Kyungtae Lim 
email: kyungtae.lim@ens.fr
  
Cheoneum Park 
email: parkce@kangwon.ac.kr
  
Changki Lee 
  
Thierry Poibeau 
email: thierry.poibeau@ens.fr
  
SEx BiST: A Multi-Source Trainable Parser with Deep Contextualized Lexical Representations

We describe the SEx BiST parser (Semantically EXtended Bi-LSTM parser) developed at Lattice for the CoNLL 2018 Shared Task (Multilingual Parsing from Raw Text to Universal Dependencies). The main characteristic of our work is the encoding of three different modes of contextual information for parsing: (i) Treebank feature representations, (ii) Multilingual word representations, (iii) ELMo representations obtained via unsupervised learning from external resources. Our parser performed well in the official endto-end evaluation (73.02 LAS -4 th /26 teams, and 78.72 UAS -2 nd /26); remarkably, we achieved the best UAS scores on all the English corpora by applying the three suggested feature representations. Finally, we were also ranked 1 st at the optional event extraction task, part of the 2018 Extrinsic Parser Evaluation campaign.

Introduction

Feature representation methods are an essential element for neural dependency parsing. Methods such as Feed Forward Neural Network (FFN) [START_REF] Chen | A fast and accurate dependency parser using neural networks[END_REF] or LSTM-based word representations [START_REF] Kiperwasser | Simple and accurate dependency parsing using bidirectional LSTM feature representations[END_REF][START_REF] Ballesteros | Training with exploration improves a greedy stack lstm parser[END_REF] have been proposed to provide fine-grained token representations, and these methods provide state of the art performance. However, learning efficient feature representations is still challenging, especially for underresourced languages.

One way to cope with the lack of training data is a multilingual approach, which makes it possible to use different corpora in different languages as training data. In most cases, for instance in the CoNLL 2017 shared task [START_REF] Daniel Zeman | CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies[END_REF], the teams that have adopted this approach used a multilingual delexicalized parser (i.e. a multi-source parser trained without taking into account lexical features). However, it is evident that delexicalized parsing cannot capture contextual features that depend on the meaning of words within the sentence.

Following previous proposals promoting a model-transfer approach with lexicalized feature representations [START_REF] Guo | A representation learning framework for multi-source transfer parsing[END_REF][START_REF] Ammar | One parser, many languages[END_REF][START_REF] Lim | A system for multilingual dependency parsing based on bidirectional lstm feature representations[END_REF], we have developed the SEx BiST parser (Semantically EXtended Bi-LSTM parser), a multi-source trainable parser using three different contextualized lexical representations:

• Corpus representation: a vector representation of each training corpus.

• Multilingual word representation: a multilingual word representation obtained by the projection of several pre-trained monolingual embeddings into a unique semantic space (following a linear transformation of each embedding).

• ELMo representation: token-based representation integrating abundant contexts gathered from external resources [START_REF] Peters | Deep contextualized word representations[END_REF].

In this paper, we extend the multilingual graphbased parser proposed by [START_REF] Lim | A system for multilingual dependency parsing based on bidirectional lstm feature representations[END_REF] with the three above representations.

Our parser is open source and available at: https://github.com/CoNLL-UD-2018/ LATTICE/.

Our parser performed well in the official end-toend evaluation (73.02 LAS -4 th out of 26 teams, and 78.72 UAS -2 nd out of 26). We obtained very good results for French, English and Korean where we were able to extensively exploit the three above features (for these languages, we obtained the best UAS performance on all the treebanks, and among the best LAS performance as well). Unfortunately we were not able to exploit the same strategy for all the languages due to a lack of a GPU and, correspondingly, time for training, and also due a lack of training data for some languages.

The structure of the paper is as follows. We first describe the feature extraction and representation methods (Section 2 and 3) and then present our POS tagger and our parser based on multi-task learning (Section 4). We then give some details on our implementation (Section 5) and we finally provide an analysis of our official results (Section 6).

Deep Contextualized Token Representations

The architecture of our parser follows the multilingual LATTICE parser presented in [START_REF] Lim | A system for multilingual dependency parsing based on bidirectional lstm feature representations[END_REF], with the addition of the three feature representations presented in the introduction.

The basic token representations is as follows. Given a sentence of tokens s=(t 1 ,t 2 ,..t n ), the i th token t i can be represented by a vector x i , which is the result of the concatenation (•) of a word vector w i and a character-level vector c i of t i :

x i = c i • w i c i = Char(t i ; θ c ) w i = Word(t i ; θ w )
When the approach is monolingual, w i corresponds to the external word embeddings provided by Facebook [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF]. Otherwise we used our own multilingual strategy based on multilingual embeddings (see Section 3.2)

Character-Level Word Representation

Token t i can be decomposed as a vector of characters (ch 1 , ch 2 ,.. ch m ) where ch j is the j th character of t i . The function Char (that generates the character-level word vector c i ) corresponds to a vector obtained from the hidden state representation h j of the LSTM, with an initial state h 0 (m is the length of token t i )1 :

h j = LSTM (ch) (h 0 , (ch 1 ,ch 2 ,..ch m )) j c i = w c h m
For LSTM-based character-level representations, previous studies have shown that the last hidden layer h m represents a summary of all the information based on the input character sequences [START_REF] Shi | Combining global models for parsing universal dependencies[END_REF]. It is then possible to linearly transform this with a parameter w c so as to get the desired dimensionality. Another representation method involves applying an attention-based linear transformation of the hidden layer matrix H i , for which attention weights a i are calculated as follows:

a i = Sofmax(w att H i T ) c i = a i H i
Since we apply the Softmax function, making weights sum up to 1 after a linear transformation of H i with attention parameter w att , the selfattention weight a i intuitively corresponds to the most informational characters of token t i for parsing. Finally, by summing up the hidden state H i of each word according to its attention weights a i , we obtain our character-level word representation vector for token t i . Most recently, [START_REF] Dozat | Stanford's graph-based neural dependency parser at the conll 2017 shared task[END_REF] suggested an enhanced character-level representation based on the concatenation of h m and a i H i so as to capture both the summary and context information in one go for parsing. This is an option that could be explored in the future.

After some empirical experiments, we chose bidirectional LSTM encoders rather than a single directional one and then introduced the hidden state H i into the two-layered Multi-Layer Perceptron (MLP) without bias terms for computing the attention weight a i :

a i = Sofmax(w att2 tanh(W att1 H i T )) c i = a i H i
For training, we used the charter-level word representations for all the languages except Kazakh and Thai (see Section 5).

Corpus Representation

Following [START_REF] Lim | A system for multilingual dependency parsing based on bidirectional lstm feature representations[END_REF], we used a one-hot treebank representation strategy to encode a set of hidden state Hi is a matrix stacked on m characters. In this paper, all the letters w and W denote parameters that the system has to learn. language-specific features. In other words, each language has its own set of specific lexical features.

For languages with several training corpora (e.g., French-GSD and French-Spoken), our parser computes an additional feature vector taking into account corpus specificities at word level. Following the recent work of [START_REF] Stymne | Parser training with heterogeneous treebanks[END_REF], who proposed a similar approach for treebank representations, we chose to use a 12 dimensional vector for corpus representation. This representation tr i is concatenated with the token representation x i :

tr i = Treebank(t i ; θ tr ) x i = c i • w i • tr i
We used this approach (corpus representation) for 24 corpora, and its effectiveness will be discussed in Section 5.

Contextualized Representation

ELMo (Embedding from Language Model [START_REF] Peters | Deep contextualized word representations[END_REF]) is a function that provides a representation based on the entire input sentence. ELMo contextualized embedding is a new technique for word representation that has achieved state-of-theart performance across a wide range of language understanding tasks. This approach is able to capture both subword and contextual information. As stated in the original paper by [START_REF] Peters | Deep contextualized word representations[END_REF], the goal is to "learn a linear combination of the vectors stacked above each input word for each end task, which markedly improves performance over just using the top LSTM layer".

We trained our language model with bidirectional LSTM using ELMo as an intermediate layer in the bidirectional language model (biLM), and we used ELMo embeddings to improve again the performance of our model.

R i = {x LM i , ← → h LM i,j | = 1, ..., L} = {h LM i,j | = 0, ..., L} (1) 
ELM o i = E(R i ; Θ) = γ L j=0 s j h LM i,j (2) 
In ( 1), x LM i and h LM i,0 are word embedding vectors corresponding to the token layer.

← → h LM i,j is a hidden LSTM vector consisting of a multi-layer and a bidirectional LSTM layer. h LM i,j is a concatenated vector composed of x LM i and ← → h LM i,j . We computed our model with all the biLM layers weighted. In (2), s j is softmax weight that is trainable to normalize multi-layer LSTM layers. γ is the scalar parameter to efficiently train the model. We used a 1024 dimensions ELMo embedding.

Multilingual Feature Representations

The supervised, monolingual approach to parsing, based on syntactically annotated corpora, has long been the most common one. However, thanks to recent developments involving powerful word representation methods (a.k.a. word embeddings), it is now possible to develop accurate multilingual lexical models by mapping several monolingual embeddings into a single vector space. This multilingual approach to parsing has yielded encouraging results for both low- [START_REF] Guo | Cross-lingual dependency parsing based on distributed representations[END_REF] and high-resource languages [START_REF] Ammar | One parser, many languages[END_REF]. In this work, we extend the recent multilingual dependency parsing approach proposed by [START_REF] Lim | A system for multilingual dependency parsing based on bidirectional lstm feature representations[END_REF] that achieved state-of-the-art performance during the last CoNLL shared task by using multilingual embeddings mapped based on bilingual dictionaries.

Embedding Projection

There are different strategies to produce multilingual word embeddings [START_REF] Ruder | A survey of cross-lingual word embedding models[END_REF], but a very efficient one consists in simply projecting one word embedding on top of the other to make both representations share the same semantic space [START_REF] Artetxe | Learning principled bilingual mappings of word embeddings while preserving monolingual invariance[END_REF]. The alternative involves directly generating bilingual word embeddings from bilingual corpora (Gouws et al., 2015;[START_REF] Gouws | Simple task-specific bilingual word embeddings[END_REF], but this requires a large amount of bilingual data aligned at sentence or document level. This kind of resource is not available for most language pairs, especially for underresourced languages.

We thus chose to train independently monolingual word embeddings and then map these word embeddings one to another. This approach is powerful since monolingual word embeddings generally share a similar structure (especially if they have been trained on similar corpora) and so can be superimposed with little information loss.

To project embeddings, we applied the linear transformation method using bilingual dictionar-ies proposed by [START_REF] Artetxe | Learning bilingual word embeddings with (almost) no bilingual data[END_REF]. We took the bilingual dictionaries from OPUS2 and Wikipedia.

The projection method can be described as follows. Let X and Y be the source and target word embedding matrix so that x i refers to i th word embedding of X and y j refers to j th word embedding of Y. And let D be a binary matrix where D ij = 1, if x i and y j are aligned. Our goal is to find a transformation matrix W such that Wx approximates y. This is done by minimizing the sum of squared errors:

arg min W m i=1 n j=1 D ij x i W -y i 2
The method is relatively simple since converting a bilingual dictionary into D is quite straightforward. The size of the dictionary used for training is around 250 pairs, and the projected word embedding is around 1.8GB. The dictionaries and the projected word embeddings are publicly available on Github.3 

Training with Multilingual Embedding

After having trained multilingual embeddings, we associate them with word representation w i as follows:

w i = Word(t i ; θ mw )
We applied the multilingual embedding mostly to train the nine low-resource languages of the 2018 CoNLL evaluation, for which only a handful of annotated sentences were provided.

Multi-Task Learning for Tagging and Parsing

In this section, we describe our Part-Of-Speech (POS) tagger and dependency parser using the encoded token representation x i based on Multi-Task Learning (MTL) [START_REF] Zhang | A survey on multitask learning[END_REF].

Part-Of-Speech Tagger

As presented in Section 2 and 3, our parser is based on models trained with a combination of features, encoding different contextual information. However, the attention mechanism for the character-level word vector c i is focusing only on a limited number of features within the token, and the word representation element w i is thus needed to transform a bidirectional LSTM, as a way to capture the overall context of a sentence. Finally, a token is encoded as a vector g i :

g i = BiLSTM (pos) (g 0 , (x 1 ,x 2 ,..x n )) i
We transform the token vector g i to a vector of the desired dimensionality by two-layered MLP with a bias term to classify the best candidate of universal part-of-speech (UPOS):

p i = W pos2 leaky relu(W pos1 g i T ) + b pos y i = arg max j p ij
Finally, we randomly initialize the UPOS embedding as p i and map the predicted UPOS y i as a POS vector:

p i = Pos(y i ; θ pos )

Dependency Parser

To take into account the predicted POS vector on the main target task (i.e. parsing), we concatenate the predicted POS vector p i with the word representation w i and then we encode the resulting vector via BiLSTM. This enriches the syntactic representations of the token by back-propagation during training:

v i = BiLSTM (dep) (v 0 , (x 1 ,x 2 ,..x n )) i
Following [START_REF] Dozat | Deep biaffine attention for neural dependency parsing[END_REF], we used a deep bi-affine classifier to score all the possible head and modifier pairs Y = (h,m). We then selected the best dependency graph based on Eisner's algorithm [START_REF] Eisner | Efficient parsing for bilexical context-free grammars and head automaton grammars[END_REF]. This algorithm tries to find the maximum spanning tree among all the possible graphs:

arg max valid Y (h,m)∈Y Score M ST (h, m)
With this algorithm, it has been observed that parsing results (for some sentences) can have multiple roots, which is not a desirable feature. We thus followed an empirical method that selects a unique root based on the word order of the sentence, as already proposed by [START_REF] Lim | A system for multilingual dependency parsing based on bidirectional lstm feature representations[END_REF] to ensure tree well-formedness. After the selection of the best-scored tree, another bi-affine classifier is applied for the classification of relation labels, based on the predicted tree. We trained our tagger and parser simultaneously using a single objective function with penalized terms: loss = αCrossEntropy(p , p (gold) ) + βCrossEntropy(arc , arc (gold) ) + γCrossEntropy(dep , dep (gold) )

where arc and dep refer to the predicted arc (head) and dependency (modifier) results.

Since UAS directly affects LAS, we assumed that UAS would be crucial for parsing unseen corpora such as Finnish PUD, as well as other corpora from low-resource languages. Therefore, we gave more weight to the parameters predicting arc than rel and p , since arc directly affects UAS. We set α = 0.1, β = 0.7 and γ = 0.2. Unfortunately, during the testing phase, we did not adjust weight parameters that would have benefited LAS for the 61 big treebanks, and this made our results on big treebanks suffer a bit (7 th ) compared to those we obtained on Small and PUD treebanks (3 th ) regarding LAS. This also explains the gap between the UAS and LAS scores in our overall results.

Implementation Details

In this section, we provide some details on our implementation for the CoNLL 2018 shared task (Zeman et al., 2018b).

Training

We have trained both monolingual and multilingual models for parsing. In the first case, we simply used the available Universal Dependency 2.2 corpora for training (Zeman et al., 2018a). In the second case, for the multilingual approach, as both multilingual word embeddings and corresponding training corpora (in the Universal Dependency 2.2 format) were required, we concatenated the corresponding available Universal Dependency 2.2 corpora to artificially create multilingual training corpora.

The number of epochs was set to 200, with one epoch processing the entire training corpus in each language and with a batch size of 32. We then picked the best five performing models to parse the test corpora on TIRA [START_REF] Potthast | Improving the reproducibility of PAN's shared tasks: Plagiarism detection, author identification, and author profiling[END_REF].

The five models were used as an ensemble run (described in Section 5.2).

Hyperparameters. Each deep learning parser has a number of hyperparameters that can boost the overall performance of the system. In our implementation, most hyperparameter settings were identical to [START_REF] Dozat | Stanford's graph-based neural dependency parser at the conll 2017 shared task[END_REF], except of course those concerning the additional features we have introduced before. We used 100 dimensional character-level word representations with a 200 dimensional MLP, as presented in Section 2, and for corpus representation, we used a 12 dimensional vector. We set the learning-rate to 0.002 with Adam optimization.

Multilingual Embeddings. As described in Section 3, we specifically trained multilingual embedding models for nine low-resource languages. Table 2 gives the list of languages for which we adopted this approach, along with the language used for knowledge transfer. We selected language pairs based on previous studies [START_REF] Lim | A system for multilingual dependency parsing based on bidirectional lstm feature representations[END_REF][START_REF] Lim | Multilingual Dependency Parsing for Low-Resource Languages: Case Studies on North Saami and Komi-Zyrian[END_REF][START_REF] Partanen | Dependency parsing of code-switching data with cross-lingual feature representations[END_REF] for bxr, kk, kmr, sme, and hsb, and the others where chosen based on the public availability of bilingual dictionaries (this explains why we chose to map several languages with English, even when there was no real linguistically motivated reason to do so). Since we could not find any pre-trained embeddings for pcm nsc, we applied a delexicalized parsing approach based on an English monolingual model.

ELMo. We used ELMo weights to train specific models for five languages: Korean, French, English, Japanese and Chinese. ELMo weights were pre-trained using the CoNLL resources provided4 . We used AllenNLP5 for training, and used the default hyperparameters. We included ELMo only at the level of the input layer for both training and inference (we set up dropout to 0.5 and used 1024 dimensions for the ELMo embedding layer in our model). All the other hyper-parameters are the same as for our other models (without ELMo).

Testing

All the tests were done on the TIRA platform provided by the shared task organizers. During the test phase, we applied an ensemble mechanism using five models trained with two different "seeds". Python random library and are used to initialize the two parameters W and w (see Section 2). Generally, an ensemble mechanism combines the best performing models obtained from different seeds, so as to ensure robustness and efficiency. In our case, due to a lack of a GPU, different models have been trained simply based on the use of two different seeds. Finally, the five best performing models produced by the two seeds were put together to form the ensemble model. This improved the performances by up to 0.6%, but other improvements could be expected by testing with a larger set of seeds.

Hardware Resources

The training process for all the language models with the ensemble and ELMo was done using 32 CPUs and 7 GPUs (Geforce 1080Ti) in approximately two weeks. The memory usage of each model depends on the size of external word embeddings (3GB RAM by default plus the amount needed for loading the external embeddings). In the testing phase on the TIRA platform, we submitted our models separately, since testing with a model trained with ELMo takes around three hours. Testing took 46.2 hours for the 82 corpora using 16 CPUs and 16GB RAM.

Results

In this section, we discuss the results of our system and the relative contributions of the different features to the global results.

Overall results. The official evaluation results are given in Table1. Our system achieved 73.02 LAS (4 th out of 26 teams) and 78.71 UAS (2 nd out of 26).

The comparison of our results with those obtained by other teams shows that there is room for improvement regarding preprocessing. For example, our system is 0.86 points below HIT-SCIR (Harbin) for sentence segmentation and 1.03 for tokenization (HIT-SCIR obtained the best overall results). Those two preprocessing tasks (sentence segmentation and tokenization) affect tagging and parsing performance directly. As a result, our parser ranked second on small treebanks (LAS), where most teams used the default segmenter and tokenizer, avoiding the differences on this aspect. In contrast, we achieved 7 th on the big treebanks, probably because there is a more significant gap (1.72) here at the tokenization level.

Corpus Representation. Results with corpus representation (corpora marked tr in column Method of Table 1) exhibit relatively better performance than those without it, since tr makes it possible to capture corpus-oriented features. Results were positive not only for small treebanks (e.g., cs fictree and ru taiga) but also for big treebanks (e.g., cs cac and ru syntagrus). Corpus representation with ELMo shows the best performance for parsing English and French.

Multilinguality. As described in Section 3, we applied the multilingual approach to most of the low-resource languages. The best result is obtained for hy armtdp, while sme giella and hsb ufal also gave satisfactory results. We only applied the delexicalized approach to pcm nsc since we could not find any pre-trained embeddings for this language. We got a relatively poor result for pcm nsc, despite testing different strategies and different feature combinations (we assume that the English model is not fit for it).

Additionally, we found that character-level representation is not always helpful, even in the case of some low-resource languages. When we tested kk ktb (Kazakh) trained with a Turkish corpus, with multilingual word embeddings and characterlevel representations, the performance dramatically decreased. We suspect this has to do with the writing systems (Arabic versus Latin), but this theory should be further investigated.

sme giella is another exceptional case since we chose to use a multilingual model trained with three different languages. Although Russian and Finnish do not use the same writing system, applying character and corpus representation improve the results. This is because the size of the training corpus for sme giella is around 900 sentences, which seems to be enough to capture its main characteristics.

Language Model (ELMo). We used ELMo embeddings for five languages: Korean, French, English, Japanese and Chinese (they are marked with el in the method column in Table 1). The experiments with ELMo models showed excellent overall performance. All the English corpora, fr gsd and fr sequoia in French, and Korean ko kaist obtained the best UAS. We also obtained the best LAS for English en gum and en pud, and for fr sequoia in French.

Contributions of the Different System Components to the General results. To analyze the effect of the proposed representation methods on parsing, we evaluated four different models with different components. We set our baseline model with a token representation as

x i = w i • c i • p i ,
where w i is a randomly initialized word vector, c i is a character-level word vector and p i is a POS vector predicted by UDpipe1.1 (note that we did not apply our 2018 POS tagger here, since it is trained jointly with the parser and that affects the overall feature representation). We then initialized the word vector w i with external word embeddings as provided by the CoNLL shared organizers. We also re-run the experiment by adding treebank and ELMo representations. The results are shown in Table 3 (em denotes the use of the external word embedding and tr and el denotes treebank and ELMo representations respectively.). We observe that each representation improves the overall results. This is especially true regarding LAS when using ELMo (el), which means this representation has a positive effect on relation labeling.

Extrinsic Parser Evaluation (EPE 2018). Participants in the CoNLL shared task were invited to also participate in the 2018 Extrinsic Parser Evaluation (EPE) campaign6 [START_REF] Fares | The 2018 Shared Task on Extrinsic Parser Evaluation. On the downstream utility of English Universal Dependency parsers[END_REF], as a way to confirm the applicability of the developed methods on practical tasks. Three downstream tasks were proposed this year in the EPE: biomedical event extraction, negation resolution and opinion analysis (and each task was run independently from the others). For this evaluation, participants were only required to send a parsed version of the different corpora received as input back to the organizers using a UD-type format (the organizers then ran the different scripts related to the different tasks and computed the corresponding results). We trained one single English model for the three tasks using the three English corpora provided (en lines, en ewt, en gum) without treebank embeddings (tr), since we did not know which corpus embedding would perform better. In addition, we did not apply our ensemble process on TIRA since it would have been too time consuming.

Our results are listed in Table 4. They include an intrinsic evaluation (overall performance of the parser on the different corpora considered as a whole) [START_REF] Nivre | Universal dependency evaluation[END_REF] and taskspecific evaluations (i.e. results for the three different tasks). In the intrinsic evaluation, we obtained the best LAS among all the participating systems, which confirms the portability of our approach across different domains. As for the taskspecific evaluations, we obtained the best result for event extraction, but our parser did not perform so well on negation resolution and opinion analysis. This means that specific developments would be required to properly address the two tasks under consideration, taking semantics into consideration.

Conclusion

In this paper, we described the SEx BiST parser (Semantically EXtended Bi-LSTM parser) developed at Lattice for the CoNLL 2018 Shared Task. Our system was an extention of our 2017 parser [START_REF] Lim | A system for multilingual dependency parsing based on bidirectional lstm feature representations[END_REF] with three deep contextual representations (multilingual word representation, corpus representations, ELMo representation). It also included a multi-task learning process able to simultaneously handle tagging and parsing. SEx BiST achieved 73.02 LAS (4 th over 26 teams), and 78.72 UAS (2 nd out of 26), over the 82 test corpora of the evaluation. In the future, we hope to improve our sentence segmenter and our tokenizer since this seems to be the most obvious target for improvements to our system. The generalization of ELMo representation to new languages (beyond what we could do for the 2018 evaluation) should also have a positive effect on the results.

Table 1 :

 1 The seeds are integers randomly produced by the Official experiment results for each corpus, where tr (Treebank), mu (Multilingual) and el (ELMo) in the column Method denote the feature representation methods used (see Section 2 and 3).

		Corpus		UAS	LAS Rank(UAS) Rank(LAS) Baseline(LAS)
		Overall (82)		78.71 73.02	2	4	65.80
		Big treebanks only (61)	85.36 80.97	4	7	74.14
		PUD treebanks only (5)	76.81 72.34	3	3	66.63
		Small treebanks only (7) 75.67 68.12	2	3	55.01
		Low-resource only (9)	37.03 23.39	4	5	17.17
	Corpus	Method UAS(Rank) LAS(Rank)	Corpus	Method UAS(Rank) LAS(Rank)
	af afribooms		87.42 (7)	83.72 (8)	it isdt	tr	92.41 (6)	89.96 (8)
	grc perseus	tr	79.15 (4)	71.63 (8)	it postwita	tr	77.52 (6)	72.66 (7)
	grc proiel	tr	79.53 (5)	74.46 (8)	ja gsd	tr, el	76.4 (6)	74.82 (6)
	ar padt		75.96 (8)	71.13 (10)	ja modern		29.36 (8)	22.71 (8)
	hy armtdp	tr, mu	53.56 (1)	37.01 (1)	kk ktb	tr, mu	39.24 (15)	23.97 (9)
	eu bdt		85.72 (7)	81.13 (8)	ko gsd	tr, el	88.03 (2)	84.31 (2)
	br keb	tr, mu	43.78 (3)	23.65 (5)	ko kaist	tr, el	88.92 (1)	86.32 (4)
	bg btb		92.1 (9)	88.02 (11)	kmr mg	tr, mu	38.64 (3)	27.94 (4)
	bxr bdt	tr, mu	36.89 (3)	17.16 (4)	la ittb	tr	87.88 (8)	84.72 (8)
	ca ancora		92.83 (6)	89.56 (9)	la perseus	tr	75.6 (3)	64.96 (3)
	hr set		90.18 (8)	84.67 (9)	la proiel	tr	73.97 (6)	67.73 (8)
	cs cac	tr	93.43 (2)		91 (2)	lv lvtb	tr	82.99 (8)	76.91 (11)
	cs fictree	tr	94.78 (1)	91.62 (3)	pcm nsc	tr, mu	18.15 (21)	11.63 (18)
	cs pdt	tr	92.73 (2)	90.13 (7)	sme giella	tr, mu	76.66 (1)	69.87 (1)
	cs pud	tr	89.49 (7)	83.88 (9)	no bokmaal		91.4 (5)	88.43 (11)
	da ddt		85.36 (8)	80.49 (11)	no nynorsk	tr	90.78 (8)	87.8 (11)
	nl alpino	tr	90.59 (2)	86.13 (5)	no nynorsklia	tr	76.17 (2)	68.71 (2)
	nl lassysmall	tr	87.83 (2)	84.02 (4)	cu proiel		77.49 (6)	70.48 (8)
	en ewt	tr, el	86.9 (1)	84.02 (2)	fro srcmf		91.35 (5)	85.51 (7)
	en gum	tr, el	88.57 (1)	85.05 (1)	fa seraji		89.1 (7)	84.8 (10)
	en lines	tr, el	86.01 (1)	81.44 (2)	pl lfg	tr	95.69 (8)	92.86 (11)
	en pud	tr, el	90.83 (1)	87.89 (1)	pl sz	tr	92.24 (9)	88.95 (10)
	et edt		86.25 (7)	82.33 (7)	pt bosque		89.77 (5)	86.84 (7)
	fo oft	tr, mu	48.64 (9)	25.17 (17)	ro rrt		89.8 (8)	84.33 (10)
	fi ftb	tr	89.74 (4)	86.54 (6)	ru syntagrus	tr	93.1 (4)	91.14 (6)
	fi pud	tr	90.91 (4)	88.12 (6)	ru taiga	tr	79.77 (1)	74 (2)
	fi tdt	tr	88.39 (6)	85.42 (7)	sr set		90.48 (10)	85.74 (11)
	fr gsd	tr, el	89.5 (1)	86.17 (3)	sk snk		86.81 (11)	82.4 (11)
	fr sequoia	tr, el	91.81 (1)	89.89 (1)	sl ssj	tr	87.18 (10)	84.68 (10)
	fr spoken	tr, el	79.47 (2)	73.62 (3)	sl sst	tr	63.64 (3)	57.07 (3)
	gl ctg	tr	84.05 (7)	80.63 (10)	es ancora		91.81 (6)	89.25 (7)
	gl treegal	tr	78.71 (2)	73.13 (3)	sv lines	tr	85.65 (4)	80.88 (6)
	de gsd		82.09 (8)	76.86 (11)	sv pud	tr	83.44 (3)	79.1 (4)
	got proiel		73 (6)	65.3 (8)	sv talbanken	tr	89.02 (4)	85.24 (7)
	el gdt		89.29 (8)	86.02 (11)	th pud	tr, mu	0.33 (21)	0.12 (21)
	he htb		66.54 (9)	62.29 (9)	tr imst		69.06 (7)	60.9 (11)
	hi hdtb		94.44 (8)	90.4 (12)	uk iu		85.36 (10)	81.33 (9)
	hu szeged		80.49 (8)	74.21 (10)	hsb ufal	tr, mu	54.01 (2)	43.83 (2)
	zh gsd	tr, el	71.48 (5)	68.09 (5)	ur udtb		87.4 (7)	80.74 (10)
	id gsd		85.03 (3)	77.61 (10)	ug udt		75.11 (6)	62.25 (9)
	ga idt		79.13 (2)	69.1 (4)	vi vtb		49.65 (6)	43.31 (8)
	Corpus	Projected languages UAS LAS			
	hy armntdp		Greek	1	1			
	br keb		English	3	5			
	bxr bdt		Russian	3	4			
	fo oft		English	9	17			
	kk ktb		Turkish	15	9			
	kmr mg		English	3	4			
	pcm nsc		-	21	18			
	sme giella	Finnish+Russian	1	1			
	th giella		English	21	21			
	hsb ufal		Polish	2	2			
					148			

Table 2 :

 2 Languages trained with multilingual word embeddings and their ranking.

	Representation Methods UAS LAS
	baseline	81.79 78.45
	+em	83.39 80.15
	+em, tr	83.67 80.64
	+em, el	85.47 82.72
	+em, tr, el	85.49 82.93

Table 3 :

 3 Relative contribution of the different representation methods on the overall results.

Table 4 :

 4 Official evaluation results on three EPE task (see https://goo.gl/3Fmjke).

Note that i refers to the i th token in the sentence and that j refers to the j th character of the i th token. Here, we use lowercase italics for vectors and uppercase italics for matrices. So

http://opus.nlpl.eu/

https://github.com/jujbob/ multilingual-models

http://hdl.handle.net/11234/1-1989

https://github.com/allenai/allennlp

http://epe.nlpl.eu/

Acknowledgments

KyungTae Lim is supported by the ANR ERA-NET ATLANTIS project. This work is also supported by the LAKME project funded by IDEX PSL (ANR-10-IDEX-0001-02). Lastly, we want to thank the National Science & Technology Information (NTIS) for providing computing resources and the Korean national R&D corpora.