl,k‘z,k3a2(k2)Nl”a2Hl2 ( 271)
" k1,k2,k3 <k2 - k3> 2

where to the last inequality we use Cauchy-Schwartz for the sum in &} and the counting
bound

N
(7.31) Zskl,kg,k3+kg—k2 SN (1 + W)
ks
2—a
Using again ) ;. Sk ko ks S Nf(l + %), we have
1-< 9 9 1-<
N, ? Ni™¢ Ni7%N, 2
8o S(NaNg) NP faslBellazlly, D anlho) (14 —2— + o =2 )
ko, k3 (ky — k)2~ (k2 —ks) (k- ky)>
‘kz—k3|§(L2VL3)N§
1 1 3_a 3_a
S(NoNg)"*NY“((La V L) N3 + (Lo V Lg)2 NG % + NY7*Ng#)lag | [laa|l
2

<(NaN3) N . N7~ aN Ha3||l°°||a2”l2
SN a+3€N H%||zoo\|a2||lz ;

since a < % and Ny ~ Nj.
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In summary, if at least one of vy, v3 is of type (C), when Ny < N3, we obtain the upper
bound

A23(N1,Na, N3, Ly, Ls) = (NaN3)~*(La A L3) NT“(N3 + N7 %),

and when Ny ~ N3, we obtain the upper bound

8-5a
A2 3(N1, Na, N3, Ly, Lz) = N7~ TN, 2.

By choosing 4e < £~ %1, plugging into (7.28) and using the corresponding Z% and S%4

bounds of RNi%i (note that (%, % < k%) the proof of Lemma is complete.

O

For —N1,N2,N3

B, we have:

Lemma 7.6. We normalize ||y, (X, A1) = 1. Assume that va,v3 are both of

174 712 52
LS Lkllkl

type (G) or (C) with characterized parameters (Na, L), (N3, L3) satisfying Ly V Ly <
(N2 A N3). Then outside a set of probability < e NE,

(i) If Na A N3 < Ny V N3 < Ny, then

—_ g —0.1 _a=1 _Q49e 1 —
RN (g ) S NP (No A Ng) ™5 (N v No) ~542 (L A L) ¥ (LaLs) ™

(ii) If Ny ~ N3 < Nyiand at least one of va,v3 is of type (C), then

7(a—1)
—N1,N2,N3 0435701 \ ;== +2€a1
=Ly Ls (2,9)| < RNy Ny

(iii) If N9 ~ N3 < Niand vo,vs are both of type (G), then

(LaLs)™™

—a+2e1

1
—N1,N2,N3 0+3k91 A73
ZLo,L3 (¢:9)| < RNy Ny

Proof. Without loss of generality, we may assume that No < Nj3. First we assume that
Ny < N3. From Algorithm A3, it suffices to estimate, for fixed |k| € Ny, the expression

D EGk kT ~(N2N3) ™ > Skepky ks haks Skt kgl ki

k1:k1#k ka Kkl k3,kb
ko—kl=k3z—k}
- @ @) @) 7@
7\ q q9) 79 — _

ki k5 kb kg G=2 |k =k |<L;Ng
Since N2 < N3 and |k}| ~ Nj, the only non-zero contribution comes from k3 = k3" and
k3 = k5*. Consequently, since ky — ky = ks — kg, |k; — Kj| < (L2 A L3)N§, j = 2,3. Denote
by aj(k;) = Hh/,(;j_)l,g,f le*, by Cauchy-Schwartz, the quantity above can be bounded by
J .
J

(N2N3)™%laz HZQ;;; Ha3\|zzg§ > Lk <(anLa)Ns D Sketha—ks ko ks
ko K ks

_ —(a—1) Ar—a+te
S(N2N3) ™ [lax s llasllf - N§(La A Ls)No = Ny VNG (Ly A L) an s llas|7

Note that this estimate remains true if Ny ~ N3 and ve,vs are both of type (G). By
choosing € < k%! and noticing that 2,1 < k=01 we have proved (i) and (iii).

q°’q
Next we assume that No ~ N3, then by Algorithm 3, to estimate Eg;’i\/;’]v?’ (2,q),

: : (@ () (2) 1@
it suffices to calculate ((7.32) by changing hkgk;7hké i to hkzkg’hk’zk’;' Denote by &7 the
contribution from k3 = k5, ki = k%" and by S the contribution from ki = k3, k5" = k5"
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Estimate of S1: by Cauchy-Schwartz, we have
S1 S(N2N3) ™ a\|a3HzQ;;§ > ag(k2)az(kh) Ly kg <(Lania)Ns D Sketha—ka ko ks
ka k5 ks
§(N2N3)_a\|a3sz,3§ HG2H?§2(L2 A L3) N3,

where to the last inequality, we used Schur’s test and the fact that > ks Sktka—ks ko ks <1
Estimate of Sp: by Cauchy-Schwartz and (7.31]), we have

S1 S(N2N3)™ allastQg; D an(k2)an (k) Ly iy < (Lov L) N5 Sk ki ks St oo — g -+

ka,kb k3
< -« 2 ! € N21_§
S(NaNo) ™ las e S @ (k) Lty kgl (Eavio)Ng Shkabasbaka laz (), N5 (14 —2—)
ez k3 2 (ko — k3)2
. ) N, *
SN Nl s ozl 3 aathe) 3 St (1+ =2 7)
ko ks 2 — R3)?

-~ 1 1—<
SNf(NzNS) |||z H02||1222 N3 - N, 2

<NEN, H%HzooHazle,

since st Sktko—ks koks ~ 1. Implementing Algorithm 3, the proof of Lemma is
complete.

It remains to deal with the case where LoV L3y 2 No A N3, say Ny < N3 and L3 = No.
Then from Lemma [7.1] and Lemma [7.3] we have
Lemma 7.7. We normalize ||ykk1()\ )\1)||L2 2= = 1. Assume that vy, v3 are both of type
1 1

(G) or (C) with characterized parameters (NQ, Lg) (N3, L) satisfying LoV Ls 2 No A N3.
Then

YR < (Ny A N3 =2 e (Np v Ny) 5T (N v N3)? + N117%)
Proof. We apply (7.7)) or (7.8, according to N3 < Ny or Ng < N3. O

Lemma 7.8. We normalize ||y2k1()\,)\1)|] = 1. Assume that vy, v3 are both of

hLf I3, 2,
type (G) or (C) with characterized parameters (Na, Lo), (N3, L3) satisfying Lo V Lg 2
No A N3. Then

Q _a 1
ENNNs| < (N A N3) 75 H (N v Ng) "3 et

Proof. We apply (7.11)) or (7.12)), according to N3 < Ny or Ny < Nj. O

eOne random input Now we deal with the case where one of vy, vs is of type (G) or
(C) and the other is of type (D).

Lemma 7.9. Assume that Hygkl()\, )‘1)||L§ N Assume that one of v, v3 is of type
sAL R RT

(G) or (C) and the other is of type (D). Then outside a set of probability < e MR the
following estimates hold:

(i) If N < N3 < Ny and vs is of type (C) or (G), we have

Ni1,Na,N. 043,01 n,—5+e1 g 1, 1 1_2
T ) S RN g T (v )

(ii) If N3 < Na < Ny and vy is of type (G) or (C), we have

[e3

- — Qe 1
|Tg21:£;27N3( 72)’ S R]\[le—i_?"i 0'1N2 2+ l]\/'34 SLS (]\/‘2 —I-N 2)
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(iii) In any of these situations:
— No ~ N3 < Ny;
— Ny < N3 < Nj and vs is of type (D);
— N3 < Ny < Nj and vy is of type (D);
we have

ONENeNs (9 9)] < RNEH [N} T2 4 (Na A N3)2] (Na V Na) (N A N3) ="

Proof. Note that (iii) follows directly from Lemma[7.1] it suffices to prove (i) and (ii). The
situations (i) and (ii) are similar, so we only prove (i). Recall that in this case, No < N3,
vy is of type (D) and vs is of type (G) or (C).

By executing Algorithm A2, we need to estimate (see (7.17)) E|

(Z E®[|o ]) + sup (IEC3[|ak2k2|2]>é.

koKl k2 |~N2
~ II
I
We calculate
2
= Z Sklvk’%’%Sklyké,késmhkz,mzsSml,ké,mg
ka,kh k1 ks,m1,ms, ks my
koK)
ks —kly=ma—mly=ks—k)
@ 7@ 7@ @ Elgk; Trge G Iy
X hk k*hk’k’*hmm h . o =
3Mg m3m5 [k- ]5[16/*] [ ] [m3]§

|k5|~ N3, |k5* |~ N3
|m|~N3,|m5*|~N3

where in the last line, the range of summation in k%, k5", m3, m4* satisfies:
ks — k3| < LyN3, ks — kg'| < LgNg, [mg —m3| < LsNs, [mj —mf'| < LyNs.

As usual, to Simplify the notation, we omit the dependence on A3, g and denote simply
hl(f?kg =(\3) 7 hgﬁf()\g). Using the independence,

(7.33)
2 —2a
" SN Z Sky ko ks Sky kh kS ma kayma SOmy kb m,
ka Kk k1,ks,m1,m3,kf,m}
koK)

ko—kh=ks—kf=m3z—m}

? @ 7@
XE| Lty igsrong O ki om0 e ¢ D P g )
ks m; 3 ki

Iy Iz

]

2

In the arguments below, we will not display the expectation E since we will not use the
random feature of the coefficients hy; ke
Using Cauchy-Schwartz, we have

(@) 4
Il S 1|k3_ké|’§L3N§Hhk3k§“lz§li§7 ]:2 < 1|k3 m3|<L3N€Hh1€3k*leoli*’

U7y save the notation, in the summation below, we implicitly insert the constraint |ksl,|ky| <
N2, |ks|, k3], [ms|, [m3] ~ Na.
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52
2
E Sk ki ks Sk k) ks K, kQ)

k1,k3:k3#ko

Plugging into - the summation corresponding to the contribution Iy can be bounded

by
-2 (9)
N; a”hk3k§”l§§§li*
3 Ko,k
0<|k527k‘/2‘5L3N35
2 2—
ko kb
0<|k2—k’ |SL3Ns
kgk*”li"li*‘

(7.34) SN 20N LyN§No [N + NP~ N2 ||
>) < N§(Ns + N?7°N§),
Next we consider the summation corre-

since

Z Zskl,kQ,k3 NZNl <1+ k2*k3

k3:k3#ke ki1

thanks to the fact that |k| N1 > |kal, |ks|
sponding to the contribution Is which can be bounded by
Z Skl,kz,k:),skhké,kg-i—k/ kQSm1,k2,m3Sm1,k2,m3+k'—kz

k3
ka,kb k1,m1,k3,m3

(7.35) Ny QQIIhkdk*Hmz
koKt

|ks—m3|SLyN§

k3| and |0y @ (k1, k), ks + ki — k)| ~ N$™1 > 1, we have

Since |kal, |ky| < Na < N3
for fixed kil, k‘g,kz, Zké Skl,ké,kg-i-ké—kz ~ Nl Thus
Liks m3|<L3N€Skl,kmksskhk’g,ks-l—k’g—kgSm1,k2,m35m1,k2,m3+k’ ko

2.

ko kb k1,m1,k3,m3
koK)
€
SNl E E : Sk17k2,k35m1,k2,m3
ko,ks,m3,  ki,m
3
2—a 2—«
N Nl

14 ———
) (k2 —mg)

|ks—ms3|SLa NS

S > N36(1+<k2_k3

ko,k3,m3:ka#ks,m3
3

ks —mi| SLa NS
2PN, 4 LyNy N3 + LyNoN ]
which is smaller than the upper bound (7.34)) of I;. Therefore, we have
11 1 1—
3 (Vg )-

=1
2

SN[
I2 SN, 2|’hk3k*()‘3)ng§li*N12€ 5 Ly - (Ng + N,
3
Next we estimate IT?. For fixed ks, we have
C 2
E®[|ojo,|’]
2
—E® Z |w3 (k + k2 _k1)| Sk ko — k1> }
k1, k:k1 £k
Ik |2 Imz |2
Bl X SwneSmem| X Wligar|| X Mgkl
k1,k3:k1,ks# ko |k¥|~N3 3 |m3|~N3 3
m1,m3:m1,m37#kz |ks—k3|SL3NS§ |ms—m35|SL3N§
2
2
~Ng aHhk?,k*Hlooﬂ ( Z Skl,kz,k3)
5 k3,k1:k1,ks#k2
Ny 20 prde [ pr2(2-0) (a)
—2a € -« q

(> N1<1+

—2
Ny e
k3:k3#ko
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Hence
1 5 [N E VNN I Ol
which is smaller than the upper bound of T5. Plugging into the output and
choosing € < k%1, we complete the proof of Lemma O
For the Hgl ’iVQ’NS norm, we have:

Lemma 7.10. Assume that [Jyg;, (A, A1)l = 1. Assume that one of va,vs3 is of

BL L3 B,
type (G) or (C) and the other is of type (D). Then outside a set of probability < e_NfR,
the following estimates hold:

(i) If N3 < N3 < Nj and v is of type (G) or (C) , we have

—N1,N2,N3 943k 01 nr =5 Arg S €17 —v
= 7 (2,0)| S RNY Ny *Ny - N3'Lg

(ii) If N3 < Na < Ni and vy is of type (G) or (C) , we have

1
—N1,N2,N3 043591 Nt —F A7 S €17 —Vv
|“L2,L3 (¢,2)| < RN/ Ny 2N3 - Ny L,

(iii) In any of these situations:
— Np ~ N3 < Ny
— Ny < N3 < Ni and vs is of type (D);
— N3 < Ny < N and vy is of type (D);
then

—_ —0.1 _ _a—1
=N (2,9)] S RN+ (N v N3) ™ (Ny A N3)

Proof. For similar reasons, it suffices to treat the situation (i) where vy is deterministic
and N3 > Ns. Executing Algorithm A2, the key point is to control
2) %

C3| . (3) 2 C3 (3) —(3)
sup ( > E®Nog "), sup . EOY 0Tk,
Rk NS oy o

/
1,~q

(kk1)#(K' k1)

II

(3) _ (@) A
Ok kiska — Z hk+k2 ki k% & Sk kg ktha—ki -

k*
k& k3 |~ N * [k3)2
|ks—k3|<L3Nj

where

Using the independence and Cauchy-Schwartz

_ Cs [ (@) 7(a) Ik3 Iy
= > B kP Wskhkmka ki
kg k3 kg
|k+ko—k1—kj|<L3Nj
|k+ka—k1 —ky*|<L3N§

— NsL
< NN I

where we used D ;. Sk kg ktky—k1 S Ni- Next,
2
I = " Sky ko btko Sk o k/ko—k, Ska maktma k1 Skl ama b+ ma—k,

k1,kf k2 ma
(kk1)#(k1,k7)

B394 G 9yt

X Z hk+k2 kl,k‘ hk’+k2 k/ ’*hk+m2 k17m3hk/

* 1.0 % *
k3.kg ,m3,m3

Lt o)
1°

312 kg2 || 3 [y 2
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. . !/ / ’ /
The non-zero contributions are k3 = k3", m3 = ms* and k3 = mj, k3" = mg".
. ’ ’ ’ ’ .
For either the case k3 = k3", m3 = ms" or k3 = m3, k3" = mg", using Cauchy-Schwartz,
we can estimate these contributions by

2a
Hhkdk*\lloolz D Skakaskrka—ky Sk ks — Sk k-ma—ks Sk ma K+ ma—k
K k1,k],k2,m2
(k k1) # (K k)

2«
<N Hhkak* Hl“l2 Z Sk+k2—k3,k2,k3Sk’+k2—k§7k2vkéSk+k2_k3’m27m2+k3_k2Sk'+k2_kéﬂm2vm2+ké_k2'
*3 kg ks, k2,mo

Since Ny > N3 > N3, we take the inner sum in the order 5, > ;. Zké > m,- From

€
§ Sk+k2*k3,m2,m2+k3*k2 S Nl

ma2

and

§ Sk+k2 k3,k2,k3 E :Sk”rkz L ko kL S 1,

finally we obtain that

kk*

By implementing the output (7.23) and choosing ¢ < k= %!, we complete the proof of
Lemma [7.10 [l

7.4. Kernel estimates. To finish the proof of Proposition and Proposition it
suffices to estimate the right side of and . Note that we ignore the error terms
appearing in Proposition[6.1] here, as they are accompanied with some large negative power
of N7 which is negligible.

e Proof of Proposition By symmetry, we may assume that No ~ L is a fixed
1

parameter and N3 < Ny, Ls < Nl_5 Ly < N1_5 and N1 > LT-3. First we note that,

for fixed (N7, No, N3, L1, Lo, L3), each time using Lemma [7.5] -, Lemma [7.6 I Lemma -

Lemma |7.8] and Lemma . Lemma we should delete a set of probability < e~
Therefore the probability of all the exceptional sets is bounded by

3 S 0™ = 0@ ), 0<e<l.

Ns<L,Li,Lo,L3<L 1
sshibvlabesl v 1755

Therefore, outside a set of probability < e_CRLG, we may assume that all the estimates
in Lemma Lemma [7.6] Lemma [7.7, Lemma [7.8 and Lemma [7.9] Lemma hold.
To finish the proof, we only need to estimate the sum over N3 < Ny, Lg < N;f‘s and
Ly < N21_5. To simplify the notation, we first pull out all possible small powers of
Nl,Ng, N3 like

o 1
1 e e 100(b—1
NETH N NPT Na Ne e e

) Y

100(k 1 +b— 1+
in a unified onl N ( ? q)N2 (@te) and ignore this small power in all the esti-
mates below within thzs section. Recall the notation

—N1,N2,N: —N1,N2,N:
:L;,’L;’ 8 = mln{HLl’L;’ 3(ro,r3) : (r2,m3) € {2,q} X {2,q}}.

127pe only caution is that the inductive small numbers €1, €2 should not fall on V.
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We split the sum into

—N1,N2,N3 —N1,N2,N3
(7.36) E “IoLs T § : —La,Ls
Ns,La,L3 Ns,La,L3
N3<Na N3< N2
Lo= 2LN2,L3 2LN3 L2<2LN2,L3<2LN3
I 11
—N1,N2,N3 ~N17N2,N3
+ Z —La,L3 + Z —La,L3
N3,La,Ls N3,L2,L3
N3<Nsy N3<Nsy
Ly=2Ly,,L3<2Ly, Ly<2Ly,,L3=2Ly,

II1 v

Since all the inputs in I are of type (D), by Lemmal7.3]

(7.37) IS > Ny°Ny°~Ny°
N3:N3<Na

The inputs in IT are all of type (G) or (C), by Lemma and we have

o

ISy S Ny TN ELE L 3 STON PN, ¢

N3:N3<K N3 La,L3< N3 N3:N3<<N2 L3k N3
N3SLo<Na

7(a—1) 1 _T(a=1)
+ 3 ST Ny T (LaLy) A Ny Slog(No)Ny TV 4Ny
N3:N3~N2 Lo N2
L3« N3

Next, applying Lemma [7.10] we deduce that

a1
MI4+IVS NS+ N, 2 7 " log Ny < Ny °.

Therefore, since v < min{s, o 1)} and L = N3, we have proved Proposition

e Proof of Proposition E As before, we 1gnore a unified factor N{00%
and split the sum into I+ 1T+ IIT 4+ IV as . From Lemma-,

1< N}‘%N;S, if Ny < N2

and
1-5 Ar—s 5-2s 1-5 Ar—s . 2—a 1-6 . 4
ISN, ®?N,°+ N7 =~ <N, *N, if N{7% < Nao(< N{7°%), smcea<§.
To estimate II, we apply Lemma [7.5 and Lemma[7.7] and obtain that
_a 1 _a 1
B Y oo i Rk e nt ke
N3:N3<KNo L3,L2<<N3
L3>l
o 1 1—<
+ > Y (NaNy) 2N, 32(N22+N1 2VL;Y
N3:N3<K N2 Ly N3
1—@_, _a 1 1—¢
+ ) > N3 # "Ny *(Ny + N, ?)
N3:N3<KNo Lo Na, L3 N3
LQVL32N3
1-§ = v (Nl | AlE e
+ ) > Ny PNy (LaLs)™" + (N, +Ny NG ).

N3:N3~N3 Lo N2, L3 N3

Then direct computation gives

1< log(No)N, N, * 4N~

55

—0.1 N2:[0(51+52)
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From Lemma [7.9]

1—a 1 s _a=1 -2 1—&_g 1-2

I < Z (Ny * + N3 )Ny °Ng 2 SNy *Ny®+ N, ? “log(N2) SNy * Ny,
Ns,Ly,L3
N3<N3

Ly=2Ly,, L3<N;~°

since L ~ Ny < Nllfa. Similarly,

_a 1.1, 1—< 1
IV < Z Z Ny 2Ny "Ly (N * +Ng)
N3:N3<Noy Ly, L3
La<N, ™%, L3=2Ly,
1—a 1 _ _a=1
+ > > (Ny * + N§ )Ny Ny 2
N3:N3~No Ly,L3
La<Ny~°, L3=2Ly,
1-£ 1 —a4l s 1-%—s 1-<
SNy 2+ NF)N, 22 + Ny * “log(N2) SNy *Ny».

Thus o
II+1V <N, 2Ny*.

Therefore, since v < min{s, 7(0‘4_ L) }—100(e1 +€2) and L = Na, we have proved Proposition
1.0l

8. REDUCTIONS AND ALGORITHMS FOR THE TRI-LINEAR ESTIMATES

8.1. Reduction on the Fourier supports of type (D) and (C) terms. Before turn-
ing to concrete estimates, we will make some reductions, just in order to clean up the
notations and the arguments below. We first reduce the estimate to the case where type
(D) terms are localized in the Fourier space, in order to apply Proposition This can
be seen as follows: if some v; is of type (D), we will decompose it as
1
Then by the bilinear Strichartz inequality, the contributions in N3(vi,ve,v3) when we
replace v; by Hﬁlo v; is negligible. Indeed, by duality, to estimate [[ viDgvsvdadt, we
(1)
split each v; into dyadic pieces and we have to estimate

Z //PM1U1-PMQQJQ‘PM3U3-PMdedt
My, M2, Ms,M

where at least one of My, Mo, M3 is greater than N(llo) and the corresponding function v; is

of type (D). In particular, if for some k, My, = max{Mj, My, M3}, then M > N(llo) and v
must be of type (D), since each v; of type (G) or (C) has Fourier support |k;| < Nj < N(y.

By Holder and the bilinear Strichartz inequality, we can bound the sum by

1 _a
> (Mg)M)? HPanvill o3 Parv2ll o3 Pasvsll o3 [[Parvll
My, Mo, M3z, M
Muyznio
Note that if v(;),7 = 2,3 is not of type (D), then M) < Ny,j = 2,3, the dyadic

summation converges and is bounded by N 6)108, which is negligible. Therefore, from now

3.
X%

on, we always assume that a term v; of type (D) has Fourier support |k;| < N(ll%, hence
the modulation reduction, Proposition [6.2]is always applicable.
Next, we claim that without loss of generality,

(H) for v; of type (D) or (C), we may further assume that
suppy, (v;) C {k; : [kj| ~ Ny}
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and our goal is to prove an estimate of the form

(8.1) IZN (01, 02, v3) | o, S RN~

Indeed, if v; is of type (D), we can decompose it as
Z PMj ’Uj.
M;<N{P
By our assumption that v; has characterized frequency N;, we have

1Pagyvillxos S M i My = Ny [Pagvyllyos S N;™ if M; < N,
Then to estimate the X010 norm of N(v1,vg,v3), we can replace such v; by P ;v;
and then sum over every M; < N, (1) Note that the dyadic sum of N;s over M; < Nj

only contributes N, *log(NV;) and the dyadic sum of M, over M; > N; contributes N,

100(2 +b1—0.5+0+k~0-1
finally the logarithmic loss and the loss from the small powers NV, (1) (gi=05+6% ) will

be compensate by NV, (_1350, thanks to Remark Similarly, if v; is of type (C), we decompose
it as

N;L; N;L; 9K (w)
Do, D Iy QRens e Y () e
|k;|~N; |k |~N;, |k;|<N; k2 |~N. j
|kj—k3|<L;N¢ |kj k> L N§

where € < k7%, The second term is negligible in the estimate, compared with the first
term on the right side. Indeed, we can treat the second term as a function of type (D)H
with the X% bound leo . le_’“ < Nj_m, thanks to (3.16)). From these discussions, we

always assume (H) in the sequel and proceed to prove (8.1)).

8.2. Reduction to the corresponding dyadic summations. Except for the high-
high-high interactions with at least one term of type (D), we can reduce the matter to
several modes of summation, depending on how many random structures we want to
exploit.

First, applying Proposition

HIN3(U17 V2, ’U3)||X0,b1 SN(_l)lOO H HU]‘HXOJJ

+HM£1:2V22,£\;3()\17 A2, A3, [0, kz))

Lrl er Lr3 LCIO (|M0|<N(1))l27

where
MPEEN =N R0 — Dy gy ) D1 (A, k) W2 (Na, ) W3 (s, s),
(k‘l,kg,k‘g)er(k)
2bg
q = ﬁ, and 1'E§Tj)(Aj,kj) = (\}) i U (A}, kj) for j = 1,2,3. We can ignore the error

N(E)loo H?Zl ||lvj|l xob and concentrate to the estimate of ngg%{w As before, we may

replace Xo(po — @k17k27k3) by 1%1’}62’,63:”%0( D Moreover, we denote simply by h; k)* =

h]k\%?j (i) (Aj)" hkN kfi (Aj) when there is no risk of confusing. Recall also the notations:

Sk kasks = Lharthr ks Loy, g, wy=po+O (NG o llzge =11+ loae o< )
e Algorithm 1. Prototype: v, vy, v3 are all of type (G) or (C)
Our algorithm in this case can be described as follows:

Ni,Na,Ns . - : .
(a) Denote by C = B<max{L,Ls,Ls}, then M7 27 % is a tri-linear expression of Gaussian

13We then perform the same Littlewood-Paley decomposition as we just did for the true type (D) terms.
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variables. When the coefficients are C—measurable and are independent of all Gaussians
in the expansion, we can apply Corollary to deduce that outside a set of probability
< efN(Ql)R%

HMNhNQyNS

Li,Lo,Ls HLq Lq Lq Lo

0 C N 7N 7N
noxli = RN(l)H(E HMLll,L;,LSg‘ ])2HLq Lq Lq Lo,z

HO*k

(b) As the crucial step, for fixed A1, Ag, As, |po] S N, (Oi)’ we need to establish the following
estimate:

N1,Na, N N;L;,
(M ] < KV, N Nos L, Lo, L) [ [ OO0,
j=1 !

(c) Using the embedding I*° < [%, taking the square root of the output of the step (b)
and then taking the L?\ng\2 Lq qu* norm, we obtain that

w

HMN17N27N3 %

Li,Ly,Ls HLq Lq L‘I L. 12 <N

K=
0
1o * )

K(Ni, N2, N3, L, Lo, L3) %H IR | gb.q.

From this algorithm, in practice, only the step (b) is not robust. By abusing the no-
tations a bit, we can forget the modulation variable and ignore all the small powers of
N1, Na, N3 and write each w;(A;, k;) (with characterized parameters (N;, L;) ) simply as
a;j(k;) = a;j(kj)1,|~n, and assume that:

e If a; is of type (C),

(8-2) H k; k*JHloozz’ < L_

ki
o If a; is of type (D),
(5.3) las (ks < N7
J

o If a; is of type (G),

(8.4) laj ()l SNy 2

~Y
kj

Moreover to make the notations cleaner, we will ignore all the small powers (in terms of

% an ™ by —0.5,e < k%1 €1, €9,00, ) of Nj and finally we multiply by a unified factor

o3 +9+100;~f° 14361 +3e2
N2
1)
to the output.
In summary, by Algorithm 1, we need to establish an estimate
VN3, N
(8.5) E[lUp, 7)1, P] < Ki(Ni, N, Ny),

where
2\ 1
N ,N2,N: o
Lll,L22,L33 = (Z ‘ Z al(kl)QQ(kQ)aZS(kS)‘ )27
(k1,k2,k3)el’ (k)

with a1, a2, as having characterized parameters (N1, L1), (N2, La), (N3, Ls), with respec-
tively, satisfying corresponding estimates (8.2)),(8.3)) and (8.4). Then the output is

At 2 40+100(k 0 Her te2)

Output of Algorithm 1 < RN(qlo) K1(Ny, No, N3)

S

e Algorithm 2. Prototype: at least two of v;,v2,v3 are of type (G) or (C)
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We may assume that vy, v are of type (G) or (C) and we denote by C = B<(r,vL,)-
The algorithm can be described as follows:

(a) 1

MN1,N27N3 < *|12 03 (N3, k ’

I L1,La,L3 ||L§1L§2L§3LZ%J§ > ||g3g3||LA%1’A2L%*E(l%3 w3 (A3 3)ng3
where the kernel of the random operator G3G3 (depending on Aq, A2 and p) is given by

3 == ~ ~ =~
(8.6) O-IE),’)C’ = Z wl()\l, E + kié — kg)wl()\l, k+ ko — ]{33)1U2(>\2, ké)ﬂ)g()\Q, ]{32)
Ko,k k3
X Skt 4kl —kes ks Do — ks o s

Then by Lemma |2.12

3 2
19030~z L swp o+ (D loiP)
k.k':|k—K'|<L kk':|k—k'|>L

N

(b) Since ]Jk k,]2 is a bilinear expression of Gaussian variables, when the coefficients are
independent of these Gaussians in the expansion, by Corollary - 2.17), outside a set of prob-
ability < e -y 11 we have

I wie)),

ow<mN( X )’

/. / A1,Ag THO* /. ’ LE A L;%*
kk':|k—k'|>L 1,2 kk':|k—k'|>L 1,22
and
(3) 2
sup | w < RNY sup  E[al 2« a .
H k,k’:|k—k’|<L H Al AQLE* H kk":|k—K'|<L bk HLfl AQL,%*

The main step is to establish the estimates

3
Z E°[ l(ci)g/\ | < K(N1, N2, N3, Ly, Lo, L3) H Hhk k* )Hl2,§°_l§*
kK| k—k |>L j=1 k3
and
sup ECHU,(S’,LI ] < K'(Ny, Ny, N3, Ly, Lo, L3) HHhk * q)HlOOZ2 '
kK| k—k|<L i
(c) Having the bounds in the step (b), we deduce that outside a set of probability < e R

1
1G:G51°y 5
LA1,>\2LH0*E(lk3)

O+ 42 2 1
ERNl qo q(LQK(NlaNQaN37L17L27L3)i+K(N1,N27N37LlaL2aL3)i)HHthLjH;b‘
j=1

Again, since only the estimates for the expectations in the step (b) are not robust, by
abusing the notations a bit, we may write each w;(\;, k;) (with characterized parameters
(Nj, Lj) ) simply as a;(k;j) = a;(kj)1j;)~n; and making the same assumptions (8-2).(3-3)
and for type (C), (D) and (G) terms as in Algorithm 1, with respectively. A-
gain, to make the notations cleaner, we will ignore all the small powers (in terms of
e < k0% €, €9, 00, %, qi ~ by — 0.5) of N; and finally we multiply by a unified factor

>tz 2 10+100K~ 01 +-3€1 +3e2
N(qo) to the output.

Similarly, if v1, v3 are of type (G) or (C), we denote by C = B<(r,,vr,) we will apply the
above algorithm to the operator GoG5 with matrix elements

(8.7) oh = 3 @K 4k — k)@ (A k + ks — ks)@3(As, k)3 (A3, ks)
k3 kb ko

X Sk'+k2—kg,k2,kg Sktko—ks ko ks -
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In summary, by Algorithm 2, we need to establish the bound:

3
SE[ Y WP+ s EULR < Ka(Ny. Vo, Ny),

= bk [SL ke ks | k—k!|<L
where
(8.8)
o @y (K + kb — ks)ay (k + ko — ks)ag (k)@ (ko) S S
Mo = Y @K + Ky — kg)ar(k + kg — ka)ag (k)2 (k2) Skr-+ky— ks ks Skt ha—hs o s
Ko,k k3
(8.9)
(2) - / / / \—
Mow = O @k +ky—ky)ay(k + ka — ka)as (k) () Sk gk ookt Skt ko ks o k-
K3,k k2
Then
2 42464100(k 0" He1+
Output of Algorithm 2 < RN ( “ 62)KQ(Nl,Ng, N;;)i”angz
or
24 240+100(k 0 e te
Output of Algorithm 2 < RN, et e (NY, N, Na)E[|as]|ie-

eAlgorithm 3. Prototype: at least one term of type (G) or (C) Without loss of
generality, we assume that v; is of type (G) or (C). By Cauchy-Schwartz, we have

N1,N2,N:
”ML11,L227L33HL Li A3LZ%*Z2
J— 2 2
S||w1(>\1,k1)||Lgll;;j ( Z ‘ Z wZ(/\Q’kQ)w:s()\:s’kg)‘ )2 L3, 3, L0
[k|[<Nq)  (k1,k2,ks)€T (k) v

From the embedding (> < 19, Holder’s inequality and Lemma[4.2] we deduce that, outside
a set of probability < e~V GRQ,

1 —§terty

lwr(As, k)l g2 g < NY (02 (Ars K1)l g S N L=,
1 "1 1 1

Again, since the key step is to estimate the discrete sum, and the Lig’ /\SLZ%* will only

contribute a NO?O factor, we may write each w;(\j,k;) (with characterized parameters
(Nj, Lj) ) simply as a;(k;) = a;j(k;j)1,~n, and assume that:

o If a; is of type (C),

(8.10) laj (ki) llie < Nj- QL_”, and |[h k* ngj,li; < LY
o If a; is of type (D),

(8.11) lag (ki)lliz < N;*
o If a; is of type (G),

(8.12) las k)l N7 llagy)li < ;2.

Similarly, to make the notations cleaner, we will ignore all the small powers (in terms of

1 —Jr L 1 94+100e+3€1+3e
e< kO €1, €9, 00, & q, = ~ by —0.5) of N; and finally we multiply by N(qlo)
to the output.

In summary, by Algorithm 3, it suffices to establish the bound
uﬁl,g%ﬁ?' < K3(N1, Na, N3),
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where
2\ 1
N 7N 7N —
UL 1oLy = (Z‘ Z al(/ﬁ)@(kz)as(/fs)‘ )2,
k (k1,k2,k3)€l (k)

with aj,as,as having characterized parameters (N, L), (N2, La), (N3, L3), with respec-
tively, satisfying corresponding estimates (8.10)),(8.11)) and (8.12). Then the output is

a4 L H0+100(k 0 e te2)

Output of Algorithm 3 < RN, (qo)

eAlgorithm 4. Prototype: all of type (D)
In this case, the simple algorithm is to obtain an estimate of the type

K3(N1, N2, N3).

Ni,Na,N:
ML Ly iz < K(N1, Noy N3, Ly, Lo, Ly) H 3 (Ao ki) leg,
7j=1

and then take the L , . Lji« norm.
In summary, by Algorithm 4, it suffices to establish the bound

uﬁl,ﬁQgZS < K4(N1,N2,N3)’
where
YN1N2,N; _ 2\ 3
urie = (] X alkmk)ek)| )"
k (k1,ko,k3)€l (k)

with a1, a2, as having characterized parameters (N1, L1), (N2, La), (N3, Ls), with respec-
tively, satisfying corresponding estimates (8.11)). Then the output is

2 46+100(k 70 1 +er+€2)

Output of Algorithm 4 < RN(‘IO) K4(N1, N2, N3).

Remark 8.1. Note that Algorithm 8 and Algorithm 4 are purely deterministic, the only
difference is that the upper bound Ks(Ny, N2, N3) is formed by one l,ﬁ?l,%,f norm and two
J

ll%jk:* norms, while the upper bound K4(Ny, No, N3) is formed by three lijk,ﬁf norms.
J J

9. TRI-LINEAR ESTIMATES 1: HIGH-HIGH-HIGH INTERACTIONS

In this section, we will prove (8) of Proposition and (1) of Proposition in the
case N1 ~ Ny ~ N3.

9.1. Diagonal terms. For vy, v2, v3 of type (G),(C) or (D) with characterized parameters
(Nl, Ll), (NQ, LQ) and (]\737 Lg), note that

Fra(X(t)No(v1,v2,v3)) (A + |k|*, k)
= / 5(\()\ — A1+ Ay — )\3)51()\1, k)gg()\z, k‘)ﬁg(Ag, k:)d)\ld)\gd)\g.

Our goal is to show that

M ::H(Mbl_l /y()\ “ AL+ Ao — AT, k)T (Mg, k) T3 (N, k)d)\ld)\gd/\g‘ .
A'n

(9.1)

N8 —do
NayNeg)™-

Note that we will omit the similar argument to treat HﬁOINo (v1,v2,v3) when Ny > Nay.
For r; € {2, ¢}, we denote by

2b

VIO k) = ) 5 B R) F00) = VP05 Rl . and i) = 1V (g k).
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Note that when v; is of type (G) or (C), the spatial Fourier support is constraint on
|]€]| < Nj, thus

1
(9.2) ng()\j)lngj S Ni gl 20 -
q

,q

eCase 1: at least one of vy, vy, v3 is of type (D)

First we assume that v, v2, v3 are all of type (D). From the embedding [? < [*°, Holder’s
inequality and Lemma we have

J1(A1) f2(A2) f3(A3)
M 5/ O 1 a0 ()0 (g g d\idhad)\3
3
<H 1£5(A IIL2 = [T llvsll xo0 S (N1N2N3)~*,
j=1

which is conclusive.
Next, assume that exact one of vy, ve, v3 is of type (G) or (C), say, vy is of type (G) or
(C), then from the same argument together with the embedding 7 < [°°, we have

V9 (A, k)V(Q) (o, B)VP (As, k)
<>\1> " (a0 (Ag)bo

< / 91(M) fo(A2) fs (O A\ dAgd)s
(AL = A2+ Ag) 1701 (A1) o (Ag)bo(Ag)bo
S||91(/\1)||Lg1 I\fz(Az)lng2 ||f3()‘3)”L2

d)\ld/\gd/\g‘

272
)\lk

M=oy /m 4 A

% < 2+1+62 —SAT—S
SN floal], 26 [|vall xo.0 [[ 03]l 000 S Ny Ny °N3 ™,
q

~

0,49

which is conclusive.
If there are exact two of vy, v, v3 of type (G) or (C) and the other is of type (D), the
estimate is similar and we obtain that

oy 1.
M S NG (NeyNegy) ™2 7a ",

which is also conclusive.

eCase 2: v, v92,v3 are all of type (G) or (C)
Without loss of generality, we may assume that Ny > No > N3 and we will put the
X% norm on vs. From the same manipulation as in the previous cases, we have

M </ 91()\1)92()\2)f3()\3) A Aods
S o

2b

1= A2+ Ag)” bl<)\1> <)\2> (Ag)bo
Sllgr(llzg Nlo2(A2)lice 15(As)llzz,

1
S(NiNg)aflor]] 2eg f[vall - 260 [[v2ll 0.0 S (N1N2)
ool Xl

—§+ite2 pr—s
2 ' q N3 ,

which is conclusive. The proof of (8) of Proposition is complete.

9.2. Non-diagonal terms. We assume that N; ~ Ny ~ N3 ~ N. By Lemma and
the X’-mapping property (Lemma , outside a set of probability < e™V QRQ, we have
IZN5 (01, 02, v3) [ 00 S BN~[luj] o8

for all j € {1,2,3}, provided that the range of « satisfies
(9.3) a—142vs>s.



REFINED PROBABILISTIC GLOBAL WELL-POSEDNESS FOR THE WEAKLY DISPERSIVE NLS 63

Therefore, if at least one v; is of type (D), the right side can be bounded by RN 7%, If
at least one v; is of type (C), we have the upper bound

RN_60_2(Q_1)+261 <RN_S_60,
which is also conclusive from the hypothesis on the range of a.

The only case left to treat alternatively is that when vy, va, v3 are all of type (G). From
Algorithm 1 in Section [§] it suffices to estimate
]

YN ,N _ k1 Gy Ik
U L11:L22:L33 ] 7ZEH Z [k ]%Ek ]2 [/j: ]%
(k1,ko,ks)el (k) ™1 2 3
Recall that if the output of this estimate if K1(N1, No, N3), then outside of set of proba-
2
bility < e N RS

kj|~N;,j=1,2,3
J J

D=

0.1
N3 (01, v, v3) | oy S RNa HOFI00TFate) g () Ny Ny ),

By expanding the square and using the independence, we have

3
yUN1N2,N: _
By, 05 P] ~(NiN2N) ™ 0 [ Lggpen,
k.ki1,ko,ks =1
(k1,k2,k3)el (k)

S(N1NaN3) ™~ Z Sktky—ks ko ks L|kt-ko—ks |~ Ny Hllk I~

ko, k3 j=2
N2 (07 o _ .
<(NiNoN3)~ Z N1+ -1 <N, a—2(a 1)+7
o /fz — k3)
2,R3
thus K1(Ny, Na, N3)2 3 ~ Ny, et , which is conclusive by choosing € < 701, say.

In summary, the proof of (1) of Proposition in the case N7 ~ Ny ~ N3 is complete.

10. HIGH-HIGH-LOW INTERACTIONS

In this section, we will prove (1) of Propositio in the case N(j) ~ N(g) > N(3). More
. . . . N1,Ns. N .
precisely, we will finish the estimate of || M "% || LR LB L2 by executing one of

Algorithm 1 to Algorithm 4, according to different triples of characterized parameters
(Nj,Lj),j =1,2,3. Moreover, we will ignore all the small powers of N; in the estimates
by assuming that

— JH1 7+
Skrkaks = Loy, x, ky=po+o() A hy e’ = Py 5ol i ki<,

& 3 +9+100(n*1+e +e2)
since they are all compensated by a unified factor N} T To save the

notation, in this section, all the sums for k, k; are taken for |kj| ~ Ny, |k| < Ny without
declaration, when there is no risk of confusing.

10.1. The case N; ~ Ny > Nj3. First we deal with
e Case A-1: aj,ay are all of type (D)
We execute Algorithm 4. By the triangle inequality and Cauchy-Schwartz,

N,N,N
DSl (Z S Janln)Plas(ks) Plig<o) - (sup 30 Jaa(ke)Pligkaco)

(k1 ka,ks)€D(k) K (ky ko ks ) €T (k)

(Z > loalk)Plas(ks)PLeezo) - (s 0 Jaz(ke) PLikazo).

(k1 k2,k3)€T(k) K (ky ko ks) €T (k)
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Since N3 < Ni ~ Ns, for fixed k and ks,

S aa(B)P = laz(k2)* D Sktko—ks ko S llazllfe.

(k1,k2,k3)€T' (k) ko ks
When k1ko < 0, for fixed k1, k3,
|8k2q)k1,k2,k3| = a’sign(k2)|k2|0‘_1 + sign(kg — k1 — k3)|k32 — k1 — k3|a_1’ Z Nlail,

hence

Z > laak)Plas(ks) k<o = > lar(k1)[Plas(k3)1* D Sk ko ks Irako<o S llanllz o

(k1,k2,k3)€l (k) k1,k3 ko

When kiks > 0, if sign(kq) = sign(ka — k1 — k3), then [0k, @k, kyks| = NP1 Otherwise,
we have for fixed k1, k3, by Lemma

Z Skhkz,k:a 1k2(k1+k3—k2)>0 SN
ko

¢
=

Therefore,
1—<a
Z S lanlkn)Plas(ks) Lm0 S Ny 2 flan|Eflas|E-
(k1,k2,k3)el’ (k)

We have proved:

Proposition 10.1. When N1 ~ N3 > N3 and ay,as are of type (D), the output of the
Case A-1 is bounded by

MQ

1
YN N2.Ns < NE

a—1
—2spnT T2
L1,Lo,L3 Nl N3 :

_a-1
Note that the power N; 2 comes from the worst case when a3 is of type (G).

eCase A-2: Exact one of ay,as is of type (G) or (C), the other is of type (D).
First we assume that a; is of type (G) or (C) and as is of type (D). By Cauchy-Schwartz,

N Na, N5
!Lf,’LZ’L;!zSHalII?w( > \a3(k3)!25k+k2—k3,k2,k3> sup > laa(k2) P Skko—ks ok

k,kg,k‘g, k27k3
|k2|~N2 |k3|~N3
‘k‘+k‘27k‘3|~N1 ‘k‘+k‘27k‘3|~N1
2 2 2
SHal ||l°° ||CL2||12 Z |a3(k3)| Skl,k27k31|k2|~N21|/€1\~N1’
k1,k2,k3

since for fixed k, ko
ZSk+k2—k3,k2,k31\k3|~N31|k+k27k3|~N1 S,
k3
due to the fact that N3 < N;. Now for fixed ko, k3, if ki (k1 — ko + k3) > 0, we have
|0y Py g e | ~ [sign(kn) k1| — sign(ky — ko + ks)|k1 — kg + k3|* 1| 2 N ?|ky — k3],
otherwise |9k, P, k| = N1, hence

2—a
Nl

D Shukado Lt Lol S 1+ s

k1

Therefore, modulo a factor N7, we have

a—1 a—1

yN1:N2. N 3 -5 i ST
U200 S laallieellazllizllasllie (N3 + Ny 2) SNy 2 Li"N; 2.
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Next we assume that a; is of type (D) and ag is of type (G) or (C). Repeating the argument
above, we have

N1,Na, N
U §||a2H12oo( > \a3(k3)!25k1,k1+k37k,k3> sup Y a1 (k1) [* Sky ks ks

k,k1,k3 k k1,k3
k1 |~Ny |k3|~N3
|k1+ks—k|~N2 |k1+ks—k|~N2
2 2 2
SllarlBllazlife D las(ks)®Sky kaks Loy Litg o
k1,k2,k3

Sllar i llazllF llas|f (N2 + NP ™) S llaa|[f2[laz|llas]ljz N,
thanks to the fact that N3 <« Ny ~ Ny. Therefore, we have proved:

Proposition 10.2. Assume that Ny ~ No > N3 and ezxact one of a1, as is of type (G) or
(C) and the other is of type (D). Then modulo a factor Nf, € < k=91 the output of the
Case A-1 is bounded by

a—1__ a—1

N1,N2,N3 2 —UAT T 2
UL 1oL SN L1 Ny

if a1 is of type (C) or (G) and ay is of type (D). If a1 is of type (D) and ag is of type (C)
or (G), modulo a factor N¥, e < k%1, we have

)

a—1_ _a—1
U N SN LN T
eCase A-3: aj,as are all of type (G) or (C)
If at least one of a1, a9 is of type (C), we first execute Algorithm 4. Without loss of

generality, we may assume that a; is of type (C) and L; > L. From the same argument
as for Case A-2, we have

NNz, N 1
UL 11 S N larfise [laz iz [|as |-

If a9 is of type (G), we have

1 la—1) +_ _a—-1
(10.1) Ny la i azllizllas e € Ny LN E
since the worst case is that as is of type (G). If as is of type (C), we have
1 _3(a—1) _o—1
(10.2) Ny llax i lazllizllaslliz S Ny LyYLg "Ny

In order to get a better bound when L; V Lo is relatively small, we need to execute
Algorithm 2. In what follows, we do not distinguish the type (G) and (C), since we will
only use the S»? norm of h™i%, which does not make any difference between type (G)

and (C) terms. Fix L = 10(L; V Lg), recall the definition (8.8]) of 77,23,1,, we have

Z |77k k’|2

ke k' :|k—k'|>L

= 2 ‘ Do P rg Pakg g S e Sk i ks
k,k (k1,k2,k3)el (k)
|k—K'|>L (K ,kh,ks)el (k)
kT kit k3 ks

9k Ik Ties Iy 2
k%] 2 (k)2 (k3] 2 (K52

To simplify the summation before expanding the square, we split the inner sum | e R g
into six groups:

) i = KRS = R

K — kSR — i
K= Kk £
K £ K kS = s

© = kS, K £ K or K = KL KD # K

(1

(2)
(3)
(4)
()
(6) No pairings in k7, k7", k3, k5" (in the sense that kj # ki, k3 and k3 # k5, k7).
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Taking the expectation, the contributions from (j) (j € {1,2,3,4,5,6}) can be bounded
by

2
—4
=N Y > > HHhkjk;ulz;||hmjm;|rlgn;uhk;.k;.*u@*uhm;.m;*ul;;*

k& (k1,k2,ks)€T (k) (m1,ma,m3)el(k) j=1
|k—k'|>L (K| ,kly,k3)€T (k') (m},m}y,m3)el (k')

X Sk ez ks Sk kb ks S ma,ma S mé ma LA;

where A; is the index set of ki, ko, k3, k], k5, m1, ma, m3, m}, mb, k, k' defining by the con-
straints:

Ay = {|k; — K| < 2L, |m; —m}| < 2L;,i =1,2};
Ag = {[k1 — kal, m1 —ma| < 2Ly V Lo; |k} — kyl, |[m} — my| < 2Ly V La};
Az = {|k1 — Ki|, m1 — mi| < 2Ly, ko — mal, [k — mj| < 2La};
Ag = {lk1 — mal, [k — mi| < 2L4, |k — kg, [ma — mj| < 2La};
As := {|k1 — kol, |m1 — ma| < 2L1 V Lo, |k} —m)| < 2Ly, k) —mb| < 2Ly}
U {|k] — Kb, my — mb| < 2L V Lo, |k1 — mq| < 2Ly, [ka — ma| < 2Lo};
Ag = {lk1 — mq|, |k} — m]| < 2L1, |ko — mal, |ky — mb| < 2Ls}
U {|k1 — mb)|,|kh — ma| < 2Ly V Lo, |k} — m)| < 2L1, |ka — ma| < 2Lo};
U {|k] — mal|,|ke — m}| < 2Ly V Lo, |k1 — mq| < 2L4, |ky — mb| < 2Ly}
U {[k1 — mal, [ka — mil, |k —mal, |k —ma| < 2L V Lo}
Note that under the constraint |k—k'| > L = 10(L1V L), A1 = Ay = (), hence C; = C2 = 0.
Indeed, on Aj,
|k — K| = |(k1 — ko + ks) — (k1 — Kb + k3)| < [k — Ki| + k2 — k3| < 2Ly + 2Ly < L.
On As,
|k — K| <|k1 — ko| + |k} — K, < 4(L1V Ly) < L.

On .A3, |k‘—k/—|—k‘2—k‘é‘ < 2L, |k—k’—|—m2—m'2\ < 2L7and |l<:2—m2| < 2L, ]k‘é—m’2| < 2L,
we have

Cs SNy H llhk k*

l°°l2 : E Skz—i—mg—mg,mz,mgSk/+m’27m3,m/2,m3Sk-"—kz—k&kz,k;aSk”rké*ks,k/g,ks
b Y kz,kg,kg
m27m27m3

X 1|kt 4 ko kb <2Ly Ljko—ma|<2L,
|kfk’+m27m’2\§2L1 |/€'2—m'2\§2L2

—4a —4dvr2
SNTY(LaLa) ™ L5 Y Ay —kg <200 Sketha—ks o ks Sk kg
kK ko kb k3

where we first use

Z Sktma—ma,mams S 1

m3
and then sum for 14, <o, k) —m)|<2L, OVEr ma, my. Next we sum over £’ first and
estimate (modulo a small factor NY)

> Lk ko k| <2Ly Sktka sk ks Sk ks k) ks
k! o K s

<2L4 Z Zzsk‘—i—kg ks3,ka2,k3

ko k3 k
2—«

N _
<LiN, § (1+ ) L k3>) < LiNo(NaN3 + NZP7*N3) < LiNEN3.
ko,k3
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Therefore,
Cs S Ly L5 Ny **Ns.
Note that in the estimate of C3, we do not make use of the constraint |k — k’| > L.

The estimate for C4 is similar as for Cs, by switching ko, k5, ma, mf, to ki, kj, mi, m}.
More precisely,

2
—dor NjLjy 4
Cs SNy HHhkjk; ’lz?li*' E : Sk1,m1+m3—k,m3Sm’l,m’1+m3—k’,m3Sk1,k1+k3—k7k3Sk’l,k’l—i-kg—k’,kg
j=1 T Tk kK ks
m1,my,ms

x 1 |k1—k} +k —k|<2Lo 1|k1—m1\§2L1
[m1—m)+k'—k|<2Ly |k —m}|<2L1

—4da —4v 2
SNy (LiLe)™ VLY E L by k) -k — k| <2Lo Sk o1 s —k ks Sk K +ks—k ks>
kK K1,k k3

where we used
Z Z 2
1|m1—k1‘§2L1 Sml,m1+m3—k,m3 5 Ll‘

! !
m1,mj Imi—k11<2L1 mg

Next we sum over &’ first and estimate (modulo a factor N¥)

E Liky k! k! — k| <2L0 Sk k1 +hs—k ks Ok K kg — k' ks

kK Je1 k1 ks
2
<L S < LyN 14 N0y < NN
~ QZZZ k1k1+ks—kks S L2 12( +<k—k>)““ 24V IV3.
kks K, ki koks 3

Thus
Cy S LI W2 N2 N,

To estimate Cs, by symmetry,

2
—do NjLj 4 Z
C5 SNl H Hhkjk; leOli* ' Skergfmg,mz,mgSk’+m’27m3,m’2,m3Sk+k27k3,k2,k3 Sk’+k’27k3,k’2,k3
j=1 DTk ko ks
m27m§,m3

X 1 \j—ks|<2L1VLy 1|k —m)|<2L,-
|k7mg|§2L1VL2

First we sum over ms9 and obtain that

2—a
Nl

§ Sk+m2—m3,m2,m31|k—m3|§2L1VL2 S <k —ms

> 1|k‘—m3|§2L1VL2 )
m2

since L1 V Ly <« N12*°‘. Next we sum over m} and then mg to obtain that

—4da —4v 22—«
Cs SNy “*(L1L2) " Lo E NI 7Dk | <2Ly v Lo Sktho—ks o ks Sk 4k — ks K ks

kK ko kb ks
Using
2—a
1 S <N171
|k—k3|<2L1VLs2 k+ko—ks,ka,ks ~ L k |k—k3|<2L1VLs
> b k)
2
and
N2fa
1

Skik! — kg ko ks S 1+ 77—
%: 2 3,R9,R3 <k,/2 _ k3>
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we have (modulo a factor NY)

N27a N27a
(L )
(k — k3) (kg — ks3)

—4da+2—a 7 —4v y1—-4v
Cs SV Ly Ly Z Lk —ks|<2L1v Lo
kkaQ 7k3

—4a+2(2—a) v v 1 1 NQia
<N Lyt <N2Z<k_kg>+%:zk:<k—k3);<kél_k3>>
2

k. ks

—4a+2(2— — — —
SNy 1P o LAY (N Ny 4 N2TONG).

Thus
Cs S NPT SNs L Lh—.

Next we estimate Cg. We observe that whatever the pairing is, we can always do the sum
Zm%mé’ms first to obtain a factor Ly L3 + L3 Lo, hence

—4da 2 2
Co <N H ”hk k:*] HloolQ (LILQ + L1L2) Z Sk+k2—k3,k2,k3Sk’-l—ké—k&ké,kg‘
J=1 kK ko2, kb ks

Then we estimate

N2 « N2—a
S vt b Se i S 3 (U )14 <N
Ty koK ks 3 3
Hence

CG S N12_4QN3(L1 A\ L2)1_4V(L2 V L2)2_4u.

We remark that the estimates for Cs,Cy4,Cs5,Cs do not use the constraint |k — k'| > L.
Hence it remains to estimate

C; :LN1_4a sup Z Z H Hhk]k;‘

!
|k7k];’f|<L (k1 ,ka,ks)€D(K) (m1,ma,ms)el(k) j
(K, kb ks)eT (k') (m!, ;mly,ms) €T (k)

m/v*

li; Hhmjm; ||lfn;_ Hhk;k;* ”li;* h

X ki ko ks Sk/ kb k3 S ma,ms Sm’l,mg,ms LY

for j =1,2.
For C}, we bound it by (with k, k¥’ fixed)

—4a j
4 SN TTIEE s - 3 Stvmacmsmas S momio
Jj=1 J k27k27k3
ma 7m2 ,m3

X Skty—kg ko ks k! +kt—ks kb ks L |ka—kb|<2Lo
|mao—mb|<2Lo

2 n7—4 —4
SL- LNy ™ (LiL2) ™™ Z Sktky—ks k2 ks Sk+ma—ms,ma,ms

k2,ma,k3,ms3

S(LaV L) ™ (Li ALo) ™ N7 Y Sk ks

ka,k3,ma2
S(Ly V Lo)3 ™ (Ly A Ly) ™ N4 . No(N3 + N27%)
S(Ly V Lo)* ™ (Ly A Lo) ™ (N "Ny + N7 7°%).
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Next, for fixed k, k" (and without loss of generality we assume that Ly > Ly),

CQ<LN‘MIIW%k*
7j=1

loolz E Sk+m2—m3,m27m3 Sk’+m/2—m3,m’2,m3
kj
j ko )kgykS
m27m27m5

X Shthg—ka ez ks Sk -kl —ks kb ks L |k—ks|<2(L1VL2) 1 |k —ks|<2(L1VLo)
k—ms3|<2(L1VLa) |k'—ms3|<2(L1VLo)

—4da —4v
SLNy*(LyLo) E 1 k—ks|<2(LyvLo) Lk —ks|<2(11VI2)
ks3,ms  |k—m3|<2(L1VL2) |k —mg|<2(L1VLg)

X g Sk+k2 k3,ko,k3 E Sk’—‘,—k/—kg,kQ,kg E Sk+m2 m3,ma,ms E Sk’+m2 m3,m2,m3

ko 2 mo m2
S(Ll v L2)1—4IJ(L1 A Lz)_4VN; (04*1)7
where we use the facts that
N
kzSk+k2—k37k2,k:31|k—k3|§2(L1vL2) = =)’
2
N
> Sk oo s L —ha|<2(LaV L) S T — g
kg
and
NEe
Z Sk+m2—m3,m2,m31|k—m3|§2(L1\/L2) 5 71\
(k —ms3)
ma
NZ@
Z Sk‘/+m/27m3,mg,m31|kj/—m3‘§2(L1VL2) SJ <k, _ m3> )

my
since L1V Ly < NIQ_". Hence
Cy < (L1 V o) "(Ly A Ly) N8,

Note that here the treatment is different, compared with C{, due to the different type of
pairing. In summary, we have

L1V Ly

Cl 1+ Z S(L1 A Lo) ™ (Ly Vv La)> W N3 [NF (L1L2)71Nir’_6a+N1l_4a(m)}

+(L1 A L2)—4”(L1 V L2)1_4VN;8(O{71).
Combining the estimates above and ([10.1)),(10.2)), we obtain that:
Proposition 10.3. Assume that N1 ~ No > Ns. Then outside a set of probability

< e_NfR, modulo factors N¢, € < k=01, we have:
(i) If a1, a2 are both of type (C), then
_3(0471) _a-1
| ﬁlL]\fL]XB’ <CRN; * N3 * (L1L2)™",
and
1
_3(@=1) _a-1 11 _5.a (L1 V Ly
UN NN <ORNY 7 Ny 7 (LiLa) Y [N§'Ny (L3 V La) ™1 (L1 A Ly)” 2+N4N 4+2EL1 inl]
1N\ L2)2

3(a—1) a— (

FORN, % N, T (LiLa)d *NaN, (L A L) h

FOR(L1 L) (L V L) N2 DN
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(ii) If a1 is of type (C) and az is of type (G) (or ay is of type (G), az is of type (C)), then

-1
N1,N2,N3 —(a=1) A= v
|Z/{L1,L2,L3 ‘ S RNl N3 Ll ?

and
3(a—1) a—1 1 1 1 1 5 a 3
N1, N2, N3 "2 N, 2 [TV(NAN, i[3 iny"dt2gi
|uL1,L2,L3 | <CRN, Nj L (N3 N, *L{ + N4 N, L1)
3(a—1) a—1 1 (1_%) 5 o1

_ _a—=1 1 1 1_ _
+CRN, 2 N, 2 Li"NiN, " 202 4+ CRL "N DN, 2.
Note that when ay is of type (G) and ag is of type (C), the estimates above true by switching
Ly and Ls.

(iii) If a1,a2 are both of type (G), then

a—

o _ 1
> 4 RN,y YUN, T < ORN,HOTY,

5 3a 3
N1,N2,N3 172 nT4
’uLl,L27L3 ’ S CRNl N3

0.1

Finally, in whatever the situation, we always have, modulo Ni,e < k™",

_3(a=1) 2v

—(Z+2v)(a— —(a—1)—v == _ (a—
(10.3) |U£Vl17i\2f27’L]§3|§CRmax{Nl(2+2 R G R e R SN Gl

Proof. We only need to justify the last assertion (10.3). First we assume that ai,as are
both of type (C) and without loss of generality, L1 > Lo. Note that, for A >0, B > 0,
min{l, A + B} < min{l, A} + min{1, B}.

Then from the two inequalities of (i), we have a rougher bound

1
_3(a—1) _ a—1 Na. 1 NZ
UR T | SCRNY 5Ny 7 (LiLe) ™ min {1, (L1 L2)? (57)* + D —5 )
1 NiT2
1
_3e=1l) _a=-1 1 _a-1
+CRN; ? N; ? (LiLy)“min{1,L{ N, 2 }.
11
When (LlLQ)% < N{*Nj *, we have
uN17N27N3 <CRN*@N7QT71 1L %—VN%Nfi LI—VN%Ngfg
UL s < 1 3 ((L1Ly) s N T+ LTVNS N2 )
_3(a=1) v _a—1 _3(a*1)_§+g _L—l_t'_i 1 1
2

<CRN, 7 :Nj ? 4CRN, ? i'ip; (N Ny 1)20-)

N

1 1
since L7 < N N3 * and

3(a—1) a—1 1

5, a 1 1 3_v 1
“Hesb_sio _esiid I v i2(-v) —ati-y 1

2 4 2 2 4 4 4 J— 4 2 4

N, N, - (N{Ng %) =N, N

_1
When (Lng)% > N{*N; *, we have simply
_ 3(a—1) _a—1 _3(a—1) v v_a—1
N, * Ny ? (L1L)"" <CRN, * *Ng 2.
Similarly,
_3la=1) _a=1 1 _a—-1 _(3 _ _a=1
N7 N, 7 (LiLs)Umin{l,LiN; 2 } < N} GO N5
Therefore, for whatever L1, Lo and N3 < Ny, we have the bound
_3=1) v v_a=1 (3 _ _a=1
|U£Vl1,g%i]\3[3| <CRN, *? *Ng ? +CRN, e 1)N3 2.

Note that v > (o — 1), we have

(349 (0
U < CRNTHOTY - orpy G,
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Next we assume that a; is of type (C) and as is of type (G), from (ii) we have

_oa—1

1 1 _ 1 _a-1
(A <CRN;“UN; 2 L7"min{l,LINSN, ©~ 2 }

_a—1 1 5, «a
+CRNy “"YUN, T L7V min{l, NiN, 12
—(a=1) T oy 377 (1 5) -5
+CRN, N, LY min{1, L7 N5' N, }
—(a=1) Ny =0T p v I v—(a—1)
+CRN, N, * Li"min{l, L} N; }.
Note that
_a=1 1 1 _1_a-1 y_a=1 (349 (a—
Nl—(a_l)N3 > L7min{1, LiNiN; * 2 }SNl—(a—l)—V(1+2(a—1))N3 T <N, (2+2v)(a-1)

)

v__a—1 a—1

since v > a — 1 and thus Ny 2 < N2 2 . Next,

5,0 a- a—1
- —1t3

(=1 =5 f v i S —(a=1)—v 5%
N; N; 7 Ly”min{1, NN, Li} <N, N;

Smax{]\/';(afl)*y,N1 2 31

For the third term, we have

_a—1

~(a-1)

N, e

1 v
T} SN;(afl)*ngi 3

—%(a—l)—

<N,

_a=1 O
N; 2 L7Ymin{l, L{ N3 N,
5 <N1—(%+2V)(a—1)
since a < % Finally,

a—1

_a—-1 1 _a—1
Nl—(oc—l)N3 5 Ll_y mln{lele—(a—l)} < Nl—(1+4u)(a—1)N3 3 < N1—(1+4V)(a—1)'
Therefore, we have

(3 _ —(a—1)=3
|UI],\21,7LJ,\2[2,7L]Z3| < C'Rmax {Nl (5+2v) (e 1),N1 (a—1) 4V7N17(1+411)(0471)}‘

This completes the proof of Proposition [10.3] O

10.2. The case N; ~ N3 > Ns. For the high-low-high interactions, first we deal with
eCase A-4: At least one of a1,as is of type (D)
We execute Algorithm 4. By inserting the indicator 1j,.x,>0 and 1, .x,<0, We have

U P S(0N > ek Plaa(k) Pligkze) - (sup D0 Jas(ks)?)

|k|<Ny (k1 ka,ks)el (k) R (k1 k2 ks) €D (k)
(Y Y lak)Plate) k<o) - (st Y Jas(ks)?).
|k’|§N1 (kl,kg,kg)ep(k) k (kl,kz,k3)er(k)

When k1k3 > 0, for fixed k1, ko, we have
| Oy @y o ks | = | sign(kis)|ks|®™ " — sign(ky — ko + k3)|ky — k2 + ks|* 7' 2 N{

hence

> S aalk)Plag (ko) *Likszo < llaafllaz]lf-

|K|<N1 (ky,ko,k3)el (k)
Since |k + ko — k3| = |k1| > |ks|, for fixed k, k3,
|0y @ (K + ko — k3, ko, ks)| = au[sign(k + kg — k) |k + ko — k3| ™" — sign(ka)[ko|* ™| ~ N1
Thus

3
( > > |al(k‘1)\2!a2(/€2)!21k1k320>'(Sup > |a3(k3)\21k1-k320) ST el
j=1

_ k
[KISN1 (k1 ,kg k3 ) €T (k) (Kk1,k2,k3)€l (k)
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When ki k3 < 0, if sign(ks) # sign(k1—ka+ks), |0k, Py ko ks | 2 N7 If sign(ks) =sign(ks—
(—k1+k2)), we must have |ks| > |k1 — ka|. Without loss of generality, we may assume that
k3 > 0, hence

s 2 k1 — ko 1
‘8763(1)1617762,/63‘ = a(a - 1)‘ ‘x|a_ dw‘ Z T —a Nla_ :
k3—k:2+k;1 ‘k3‘
Therefore,
3
(X X lmG)Plaatho)Plikco) (sup 30 las(hs)PLiagzo) S [T sl
[k|<N1 (Kq,ko,ks)el (k) (K1,kz2,k3) €l (k) j=1

Therefore, we have proved:

Proposition 10.4. Assume that N1 ~ N3 > Ny and at least one of a1, as is of type (D),
then

3 a—1 a—1
Uiy < [T lasle <Ny 2 "Ny
j=1
ea;, a3 are both of type (G) or (C)

This situation is similar to Case A-3 and we can obtain the same upper bound. For
this reason, we omit the details. Finally, we remark that from the choice of parameters
v,s in Remark under the constraint o > «g, there exists ¢ > 0, sufficiently small,
such that (1) of Proposition (3.7 holds in the situation Ny ~ N(g) > N(3).

11. HIGH-LOW-LOW INTERACTIONS

In this section, we finish the proof of Proposition 3.7/ by showing (2), (4) and the regime

N(l) > N(Q) > N(llszs or N(l) > N(Q) and Ny ~ N(l) for (1).

eCase B-1: N; > Ny, N3, a; is of type (D) and Ny 2 N(llg‘s

In this case, we execute Algorithm 4. By Cauchy-Schwartz,

< (N Skuaslor(b)Plas(ka)P) - sup (37 las(ks)PSkkskohaks )-
k1 ,k‘g,kg k k27k3

Since N1 > Na, N3,
|0y ®(k + kg — kg, ko, k)| 2 NP1 |0k @y ey s | 2 NTT,

we have
> Sktkshakks S 1 Y Skikaks S 1,
kz kS

hence
N1,Na,N-
U 2700 | S llarllizllaz]liz]as]le-

Therefore, we have proved:

Proposition 11.1. Assume that Ny > N2, N3, Ny N(lljé and ay is of type (D), then

3 1
Ni,Na,N- —s—25=(1-9)
‘ULll,L;,L;‘ < | | lajlliz < N(l) : )
=1

a—1

where the factor N~ 2 comes from the worst case when a(y) is of type (G).

eCase B-2: N; > N3, N3, a1 is of type (G) or (C), q(y) is of type (D) and
N 2 Ny’

The estimate in this case is the same as Case B-1, and we summarize as follows:
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Proposition 11.2. Assume that N1 > Na, N3, N(g) 2 N(llg‘s and a1 is of type (G) or
(C), then

3

Ny NoN —(1-§)s—a=L

(11.1) v’ 1 S T gl < Nay "
j=1

a—1

where the factor N~z comes from the worst case when ay is of type (G).

eCase B-3: N1 > N, N3, a(1),a(2) are both of type (G) or (C) and Ny 2, N(llg‘s
If a(1y, a(o) are both of type (C), then we can apply the same argument as for Case B-1

to obtain that

3
N1,Na, N —2(a—1)(1-6)
(11.2) |UL117L22,L33‘ S H lajllz < N(l) )
j=1
which is conclusive. Therefore we may assume that at least one of a(1), a(z) is of type (G).

If a(yy is of type (C) and L) 2 Ny (2 N(llg‘;), we have the deterministic bound

a—1 _3(a=1)(1-5) _
2 2

3
Ni,N3,N —(a—1) 5 —
(11.3) e < T llagle S NGS* VLING, T SN
j=1

v

Mm@~

which is also conclusive. Now we assume that L1y < N(g), then this situation is essentially
the same as Case A-3. Revisiting all the analysis for Case A-3 and Case A-4, the only
difference here is that we should replace N(g) ~ N1y by Ng) ~ N(lﬁ‘s. All the outputs
of the summations like Zk2 Sk1ka ks> st Sk1ka ks> Zkl Skor ko ks A D Skt ko kg ki ks AT€
smaller than the case N(j) ~ N2y > N(3), up to a loss of small power N(‘sl). We omit the
details.

eCase B-4: Ny > Ni, N3, asy is of type (G) or (C)

We execute Algorithm 3. By Cauchy-Schwartz,

R < (3 laaChen)Plas (ko) Sy ass ) 500 (D lag(ks) Sy kbt )
kl,kg,kg, k k17k3

Note that for fixed k, ko, |0k, ®(k1, k1 + ks — k, k3)| 2 NQCF1 since N1 < Ns, we have

Z Sk17k1+kii_k7k3 5 L
k1
For fixed k1, k3, by Lemma [2.9

1_a
Zskhkm]% SNy 2.
ko

Thus we have

a—1 _

UNvN2.Ns | < N%_% < CRN_%N_%N% < CRN
UL Lt | S NE laalliellazllieflaslle < 1 3 2 1=

iy

We have proved:
Proposition 11.3. Assume that No > Ny, N3 and as is of type (G) or (C). We have

a—1

a_o—l1
4 2

N1,Nz,N: -
‘UL11,L22,L33’ < CRN(U
eCase B-5: Projective terms HﬁlINg(vl,vg,vg) and q; is of type (G) or (C)

This time we denote slight differently by

1
aﬁ{ﬁfﬁg = ( Z ‘ Z al(kl)EQ(kQ)GS(kS)‘2>2.

‘k‘>N1 (kl,kg,kg)GF(k)
|k ISN;.5=1,2,3
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The key point here is that the range of k1 in the summation satisfies
Ny — (N2 \/Ng) < N; — ‘kg —k‘g‘ < ‘k‘l‘ < Nj + ’kQ —k‘g‘ < Ni + <N2 \/Ng),

hence for fixed ks, k3, the range of k (or ki) is at most 2|ks — k3|. We have the following
improved counting bound (again we ignore small powers of N; in the definition of Sy, k, ks ):

2—a
Nl

(11.4) D Serta-tydaks S minf(ky = ka), (1+ 7o

|| >Ny

)}-

Now let us first execute Algorithm 1. Without loss of generality, we assume that N3 <
Ns. By Cauchy-Schwartz, we have

~N1,Na,N.

‘UL;’L;’L;\Q < Z a1 (k + k2 — k3)|?|az(k2)|* Sktky—ks ko ks © SUD Z |3 (k3) |2 Skt ky—ks ko ks
ko ks (BI> N by ks
|k’|>N1

2—a
Nl

<]€2 . k3> }a

2 2 2 .
Slarfiz. HCL3HZ£3 > lag(ky)[> min{ (ke — ks), 1+
ka,k3
where we used (11.4) and the fact that »; Skyky—ks ko ks S 1 in the last step. Note that
2—a _a —a
(ka — ks) < 1+ goips only if (ky — ks) S Ny °. Hence if Ny < N, *, we can bound
~ 17g .
\Uﬁtgﬁ?ﬁ by NaNslla1 |7 llaz]l%|las]|. When Ny > Ny 2, we can split the sum of k3

into (k3 — ko) < Nll_% and (ks — ko) > Nll_%.The sum (over kg, k3) for the former case
can be bounded by

. —e
laz||7 min{NsN; 2, N7~ *log(N2)},

while the sum for the later case can be bounded by
. — 1-3
HGQHZ%(N;), + min {N12 “log(N3), N3N, ? })

Therefore, we have

7N1,Na,N: . - 1-3
U 0 P S Nl llag |7 llasl72 (N3 + min{ NP~ + N3N, 2 }) log(N).
Lemma 11.4. Assume that No, N3 < Nll_‘s. Then modulo small powers of N1, we have:

7 7N1,N2,N: 1 . 1-
(V) 1,0, S (NaNs)2 [la [l [lazllizllaslliz, 4 N2V Ny <Ny 25

[N]1)

77N1,Na,N. 1 1_o 1 1l «a
(2) Ui S [(N2 AN3)2 + N2 T min{(Na A N3)2, NP2} [lax [lie< [|az]2 || a2,

15

if Na V N3 2 Nl
Consequently, we have:
Corollary 11.5. Assume that No, N3 < Nll_‘;. Then modulo small powers of Ny:
e Ifas,as are both of type (D), then

2

~N1,Na,N. _a-1_ o

(11.5) NN <
o Iflq 2 Ny A N3, then

_3(a—1)

+Ny 2

~N1,Na,N- —(a—1+v)(1-3)—(a—1)
(1]‘6) ‘ULll,L22,L33’ g N]. ?

In particular, when o > ayg, for sufficiently small free parameter o > 0, we have

|UL1,L2,L3 SN ’
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Proof. Assume that ag, az are both of type (D). From Lemma when NaV N3 < Nll_f,

we have

o2

| ﬁaﬁﬂsy < (N N E < NTE (v Ny N

Y

s1nce s = %— 7 —i—a > = —<. Now we assume without loss of generality that N3 < Ny, Ny =

N, 2. I N3 <N, g,wehave

1 [e% 1
Nl,NzyNs 2 271 3 s 5_5 2
| L1.Lo.Ls |NN Ny N Ny N < N Ny

o (o] (o3 O¢2
SNl(i_S)(l_i)'i'( )(1_7)N 2 é N;T+5ON5§O.

[e3

When N3z > N1172, we have

N,N N 1 1—a - _ 1_og 1—a _a
| L11,L22L33’ S(NG + Ny ?) Ny Ny °Ny® < (Ng — +N; Ny °)Ny 2
2

$ _i_N*T T)_

2 a—1_«

_a—1_
<(Vy ?

Note that when o > ag, %5~ ! +% ® > s for very small free numerical parameter o > 0, thus
we obtain the first inequality.

Next we assume that L; > Na A N3, from [aq[j;e < Ny 2LTY S N

o

have, if NaV N3 < N, 2,

o
2

(N2 N Ng)_l’, we

=2
2

lu N17N27N3’ < (NQNg)%N

Li,Lo,L3 (N2 A N3)7"[laz[s2|as]]2-

2

In the worst case, ||ajl/;2z < N for j = 2,3, we have

NN N Yma—v S 232 —(atv)(1-%)
| Lll,L;:Lgﬂ S (N2 VN3)" "N, 2 <N >,

. 1—-< 1—<
since 2 — a — v > 0. Now we assume that Ny = N1 > and N3 < Np. If N3 < Ny 2, we
have

N1,N27N3 <N%N%(l_%) ]\If_%]\[—aT_l]\]_l’_aT_1 < N(l_%_l’_&T_l)(l_%)"'%(l_%) N_%

U L1,L2,L3 | < C 4V 2 3 = T4V

—(atv)(1-g)+2-32 (a—14v)(1-%)—(a—1)

<N :N; )

o

. 1-2
since 1 —§ —v > 0. When N3 > N; *, we have

1 e e a—1
N17N27N3 2 1-3 2N 2 VT3
U L1,La,Ls ‘<(N3 + Ny %) Ny 2N, Ny

<N 5 i Nl—(a—l-i—l/)(l—%)—(a—l)

—Qa—v —Qa—v

3
< N When o > ap, we have (v — 1 +

v)(1-9§)+(a—1)> s+ and ( U 4 » > s+ . This completes the proof of Lemma
[L1.5] H

3
where to the last step we used Vg

To deal with other situations, we need to execute other Algorithms.
eSubcase B-5(a): Exact one of as, a3 is of type (G) or (C) and the other is of
type (D)

Without loss of generality, we may assume that ag is of type (G) or (C) and ag is of
type (D), since in the regime N > Na, N3, the second and third positions in N3(-,-,-)
are similar. By Corollary it suffices to consider the case Ly < No A N3 < Ns. By
implementing Algorithm 2, it suffices to estimate the quantity

3 3
> ECYof P+ sup oty P,
ke K k! k
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and then take the square root of the obtained upper bound, where C is the o-algebra
generated by Br,vr,,

(3) _ — 1t N\~

o= > au(k))ay(kr)az (k)@ (k2) Sk kg s Sk kasks Lk, 1>V
k1,k7 k2 k5 k3
ki1=k+ko—k3

K, =k k) — k3

and

Z 1\]@ k\<Lh]g)k* ga J=12
7|~ 'K ]2

Lemma 11.6. Assume that ay,a2 are both of type (G) or (C) and L; < Na. Then

N7
by implementing Algorithm 2, outside a set of probability < e NoB and modulo small
powers of N

o If Ny VN3 <N, 2, then

|UN1’N2’N3

—e a1, 1
oLy | SNy 2Ny 2Li7L (N2 V N3)(Na2 A N3)i|las|

o IfNyV N3 >N, 2, then

N,N N _e a1, 1 1 Lo l1-9) l1-9)
| L11,L22,L33’ SNy 2Ny 2 L1"L3 [N22N34 + Ny Ny~ 2 mln{NQ NP P }]HCLSHZQ

_a 1_, 1 1q_«a 1 l_a
WNTENG EL T NENEYT D mind N, N ag e
If a1, as are both of type (G) or (C) and ay is of type (D) and Ly < N3, the above estimates

hold by switching Ny to N3, a3 to ag and Lo to Ls.

Proof. From our assumption, a;(k}),a1(k1) are independent of ag(kz),a2(k). Noticing
that

2 Z

‘ Sk:’+k’27k:3,k’2,k3Sk+kgfk3,k2,k3Sk’+m’27m3,m’2,m3Skergfmg,mQ,mg
ko K ks

ma,mf,m3

X al(kl + ](Ié — kg)al (k + ko — ](Ig)al (k/ + m'2 — Tng)al(k —+ mo — 777,3)

x az(ky)as (k2 )az(my)as(ms).

’ Okk

By using the independence and Cauchy-Schwartz, we have
(3)2
Z Eflogl°]
k.k':|k|>Ny,|k'|>N1
—2a
S(N1N2) > Skttt ks Sk ks ks o ks Skt~ Sk ma—ms i ams Lkl 1[5V,

! !
kk' ko k) k3
ma,m5,ms3

x H I k*”l“’l? (1\k2—kg|SL2,\m2—mg|SL2 + 1|k2—m2\<L2,|kg—mg|<L2>-

Denote by C; the contribution from the indicator 15, ks |<1, jmy—my|<L,- We first sum over
mg, using the fact that

§ Sk‘—l—mg—mg,mz,mgSk’—i—m’z—mg,m’z,mg S
m3
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and then we sum over k, k' by using the inequality ((11.4]). This yields

j=1 ki ka Kl ks ma,miy  [m2— mz|<L2
S(N1N2) 2O‘LGllhk k*llloop D goiyer, Blka, ks) B(kh, ks),
Jj=1 "3 ka kb, k3,mo2

where
2 «@

</~€2 — k)’
Now by Schur’s test and Cauchy-Schwartz, we have

Z Z 1|k‘2—k‘/2‘<LzB(k2’ k3)B(kéa k3)

k3 ma2 ko Kl

(]{72,]{33) —Hlln{1—|— (]{32—]{}3>}.

LQ(NQ V N3>4(N2 VAN ]V?,)7 if No vV N3 < Nll 2
1«

SL2N2HB(I€2J<?3)HZ2§2 b S L2 oo . -2 . a
’ 2 2(N3+N1 mln{Ng,Nl }), if NV N3 ZNl .

Therefore,

(11.7)

[e3

1—<
Ny VV N3)4(Ny A N3), if V- vN <N, %
e S (NN 2erpirpzw . L 3)2( 2 A Ns), i N2 v Vs ’ _a
N2N3—|—N aNZmln{N;;, 2} 1fN2\/N3>N 2,

Denote by Co the contribution from the indicator 14, _pm,|<r,,| Ky —mly| <Lo- Similarly, we first
sum over mg and then k, k" using (11.4)), we have

CQ (NlN Q(XH ||hk k*||l°<>12 Z 1|k2—m2‘<LzB(k27k3)B(ké7k3)

j=1 b 9k2,k2,k3,m2, o [ky—m|<Lo

N1N2 2aL H Hhk k*HloolQ Z B(k27k3)B(ké7k3)
¥ ka,kb k3

For fixed k3, we have

1_a

NoV N3)No, if NoV N3 < N, 2
ZB(/@,ks) S { ( , ) 1-¢ oo 1-2
Ny + mln{Nl NQ,Nl }, if Ny vV N3 > Nl .

Therefore, modulo small powers,

(11.8)

o
2

(N2 \Y N3)4(N2 A Ng) if NoV N3 < N
%

CQ (NINQ) 20¢L1—4I/Lg—41/ . . - -
N2N3 + N3Ny min{ N2, N{7“}, if NoV N3 > N; 2.

Implementing Algorithm 2, the proof of Lemma [11.6|is complete. O

Corollary 11.7. Assume that N1 > Na, N3 and a1, a2 are of type (G) or (C), a3 is of
A6

type (D). Assume that L1 < Na, then outside a set of probability < e Nl and modulo a

small power N¢, e < k=01 we have

N ,Na,N. —8—20
(11.9) U N | S e,

The same estimate holds if we switch as and as.
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Proof. The proof is just a numerical computation. Assume that as is of type (G) or (C).
First we assume that Ny V N3 < Nll_f. Then by (i) of Lemma 6, if N3 < Ny < Nl_f,

s—% L

2 < L22 Nl_%""(% ‘;

-V

1 _ea 1_, 5_
NoNJ < Ny 2L2 Ny

—05024(5-5)0-%)

N Ny, N a1
| Lll};22i33\<(N1N2) 2 N3 °Lj

o
2

1_
Note that if Ny < N3 < Nl1 , we have the same upper bound. When L3 Y <

(1—s)a 5 _ a _a (1-s)a 5 _a _Q
N, 2 ~G=2)0 )QSO,thisboundis conclusive. When L22 >N z G )260,

we alternatively apply (1) of Lemma to get

a 1 1 o
N17N27N3 —F Arp—(a=1) ), 5—s -, s
u L1,L2,L3 | SN 2Ny Ly"Ng < N1 2L, (N2 V N3)

5+(2—a=s)(1-3)

<N +(@2—a-s)(1 _%)‘Nflzléu.[(l—;)a (277)(177) 250]
1 .

(11.11) <Ly"N;
By numerical computation, when a > 1.069(< «y), we are able to choose sufficiently small

o > 0, such that |Z/IN1 ’]fVQ}J]Zﬂ SN, 2% which is conclusive.

1-2 . X 1—2
Next we assume that No V N3 > N; *. First we deal with the case No, N3 > N; Z.

By (ii) of Lemma we have

_a 1_, 1_ 1 a _a 1_,, 1_ _a
|U£Vl1,ﬁ2’Lj\3[3|<N 2N *L3 Ny N7 +N; 2N, *L3 Ny 8N11 ’
I 11
S NS Y v (17 8) p—s
+N; PNy *Ly Ny Ng Ny
111
Using Ly < Ng, we have
_a —_a_,, 1 _agq_a_ g, 1
T<N; 2N, 2 N 7° < Ny 2T o N2,
for sufficiently small o > 0, since o + min{3 — <, 7(0‘ L) }> 7- Next,
N D NS NG L T NS o )
<N, YN, 202N =N, N, 202" <N, L2
_ay3_ay 1_ _a=1l —(—1)=Ltap_ay 1
< Ny 2P N N < Ny YT S e
(a—1)—ita({_a _a(q_ay_3(=1)
Since N, (a=D=7320 2)<N1 2(1=2)="75 , we have
l_y a_a _3(0471)
(11.12) [+ I+ I < Ny 20 4 2 sy 2072775

(1-2)4 3z s a5,

1_, a
When L7 7 < NP2

1 o o 3(a—1)
LQE—V > NF(1_§)+T_S_26O

, the upper bound (11.12)) is conclusive. When

, we alternatively apply (2) of Lemma [11.4] to obtain

1 e [}
N N2.Ns 2 1=3\ A5 ar—(a=1) 1~y A7—s
UL 1 I S(NG + Ny 2)Ny 2N, Ly Ny
—

N;*Ly" 4+ Ny @I Ny D N v

—(a=1)(2-%)-s(1-%) —(a-1)(2-2)—s(1-%)— 12 [2(1-2)+ 2D 525

_a 3
SNl 2N22

(11.13) <N, 27V < N,

By numerical computation, we are able to choose sufficiently small ¢ > 0, such that the
above upper bound can be bounded by NI_S_Q‘SO, provided that a > 1.0698(< «yg). Thus

T+ 114 I < Ny 2%,



REFINED PROBABILISTIC GLOBAL WELL-POSEDNESS FOR THE WEAKLY DISPERSIVE NLS 79

Finally we assume that No V N3 > Nll_f > Ny A N3. By using (2) of Lemma we
have

a a 1 1 1 1 a a
7 7N1,N2,N3 RN R £ 5.5(1-%) . 1-2
|UL17L27L3 ‘SNI 2‘7\[2 2L22 ‘NS4 'N22N12 27, if N3 < Nl > < Ng,
and
NN Ns | < NS NS pa T nes N 0TS N o NTE <
|L1,L2,L3|~1 2 2 3 "4V3 Vi , 1L Ng < IV < IVs.
1—a
If No A N3 <N, 2 < NyV N3, we have
1
~ _oglp_ay 1o 1 _ _3le=l) 1
(11.14) N NeNa < st N e < N Ny T 1

1_ 3(a—1) 925 l_y 3(a—1) _
When L3~ < N, ° °, this bound is conclusive. When L2~ > N, * °, we can

alternatively apply (2) of Lemma to obtain

7 7N1,N2,N. ;1
|ML117L227L33‘ S(NQ A N3> 2N12

&
2

NN L

3o

1_3a
<NZ T (Ny v N3) @ D(Ny A Ny)2 L5,

since a < g and o — 1 < s. Thus

~ 1 38a, (1 o (q—1))(1—-2)—-22_. 3a=l) o5

|uI]X1,7I],\2[%7L]\3[3|§N12 1 T(g—s—(a=1))(1-3) 172u[ ! 0]‘

By numerical computation, when o > 1.0724(< «ap), we are able to choose sufficiently
small ¢ > 0, such that

7 /N1,N2,N3 —5—260
|uL17L2,L3 SN )

This completes the proof of Corollary O

eSubcase B-5(b): a2, a3 are both of type (G) or (C) and L; < N2 A N3
First we assume that N3 > Ny and L3 =2 Ny (similar for the case Ny > N3 and

Ly 2 N3). In this case, we cannot execute Algorithm 1 since hl(cz)k:; are not independent

o

of gi;. Instead, we apply Lemma|11.4 When N3 < Nll_f, we have

1-5—v —a

77N1,Na,N: L= a2 a—(a=1) - -2 3
|uL11,L22,L33| §(N2N3)2N1 2N2 2 N; ( )L3V < N, 2N2 N32

$-S—v, -3 $H(EFEn)(1-9)

< N32 2 Nl

<Ny

When N3 > Ny > N, 2, we have

_&a
2

~N1,Na,N: 3 1-g -l (a-1)y—u
UL Tty | S(NG + Ny %) - Ny 2Ny Ny =V,
s +(321)(1-9)

~(2-9)(a—1)-v

<N, + Ny

=1
2

When N3 > N, 2 > Ny, we have

1 « 1 « a—1
7 N1,N2,N3 =) a3 A EnT T (D) —y
NNy <2 Ng L NCE N T Ny e

a—1

N R T
Therefore,
~ _ay(5=8a_,\1_a —(2—2)(a—1)—
(i g a0 | e

By numerical computation, when o > 1.0918(< «g), we are able to choose sufficiently
small ¢ > 0, small enough, such that the right side of (11.15]) is bounded by Nl—s—an.
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Now we assume that ag, as are both of type (G) or (C) and Ly < Na A N3, Ly V L3 <
Ny A Ns. In this case, we execute Algorithm 1 and the goal is to estimate

B2 = Y Y Ea(ka)m )] B (k) as(ma)as (ks as(ms))
[k[>N1 (K1,k2,k3)€l (k)
(m1,m2,m3)€l'(k)

where C = Boyax{L,10,L5}- Here we used the fact that ay(k1),a1(m1) are independent of
aj(kj), aj(m;) for j = 2,3 since N1 > Na, N3 and L; < No A N3. Using the independence
and Cauchy-Schwartz, we have

3
{71 Na N
ECTUp 20 1P) S(N1NaN3) ™ H 124 k*||l;oli*

X § Sk+k2—k37k2,k3Sk+m2—m3,m2,m3 <1|k2—m2\<L2 +1 |ko—k3|<L2VL3
k.k2,k3,ma,m3 |[k3—ms3|<Ls |ma—mgz|<L2VL3
|k‘|>N1

To sum the second line of the right side, we first sum over mg by using ng, Sktmo—ms,ma,ms S
1 and then sum over |k| > Ny by using ([11.4)). This procedure yields

N N, N
H Lll,L22L33| ] N1N2N3 H ||hk; k*

lool'z Z (Lko—ma|<Ls T Vko—ks|<Lovis) B(k2, k3),
*j ma,k2,k3
where
N7
B(ks, k3) = min{ (ko — k3),1 + ————1}.
(K2, k) = min{ (ks — k3), 1 + (kQ—k3>}

To estimate the contribution from 1, _y,,|<r,, We recall that

NaV N3)2(Na A N3), if NoV Ny < N, 2
ZB(kQ,ks)S{ (N2 V- Ng)"(N2 A Ng), 1 Ny v N3 < .

1—< . _a
Py NoN3 + (No V N3) min{ N2~ (Ny A N3)N, 2}, if NV N3 > N, 2.

(=1

. . . . 1-
To estimate the contribution from 1, g, <r,vL,, We note that if Ly vV Ly < Ny 2,

> Ly kyl<zovie Bk ks) S (La V Lg)* (N2 A N3),
ka,ks3

@

and if LyV Ly > N, 2,

E Lty —ks|<Lavia B(k2, k3) = Z 1|k2—k3|SN11 § Blkz, ks) + Z 1 Ny <lka—ks|<LaVLs Bk, ks)
k2,ks ko ks ka,ks3

<N, min{(Ny A N3)N, % NaN3} + (Lo V L3)(Ny A N3) + (Ny A Ng)N2—
In what follows, we may assume that No < Nj3. Therefore, modulo possible small powers

of N1, we obtain that

N1 N2 N,
ECUy 2 P ST+,

where
(NaV N3)2(Na A N3), if N3 < N, 2
3

NaN3 + N3min{ N>~ NoN; 2}, if N3 > N, 2,

I =(NyNyN3)~*(LyLoL3) % (Ly V L3) {

and
IT = (NyNoN3)~%(LyLoL3)" % (Lo V L3)*NoN3,

if Ly V Ly < N, 2, while

{72 min{NoN, 2, NyNy} + (La V L) Ny + NaN27°],

IT =(N1NaN3)~*(LyLaL3)~? N2 [N,

15

ing\/L3>N1
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Let us first estimate I If N3 < Nll_f, using our hypothesis Lo V Lg < No, we can
bound I by

LSNT oLy L5 (L v LN N}~ § Ny ONF 02N < Npon3ee)

SNl—a+2(2—a—V)(1—%) .

[N]1)

In the case N3 > Nl1 2 if N3 > Ny > N117 , using Lo V L3 < Na, we have

I SN]-—QN;(afl)N;(afl)Nél—QV + NIQ(afl)NZ—aN;(afl)N%—QV

SNl—aNQQ—a—%/Ng—(a—l) + N1—2(o¢—1)NQ—(oa—l—Zu—l)Ng—(a—l)

—(2(a=1)+2v)(1-3)

3—2v—2 —2(a—1
v a)_|_N1 (a )Nl

<N[*Nj

If Ny > N, 2 > Ny, we have
_ _a _3a

LN, TR (NN T (L v L) < N E NG e
_3a —— _a —(o— _a

SNll 2N1(2 a—20)(1 2)N1 (a-1)(1-%)

Therefore, we obtain that

3
2

N;a+2(2fa*l/)(1*%), if Ny >N, ? > Ny,

R

and in particular,

(11.16) 1< N1—3(a—1)—2u +N17a+2(27a71/)(17%)'

When a > 1.1205(< ag), we are able to choose sufficiently small o > 0, such that the
right side of (11.16]) < Nf237450.

. . . 1-3 .
It remains to estimate II. First we assume that Lo V L3 < N; 2, since No > Lo V L3,
we have

I =N;%(NoN3) ™ D(Ly LoL3) "% (Lo V L3)?

SNTO(Ly Vv Lg)21-¥)=(0m) < et GUm=emiii=g),

By numerical computation, when a > %(< ap), we are able to choose sufficiently small
o > 0, such that

N1—a+2(1—v—“7‘1)(1—%) < N2,

. . . . 1-%
which is conclusive. Finally we assume that Ly V L3 > N; ?, then

IT <(NyNoN3)~%(La V L3) ™2 (NoNs N2~ + (L V L3)NaN3)

SNl_Q(a_l) (L2 Y L3)72uf(a71) 4 Nl—Oé(LQ V. L3)1*2V*(a*1)

SNl_g(oz—n—(2u+(cv—1))(1—%) + Ny

a—1 e
SNIZ(Q*U*Q(V+T)(1*§) i N;Q(af]ﬁﬁl)'

a+1-2v—(a-1)

By numerical computation, when a > %(< ap), we are able to choose sufficiently small
o > 0, such that the right hand side of the above inequality is smaller than N, 2s—4d0
Implementing Algorithm 1. The proof of tri-linear estimate for Case B-5 is complete.

In summary, the proof of Proposition is completely finished.
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APPENDIX 1: PROOF OF PROPOSITION

By the triangle inequality and the Wiener chaos estimate, the second assertion in Propo-
sition |1.2| follows from the expectation bound of |25, (¢, z)[, hence we will only show that

oo 27 — D o
(11.17) E[|25),41 (¢, 7)[?] < Cot™ (25 + 1)!(W) :
Without loss of generality, we take ¢ > 0. Recall the expression (|1.5) and the equation of
22j4+1, we have the recurrence relation for the coefficient c; (t, Ky, - ,k2j+1):
t
Cj (t’ klv Ty k2j+1) == Z / ei(t_t/)‘kl_k2+m_k2j+k2j+l|adt/
. 0
91,0233
Jit+ja+is=j—1
xcjy (' k1, kagien) ey (F s kajiva, - Ragy2gov2)Cis (s kajors + - 4 ajg)-

Note that co(t, k1) =1 and |ci(¢, k1)| < t. Define recurrently the series {;}j>0 by ko =1
and

1
(11.18) Kji= — Z Kjy Ko Kjs -
J1,J2,33
Jitg2+iz=j—1
By induction we deduce that for any j > 0,
lej(t,na, -+ ngji)| < Kt

Next we determine ;. Considering the power series

fla) = k2,
=0

the recurrence relation (11.18)) implies that f’(z) = f(2)3, f(0) = 0. Solving this ODE we
obtain that f(z) = (1 — 2z)~2, hence

25 — Dt
gy = 2 DY
4!
Therefore, we obtain that
- (25 — DN .
(11.19) ’Cj(t, kl,"' ,kzj.;,_l)’ < Hjt] = Tt].
Thus
Ellz85 (L)l = D ¢t ke koya)g(tmy, - mgji)
k1, ki1

M1, ,M2541

2741 Lj/ —Lj/
g, 9mg)
xe e K J
k1—ko+-+kojp1C—mi+mo—-—majt1

L )5y 15 )

where ¢;y € {+1,—1} and we use the convention g,jl = g; and g,?l = ¢,. Using the
independence of Gaussians and (11.19]), we have

A 241 | (27 1)1
Ellefina)f] < 30 s @+ D] o= < Co¥(2)+ D/(F )7,
k‘l,'--,k‘gj+1 j/:1 [ ],] 2 ]

where the extra factor (2j + 1)! comes from the number of pairings for the index
(K1, s kgjpasma, - majq).
This completes the proof of (|11.17)).
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APPENDIX 2: PROOF OF LEMMA
It suffices to prove the first inequality
(11.20) Ier(®yull gop S T full o

with u € ng;/ satisfying u|t—o = 0, where 1 <p <o00,0<v <y < 1+% and 1 < ¢ < oo,

since we may regard ||Ogx (A, X)HLifli/ as u(A, k). We decompose u = uy + ug, where
Fiagui (1, k) = 1|77|k|a|2%ft7xu(r, k), Fraua(t, k)= 1|77|k|a|<%fmu(7, k).

To prove ((11.20)), it suffices to show that, uniformly in k € Z,

(11.21) () [{r = [k[*) (X7 * Frau) (T k) llps S T = K1) Frau(n, k)l ng:

(11.22)  (b) {7 = [K]*)" (X1 * Froua) (7, k)l S T 77 [{n — [K|*) " Frau(n, k)| La-

To prove (a), we note that
(7 I R Fin) 7. ) = [ KF(r = b7, 0) () T D),
R

where

KF(\w) = (T - w))

S=

<w>71 1|W\2
By Schur’s test, it suffices to show that
sup/ |KF (A w)|dw < 1T 7, sup/ |KF (A w)|d\ < CoT Y
AeR JR weR JR

with C1, Cs independent of T'. One can check these two inequalities by direct computation,
here we explain it in an informal way. Since X is a Schwartz function, |\ — w| is essentially
bounded by O(#). Due to the fact that |w| > £, A is essentially constraint in the region
Al < % Since the length of the integration is of size %, we deduce that two integrations
are bounded by O(1)T7 7.

The proof of (b) exploits the cancellation from the condition u|;—o = 0. By the Fourier
inversion formula, we have

/ u(w, k)dw = 0.
R
Therefore, with A = 7 — | k|,

(X1 Fiatiz) O\, k) = / TRIT(N — w))ii(w, k)dew

|w| <5

- [ TH BRI - ) - SO TR [ et

|w[=

Sl=

By Holder’s inequality,

jwl> &
we have

|orrsan [ dw s, ST . Bl
|w|>F By
Finally, from the fact that [X(T'(A — w)) — X(TA)|17u)<1 = O(|Tw|[(TA) 1), we deduce
by Holder that
[ T RRE O -RINIde] < TN ) )i, Bl |
|w] <z

<w>71

LY (lwl<4)

Multiplying the right hand side by (A)” and then taking the L? norm in A\, we obtain the
desired upper bound 77 ~7. This proves (b). The proof of Lemma is now complete.
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