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Energy Efficiency Optimization in LoRa Networks -
A Deep Learning Approach

Lam-Thanh Tu, Abbas Bradai, Olfa Ben Ahmed, Sahil Garg and Yannis Pousset

Abstract— The optimal transmit power that maximizes energy
efficiency (EE) in LoRa networks is investigated by using deep
learning (DL) approach. Particularly, the proposed artificial
neural networks (ANNs) is trained two times; in the first
phase, the ANNs is trained by the model-based data which are
generated from the simplified system model while in the second
phase, the pre-trained ANNs is re-trained by the practical data.
Numerical results show that the proposed approach outperforms
the conventional one which directly trains with the practical data.
Moreover, the performance of the proposed ANNs under both
partial and full optimum architecture are studied. The results
depict that the gap between these architecture is negligible.
Finally, our findings also illustrate that instead of fully re-
trained the ANNs in the second training phase, freezing some
layers are also feasible since it does not significantly decrease the
performance of the ANNs.

Index Terms— Energy Efficiency, LoRa Networks, Stochastic
Geometry, Deep Learning, Poisson Cluster Process.

I. INTRODUCTION

Energy efficiency (EE) is one of the long lasting problems
in wireless communications systems. However, in the past, the
network operator/planning primarily focused on maximizing
the spectral efficiency (SE) as well as enhancing the coverage
area, as a result, the maximum transmit power was typically
considered as one of the optimal solutions. Nonetheless, such
the approach, of course, reduces dramatically the energy
efficiency. The issue is even more serious since it is expected
that by 2022 there will be 12.3 billion end-devices (EDs) to
be connected to the wireless networks [1] and making the
internet-of-things (IoTs) becomes feasible. As a consequence,
minimizing the power consumption or maximizing the EE
while guaranteeing the SE has been emerged as one of the
most important issues in wireless networks. Despite the fact
that the operation of the base stations (BSs) has been optimized
to maximize the EE of the cellular networks [2], super-
dense deployment makes its too bulky, thus, letting its less
attractable for supporting such a massive low power networks.
Fortunately, the low power wide area network (LPWAN) is
regarded as one of the most suitable technologies thanks to
its properties, i.e., low power consumption, low cost and
wide coverage area [3]. Among all the available LPWAN
techniques, i.e., SigFox, Weightless, NB-IoTs, etc., LoRa is
gained lots of attraction in both academia and industry. By
actively fine-tuning its parameters, i.e., the spreading factor
(SF), the coding rate (CR) and the bandwidth (BW), LoRa is
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able to serve a wide range of IoTs applications/devices, e.g., e-
Health, smart city, smart home, that, in general, have different
quality-of service (QoS).

Deep learning (DL), on the other hand, is proven it-
self as one of the best ones among all machine learning
(ML) techniques when a large number of data are available.
Nevertheless, unlike other domains where the mathematical
modelling is primarily difficult to be performed and the pure
data-driven approach like deep learning seems to be the sole
solution, wireless communications, on the contrary, have al-
ways depended on a robust mathematical modelling for system
design, analyzing, optimization and can be considered as
model-based approach. Nonetheless, as the dramatic evolution
of the wireless networks, i.e., the exponential growth of end-
devices with different applications are connected to wireless
networks, making its more complex, hence, the mathematical
modelling is steadily losing its accuracy as well as mathe-
matical tractability. As a result, deep learning has recently
been commenced applying into wireless communications. The
application of DL in wireless networks, differently, does not
mean that the prior mathematical modelling is ignored. In
fact, the most feasible solution of applying DL in wireless
communications is to combine the advantages of both data-
driven and model-based approach [4]. The main target of this
combination is to synergistically exploit the deep and expert
knowledge from theoretical models even though it may be
inaccuracy and cumbersomeness to facilitate the use of DL in
wireless networks [5]. This approach can also be considered
as transfer learning [6], where the artificial neural networks
(ANNs) is first trained by faults data and then re-trained by
the empirical data. Of course, such the approach requires a
strong mathematical modelling which is as close as possible
to the empirical data in order to attain the highest performance.
As a result, in this paper, we maximize the energy efficiency in
LoRa networks by combining the model-based and data-driven
approach.

The performance of the energy efficiency in LoRa networks
were studied in [7], [8] In [7], the energy efficiency was
investigated by considering other medium accesses rather than
pure ALOHA. By jointly exploiting user scheduling and SF
assignment, the maximization of system EE was investigated
in [8]. In spite of the use of DL has recently been received
tremendous attention in cellular networks, its application in
LoRa networks is still in infancy stage. There were a few
works which applied ML/DL in LoRa networks, [9], [10].
Particularly, in [9], the process of networks configuration was
formulated as a rerinforcement learning (RL) problem. The
time difference of arrival positioning method in LoRa networks
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was improved by applying deep learning in [10].
In the present work, different to these above-mentioned

papers, we maximize the energy efficiency in LoRa networks
respect to the transmit power under practical scenarios where
the distribution of the end-devices and the small-scale fading
follow general distributions, i.e., the Poisson cluster processes
(PCP) and the Nakagami-m distribution, combined with the
imperfect power consumption at the end-devices. Of course, it
is crystal clear that the optimal transmit power that maximizes
the EE under such the general system model can not be
attained based on the mathematical frameworks, thus, the
deep learning approach is utilized instead. Our proposed DL
approach (called double training approach), however, requires
a relatively small practical data to attain the high accuracy
output and is different to the conventional approach (called
direct training approach) where a large number of practical
data is imperatively needed in order to fully train the ANNs.
To realize such the well-trained neural networks with a relative
small practical data, the proposed artificial neural networks
is trained two times. In the first training phase or pre-trained
phase, the proposed ANNs is trained based on the model-based
data and in the second training phase, the pre-trained ANNs is
re-trained based on the practical data. Here, the model-based
data in the first training phase are generated based on the math-
ematical frameworks under the simplified system model that
may be inaccuracy but may provide some expert knowledge
and can be helpful for the second training; the practical data in
the second training phase, diversely, are uniquely generated by
Monte Carlo simulation that is resources-consuming compared
to the mathematical frameworks. To be more specific, the main
contributions and novelties of this paper are summarized as
follows: i) the distribution of the end-devices and the small-
scale fading follow Poisson cluster processes and Nakagami-
m distribution, respectively; the power consumption at EDs
is impaired by an additive noise that follows either Gaussian
or uniform distribution; ii) the closed-formed expression of
the energy efficiency under the simplified system model is
provided; iii) the first training set is generated by deploying
the mathematical frameworks under the simplified system
model. Particularly, the optimal transmit power in this phase
is attained by numerical solving a non-linear equation; iv)
the proposed double training approach outperforms the direct
training approach under all considered metrics, i.e., the mean
square error (MSE) and R squared, R2, or the coefficient of
determination; v) our findings show that increasing training
data monotonically ameliorates the performance of the neural
networks. Nonetheless, enhancing the ANNs performance by
raising either the number of epochs or the number of neurons
does not always benefit; vi) the performance of the ANNs
under various optimal network architecture, i.e., partial and
full optimum architecture, are investigated. The findings depict
that the gap between these optimum architecture is negligible,
thus, the partial optimum architecture is preferable provided
that the resources consumption are taken into account; and
vii) our findings also illustrate that it is feasible to freezing
some layers during the second training phase which does not
significantly affect the performance of the ANNs.

The rest of this paper is organized as follows. In Section
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Fig. 1. Schematic of the considered artificial neural networks

II, the considered system model is presented. In Section III,
we formulate the optimization problem and the design of
the proposed neural networks is provided in Section IV. In
Section V, the performance of the proposed ANNs is evaluated
and discussed under various scenarios. Finally, Section VI
concludes the paper.

Notations: Pr (.) and E {.} are the probability and the
expectation operators; max {.}, min {.} and exp (.) being
the maximum, minimum and exponential function; uppercase
boldface letters for vectors; |X| is the size of set X; 1 (x)
is the indicator function which is equal to 1 if x > 0 and
0 otherwise; log (.) is the logarithm function; FX (x) and
fX (x) being the cumulative distribution function (CDF) and
the probability density function (PDF) of random variable
(RV) X;

.
f (x) is the first-order derivative of function f over

x,
.
f (x) = df (x) /dx.

II. SYSTEM MODEL
A. LoRa Networks Modeling

Let us consider an uplink single gateway LoRa networks
where the gateway is located at the center of the disc with area
A = πR2, here, R is the network radius and a number of EDs
which follow Poisson cluster processes (or doubly Poisson
point processes), with density λC > 0, inside A and λC = 0,
otherwise. In particular, in this work we consider two notable
Poisson cluster processes, i.e., the Matérn and the Thomas
cluster process with corresponding density λMat = λPCMat

and λTho = λPCTho, where λP is the density of the parent
point process and Cu, u ∈ {Mat,Tho}, is the average number
of offspring per cluster in the u cluster process [11]. The
offspring of the Matérn cluster process are independently and
uniformly distributed in a disc of radius rMat around the parent
point while the offspring of the Thomas cluster process are
scattered with variance σ2

Tho around each parent point.
B. Channel Modelling

Let us consider a generic signal from an arbitrary ED to
the gateway, it is impaired by both the small-scale fading and
large-scale path-loss. It should be emphasized that the impact
of the shadowing is implicitly studied by modifying the density
of the EDs [2].

1) Small-scale fading: Let us denote hq is the fading from
an arbitrary node q to the gateway which follows Nakagami-m
distribution with corresponding shape and spread parameters,
i.e., m ≥ 1/2 and Ω. There is no doubt that Nakagami-m
fading is one of the most general fading distributions that can
represent other well-known distributions by properly adjusting
its shape parameter, e.g., m = 1, is the Rayleigh fading and
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m = 1/2, is the single-sided Gaussian distribution. In addition,
assuming that time is slotted (slotted ALOHA medium access
[7]) and the fading remains constant during one time-slot and
changes between time-slot.

2) Large-scale path-loss: Consider a transmission link
from a generic node q to the gateway, the large-scale path-
loss is formulated as ρq = K0r

β
q , (1)

where β > 2 and K0 = (4πfc/c)
2 are the path-loss exponent

and the path-loss constant, respectively; fc is the carrier
frequency and c = 3× 108 (in meter per second) is the speed
of light; and rq is the distance from node q to the gateway.

C. Power Consumption Modelling

Assuming that the ED is operated either in transmission
mode or sleep mode. To be more precise, the ED is considered
in transmission mode providing that it transmits packets to the
gateway and in sleep mode otherwise. The power consumption
under transmission mode comprises of two parts, i.e., the
transmit power, Ptx, and the static (circuit) power, Psta; while
in the idle mode, the ED consumes Pidl power. Here, the static
power consumption comprises of all other power consumption
excluding the transmit power in the transmission mode, i.e.,
wake up, radio preparation, wait and receive the 1st and 2nd
windows, radio off and so on. Furthermore, we also consider
the impact of the hardware impairment on the static and idle
power; indeed, the static and idle power are impaired by
an additive noise which follows either Gaussian or uniform
distribution. As a result, the practical static and idle power
denoted as P̃sta and P̃idl are written as follows:

P̃sta = Psta + ωsta, P̃idl = Pidl + ωidl, (2)

where ωx, x ∈ {sta, idl}, is the random variable (RV) and
Psta and Pidl are the ideal static and idle power.

III. PROBLEM FORMULATION

In this work, the principal objective is to identify the optimal
transmit power denoted as P ∗tx that maximizes the energy
efficiency (in bits/Joule) of whole networks given a set of input
parameters, i.e., the fading parameters included both shape and
spread factor, the transmission bandwidth, the spreading factor,
the coding rate, the inter-arrival time between two packets, Tin,
the packet length, Lpac, the path-loss exponent, the density of
the PCP, λC , and the imperfection static and idle power as
shown in Fig. 1. Particularly, the problem in Fig. 1 can be
formulated as follows:

max
Ptx∈[Pmin

tx ,Pmax
tx ]

EE= PSE
Pcon = λABWlog2(1+γD)Pcov(γD)

λA(Ptx+P sta)+(λC−λA)P idl
. (3)

It is noted that the range of the transmit power in (3),
without loss of generality, can go from zero to infinity, i.e.,
Pmin

tx → 0 and Pmax
tx →∞; where PSE refers to the potential

spectral efficiency (in bits/s/m2) that measures number of
bit successfully transmitted per unit area and is formulated
as λABWlog2 (1 + γD) Pcov (γD); Pcov (γD) is the coverage
probability of an arbitrary link and formulated as

Pcov(γD)=Pr

{
SIR=

S

IS
≥ γI,SNR=

PtxS

σ2
≥ γD

}
, (4)

where SIR is signal-to-interference ratio and is computed
as SIR = PtxS0

PtxIS
=

Ptxh
2
0/ρ0

Ptx
∑
i∈ΦA\(0) h

2
i /ρi

; S0 is the signals
from the ED of interest to the gateway; IS is the aggregate
interference from all active EDs except for the desired one;
assuming that packets with different spreading factor are
perfectly orthogonal, hence, there is no inter spreading factor
interference at the gateway [12]; h2

0 and ρ0 being the channel
gain and large-scale path-loss of the ED of interest while h2

i

and ρi are the channel gain and the large-scale path-loss from
interferer i to the gateway; ΦA\ (0) is the set of active EDs
except for the desired ED which density λA = pAλC under the
considered area; where pA = 1

Tin

Lpac

Rbit
being active probability.

In this work, assuming that the length of the packet, Lpac,
is identical among all EDs and Rbit is the bit rate which
is computed as Rbit = SF BW

2SF CR [3]. SNR is the signal-to-
noise ratio and is formulated as SNR = PtxS0/σ

2 where
σ2 = 10(−174+NF+10 log10 BW)/10 [12] is the noise variance
of the AWGN noise; NF is the noise figure (in dBm) at
receiver. In (3), Pcon is the average power consumption of
the whole networks measured in Watt/m2; the first term of
Pcon, λA

(
Ptx + P sta

)
, accounts for the power consumption

under transmission mode and the remain term, (λC − λA)P idl

is under idle mode; where P x = Px + E {ωx}, x ∈ {sta,idl},
is the average dissipation of the static and idle power.

It is apparent that the most intuitive approach to solve the
optimization problem in (3) is to compute the EE in closed-
form expression followed by solving a non-linear equation to
obtain P ∗tx. However, as shown in the sequel, it is impossible
to obtain the closed-form expression of the EE under the
considered system model. Moreover, even the distribution of
the distance from an arbitrary node to the gateway as well as
the aggregate interference are also unfeasible to represent in
the closed-form expressions. Especially, by direct inspection
(3), it is evident that the framework of the Pcov is essential in
order to compute the EE, let us formulate the Pcov as follows:

Pcov (γD) =

∫ ∞
s=σ2γD/Ptx

FIS (s/γI) fS (s) ds, (5)

where fS (s) and FIS (x) are the PDF of the intended signal
and the CDF of the aggregate interference. Nonetheless, the
CDF of IS has never existed even with the simplest scenario,
i.e., the EDs follow Poisson point process (PPP); the PDF
of the intended signal, on the contrary, can be computed
in the closed-form expression under some special cases, for
example, the EDs follow PPP combined with Rayleigh fading
and special value of the path-loss exponent. It, as a result, is
unworkable to obtain the closed-form expression of both Pcov
and EE even with the simplest case [13].

As a result, in this paper, we are going to find the P ∗tx
by using deep learning approach. Nevertheless, different to
the conventional DL approach that requires enormous training
data to fully train the ANNs or simply called the data-driven
approach. In this manuscript, we synergistically combine the
model-based with the data-driven approach to derive the
optimal transmit power in (3). To do so, we split the training
process into two phases instead of one as the conventional
approach. In the first training phase, the ANNs is trained by
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P̃ (γD) =M−1(γI)
−α

(1− exp (−Mmin {(AγI)
α
, 1})) + exp (−M)

(
min {Aα, 1} − (γI)

−α
)
1 (AγI − 1) (6).

P̃ (x) =
.
A (x)α(A (x))

α−1
(exp (−M(A (x) γI)

α
)1 (1−A (x) γI) + exp (−M)1 (A (x) γI − 1)1 (1−A (x))) (8)

the model-based data which may be simplified and inaccuracy
but can bring some expert knowledge and useful for the second
phase. In the second training phase, the pre-trained ANNs is
re-trained by utilizing a small amount of practical data which
are generated via Monte Carlo simulation. In next section, the
design of the proposed neural networks as well as the detail
description of the training process are provided.

IV. DESIGN OF THE NEURAL NETWORKS
In this section, the proposed ANNs networks is designed

from creating the data to selecting the optimal architecture
of the ANNs as well as identifying the performance metrics
which are used to evaluate the performance of the ANNs.
A. Generate data set

1) First training phase (pre-train phase) data set: It is
obvious that data is the most important element of any
neural networks. Under the considered system model, it is
unreasonable to obtain a large number of data from either
Monte Carlo simulations due to the resources constraint or
the frameworks owing to the mathematical intractability as
discussed in Section III. Consequently, in this section, we are
going to simplify the system model in Section II so that the
closed-form expression of the EE and the optimal transmit
power, P ∗tx, can be numerically obtained.

Particularly, the simplified system model is described as
follows: i) assuming that the ED is no longer followed PCP
but PPP with density λP ; ii) the ideal static and idle power
at EDs; and iii) the aggregate interference is approximated by
the dominant interferer [12] and the instantaneous fading by
its average [13]. Other assumptions are remained the same
as Section II. Based on these assumptions, the approximated
coverage probability denoted as P̃ (γD) is computed in (6)
at the top of this page. Here, α = 2/β, M = pAλPπR

2,
A = mθPtx

RβK0σ2γD
and 1 (x) is the indicator function.

Having the approximated Pcov in hand, the optimal transmit
power under the simplified system model denoted as P̃ ∗,1tx , is
obtained by solving following non linear equation:.

P̃ (Ptx)Q (Ptx)− P̃ (Ptx)
.
Q (Ptx) = 0, (7)

where
.
P̃ (x = Ptx) is the first-order derivative of the approxi-

mated Pcov respect to the transmit power and is computed in
(8) at the top of this page and

.
Q (x) = pAλP is the first-

order derivative of the average power consumption respect
to Ptx; Q (x) = λA

(
Ptx + P sta

)
+ (λC − λA)P idl and.

A (x = Ptx) = dA/dx = mθ
RβK0σ2γD

, respectively.
2) Second training phase (re-train phase) data set: The

data in this phase are created imperatively by employing
Monte Carlo simulation. However, owing to the resources
constraint, a limited amount of data are created compared to
the previous phase.
B. Data normalization

The data set is normalized before putting into the ANNs.
In this work, the simple max-min normalization is applied as
follows:

x =
xori −min (xori)

max (xori)−min (xori)
, (9)

where xori and x ∈ [0, 1] are the input and output of the nor-
malization process. In the sequel, without explicit explanation,
we assume that the data set has already been normalized.

C. Networks Architecture

To maximize the performance of the ANNs, optimizing
the networks architecture, i.e., the optimal number of hidden
layers and/or number of neurons of each layer, is essential
along with other hyper-parameters optimization. As the con-
sidered ANNs will be trained two times; it, in theory, exists
two optimal typologies, the first one which merely optimizes
from the 1st training set and another which optimizes from
both the 1st and 2nd training set. In mathematics, the optimal
architecture based on the 1st training set (partial optimum) and
from both 1st and 2nd training set (full optimum) denoted as
N∗1 and N∗1+2 as a function of the number of hidden layers,
L ∈ {Lmin, . . . ,Lmax}, the number of neurons of all hidden
layers are formulated as follows:

N∗1 (L∗1 ,N∗1) = min L
(
L,N|Ψ(1)

)
N∗1+2 (L∗1+2,N

∗
1+2) = min L

(
L,N|Ψ(1) + Ψ(2)

)
, (10)

where N = [N1, . . . ,NL] being a vector which contains num-
ber of neurons of all hidden layers; Nl ∈ {Nmin, . . . ,Nmax},
l ∈ {1, . . . ,L}, is the number of neurons in l-th hidden layer;
Ψ(u), u ∈ {1, 2}, is the training set of u phase; L (.) is the
objective function which needs to be minimized; (L∗a,N∗a),
a ∈ {1, 1+2}, is the optimal solution based on u training set;
{Lmin, . . . ,Lmax} and {Nmin, . . . ,Nmax} are the minimum
and maximum of number of hidden layers and number of
neurons of each layer, respectively.

It is evident that optimizing DL topology in (10) is always
a cumbersome task as it requires not only the skills and
experience of the user, but also the mastery of the data features
[14]. As a result, the grid search method is applied to find out
the optimal architecture with the help of [15]. In addition, to
simplify the search space, we further assume that the number
of neurons of all hidden layers is identical, i.e., N = N . Thus,
the optimization problem in (10) can be re-written as follows:

N∗1 (L∗1 ,N ∗1 ) = min L
(
L,N|Ψ(1)

)
N∗1+2 (L∗1+2,N ∗1+2) = min L

(
L,N|Ψ(1) + Ψ(2)

)
, (11)

In fact, the search space has massively reduced from
T =

∑(Lmax−Lmin)
i=1 (Nmax −Nmin)

i in (10) to T =
(Lmax − Lmin) (Nmax −Nmin) in (11).

Remark 1: It is apparent that the full optimum will the-
oretically provide better performance compared to the partial
optimum. Thus, the main purpose is to clarify the gap between
the partial optimum versus the full optimum. In case the gap
is relatively small, it is more beneficial to employ the partial
optimum than its counterpart provided that the consumed
resources are taken into consideration.
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Fig. 2. The fully-connected feedforward neural networks

D. Loss function

As the considered problem belongs to the regression one,
the typical mean square error is deployed as the loss function
of the ANNs and is formulated as follows:

min MSE = (|Ψ|)−1
∑

j∈Ψ
(yj − ŷj)2

, (12)

where Ψ and |Ψ| are the training set and its size; y is the
observed output and ŷ is the predicted output.

E. Performance Metric

The mean square error and the R squared, R2, or the
coefficient of determination are utilized as the main metrics to
evaluate the performance of the ANNs. As the MSE measures
the average squared difference between the estimated and true
values and is provided in (12); the R2, differently, measures
how close of two sets of data in terms of the distribution.
Mathematical speaking, R2 can be formulated as follows:

R2 = 1− SSres

SStot
= 1−

∑
j∈Ψ (yj − ŷj)2∑
j∈Ψ (yj − y)

2 , (13)

where SSres and SStot are the residual sum of squares and
the total sum of squares. Here, SSres measures the amount
of variability that is left unexplained after performing the
regression while SStot measures the total variance. As a
consequence, if R squared towards 1, it explicitly means that
most of the variability are explained by the model; y =
(|Ψ|)−1∑

j∈Ψ yj is the mean of the observed output.

F. Training process

Considering a fully-connected feedforward neural networks
with L hidden layers, N neurons per hidden layer, one input
layer with I input and single output as shown in Fig. 2. The
input of the ANNs are the path-loss exponent, the fading
parameters, the bandwidth, the coding rate, the spreading
factor, the packet length, the inter-arrival time, the density of
EDs, the practical static and idle power. The single output is
the optimal transmit power, P ∗tx, which is obtained by (7) in the
pre-trained phase or Monte Carlo simulation in the re-trained
phase.

Given a training set, Ψ(u), u ∈ {1, 2}, the training process
is commenced with normalizing the training set by using (9),
followed by forward propagation. Particularly, let us denote xln
as the output signal at neuron n, n ∈ {1, . . . ,N}, in hidden
layer l, l ∈ {1, . . . ,L}, and is computed as

xln = ζ

( V∑
i=1

wli,nx
l−1
i +bln

)
,V =

{
V = I, l = 1
V = N , l 6= 1

, (14)

where wli,n is the weight from node i in layer l− 1 to node n
in layer l; xl−1

i is output of neuron i in layer l−1; when l = 1,
we have x0

i , i ∈ {1, . . . , I}, is the i-th input of the ANNs;
ζ () is the activation function; bln denotes the bias of node n in
layer l. In this work, we utilize the sigmoid activation function
as the training set is normalized to [0, 1]. The predicted output
of the ANNs denoted as ŷ is linearly combined the output of
the last hidden layer with the weight from the last hidden
layer to the output as ŷ =

∑N+1
i=1 wL+1

i xLi + by , by is the bias
of the output. The forward pass ends by computing the loss
function given in (12). The next step is backward propagation
where we compute the gradient of the loss function respect
to all the weights and bias of the networks. This gradient is
then used to update the weights and bias to minimize the loss
function by deploying Adam algorithm with adaptive learning
rate [16] and we finish one training epoch. The training
process is repeated by re-computing the forward and backward
propagation; updating the loss function, weights and bias until
reaching the stopping conditions, i.e., the maximum epoch or
the MSE is smaller than a predefined threshold or the MSE
starts increasing, etc.

Remark 2: In the step back propagation during the second
training phase, it is unnecessary to update all the weights and
bias. In fact, the ANNs can re-train partially instead of fully
re-trained or the weight and bias of some layers can be kept
constant during the second training phase.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are provided to confirm our
findings. Unless otherwise stated, following values are used to
generate the input training set in the first and second phases:
β ∈ [2, 6], m ∈ [0.5, 30], Ω ∈ [1, 50], SF ∈ {7, . . . , 12},
BW ∈ {1, . . . , 500} KHz, CR = 4/(4 + o), o ∈ {1, . . . , 4},
Lpac ∈ {1, . . . , 120} (bytes), Tin ∈ {1, . . . , 90} (minutes),
Pcir ∈ [0.5, 5] (dBm), Pidle ∈ [−10,−5] (dBm), λP = N/πR2

where N ∈ {500, . . . , 100000} and R = 2000 m; γI = 1 dBm,
NF = 6 dBm, fc = 868 MHz; γD is chosen from one of
the following values: γD ∈ {−6,−9,−12,−15,−17.5,−20}
(dBm), which absolutely depends on the utilized SF, e.g., if
SF = 7 then γD = −6 dBm and SF = 12 then γD = −20
dBm, respectively. The range of the output, P ∗tx, in the first and
second phases, on the other hand, are different. Particularly,
the range of the optimal transmit power in the first training
set denoted as P ∗,1tx is from -100 dBm to 60 dBm while the
range of P ∗tx in the second training set denoted as P ∗,2tx , is
only from -40 dBm to 50 dBm. The chef reason behinds this
difference is that P ∗,2tx is obtained via Monte Carlo simulation
which absolutely requires huge resources and efforts, thus, a
limited search space is considered. P ∗,1tx , contrarily, is obtained
by maths which is effortless compared to Monte Carlo method
thus the range can be arbitrarily meaningful numbers.

In addition, in the second training set, Ψ(2), we have
the average number of offspring per cluster, Cu = {2, 6},
u ∈ {Tho, Max}, the radius of each cluster in Matérn cluster
process, rMat = {2, 6} m, and the standard derivation in
Thomas cluster process, σ2

Tho = {0.5, 3}. Moreover, also in
the second training set, Ψ(2), both the static and idle power are
impaired by an additive noise which follows either Gaussian
distribution with zero mean and unit variance (in dBm) or
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Fig. 3. Mean square error (MSE) versus number of epochs of training set
(a) and test set (b) in the second training phase; the blue curves are proposed
approach where the ANNs is pre-trained by model-based data, Ψ(1), and re-
trained with practical data, Ψ(2); the red curves are the conventional approach
which directly trains with Ψ(2). The ANNs architecture is (L = 4,N = 55);
|Ξ| = 500; Matérn cluster process with CMat = 2, rMat = 2 and ωx, x ∈
{sta,idl}, follows Gaussian distribution.

uniform distribution from [-0.5, 0.5] (dBm). The size of the
1st training set is equal to 30000, i.e., |Ψ(1)| = 30000,
while the size of the 2nd training set is less than 2000, i.e.,
|Ψ(2)| ≤ 2000, and the size of the test set denoted as |Ξ| is
always fixed at 500, i.e., |Ξ| = 500. Furthermore, the test set
is solely available for the second training phase. It means that
we do not evaluate the performance of the ANNs after the first
training. It should be noted that the training set in both phases
are able to cover most of the practical environment, i.e., urban
or rural area, as well as the different applications/end-devices
which are applied into various domains, i.e., smart home, smart
city and smart health, etc [17]. In this section, without explicit
stated, the performance from the best epoch is chosen and the
size of the training data indicates the second training phase,
|Ψ(2)|.
A. Direct training versus double training approach

In this section, the performance between the conventional
approach (direct training with the second data set, Ψ(2)) and
the proposed approach are examined.

Fig. 3 illustrates the mean square error of both the training
and test set in second training phase versus number of epochs
of the proposed approach and the conventional approach.
To be more specific, the curves from the double training
approach are firstly trained by 30000 model-based data, i.e.,∣∣Ψ(1)

∣∣ = 30000, in 150 epochs then re-training by either∣∣Ψ(2)
∣∣ = 500 or

∣∣Ψ(2)
∣∣ = 2000, in another 150 epochs.

The conventional approach, on the contrary, is direct training
with the same amount of data of Ψ(2) in 300 epochs. We
observe that our approach outperforms the conventional one
in both training set and test set. Particularly, our approach
is better almost ten times compared to its counterpart. In
addition, it is expected that increasing training set slightly
ameliorates the MSE performance under the proposed method
as its weights and bias have already been configured to the near
optimal values after the 1st training phase. The conventional
one, differently, improves dramatically by soaring number of
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Fig. 4. MSE (a) and R2 (b) vs. number of neurons of each hidden layer,
N , of the test set with different training data size, i.e.,

∣∣Ψ(2)
∣∣; each point

are chosen from the best epoch of that set up. Solid curves are conventional
approach and dash dot curves are the proposed approach. Thomas cluster
process with CTho = 2, σTho = 0.5 and the ideal static and idle power, 4
hidden layers, i.e., L = 4, and |Ξ| = 500.

training data. Fig. 3 also reveals that increasing the number
of epochs is not a wise choice to enhance the performance
of the MSE especially in direct training approach where the
MSE start constant from around 50 epochs (case

∣∣Ψ(2)
∣∣ =

500). Moreover, we experience that 300 and 150 epochs are
sufficient to obtain the stable results for both the conventional
and proposed approach. As a result, in the sequel, this number
of epochs are yielded if no explicit stated.

Fig. 4 shows the performance of the MSE and R2 of both
the conventional and the proposed methods versus the number
of neurons, N , with different values of |Ψ(2)|. Each point
of all curves are chosen from the best epoch that provides
the minimum MSE or the maximum R2 among all epochs.
The results are measured on the test set and it should be
clarified that the best epoch over the test set is not necessary
the same over the training set. We see that the performance of
the conventional approach is constant with N and is regardless
of the metrics, i.e., MSE and R2. It can be interpreted that
the higher number of neurons, N , is not necessary the better
performance under the direct training approach. The double
training approach, on the contrary, is fluctuated and the largest
number or neurons, N = 70, is not necessary the best
performance, the best one, however, is case N = 55 where the
MSE = 1.236×10−4 andR2 = 0.9953 for case

∣∣Ψ(2)
∣∣ = 2000.

It is interesting to point out that although increasing number
of neurons does not always benefit, one is always true that
the larger the training set the better the performance of the
ANNs. Indeed, by rising

∣∣Ψ(2)
∣∣ from 500 to 2000, the R2 of

the conventional approach improves from 0.9252 to 0.9926 and
is better than the R2 of proposed approach case

∣∣Ψ(2)
∣∣ = 500.

Nevertheless, the MSE of the double training approach is
never worse than the direct training one. Even taking the
worst case from the proposed method into comparison, i.e.,∣∣Ψ(2)

∣∣ = 500, its performance is still better than the best one
of the conventional approach, i.e.,

∣∣Ψ(2)
∣∣ = 2000. In addition,

in Fig. 4(b), we also experience that the R2 of the double
training one is never lower than 0.985. It means that only
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Fig. 5. MSE vs. number of epochs in training set (a) and test set (b) of Ψ(2);
solid lines and dot lines are corresponding to

∣∣Ψ(2)
∣∣ = 500 and

∣∣Ψ(2)
∣∣ =

1000, respectively; |Ξ| = 500; the curves ‘conventional’ are direct training
approach and selected from the best architecture based on Ψ(2); the curves
‘partial optimum’ and ‘full optimum’ are proposed approach and selected
from the best architecture based on the Ψ(1) and Ψ(1) + Ψ(2), respectively.
Matérn cluster process with CMat = 6, rMat = 2 and ωx, x ∈ {sta,idl},
follows uniform distribution.

around 1.5% the variability of the test set can not be explained
by the ANNs.
B. Partial vs. Full optimum architecture

In the following, we are going to study the performance of
the proposed approach by measuring the performance of the
partial optimum, N∗1 , versus full optimum architecture, N∗1+2.
The partial optimum architecture means that we select the best
topology based on Ψ(1), and solely utilize this architecture for
Ψ(2). It is re-emphasized that the selection is based only on
the training set. The full optimum architecture, N∗1+2, selects
the architecture that provides the best performance from both
Ψ(1) and Ψ(2).

Fig. 5 unveils the performance of the MSE in both training
set and test set of the second phase versus the number of
epochs with various optimum architecture, i.e., partial and
full optimum. In Fig. 5, in order to have a fair comparison,
the curves from the conventional approach is also chosen
from the best architecture in the same search space as the
proposed approach, i.e., T = (Lmax − Lmin) (Nmax −Nmin).
The conventional approach still underperforms both optimum
architecture from the double training approach though the best
architecture has been selected. In Fig. 5(a), it is crystal clear
that the full optimum architecture is superior compared to the
partial one. Nevertheless, the gap between these curves, in
general, are negligible, for example, 3.99 × 10−5 vs. 6.79 ×
10−5 for

∣∣Ψ(2)
∣∣ = 2000, and 1.34 × 10−4 vs. 1.19 × 10−4

for |Ξ| = 500. In addition, the expenses for this superior
performance is quite expensive in terms of the consumed
resources, namely, in order to attain the best architecture under
full optimum approach, each topology requires to train exactly
300 epochs like the conventional approach while the partial
optimum approach requires only half of each, i.e., 150 epochs.
Mathematical speaking, assuming that the search space has
T = (Lmax − Lmin) (Nmax −Nmin) architecture, then both
the conventional and full optimum approach need 300T
epochs to attain the best architecture while the partial optimum
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Fig. 6. R2 (a) and MSE (b) versus
∣∣Ψ(2)

∣∣; the curves ‘conventional’ are
direct training approach and selected from the best architecture based on the
Ψ(2); the curves ‘partial optimum’ and ‘full optimum’ are proposed approach
and selected from the best architecture based on the Ψ(1) and Ψ(1) + Ψ(2),
respectively. Thomas cluster process with average CTho = 6 and σTho =
0.5 and ωx, x ∈ {sta,idl}, follows uniform distribution.

approach, the epochs’ requirements are only 150 (T + 1).
Again, we experience that surging the training data will
monotonically increase the performance of the ANNs. As a
consequence, in next figure, we investigate in detail the impact
of training data on the performance of MSE and R2.

Fig. 6 illustrates the performance of R2 (a) and MSE
(b) versus |Ψ(2)|. We observe the same pattern as Fig. 4
that, in general, increasing training data will monotonically
improve R2 and decline the MSE of all approaches, i.e.,
conventional, partial and full optimum. However, the pace of
the improvement among these methods are different, namely,
the direct training one enhances almost 10 times in terms of
the MSE when training data rises from 100 to 2000 while for
both partial and full optimum approach, it merely increases
around 3 times. As for the R2, the performance of the partial
and optimum approach are nearly stable and close to one while
the remain one boosts around 5% in case the training data goes
from 100 to 2000. From Fig. 6, it is apparent that in order to
obtain the MSE equal to 10−4, 2000 training data is sufficient
for both optimum architecture. Furthermore, this figure also
confirms the above statement that the gap between the partial
and optimum approach is negligible.

Fig. 7 shows the optimal transmit power, P ∗tx, of three
different ways versus the test set where the samples are sorted
in ascending order. Looking at this figure, there is no surprising
that the direct training approach experiences the biggest error
between the observed output and the predicted one while
the error under the partial and full optimum are relatively
small. To better measure the error between the observation
and the predicted one, let us utilize the mean absolute error
(MAE) which refers to the arithmetic average of the absolute
errors between the observed and predicted values. Then the
MAE under the conventional, the partial and the full optimum
approaches in Fig. 7 are 4.14, 1.47 and 1.35 dBm, respectively.
It is noted that this MAE is computed based on the original
range of the P ∗tx. Hence, if we compute the MAE after
normalizing by (9), the MAE of these approaches are smaller,
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Fig. 8. MSE of the training set (a) and test set (b) versus training data size;
the ANNs architecture is (L = 4,N = 55) (partial optimum architecture);
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follows Gaussian distribution.

i.e., 0.046, 0.009 and 0.008 for the conventional, partial and
full optimum architecture.

C. Re-train whole vs. parts of the ANNs

Fig. 8 illustrates the MSE in both training set and test set
versus |Ψ(2)| by freezing some layers of the considered ANNs
during the second training phase. In particular, we consider
four distinct scenarios; i) re-train whole ANNs or no freezing
denoted as ‘no’; ii) freezing all hidden layers denoted as
‘1st4th’; iii) freezing from the input layer to the 3rd hidden
layer denoted as ‘in3rd’; and iv) freezing from the 2nd hidden
layer to the output layer denoted as ‘2ndout’. In the last 3
cases, the ANNs only re-trains 2 layers, e.g., the input and
output layers for case ‘1st4th’, the input and the 1st hidden
layer for case ‘2ndout’ and the last hidden layer (the 4th hidden
layer) and the output layer for case ‘in3rd’. From the figure,

we observe a fairly large gap between case ‘in3rd’ and others,
in fact, its performance is worse than almost 10 times in both
training and test set. The second worst case is ‘1st4th’ where
the ANNs only updates the weights and bias of the input and
output layers. The best scenario is, of course, the case without
freezing any layers. However, the difference between the best
and the second best case, i.e., case ‘2ndout’, is significantly
small, especially when the training size is adequately large,
i.e., around 2000 data. From Fig. 8, we conclude that the
impact of freezing the input layer and/or hidden layers close
to input on the performance of the ANNs is more serious
than ones close to the output layer. Moreover, by carefully
freezing some layers, the performance of the ANNs slightly
reduces compared with fully re-trained the networks, thus, it
is feasible to freeze some layers in order to save time and
resources when re-training the neural networks.

VI. CONCLUSION

In this paper, the maximization of the EE respect to the
transmit power is studied by combining the advantages of both
model-based in wireless networks and the data-driven of the
deep learning technique. Our findings show that the proposed
training approach outperforms the conventional one almost 10
times under some scenarios. Moreover, the re-training process
can be done either in whole or parts of the ANNs. Finally,
the application of the proposed approach is general to cover
most of EDs distributions as well as to overcome the hardware
impairment at EDs.
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