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Introduction

Analysis of events of financial losses are of great interest because these phenomena are experienced in different fields like finance, insurance, health, engineering, among others. One of the main concerns on these losses is the occurrence of very large values due to unexpected variations, because they may lead to unstable financial situations. Data related to losses may thus include as small as large values. Under stochastic representation of data, this type of analysis is challenging because of the need for considering at the same time different data behaviors, ones for large values and other for small values. In the literature, a number of distribution functions (dfs) have been developed in order to address this data modeling requirement. As strategies for designing these new dfs, it has been mainly proposed the composition of functions as in [START_REF] Bakar | Modeling loss data using composite models[END_REF]; [START_REF] Calderín-Ojeda | Modeling claims data with composite stoppa models[END_REF]; [START_REF] Cooray | Modeling actuarial data with a composite lognormal-pareto model[END_REF]; [START_REF] Grün | Extending composite loss models using a general framework of advanced computational tools[END_REF]; [START_REF] Nadarajah | New composite models for the danish fire insurance data[END_REF]; [START_REF] Reynkens | Modelling censored losses using splicing: A global fit strategy with mixed erlang and extreme value distributions[END_REF]; [START_REF] Scollnik | On composite lognormal-pareto models[END_REF][START_REF] Scollnik | Modeling with weibull-pareto models[END_REF], with stochastic variants as in [START_REF] Pigeon | Composite lognormalpareto model[END_REF], but also modifications of known distributions as in [START_REF] Asgharzadeh | Lindley distribution with application to danish fire insurance data[END_REF]. Finite mixtures of distribution functions (fmdfs) have also been used, as in [START_REF] Frigessi | A dynamic mixture model for unsupervised tail estimation without threshold selection[END_REF]; [START_REF] Hong | Dirichlet process mixture models for insurance loss data[END_REF]; [START_REF] Miljkovic | Modeling loss data using mixtures of distributions[END_REF].

When compositions of models are used, the involved distributions are disposed in such a way that each one is specialized in a type of behavior observed at tails. For instance, if data are right skewed, distributions designed for describing large values are employed. In the case of use of fmdfs, also more than one distribution usually is involved, among them ones for fitting large values and others for fitting small values.

On the other hand, it is recognized that models may be appropriate for some data sets, but not for any data set [START_REF] Miljkovic | Modeling loss data using mixtures of distributions[END_REF]. This fact has motivated us to recently introduce in [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF] a novel strategy for tailoring dfs according to given data sets. This procedure has been successful in an important number of the data sets analyzed in [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF]. The idea is to provide more flexibility to a given df F (x) by modifying its argument through a suitable chosen function g(x), to get a new df F (g(x)) that gives better data fits. This new df is called doped distribution function (ddf). One of the advantages of this mechanism is that g(x) is tailored in function of the data that are analyzed. When considering loss data, the use of ddf may thus take into account particular features of these data. Another advantage of the ddfs is that F (g(x)) remains expressed in only one piece if as F (x) as well g(x) are expressed in one piece. Hence, this kind of function design facilitates their manipulation as in continuity analysis and derivative computations.

For estimating the parameters of F (g(x)) we follow the strategy proposed in [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF], which consists in the use of the maximum likelihood estimation method but using optimization techniques that do not use computation of derivatives.

Next, we extend the idea of univariate ddfs that is one component to several components, when considering fmdfs. There a challenge is to find good initial models. Typically alternatives like k-means or model-based clustering are used. However, these cluster methods have general conditions that are not necessarily appropriate for specific dfs. We propose a procedure based on coarse explorations where the concerned dfs are involved. Then, we apply an algorithm for estimating the parameters of the fmdf, but again considering optimization techniques as those indicated above.

Our aim in this paper is to review fits of the well-known Danish Fire insurance losses (DFIL) when the whole data set is considered. This means that models that have been performed on these data will be reconsidered via their doped versions. Improvements on data fits have impact everywhere dfs are used, for instance on risk measurements. We thus examine how Value at Risk and Tail Value at Risk vary when new fits for Danish data are determined. Another notion of interest is the tail index of resulting dfs. These outputs are also studied.

The rest of this paper is structured as follows. The following section presents the functions g(x) introduced in [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF]. The doped version of the multi-component model is described as well as the strategies for establishing initial models and for estimating their parameters. In Section 3, results on data fits, risk measurements and tail indexes are shown. The last section presents concluding remarks.

Methods

Hereinafter any function in this paper has support (0, ∞).

Families of functions g(x)

The functions g(x) are the main ingredient for doping known dfs. We begin taking into account the functions g(x) introduced in [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF]. They are

g 1 (x) = x k ln(x 2 + 1) d (1) g 2 (x) =
x k ln(x 2 + 1)

d x 2 + q p , (2) 
where k ∈ R \ {0}, d, p ∈ R and q > 0. [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF] provide the following key properties on g(x) and F (g(x)), where F is a given df.

Proposition 2.1. Let F (x) be a differentiable df. Let g 1 (x) and g 2 (x) be the functions defined by ( 1) and (2), respectively. We have:

(i) If d ≥ -1 2 and k > max{0, -2d}, then: (a) g 1 (x) → 0 + as x → 0 + , g 1 (x) → ∞ as x → ∞, and g ′ 1 (x) > 0 for x > 0. (b) F (g 1 (x)) is a df. (ii) If k > max{-2d, 2p, 4(p -d)/(q + 2)}, then: (a) g 2 (x) → 0 + as x → 0 + , g 2 (x) → ∞ as x → ∞, and g ′ 2 (x) > 0 for x > 0. (b) F (g 2 (x)) is a df. (iii) Let g 3 (x) = cg 1 (x) + (1 -c)g 2 (x) for some 0 < c < 1. If d 1 ≥ -1 2, k 1 > max{0, -2d 1 } and k 2 > max{-2d 2 , 2p, 4(p -d 2 )/(q + 2)},
where k i and d i are the parameters k and d, respectively, related to

g i (x), i ∈ {1, 2}, then: (a) g 3 (x) → 0 + as x → 0 + , g 3 (x) → ∞ as x → ∞, and g ′ 3 (x) > 0 for x > 0. (b) F (g 3 (x)) is a df.
As a strategy for estimating the parameters of the ddf F (g(x)) we propose to apply Algorithm 1 described in [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF]. The following result proved in [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF], guarantees the existence of maximum likelihood estimators for the parameters of F (g(x)) given a sample of observations. Proposition 2.2. Let F (x) be a df. Let g(x) be a function as defined in Proposition 2.1. Let X 1 , . . . , X n be a sample of independent and identically distributed random variables following the df F (g(x)). We have that if there exists maximum likelihood estimators for the parameters of F (x) given X 1 , . . . , X n , then there exists maximum likelihood estimators for the parameters of F (g(x)) given X 1 , . . . , X n .

Note that for known dfs there are usually well-known procedures for obtaining maximum likelihood estimates for their parameters. Hence the hypothesis required on F (x) in Proposition 2.2 is satisfied for such dfs.

Doping finite mixture of distribution functions

Since fmdfs present great flexibility for fitting data, we introduce them in this subsection as well as their doped versions.

Let F i (x), i = 1, . . . , K, be differentiable dfs and f i (x), i = 1, . . . , K, be their corresponding pdfs. Let π i , i = 1, . . . , K, be positive constants satisfying

π 1 +• • •+π K = 1. The K-component fmdfs is defined as F (x) = K i=1 π i F i (x).
(3)

The pdf associated to F (x) is thus

f (x) = K i=1 π i f i (x).
We define the doped version of F (x) as

F d (x) = K i=1 π i F i (g i,id (x)), (4) 
where i d ∈ {0, 1, 2, 3} satisfy K i=1 i d > 0, and g i,j (x) = g j (x) for some j = 0, 1, 2, 3, with g 1 (x), g 2 (x) and g 3 (x) as defined in the previous subsection, and we define

g 0 (x) = x. Note that if K i=1 i d = 0, then F d (x) = F (x). Further, the pdf associated to F d (x) is f d (x) = K i=1 π i f i (g i,id (x))g ′ i,id (x). 
Proposition 2.1 can be then immediately extended for F d (x) as follows.

Proposition 2.3. Let F d (x) be the function defined in (4). Assume that, for i = 1, . . . , K, one of the following conditions is satisfied if i d = 1, 2, 3:

(a) i d = 1 and d i,id ≥ -1 2 and k i,id > max{0, -2d i,id }; (b) i d = 2 and k i,id > max{-2d i,id , 2p i , 4(p i -d i,id )/(q i + 2)}; (c) i d = 3 and d i,1 ≥ -1 2, k i,1 > max{0, -2d i,1 } and k i,2 > max{-2d i,2 , 2p i , 4(p i - d i,2 )/(q i +2)},
where k i,j and d i,j are the parameters k and d, respectively, related to g i,j (x), j ∈ {1, 2}.

Then F d (x) is a df.
Denote by θ Fi and θ gi,i d the parameter sets of F i and g i,id , i = 1, . . . , K, respectively, and θ F = (θ F1 , . . . , θ FK ), θ g = (θ g1,1 d , . . . , θ gK,K d ) and θ π = (π 1 , . . . , π K ), and θ = (θ F , θ g , θ π ). For estimating the parameters of the ddf F d (x) given a sample X 1 , . . . , X n of independent and identically distributed (iid) random variables (rvs) following the ddf F d (x), we propose the method of maximum likelihood estimation. The loglikelihood (LL) function from (4) to be maximized, considering that

x = (x 1 , . . . , x n ) are values of (X 1 , . . . , X n ), is ℓ = ℓ(θ) = ℓ(θ|x) = n j=1 log f d (x j ) = n j=1 log K i=1 π i h i (x j ) , where h i (x) = f i (g i,id (x))g ′ i,id (x).
Note that Algorithm 1 proposed in [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF] can be adapted for maximizing ℓ, again using procedures of optimization that do not use computations of derivatives. However, as for any parameter estimation method for mfdfs, an initialization of the model F d (x) is needed. Thus we first present a strategy for such an initialization and after a modification of Algorithm 1 for estimating the parameters of F d (x).

Initializing parameters of F d (x)

There are several techniques for initializing the parameters of a univariate fmdf, mainly those based on clusters, for instance k-means clustering and model-based clustering. The first one of these techniques forms partitions of a data set by minimizing the squared Euclidean distance between the observations. This procedure thus may produce clusters with only a few members if large values among the observations exist but are scarce. With respect to the second technique, it may be appropriate if the models involved in this procedure are directly related to the model to be fitted. In this paper we consider this last clustering alternative as follows.

Consider F (x) defined in (3). Let X 1 , . . . , X n be a sample of iid rvs following the ddf F d (x) and x be values of (X 1 , . . . , X n ). Build a partition C of the sorted data set in K connected subsets. Assume that the i-th subset is to the left of the (i + 1)-th subset, i = 1, . . . , K -1. Let ( F i ) 1≤i≤K be a permutation of (F i ) 1≤i≤K . Next, fit F i (x) to the i-th subset, i = 1, . . . , K. Compute π i as the proportion of observations contained in the i-th subset, i = 1, . . . , K. Then, compute m C,( Fi)1≤i≤K as a maximum of the LL function ℓ C,( Fi)1≤i≤K associated to F (x), but keeping constant the proportions π i , i = 1, . . . , K. Hence, identify a partition C 0 and a permutation ( F i,0 ) 1≤i≤K for which m C0,( Fi,0)1≤i≤K is the maximum of values m C,( Fi)1≤i≤K when varying the partitions and the permutations described above.

The model associated to C 0 and ( F i,0 ) 1≤i≤K is chosen as the initial model for F d (x) and then its parameter estimates θ C0,( Fi,0)1≤i≤K are taken as the initial parameter estimates for F d (x). However, noting that the models θ C0,( Fi,0)1≤i≤K are defined locally, we extend all these models to the whole data by using the internal loop of Algorithm 1 described below. In this way, we get estimates θ C0,( Fi,0)1≤i≤K over all data. We set as initial parameter estimates θ 0 = θ C0,( Fi,0)1≤i≤K .

An algorithm for maximizing ℓ(θ|x)

Now we describe a modification of Algorithm 1 proposed by [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF] in order to maximize ℓ. To this aim, we set θ = (θ F , θ g , θ π ) = (θ 1 , . . . , θ r ), i.e. with r as the total number of parameters of F i , g i,id and π i , i = 1, . . . , K. Note that (θ F , θ g ) = (θ 1 , . . . , θ r-K ).

The actual model F d has much more complexity than the ddf presented in Subsection 2.1. This situation would still limit much more the application of traditional optimization techniques like Newton method, thus we proceed with methods without calculation of derivatives. To this aim, we propose the use of inverse parabolic interpolation (IPI), see e.g. Press, Teukolsky, Bethe, Vetterling, and Flannery (2007), incorporating it in Powell's method [START_REF] Powell | An efficient method for finding the minimum of a function of several variables without calculating derivatives[END_REF]. This procedure consists in to approximate the maximum of ℓ(θ i ) = ℓ(θ i |x, θ j , j = 1, . . . , K, j = i) by using a parabolic curve P (x). This mechanism works with three given points (θ i,1 , ℓ(θ i,1 )), (θ i,2 , ℓ(θ i,2 )) and (θ i,3 , ℓ(θ i,3 )), with θ i,1 < θ i,2 < θ i,3 , which are interpolated using P (x). Then the maximum of P (x) for x ∈ [θ i,1 , θ i,3 ], say P (θ ⋆ i ), is determined. Note that θ ⋆ i may be either an interior point to [θ i,1 , θ i,3 ] or a boundary point. Hence θ ⋆ i is taken as an estimate of θ i .

Algorithm 1 presented in this paper is inspired by Algorithm 1 proposed in [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF], but the new one introduces a double loop because previous experiments evidenced that the convergence to determine π, if any, may be slower than the convergences for other parameters. Hence, an external loop concerns iterations on only π, whereas an internal loop takes charge of iterations on other parameters.

As stopping criteria of Algorithm 1 we consider in step m + 1 of the external (E) loop some of the following two conditions: (1 E ) r i=1 θ m+1,i -θ m,i < 10 -5 , or (2 E ) m + 1 > 10 2 ; and, in step ν + 1 of the internal (I) loop some of the following two conditions: (1 I ) r i=1 θ ν+1,i -θ ν,i < 10 -5 , or (2 I ) ν+1 > 10 3 . Note that this algorithm as for its external as well for its internal loop, may be trapped at local maximum and consequently would fail to reach global maximum.

In practice, as noticed in [START_REF] Cadena | Doping distribution functions for improving data fits[END_REF], some parameters θ gi,i d , i = 1, . . . , K, could be related from each other. Still, some of these parameters could be related to parameters θ Fi , i = 1, . . . , K. We perform these evaluations during and after the execution of Algorithm 1.

The following result provides conditions for proving the existence of estimators for the parameters of F d (x). Its proof follows the one of Proposition 2.2.

Proposition 2.4. Let F d (x) be the function defined in (4). Let X 1 , . . . , X n be a sample of independent and identically distributed random variables following the df F d (x). We have that if there exists maximum likelihood estimators for the parameters of F i (x) given X 1 , . . . , X n , for i = 1, . . . , K, then there exists maximum likelihood estimators for the parameters of F d (x) given X 1 , . . . , X n .

As in the case of Proposition 2.2, the hypothesis required on F d (x) in Proposition 2.4 are always satisfied.

Results

In this section we analyze the whole DFIL. This data set contains 2492 observations on fire insurance losses occurred in Copenhagen from the years 1980 to 1990 inclusive. These losses are expressed in millions of Danish Krone (DKK) and adjusted to reflect 1985 values. These data are publicly available, for instance from R package SMPracticals.

The histogram of the DFIL presented in Fig. 1 shows a high data concentration at very low values and a few non-visualized data very dispersed at high values. Summarized details of these data behaviors are presented in Table 1. There it is noted that Algorithm 1 Calculation of parameter estimates 1: Set dfs F i , i = 1, . . . , K 2: Set functions g i,id , i = 1, . . . , K, and i d ∈ {0, 1, 2, 3}, such that g i,id = g id 3: Set F d as defined in (4) 4: Set x 1 , . . . , x m outcomes of iid rvs X 1 , . . . , X m following F d 5: Initialize θ 0 = ( θ F,0 , θ g,0 , θ π,0 ) from the initialization obtained in Subsection 2.2.1 6: Set m = 0 7: while r i=1 θ m,i -θ m-1,i ≥ 10 -5 if m > 0, and m ≤ 10 2 do ⊲ (E)

8: m ← m + 1 9: Compute θ π,m by applying IPI to ℓ(θ π ) = ℓ(θ π |x, θ F,m-1 , θ g,m-1 , θ π,m-1 ) 10: if ℓ( θ π,m ) > ℓ( θ π,m-1 ) then 11: θ π,m ← θ π,m 12: else 13: θ π,m ← θ π,m-1 14:
end if

15:

Set ν = 0 16: Compute θ • m,ν by applying IPI to ℓ(θ

Initialize θ • m,0 = ( θ F,m-1 , θ g,m-1 ) 17: while r-K i=1 θ • m,ν,i -θ • m,ν-1,i ≥ 10 -5 if ν > 0,
• ) = ℓ(θ • |x, θ • m,ν-1 , θ π,m ) 20: if ℓ( θ • m,ν ) > ℓ( θ • m,ν-1 ) then 21: θ • m,ν ← θ • m,ν 22: else 23: θ • m,ν ← θ • m,ν-1 24: end if 25:
end while 26: the mean value is far from the maximum value, but very near to the minimum value. Further, median reveals the high concentration of observations at low values, less than 1.0 % of the range contains half of observations. These facts thus put in evidence the strong presence of as low as well high values in this data set.

Set ( θ F,m , θ g,m ) = θ • m,
A number of researchers have analyzed this data set in order to improve its fits. Considering the whole data set and parsimony criteria for models as the Akaike information criterion (AIC) and Bayesian information criterion (BIC), some of those reported results sorted by presentation year are shown in Table 2 Regarding our proposed models, we perform several analysis in terms of the number of components of models and of some known dfs. On the number of components K, we examine the cases K = 1 and K = 2. With respect to dfs, we take into account the ones indicated in Table 3.

Distribution function Expression Parameters

Burr type XII (Burr)

1 -1 + x θ γ -α α > 0, θ > 0, γ > 0 Weibull 1 -exp - x θ α α > 0, θ > 0 Log normal Φ ln x -µ σ ( † ) µ ∈ R, σ > 0 Gamma β α Γ(α) x 0 u α-1 e -βu du α > 0, β > 0 † Φ(x)
is the df of a standard normal rv

Table 3. Distribution functions to be analyzed

Additionally, we also focus on some outputs of interest on which new data fits may impact them. For instance, on the one hand, the risk measurements value-at-risk (VaR) and tail-value-at-risk (TVaR) and, on the other hand, the tail index.

The VaR corresponds to quantiles of the df that is examined, whereas the TVaR also known as conditional tail expectation, is the expected value of the losses greater or equal to a given VaR. For a rv X with df F (x), it is defined, for a given quantile 0

< τ < 1, VaR(X, τ ) = F -1 (τ ) TVaR(X, τ ) = E(X|X > F -1 (τ )) = 1 1 -τ ∞ F -1 (τ ) xdF (x).
The tail index is a measure of the heaviness of the tail F (x) of a df F (x) as x → ∞. When such a tail is regularly varying, i.e. F (tx) F (x) → t -ρ as x → ∞, for any t > 0 and for some ρ ≥ 0, then the tail index is ρ. For this type of tails, this index also satisfies the relationship, see [START_REF] Karamata | Sur un mode de croissance régulière. théorèmes fondamentaux[END_REF] and e.g. [START_REF] Cadena | On the order of functions at infinity[END_REF],

lim x→∞ - log F (x) log x = ρ. (5) 
For the dfs that are used in this paper, the previous limit always exists or is equal to infinity. Hence, we define the tail index TI as the limit in ( 5). An interesting feature of the tail index is that the involved df does not have higher moments over the order TI. Note that if TI is equal to infinity, then the involved df has moments of all orders.

With respect to the DFIL, computations of its TI have been provided by authors. Some of them used extreme value theory (evt), which takes into account only partial information for those computations. Among them we have McNeil McNeil (1997) who obtained for instance 2.012 for losses over 10 and 1.462 when that threshold was increased to 20. [START_REF] Resnick | Discussion of the danish data on large fire insurance losses[END_REF] also used evt and obtained for instance 1.386 when considering losses over 1 and 1.400 when using the largest 1500 order statistics. Considering the whole data, [START_REF] Pigeon | Composite lognormalpareto model[END_REF] found that such a TI would be 1.358 and 1.351 depending of the composed models that these authors applied. Since a lower TI corresponds to a heavier tail, the TI estimates indicated above show the high heaviness that the DFIL would present at its right tail. When such an index is lower than 2.0, the variance of the theoretical model would be infinite.

Models with K = 1

In this subsection we take into account only the Burr df since this df is one that has shown good performance when fitting the whole DFIL. Now regarding the functions g, we have obtained the results presented in Table 4. Recall that g 0 is the identity function. Further, regarding the constraints to be satisfied by the parameters as indicated in Proposition 2.1, some inequalities must be strict. In order to keep such kind of inequalities the additive constant ǫ = 0.0001 has been introduced and used everywhere if necessary. In this way we have that all estimates presented in Table 4 satisfy the constraints established in Proposition 2.1. It is noted that the doped Burr models based on as g 1 as well g 2 provide better fits than the undoped Burr model, and those doped models using g 2 still perform better than when g 1 is used. Further, it has been found that some parameters may be fixed or related to one another. Doped models using g 3 are not presented since they did not show better performance than when g 1 or g 2 was used. Under all these considerations, the best doped model that has been identified in according to lower AIC and BIC values is based on g 2 with a couple of fixed parameters. The lowest AIC and BIC values found so far keep significant differences with respect to the corresponding ones of the undoped model.

g

AIC BIC Fixed parameters g 0 7676 7694 g 1 7661 7690 g 1 7660 7684 θ = 1 g 2 7640 7681 g 2 7640 7675 k = -2d + ǫ † g 2 7638 7667 k = ǫ † , d = 0.0 † ǫ = 0.0001 Table 4. K = 1: AIC and BIC values of doped Burr models by varying g Table 5 presents estimates for the parameters of F (g(x)) of the model with the better AIC and BIC values found. These estimates include the constraints indicated in Table 4. k d p q α γ θ ǫ † 0.0000 -0.3444 0.5201 0.0427 52.0087 1.0893 † ǫ = 0.0001 Table 5. K = 1: Parameter estimates of the model with the better AIC and BIC values found Fig. 2 shows plots of results on the best doped model identified so far and on the undoped model. On the one hand, the left plot draws the function g 2 involved in such a doped model. On the other hand, the right plot presents a zoom in on lower losses of the fits of this couple of models. Note that both curves on the right plot come from the same model, but their differences are due to the introduction of the function g 2 .

On risk measurements, Table 6 gives estimates of VaR and TVaR for the undoped Burr model and the best doped Burr found so far. According to these outputs, the undoped model would largely overestimate both of these measurements. This fact may lead to wrong establishments of reserves for protecting against unusual large losses if the undoped model is used. Focusing on the TI, (5) produces TI = αγ for the undoped Burr model, whereas TI = αγ(k -2p) for the doped Burr model. Computations of this couple of indexes are presented in Table 7. These values present important differences from each other, with the doped model showing less tail heaviness than the undoped model. Note that these behaviors are related to the risk measurements: lower the tail index, higher both the VaR and TVaR. 

Model

Models with K = 2

In this subsection we analyze fmdfs considering two components, K = 2, taking into account the dfs indicated in Table 3 for each component. However, on the Burr model, since the best doped Burr model identified in the previous subsection presented interesting improvements on the fit to the DFIL, we take it mostly instead of the Burr model. In this way, the fmdf that involves the Burr model may take advantage of the previous fit.

We begin initializing the fmdfs to be used. To this aim, we set the data partitions where the fmdfs are defined. These partitions are established as (S 1 , S 2 ) where S 1 contains the first p s × 100 % of observations, with p s = 5, 10, . . . , 95. S 2 contains all remaining observations. We find that these initializations that are made without too much effort, eventually provide interesting initial AIC and BIC values. Thus we include such outputs in Table 8, which summarizes the results that have been obtained for the analyzed models. These initial AIC and BIC values are expressed between brackets.

Table 8 presents for all models studied the two functions g that have been chosen, one for each model component. These functions g are presented between brackets. Note that g 0 is taken into account when the doped Burr model is involved since this model already incorporates a function g. Next, in this table the AIC and BIC values for each model are shown. Finally, details on eventual relationships among parameters that have been detected are described. For instance, the relationships identified for the doped Burr model established in the previous subsection are presented when this model is applied. Considering the best AIC and BIC values found so far, all of our proposed models based on the doped Burr model show the best improvements on DFIL fits. This fact would show that functions g may provide new features to undoped models when searching alternatives for fitting the DFIL. On the other hand, on couples of models that do not fit adequately, still they give better results than their undoped versions. For instance the couples Weibull -Weibull, gamma -gamma and log normal -log normal. 

1 = θ 1 , k 2 = ǫ † , d 2 = 0.0 (g 0 ) (g 0 ) (7576) (7629) 
Gamma doped Burr 7573 7620

d 1 = p 1 = p 2 , q 1 = α 1 = 1.0, k 2 = ǫ † , d 2 = 0.0 (g 2 ) (g 0 ) (7576) (7629) 
Log normal doped Burr 7584 7625

α 1 = γ 1 , k 2 = ǫ † , d 2 = 0.0 (g 0 ) (g 0 ) (7606) (7653) 
Weibull doped Burr 7573 7620 k 1 = 1.0,

d 1 = p 1 , q 1 = 1.0, k 2 = ǫ † , d 2 = 0.0 (g 2 ) (g 0 ) (7575) (7621) Gamma Gamma 7708 7748 α 2 = β 2 (g 0 ) (g 2 ) (8557) (8586) 
Log normal Log normal 7734 7780 µ 2 = 0

(g 0 ) (g 2 ) (7972) (8001) 
Weibull Weibull 7779 7820 d 2 = 0.0, q 2 = θ 2 2 (g 0 ) (g 2 ) (8745) (8774) † ǫ = 0.0001 Table 8. K = 2: AIC and BIC values of the analyzed models

In practice we found that the fixation for some parameters may not increase or do it slightly the values of parsimony criteria. These findings put in evidence types of complexities that may be necessary for improving data descriptions. In this order of ideas, it was found that still parameters other than those of functions g may be related from each other as follows. Regarding the couple Burr -doped Burr, one of the favorite models according to the AIC and BIC values presented in Table 8, if relationships among all the parameters of this couple are considered, then it was found that the setting α 1 = γ 2 allows the reduction of its AIC value to 7572 whereas its BIC value to 7613.

For what follows we choose the couple gamma -doped Burr (g-dB) as the best model found so far, in order to present its parameter estimates, risk measurement analysis and TI examination.

Table 9 presents estimates for the parameters of the g-dB model. These outputs reflect the constraints incorporated in this model. Further, it is remarkable that many of the estimates of the Burr-based component have remained stable with respect to its corresponding estimates presented in Table 5. Also, the presence of this component in the g-dB model is important as indicated by the estimate of π 2 .

Fig. 3 allows us to appreciate variations between the densities of the one component doped Burr and the g-dB model. Note that the two component model shows more variability in its dpf, trying to follow the profile of the raw data.

On risk measurements, Table 10 gives estimates of VaR and TVaR for the g-dB model that has been chosen above. These outputs show that data would present more risk than the one detected by the doped Burr model determined in the previous subsection, but lower than the risk determined by the undoped Burr model. The variations observed on these measurements through all these models are still significant, evidencing a convergence correspondingly to diminutions of the parsimony criteria values.

Model VaR (0.99) TVaR (0.99) g-dB 25.99 86.43

Table 10. K = 2: risk measurements

Regarding the TI, nevertheless the complexity of the fmdfs, this index is easily computed as the lowest TI among all TIs coming from all model components. Since the TI of the gamma df or of any gamma df doped by one of the functions g introduced in this paper is infinite, the TI of the g-dB model is then the TI of the component based on the Burr df. Hence we have TI = α 2 γ 2 (k 2 -2p 2 ). The computation of this index is presented in Table 11. This output indicates us that under the g-dB model the heaviness of the DFIL tail would be lower than the one of the undoped Burr model, but higher than the one of the doped Burr model, these two last indexes having been analyzed in the previous subsection. The new TI value would suggest that the data analyzed would have mean but not variance. These behaviors also correspond to the outputs of risk measurements computed above and thus would be part of a convergence process conducted by diminutions of the parsimony criteria values. 

Concluding remarks

In this paper we have replaced the argument of well-known distribution functions F (x) through suitable functions g(x) in order to improve fits to entire data of losses. These new distributions functions F (g(x)) called doped distributions functions have been used for reviewing fits to the well-known Danish Fire insurance losses (DFIL), where there is evidence of high heaviness at its right data tail. As a mean for describe such a behavior at tail we have used the Burr type XII (Burr) distribution function because this model can deal with the entire data and has shown interesting fits to the analyzed data. Starting from improvements found when the Burr model have been doped, much better fits have been identified when doped versions of finite mixture models (fmds) have been applied. In effect, among the doped fmds that have been analyzed, those involving the Burr distribution have presented the better fits. The AIC and BIC values related to our better models have shown that they would be favorite against competitors.

The proposed doped distribution functions have presented high complexity due to the increase of parameters related to functions g(x). In order to overcome this issue when parameters are estimated, we have used optimization techniques that does not require derivative computations. However the use of this kind of parameter estimation methods has become time consuming.

Computations of risk measures like value-at-risk and tail value-at-risk on the DFIL have put in evidence significant variations of the parsimony criteria used. All these values have shown a convergence in according to reductions of parsimony criteria values. Tail indexes have been also analyzed and presented convergence as the ones for risk measurements. The output of the tail index associated to the best doped model found in this paper would evidence that the theoretical model representing the DFIL would not have variance, but does mean.

The results obtained in this paper have shown that the use of doped models are promising for improving fits related to losses. Thus, this fact has motivated us to continue searching new functions g(x) for still improving fits, which will be presented in a forthcoming paper.

Figure 2 .

 2 Figure 2. K = 1: g 2 with k = ǫ and d = 0.0000 to the left, Burr (blue curve) and best doped Burr (brown curve) models to the right

Table 1 .

 1 DFIL: summary

	ν
	27: end while
	28: return θ m

Table 2 .

 2 . Reported AIC and BIC values of fits to DFIL

	Authors	Year Lowest AIC Lowest BIC
	Cooray and Ananda (2005)	2005	7760	7771
	Scollnik (2007)	2007	7726	7749 †
	Pigeon and Denuit (2011)	2011	7728	7751 †
	Scollnik (2012)	2012	7655	7679
	Nadarajah and Bakar (2014)	2014	7725	7752 †
	Bakar et al. (2015)	2015	7645	7673
	Calderín-Ojeda and Kwok (2015) 2015	7646	7669
	Miljkovic and Grün (2016)	2016	7583	7629
	† Computed from the reported negative LL			

Table 6 .

 6 K = 1: risk measurements

	Model	VaR (0.99) TVaR (0.99)
	Undoped Burr	30.97	130.14
	Best doped Burr	23.03	66.65

Table 7 .

 7 K = 1: TI values

		TI
	Undoped Burr	1.310
	Best doped Burr 2.219

Table 11 .

 11 K = 2: TI values
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