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Energy Efficiency Analysis of LoRa Networks
Lam-Thanh Tu, Abbas Bradai Senior Member, IEEE, Yannis Pousset and Alexis I. Aravanis

Abstract— In the present letter, a closed-form framework is
derived for the system-level modelling, analysis and optimization
of the energy efficiency (EE) in LoRa networks. The proposed
framework is derived by exploiting stochastic geometry tools and
associates the Long Range (LoRa) EE with the density of end-
devices (EDs) and the ED transmit power. The analysis reveals the
trends of the EE curve with respect to each of the two parameters
while revealing the existence of an optimal transmit power that
maximizes the EE. Thus, the proposed framework arises as a
valuable tool, of significant practical value, for the optimization
of the receiver/transmitter design, and of the network deployment
in LoRa networks. The robustness of the framework is verified
even at the asymptotic cases of fully-loaded or sparsely-loaded
LoRa networks.

Index Terms— LoRa, LPWAN, LoRaWAN, Energy Efficiency,
Stochastic Geometry, System-Level Analysis.

I. INTRODUCTION

The advent of the Internet of Things (IoT) and the exponen-
tial increase of IoT devices, has shaped, to a great extent, the
emerging 5G networks through the development of relevant 5G
services, such as the massive machine-type communications
(MTC). IoT devices are also expected to play an instrumental
role beyond 5G, spearheading the development of 6G net-
works. Particularly, as opposed to the local connections in
5G, IoT devices in 6G are expected to be connected, over
large networks, under holistic ”smart city” frameworks [1]. In
this course, the development of long range, low power wide
area networks (LPWAN) is of paramount importance, in order
to support energy efficient and scalable IoT networks of wide
coverage [2]–[4].

One of the key technologies ushering IoT networks and
particularly LPWAN into this new era is the Long Range
(LoRa) patented technology. LoRa is employed for delivering
power-efficient, long-distant transmissions in LPWAN [3].
LoRa can be applied to a wide range of IoT devices and
applications that belong to different quality-of-service (QoS)
tiers. Such applications include smart buildings, smart cities,
smart agriculture, and smart metering of critical infrastructure
such as water reserves [3]. LoRa can support this wide
variety of applications through the appropriate adjustment of
its intrinsic parameters, such as the spreading factor (SF),
the coding rate (CR) and the bandwidth (BW). To exploit
this flexibility and devise relevant optimization strategies, for
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the network deployment and receiver/transmitter design, the
system-level analysis of LoRa networks is imperative.

In this direction, stochastic geometry (SG) tools and the
theory of spatial point process has been employed for mod-
elling random deployments of end-devices (EDs) in LoRa net-
works, toward providing tractable network models amenable
to optimization. Such SG performance analyses of LoRa
networks were provided in [5], [6]. In particular, the authors
of [5] employ the SG introduced metric of coverage proba-
bility (Pcov) (i.e. the complementary cumulative distribution
function (CDF) of the signal-to-interference-plus-noise ratio
(SINR)) for the analysis of LoRa networks, assuming however,
for the sake of simplicity, that the spatial correlations between
the signal-to-noise ratio (SNR) and the signal-to-interference
ratio (SIR) at the gateway are independent. Building upon this
framework, a novel, closed-form expression of the Pcov was
introduced in [6] taking into account the correlation between
the SNR and SIR at the gateway. This work however, focuses
on the spectral efficiency (SE) aspects of the system rather than
the energy efficiency (EE) aspects, that are examined herein.
The Pcov has also been employed to examine EE network
aspects, like in the case of [7] where the authors focus on
the EE aspects of heterogeneous cellular networks (HetNets).
However, such HetNets are fundamentally different from LoRa
networks. As a result, the differences in protocols and radio
interfaces give rise to fundamentally different mathematical
frameworks and analyses, than the one examined herein.

Overcoming these above-mentioned limitations, the present
paper provides a holistic framework for the system-level
performance analysis of LoRa networks with respect to the
EE. In particular, the system-level EE of LoRa networks is
computed, herein, by a closed-form expression, for the first
time in the literature (to the best of the author’s knowledge),
while the accuracy of the framework is validated by relevant
simulations. More importantly, the derived expressions asso-
ciate the overall network EE to fundamental network and ED
design parameters, allowing for the optimal receiver design
and the optimization of the LoRa network parameters, with
respect to the maximization of the network EE.

II. SYSTEM MODEL
A. LoRa Network Modeling

Let us consider an uplink LoRa network comprising a single
gateway located at the centre of a disc of radius R. A set
of EDs is overlaid within the disc, following a homogeneous
Poisson point process (PPP) of density λ = N/Y . N is the
average number of EDs and Y = πR2 is the area of the disc,
which is divided into six non-overlapping regions. These six
regions are defined by 6 concentric cycles, giving rise to a
central disc region and five regions at the outer rings. Each
region is assigned a unique SF denoted by k ∈ {7, . . . , 12}.
The SF of each region increases monotonically with the
distance from the gateway. Hence, the closer to the gateway,
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TABLE I: LoRa characteristics [5]

SF, k γD [dBm] Range
7 -6 0 - R/6
8 -9 R/6 - R/3
9 -12 R/3 - R/2

10 -15 R/2 - 2R/3
11 -17.5 2R/3 - 5R/6
12 -20 5R/6 - R

the smaller the SF, as depicted in Table I. Signals with different
SFs are perfectly orthogonal [5]; thus, the interference created
by EDs of SF k̃, k̃ 6= k ∈ {7, . . . , 12}, is cancelled at the
gateway. The interference from different technologies that may
operate at the same frequencies is also not considered, as is
typically the case in the literature [5].
B. Channel Modelling

The packets sent by the EDs to the gateway are subjected
to large-scale path-loss and small-scale fading. The impact of
the shadowing is not taken into account, as its effects can be
simply incorporated into the analysis by appropriately scaling
the value of λ [8].

1) Small-scale fading: Let us denote by he the small-scale
fading from an arbitrary ED e to the gateway. Assuming
he follows a Nakagami-m distribution of shape and spread
parameters, me and Ωe, respectively, then the channel gain h2

e

follows a Gamma distribution of shape and scale parameters,
me and θe = me/Ωe, respectively.

2) Large-scale path-loss: Considering a transmission link
from an arbitrary ED e to the gateway, the large-scale path-loss
is given by

Le = l (re) = K0r
β
e , (1)

where β > 2 is the path-loss exponent and re is the distance
from ED e to the gateway; K0 = (4πfc/c)

2 is the path-loss
constant, with fc being the carrier frequency and c the speed
of light.
C. ED Power Consumption Modelling

The power consumption of an arbitrary ED of SF k can be
modelled by taking into account the different operational states
of the ED. In particular, an ED can be in one of 11 different
states denoted by Si,k, i ∈ {1, . . . , 11} , k ∈ {7, . . . , 12} [9],
as shown in Table II. In Table II, the duration of each state
i of an ED of SF k, is denoted by TSi,k , i ∈ {1, . . . , 11},
k ∈ {7, . . . , 12}, and only the duration of the states S3, S5 and
S11 depends on the SF of the ED, i.e., TSi,k = TSi ,∀k, i ∈
{1, . . . , 11} \ {3, 5, 11}. For the SF dependent states, TS3,k

refers to the time on air (ToA) of the transmitted packet and
is given by [9]:
TS3,k

= Tsym,kNpac,k (2)
Npac,k = (Npre + 4.25) + 8 (3)

+ max

{⌈
8PL− 4k + 28 + 16CRC − 20H

4 (k − 2DE)

⌉
(4 + Cr) , 0

}
,

where Tsym,k = 2k/Bw is the time to transmit one symbol
under SF k, Bw is the transmission bandwidth, and Npac,k is
the packet length of SF k (in symbols). Npre is the number
of preamble symbols, PL is the physical payload length (in
bytes), and CRC indicates the presence (i.e. CRC = 1) or
absence (i.e. CRC = 0) of a cyclic redundancy check (CRC)
field. H = 0, indicates that the header is enabled and H = 1
that it isn’t. For EDs residing in the close proximity of the

TABLE II: States and current consumption of an ED; with supplied voltage, V = 3.3
volt, [9].

States Description Duration Current [mA] con-
sumption ISiSi TSi [ms]

1 wake up 168.2 22.1
2 radio preparation 83.8 13.3
3 transmission Eq. (2) Itx
4 wait 1st window 983.3 27
5 1st receive window [9, Table 6] 38.1
6 wait 2nd window [9, Eq. 4] 27.1
7 2nd receive window 33.0 35.0
8 radio off 147.4 13.2
9 post processing 268.0 21.0

10 turn off sequence 38.6 13.3
11 sleep Eq. (4) 45 ×10−3

gateway, i.e. for k = {7, . . . , 10}, then DE = 0, whereas
for EDs in distant regions, i.e. for k = {11, 12}, DE = 1,
indicating in the latter case that the low data rate optimization
is enabled. Cr ∈ {1, . . . , 4} is the coding rate and d·e and max
are the ceiling and maximum functions respectively. Last but
not least, the duration of the sleep state, denoted by TS11,k

, is

TS11,k
= Ttot,k −

∑10

i=1
TSi,k , (4)

where Ttot,k = max
{
Tin, (1/ρ)TS3,k

}
is the total time for

one transmission. Ttot,k is defined as the maximum between
the highest permitted ToA in LoRa networks and the inter-
arrival time between two messages, denoted by Tin. ρ ∈ (0, 1]
is the duty cycle.

III. SYSTEM-LEVEL ENERGY EFFICIENCY PERFORMANCE

The system-level EE (measured in bits/Joule) refers to the
number of bits successfully transmitted per unit energy over
the whole network. Mathematically, the system-level EE is
formulated as follows [7]:

EE=

∑12
k=7 ρλkkNpac,kPsuck (γD,k)∑12

k=7 ρλk
(
TS3,k

Ptx + Ecir,k

)
+ (1− ρ)λkEsl,k

, (5)

where λk is the density of EDs of SF k and since the
considered PPP is homogeneous, λk is the same in all regions,
i.e., λk = λ,∀k. Ptx = V Itx is the transmit power of the EDs.
Ecir,k =

∑10
i=1,i6=3 TSi,kV ISi,k is the energy consumption of

an ED of SF k, for all states apart from the transmission
and sleep states. Esl,k = TS11,k

V IS11,k
is then the energy

consumption of an ED of SF k in the sleep state. V is the
supplied voltage and ISi,k = ISi is the current consumption at
state i and is independent of the SF k. In the transmission state
the current consumption is denoted by IS3

= Itx, for simplicity
in the notation, as also defined in Table II. Psuck (γD,k) is the
probability of a successful transmission for an ED of SF k
and is defined by the joint probability [7]

Psuck (γD,k) = Pr {SIRk ≥ γI,SNRk ≥ γD,k} , (6)

where Pr {·} is the probability operator; γI is the rejection
threshold, which does not depend on the SF, k, due to the lack
of inter-region interference across regions of different SFs k
[4] (i.e. only intra-region interference is considered). γD,k is
the QoS threshold which depends on the SF k [6] and is given
in Table I. The SIR and the SNR of EDs with SF k are denoted
by, SIRk = Sk/ISk , and SNRk = Sk/σ

2 respectively, where
Sk = Ptxh

2
0,k/L0,k is the signal received at the gateway from

the ED of interest and ISk = Ptx

∑
i∈ΨAk\(0)

(
h2
i,k/Li,k

)
is
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the aggregate interference created at the gateway, by all active
EDs of SF k apart from the ED of interest; ΨAk\(0) is the
set of active EDs of SF k apart from the ED of interest; h2

0,k,
h2
i,k, L0,k and Li,k are the small-scale fading and large-scale

path-loss, respectively, from the ED of interest and from the
interfering ED i of SF k; σ2 = −174+NF+10 log10 Bw (dBm)
is the additive white Gaussian noise (AWGN) noise variance;
NF and log are the noise figure and the logarithm function.

In LoRa, the number of concurrent transmissions is limited
due to the strict constraint of the duty cycle [5]. As a
consequence, it is commonly assumed that the strongest
interfering signal will dominate the aggregate interference
[5], [6]. Moreover, as proved in [6], the exact closed-
form expression of the Psuc cannot be obtained based on
the instantaneous small-scale fading. Hence, the average
small-scale fading can be employed instead, and due to the
aforementioned assumption the interference created only
by the dominant interferer can be considered, to derive
the following approximation of Psuc: P̃suck (γD,k) =

Pr
{

S̃IRk ≥ γI, S̃NRk ≥ γD,k

}
, where S̃IRk =(

PtxE
{
h2

0,k

}
/L0,k

)
/
(

maxi∈ΨAk\(0) PtxE
{
h2
i,k

}
/Li,k

)
,

S̃NRk = PtxE
{
h2

0,k

}
/
(
L0,kσ

2
)
, and E {·} is the mean

operator. P̃suck (γD,k) is then calculated in Theorem 1.
Theorem 1: Let us define the notations: δ = 2/β, Ak =

πλAk

(
R2
out,k −R2

in,k

)
,Bk =

(
R2
out,k −R2

in,k

)−1

, C =

(FγI/K0)
δ , Dk =

(
γD,kσ

2
)
/Ptx, Qin,k =

F
(
Rβin,kK0

)−1

,Qout,k = F
(
Rβout,kK0

)−1

, F = mθ,
where Rin,k and Rout,k are the inner and outer radius of
the region with SF k, respectively; λAk = ρλk is the active
density of SF k. The approximated probability of successful
transmission for an ED of SF k is then computed as follows:

P̃suck (γD,k) =c3,k [υ1,k (V1 (Qin,k)− V1 (c1,k))

× (AkBkC)−1
+ exp (−Ak) υ4,k

]
, (7)

where exp (·) and min (·) are the exponential and the mini-
mum function; 1 (x) is the indicator function which is equal
to 1 if x > 0 and 0 otherwise; c1,k = max {γIQout,k,Dk},
c2,k = max {Qout,k,Dk}, c3,k = Bk(F/K0)

δ ,
υ4,k = υ1,kυ2,k + υ3,k, υ1,k = 1 (Qin,k − c1,k), υ2,k =(

(c2,k)
−δ − (γIQout,k)

−δ
)

1 (γIQout,k − c2,k), υ3,k =(
(c2,k)

−δ − (Qin,k)
−δ
)

1 (γIQout,k −Qin,k) 1 (Qin,k −Dk),
V1,k (x) = exp (−Aku1 (x)), and u1,k (x) =

BC(x)
−δ

+ 1− BR2
out,k.

Proof: See Appendix I.
It should be noted that as opposed to Psuck that cannot be
defined, P̃suck can be derived in closed-form. This allows for
the formulation of a rigorous mathematical framework that
allows for the study of the trends of the EE with respect to
key network parameters such as λk and Ptx. Moreover, the
P̃suck (γD,k) of Theorem 1 can be computed in closed-form
even if the inter-region interference across regions of different
SFs is taken into account, provided that SIRs of all regions
and SFs are independent to each other.

IV. PERFORMANCE TRENDS

The derived framework is hereafter employed to gain in-
sights into the performance trends of the EE under the impact
of two essential system parameters, i.e., the transmit power
Ptx and the density of EDs λ. For simplicity in the notation
the EE and the P̃suck are denoted by EE = E ($) and
P̃suck = Pk ($) where $ denotes the system parameter that is
under consideration each time. The impact of the two system
parameters, i.e., of $ = λ and of $ = Ptx, is examined by
the following two propositions, respectively.

Proposition 1: Let us denote λ = $, E ($) is a
convex, monotonic decreasing function with respect to $.
When $ → 0, the asymptotic formulation of E ($) is
given by E ($)

$→0
= φ−1

∑12
k=7 ρkNpac,kc3,k (υ4,k + υ5,k)

where υ5,k =
(

(max {Dk, γIQout,k})−δ − (Qin,k)
−δ
)

×1 (Qin,k −max {γIQout,k,Dk}) and φ =∑12
k=7 ρ

(
TS3,k

Ptx + Ecir,k

)
+ (1− ρ)Esl,k.

Proof: See Appendix II.
Remark 1: Proposition 1 proves that network densification

significantly decreases the EE. This effect is antipodal to the
effect of densification (i.e. of the increase of N ) to the spectral
efficiency [6]. Moreover, the asymptotic formulation of E ($)
of Proposition 1 is further simplified if Ptx � 1, and the EE
is then given by E ($) = φ−1

∑12
k=7 ρkNpac,kc3,k.

Proposition 2: Let us denote Ptx = $. E ($) is then a
pseudo-concave function, that can be maximized by the global
optimum denoted by $∗ = P ∗tx.

Proof: See Appendix III.
Remark 2: Proposition 2 evinces that there always exists a

global optimum, i.e., P ∗tx that maximizing the EE. This allows
for optimally configuring the network and the receiver design
to maximize the EE, by optimizing parameters such as the ED
current consumption; as is demonstrated below.

V. NUMERICAL RESULTS

In the present section, numerical results are provided to
verify the accuracy of the proposed mathematical framework
and to substantiate the findings presented in Section IV. In
this direction, a class of IoT devices is considered, (a class
of payment terminals), characterized by certain transmission
parameters that are concretely defined for the framework of
machine to machine (M2M) communications [10]. Unless
otherwise stated, the network and ED parameters are the
following: β = 3.5, Bw = 125 kHz, NF = 6 dBm, γI = 1
dBm, fc = 868 MHz, R = 6000 m, m = Ω = 3.5, H = 0,
Npre = 8, CRC = 1; N = 2000, PL = 24 bytes, Cr = 4/5,
Itx = 80 mA, V = 3.3 volt, and Tin = 120 seconds.

Fig. 1 presents the system-level EE versus the average
number of EDs N for (a) different fading channels, i.e.,
Rayleigh (of m = Ω = 1) and no fading (m = Ω = 20),
and (b) for different payload sizes. We observe that the
proposed framework denoted by “Frame” practically coincides
with the Monte Carlo simulations that account only for the
dominant interferer and the average small-scale fading denoted
by “Max”; and that the proposed approximation is also tight
to the exact Monte Carlo simulations considering aggregate
interference and instantaneous small-scale fading denoted by
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“Sum”. Moreover, the figure verifies the conclusion arising
from Proposition 1 that the network EE decreases with N . The
robustness of the analysis is also highlighted by the fact that
when N tends to zero, the EE tends to the obtained asymptotic
result denoted by “Asym” and not to infinity. In Fig. 1(a), it is
evident that when no fading is considered the network EE is
higher than in the presence of Rayleigh fading. However, as
N increases, and the network transitions from a noise-limited
to an interference-limited regime, both lines converge to the
same point. That is since the network transitions from a regime
where the fading effect on the channel gain is pronounced, to
a regime where it is not. Fig. 1(b) illustrates the impact of
the payload size on the network EE. Higher payload sizes
allow for a higher EE, particularly at the noise-limited regime
(i.e. for small N ). However, since a bigger payload size
entails a longer ToA, as N and implicitly as the interference
increases, this affects the bigger payload sizes more and their
EE converges to the EE of smaller payload sizes.

Fig. 2 depicts the network EE with respect to the current
consumption Itx under (a) different BW values and (b) differ-
ent inter-arrival times between two transmissions, Tin. Again
the tightness of the approximation “Frame” is verified, with
respect to both approximate “Max” and exact Monte Carlo
simulations “Sum”. More importantly, figure 2 verifies the
finding of Proposition 2 that there always exists a global
optimum of Itx (or Ptx) for which the EE reaches its peak.
Fig. 2(a) illustrates also the effect of BW onto the LoRa EE. In

particular, doubling the BW improves the EE by approximately
10 bits/Joule for only a minimal increase of Itx. Fig. 2(b)
demonstrates that increasing Tin also improves substantially
the EE, since the SIR increases when Tin increases. That is
since, when Tin increases, more EDs are in sleep mode, hence,
less interference is created.

VI. CONCLUSION
The derived, closed-form framework, fully characterizes the

system EE regarding the transmit power and the density of EDs
in LoRa networks, even in the asymptotic cases. The proposed
scheme is considered as a valuable tool for optimizing receiver
design and network deployment in IoT LoRa networks, of
significant practical value.APPENDIX I

PROOF OF THEOREM 1
In this section, the approximated probability of successful

transmission P̃suck (γD,k) of an ED of SF k, is derived.
Let us commence with the CDF and implicitly with the
the probability density function (PDF) of the approximated
intended signal and of the interference. These CDFs are given
by:

FSk (x)=Pr
{
F/
(
K0r

β
0,k

)
≤ x
}

(a)
=1
(
Rout,k − ((xK0))

−1/β

×F1/β
)[
2Bk

∫ Rout,k

r=max{Rin,k,(F/(xK0))1/β}
rdr

]
=1 (x−Qin,k)

+ Bk
[
R2
out,k − (F/ (xK0))

δ
]

1 (x−Qout,k) 1 (Qin,k − x) ,

fSk (x) = dFSk (x) /dx = δBkFδ(K0)
−δx−δ−1

× 1 (x−Qout,k) 1 (Qin,k − x) ,

FISk (x) = Pr

(
max

i∈ΨAk\(0)

{
F/
(
K0r

β
i,k

)}
< x

∣∣∣∣ i)
(b)
=
∑∞

o=0

(
FISi,k (x)

)o
(exp (−Ak) (Ak)o) / (o!)

(c)
= exp

(
−Ak

(
1− Bk

[
R2
out,k − (F)δ(xK0)

−δ
]

×1 (x−Qout,k) 1 (Qin,k − x)−1 (x−Qin,k))
)
, (8)

where Ak, Bk, F are given in Theorem 1; (a) is attained
by inputting the PDF of the distance r, i.e. fr(x) = 2xBk
and by applying the constraint Rin,k ≤ r0,k < Rout,k; (b)
employs the order statistic for computing the CDF of the
max of o iid random variables (RVs), while averaging over
all possible values of o by employing the probability mass
function (PMF) of Poisson distribution with mean Ak; and
(c) is attained by using the definition of exponential function
exp (x) =

∑∞
i=0 x

i/i!. Having obtained the PDF and CDF of
Sk and ISk , P̃suck (γD,k) is then computed as

P̃suck (γD,k) = Pr
{
S̃IRk ≥ γI, S̃NRk ≥ γD,k

}
(a)
= BkδFδ(K0)

−δ
∫ ∞
x=Dk

x−δ−11 (x−Qout,k) 1 (Qin,k − x)

× exp
(
−Ak

(
1− Bk

[
R2
out,k − x−δ(FγI/K0)

δ
]

× 1 (x− γIQout,k) 1 (γIQin,k − x)− 1 (x− γIQout,k)
))
dx,

= δBkFδ(K0)
−δ (J1 + J2) 1 (Qin,k −Dk) , (9)

where Dk are given in Theorem 1; we obtain (a) by inputting
fSk (x) and FISk (x) into (8); J1 and J2 are given by:

J2 =

(
exp (−Ak)

∫ Qin,k

x=max{Dk,Qout,k}
x−δ−1dx

)
1 (γIQout,k −Qin,k)
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J1 =

(∫ Qin,k

x=max{Dk,Qout,k}
x−δ−1 exp

(
−Ak

(
1− Bk

[
R2
out,k − Cx−δ

]
×1 (x− γIQout,k))

)
dx

)
1 (Qin,k − γIQout,k) . (10)

The integrations J1 and J2 in (10) are evaluated by us-
ing the following: i) given 0 < a < b < +∞ and
0 < c < 1, we have

∫ b
x=a

(x)−c−1dx = c−1
(
(a)−c − (b)−c

)
;

ii) given 0 < a < b < +∞, 0 < c < 1 and
0 < d < +∞, we have

∫ b
x=a

x−c−1 exp
(
−dx−c

)
dx =

(cd)−1 (exp (−db−c)− exp
(
−da−c

))
. Finally, substituting J1

and J2 into (9), concludes the proof.
APPENDIX II

PROOF OF PROPOSITION 1
The behaviour of the EE with respect to the density of EDs

is studied in this section. The EE is given by:

E ($) =

∑12
k=7 ρλkkNpac,kP̃suck (γD,k, λk)∑12

k=7 ρλk
(
TS3,kPtx + Ecir,k

)
+ (1− ρ)λkEsl,k

(a)
=φ−1

∑12

k=7
ρkNpac,kPk ($) , (11)

where φ is defined in Proposition 1, (a) holds due to the
homogeneity of the PPP, i.e., λk = λ,∀k. Hence, the Pk ($)
is identical for all k, and for simplicity the subscript k can
be omitted. Moreover, from (11), it becomes evident that the
behaviour of E (λ = $) is defined only by the behaviour
of Pk ($) = P ($). Hence, studying the trends of P ($)
suffices. The first-order derivative of P ($) is:

.
P ($) =

πρ

B c3
[
L1 ($) υ1

(A ($))2BC
− exp (−A ($)) υ4

]
< 0

L1 ($) = A ($) (u1 (c1)V1 ($; c1)− u1 (Qin)V1 ($;Qin))
− (V1 ($;Qin)− V1 ($; c1)) = (1 +A ($)u1 (c1))

× V1 ($; c1)− (1 +A ($)u1 (Qin))V1 ($;Qin) < 0, (12)

where
.
f (x) = df (x) /dx is the first-order derivative of

f with respect to x. (12) holds due to the fact that
(1 +A ($)u1 (x))V1 ($;x) is a monotonically decreasing
function of x and to the fact that c1 > Qin. From (11) and
(12), it holds that the EE, monotonically decreases with λ.
The convexity of the EE is proven by taking the first-order
derivative of

.
P ($), defined in (12), with respect to $:

..
Pk ($) = c4

[
L2 ($) υ1

(A ($))3BC
+ exp (−A ($)) υ4

]
> 0

L2 ($) = (A ($))2
(
(u1 (Qin))2V1 ($;Qin)− (u1 (c1))

2

× V1 ($; c1))− 2L1 ($) , (13)

where
..
f (x) = d2f (x) /dx2 is the second-order derivative

of f with respect to x, c4,k = (πρ)2(Bk)−1(F/K0)
δ. (13)

holds due to the monotonically decreasing behaviour of
V1 ($;x)

(
(A ($)u1 (x))

2 + 2 (1 +A ($)u1 (x))
)
. To examine

the behaviour of the EE when λ → 0, we compute the limit
of P (ω) as follows:

lim
$→0
P ($)= lim

$→0

c3υ1

BC
(V1 ($;Qin)− V1 ($; c1))

A ($)
+ c3υ4

=c3υ4+(c3υ1/ (BC)) (u1 (c1)−u1 (Qin)). (14)

Finally, by substituting (14) into (11), we obtain E ($ → 0).
APPENDIX III

PROOF OF PROPOSITION 2
In this section, we prove the pseudo-concavity of the EE

with respect to the transmit power, Ptx. By examining the
numerator of the EE in (5) it follows that:

Num (Ptx = $) =
∑12

k=7
GkPk ($) , (15)

where Gk = ρλkkNpac,k; from (15), it can be concluded that
in order to identify the behaviour of Num ($), we need to
examine the trend of Pk ($) that is summed multiple times
over an arbitrary region. It should be noted that since the
Pk ($) summed over all regions, is identical in every region
the subscript k, can be dropped for simplicity. Hence, the
problem reduces to examining the trend of Pk ($). The first
and second-order derivatives of Pk ($) are given by:

.
P ($) = −δ(D ($))−δ−1

( .
D ($)

)
c3

× [V1 (D ($)) υ6 + exp (−A) υ7] ≥ 0
..
P ($)=−δ(D ($))−δ−2

( .
D ($)

)2

c3
[
exp (−Au1 (D ($))) υ6

×
(
(1−δ) + δABC(D ($))−δ

)
+(1− δ) exp (−A) υ7

]
<0, (16)

where
.
D ($) = −

(
γDσ

2
)
/ ($)2, υ6 =

1 (Qin −D) 1 (D − γIQout) and υ7 =

1 (D −Qout) 1 (min {γIQout,Qin} − D),
( ..
D (ω)

)
=

2
(
γDσ

2
)
/ω3 > 0.

From (16), is demonstrated that P ($) is concave function
with respect to the transmit power. Moreover, from (5) it can
be concluded that the denominator of the EE is an affine
function with respect to the transmit power. Hence, the EE is
a pseudo-concave function with respect to the transmit power
[11, Proposition 2.9]. Let us denote c6 =

∑12
k=7 ρλkTS3,k and

c7 =
∑12
k=7 (ρλkEcir,k + (1− ρ)λkEsl,k) then P ∗tx = V I∗tx is

the root of the following non-linear equation.
.
E (P ∗tx) = 0⇔ (P ∗txc6 + c7)

(∑12

k=7
Gk

.
Pk (P ∗tx)

)
− c6

(∑12

k=7
GkPk (P ∗tx)

)
= 0, (17)

P ∗tx is then a global maximum of the EE thanks to the property
of pseudo-concave functions [12, Theorem 21.16] and can be
straightforwardly computed with the help of software such as
Matlab and Mathematica. QED.
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