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subject to the Helmholtz equation

Erik Burman† Guillaume Delay‡ Alexandre Ern§
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Abstract

We design and analyze an arbitrary-order hybridized discontinuous Galerkin method
to approximate the unique continuation problem subject to the Helmholtz equation.
The method is analyzed using conditional stability estimates for the continuous prob-
lem, leading to error estimates in norms over interior subdomains of the computa-
tional domain. The convergence order reflects the Hölder continuity of the conditional
stability estimates and the approximation properties of the finite element space for
sufficiently smooth solutions. Under a certain convexity condition, the constant in
the estimates is independent of the frequency. Moreover, certain weighted averages of
the error are shown to converge independently of the stability properties of the con-
tinuous problem. Numerical examples illustrate the performances of the method with
respect to the degree of ill-posedness of the problem, increasing polynomial order, and
perturbations in the data.

1 Introduction

We are interested in the computational approximation of solutions to linear ill-posed prob-
lems based on the Helmholtz differential operator for acoustic wave propagation in the
frequency domain. Ill-posed problems typically arise in the context of inverse problems
and data assimilation, and have traditionally been approached through regularization at
the continuous level, using either Tikhonov regularization [29] or quasi-reversibility [23].
The regularized problem is well-posed and can be discretized by using any suitable nu-
merical method. Since the regularization typically relies on a variational framework, this
approach fits the “optimize then discretize” paradigm. The size of the regularization pa-
rameter is chosen depending on the noise in the data, and the mesh-size should then be
chosen small with respect to the regularization parameter so that the discretization error
is negligible. There is a very large literature on the topic of Tikhonov regularization and
inverse problems, and we refer the reader to [21] and the references therein for an overview
on computational methods using this approach. Methods based on quasi-reversibility that
are related to the present work can be found in [2, 3, 14].
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An alternative route to the design of computational methods for ill-posed problems was
proposed in [4] based on the “discretize then optimize” paradigm. The idea is to discretize
the problem first, e.g., using the finite element method, and then to choose regularization
terms known from the finite element approximation of well-posed problems with poor
stability properties (as those encountered in fluid mechanics for instance). This leads
to a stabilized finite element method cast in a primal-dual formulation, where weakly
consistent stabilization terms are minimized under the constraint of the ill-posed weak
formulation. The idea is introduced in [4] for standard H1-conforming finite element
methods. The analysis of the ill-posed case is carried out in [5], and the approach is
extended to nonconforming approximations in [6]. Notice that in both cases, the focus
is on low-order approximation spaces. The error analysis relies on the existence of sharp
conditional stability estimates for the continuous problem. The estimates are conditional
in the sense that a certain a priori bound must be assumed to hold for the solution, and
the continuity expressed in this bound is typically only Hölder [22]. Such estimates are
known in the literature as quantitative uniqueness results and use theoretical tools such as
Carleman estimates or three-ball estimates [20, 1]. Error bounds derived using conditional
stability estimates can be optimal in the sense that they reflect the approximation order
of the finite element space and the stability of the ill-posed problem. In particular, this
means that when applied to a well-posed problem, the finite element method recovers
optimal convergence.

The ill-posed problem that we consider here is the unique continuation problem. This
is a model problem for data assimilation where the data on the boundary of the domain is
unknown, and instead measurements are available in some subset of the bulk domain. It
is known that such data can be extended in a unique way subject to an elliptic operator,
and our objective is to compute an accurate approximation of this unique continuation
by means of finite elements. In the case of ill-posed second-order elliptic problems, the
constants in the conditional stability estimates depend in a nontrivial way on the physical
parameters of the problem, on the geometry of the subdomain where data are available,
and on the geometry of the target subdomain where accuracy of the computed solution is
desired. In the case of the Helmholtz equation, it has been shown that the geometry of
the data set relative to the geometry of the target domain is crucial for robustness of the
estimates as the frequency grows [19]. Bounds that are robust and also suitable to be used
in the analysis of numerical methods were recently derived in [9] for the Helmholtz equation
and in [10] for convection-diffusion equations. In both of these references, conforming
piecewise affine approximation spaces were considered. It is, however, well known that
high-order methods are (much) more accurate for the approximation of the Helmholtz
equation, in particular to control the pollution error [26]. In the ill-posed regime, however,
the source of the pollution is twofold and includes both the well-known dispersion error
(appearing in well-posed Helmholtz problems as well) and the pollution due to unstable
modes induced by the ill-posed character.

The objective of the present work is to explore if the use of high-order methods in
the context of primal-dual stabilized Galerkin methods is equally advantageous in the ill-
posed case as it is in the well-posed case. Inspired by the approach proposed in [9] for the
lowest-order finite element discretization of the unique continuation problem subject to
the Helmholtz equation, we derive here a hybridized discontinuous Galerkin (dG) method
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of arbitrary order k ≥ 1 for the same problem. The stabilization consists of the standard
penalty term on the solution jumps supplemented by a Tikhonov regularization term that
is scaled with the mesh-size h in such a way that it does not perturb the accuracy of the
method. We then prove error estimates following the two-step approach introduced in [5].

• Step 1: we derive a discrete stability estimate where we show that the method offers
improved stability on certain residual quantities compared to the standard Galerkin
method. Using this estimate we can prove that these residual quantities will converge
with an optimal rate for a smooth solution (up to perturbations).

• Step 2: we show that the conditional stability estimates of [9] can be applied to the
error equation whose right-hand side only depends on the above residual quantities.
The combination of the convergence rate derived in the previous step and an a priori
bound on the discrete solution allows us to conclude.

Observe that Step 1 essentially makes use of fairly well-known finite element analysis
techniques and gives no information on the size of the actual error. It only ensures that
the residual of the computation goes to zero. To prove convergence in the second step, we
need a stability estimate relating the residual to the computational error, and contrary
to standard finite element methods, we also need here an a priori bound on the discrete
solution. Moreover, deriving this a priori bound is more challenging in the high-order
case than it is in the low-order case. This constitutes our main result; see Theorem 10.
We notice that related approaches based on the weak Galerkin method were proposed
in [30, 31] for the approximation of the elliptic Cauchy problem subject to the Poisson
problem. In those references, however, the ill-posed character of the problem was not
taken into account. That is, only Step 1 above was considered.

In our analysis, we also consider the estimation of the error in local averages of the
solution and find that the averaging weight can be constructed in such a manner that
the averaged error converges independently of the stability properties of the problem (see
Proposition 11). To the best of our knowledge, this is the first result in computational
ill-posed problems that shows that nonglobal average quantities can be computed in a
stable way. In addition, we show that the averaging weight function may be constructed
in such a way that the radius of its support decreases as the inverse of the frequency. In all
of our estimates, we also track the effect of perturbations of data. This is a subtle exercise
in the ill-posed case, since perturbations of data can make the computation diverge when
the regularization parameter is much smaller than the perturbation level. Similarly to
standard Tikhonov regularization, this allows one to connect the regularization parameter
to the noise level, but here it also gives an estimate of what scales are possible to resolve
with the given data, since the connection to the mesh parameter is immediate.

The paper is organized as follows. In Section 2, we introduce the model problem and
its ill-posed weak formulation. We then recall some stability results for the continuous
problem in Section 3. The numerical method is introduced in Section 4 and analyzed
in Section 5. The error analysis includes error estimates hinging on conditional stability
on the one hand and using local averages on the other hand. Finally, in Section 6, we
study numerically the performance of the method on some test cases of varying difficulty
concerning ill-posedness and data perturbation.
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2 Model problem

Let Ω be a polygonal/polyhedral domain in Rd, d ∈ {2, 3} (open, bounded, connected,
Lipschitz subset of Rd) and let $ be some (open, bounded, connected, Lipschitz) subset of
Ω. We consider the following continuation problem subjected to the Helmholtz equation:

−∆u− ω2u = f in Ω, (1a)

u = g in $, (1b)

with f ∈ L2(Ω) and g ∈ H1($). In this study, the frequency ω is a positive real number,
and u is real-valued. To make problem (1) nontrivial, we assume that $  Ω. The
function g is assumed to be the restriction to $ of a solution to (1a), so that (1) has a
unique solution (ω can even be a resonance frequency since uniqueness is ensured by (1b)).
However, problem (1) is ill-posed in the sense of Hadamard since there is no stability with
respect to the data f and g (see [8] for a detailed discussion). Notice in particular that
no boundary condition is enforced to complement the PDE (1a), and that the use of the
data g in (1b) compensates this lack of knowledge. The weak form of (1) can be written
as follows: Find u ∈ H1(Ω) such that u|$ = g and

a(u, v) = (f, v)Ω, ∀v ∈ H1
0 (Ω), (2)

where
a(u, v) := (∇u,∇v)Ω − ω2(u, v)Ω, ∀u, v ∈ H1(Ω). (3)

Notice that in (2) we look for a function in H1(Ω) and use test functions in the smaller
space H1

0 (Ω). Here and in what follows, for a measurable subset S ⊆ Ω, we denote by
(·, ·)S the L2(S)-inner product with appropriate Lebesgue measure and by ‖·‖S the induced
norm. Moreover, we write S ⊂⊂ Ω whenever S ⊂ Ω.

3 Key stability estimates

We present here some analysis results from [1, 9] on conditional stability estimates. As
highlighted in the introduction, these results play an essential role in the error analysis.
First, we give a stability estimate allowing one to bound some norm of any function in
H1(Ω) in any subset B ⊂⊂ Ω (typically larger than $) by some norm defined in Ω and
some norm defined in $ and involving the dual norm of the Helmholtz operator. For any
subset S ⊆ Ω, we define

ES(v) := ‖v‖S + `Ω‖∆v + ω2v‖H−1(Ω), ∀v ∈ H1(Ω), (4)

where the length scale `Ω := diam(Ω) is introduced to make the expression of ES(v)
dimensionally consistent. Notice that the dual residual norm is evaluated in Ω.

Lemma 1 (Conditional stability). Let $  Ω and B ⊂ Ω, with (B \$) ⊂⊂ Ω. There are
C(ω) and α ∈ (0, 1] such that

‖∇v‖B + ω‖v‖B ≤ C(ω)ωEΩ(v)1−αE$(v)α, ∀v ∈ H1(Ω). (5)

Both C(ω) and α depend on the geometry of $, B, and Ω, α is independent of the frequency
ω, whereas C(ω) in general depends on ω.
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Figure 1: Configurations from [9] satisfying the convexity condition necessary for Lemma 2.
Left panel: specific configuration defined in (6). Right panel: configuration also satisfying
the bound (7).

Proof. See [9]. The reader can also refer to [1, Thm. 5.1] and [28].

In the estimate (5), the constant C(ω) generally depends on ω (see [9, Example 4]).
In particular, it is shown in [9] that for any N ∈ N, C(ω) ≤ ωN cannot hold uniformly
w.r.t. ω, meaning that the bound (5) is useful only for low frequencies. Moreover, the
size of the constant depends on the geometry of the subdomains $ and B in a nontrivial
way. A remarkable result from [19] states that under a certain convexity condition on the
domains $ and B, essentially that any straight line intersecting B also intersects $, the
stability estimate (5) holds true with constant independent of ω. Similar results suitable
in the context of finite element analysis were then derived in [9] using the following special
geometry (see the left panel of Figure 1). Consider the half-space H := {(x1, ..., xd) | x1 <
0}, let r > 0, β > 0, R > r such that

√
r2 + β2 < ρ <

√
R2 + β2, set y := (β, 0, ..., 0) ∈ Rd

and define
Ω := H ∩B(0, R), $ := Ω \B(0, r), B := (Ω \B(y, ρ)). (6)

For this geometry, the following bound holds true.

Lemma 2 (Robustness with respect to ω). Let Ω, $  Ω, and B ⊂ Ω with (B \$) ⊂⊂ Ω
be defined as in (6). There are C > 0 and α ∈ (0, 1], both depending on the geometry of
$, B and Ω but independent of ω, such that

‖∇v‖B + ω‖v‖B ≤ CωEΩ(v)1−αE$(v)α, ∀v ∈ H1(Ω). (7)

Proof. See [9, Cor. 3 & Lem. 2].

Remark 3.1. No proof is given in [9] for general configurations satisfying the convexity
condition from [19], but it has been shown how to modify the proof for other domains



6

such as, for instance, the geometry in the right panel of Figure 1 [27, Example 4.1]. This
geometry will be used as an example in our numerical tests.

4 Discretization by a hybridized dG method

In this section, we describe the hybridized dG method used to discretize the unique con-
tinuation problem subject to the Helmholtz equation.

4.1 Discrete setting

Let (Th)h>0 be a family of matching meshes of Ω. In principle, the meshes can have cells
that are polyhedra with planar faces in Rd, and hanging nodes are also possible. How-
ever, the analysis below requires the mesh to be such that the underlying discontinuous
polynomial approximation space has a global H1-conforming subspace with optimal ap-
proximation properties. For simplicity, we will therefore restrict the discussion to meshes
composed of simplices. One can also use meshes composed of cuboids by replacing the
polynomial space Pk by Qk in the scheme described below. The mesh cells are conven-
tionally taken to be open subsets of Rd, and nT denotes the unit outward normal to the
generic mesh cell T ∈ Th. For a subset S ⊂ Rd, hS denotes the diameter of S, and for a
mesh Th, the index h refers to the maximal diameter of the mesh cells. The mesh faces
are collected in the set Fh which is split into the set of the mesh interfaces, F int

h , and the
set of the boundary faces, F∂h . Any mesh interface F ∈ F int

h is oriented by a fixed unit
normal vector nF , and for a piecewise smooth function φ defined on both cells sharing F ,
[[φ]]F denotes the jump of φ across F in the direction of nF . To avoid technicalities, we
assume henceforth that the mesh family (Th)h>0 is quasi-uniform, and that all the meshes
are fitted to the subset $.

Let k ≥ 1 be the polynomial degree of the hybridized dG method. We denote by
Pk(S) the set of polynomials of total degree at most k on the subset S ⊆ Ω. The discrete
unknowns are piecewise polynomials of degree k attached to the mesh faces and of degree
k attached to the mesh cells. We define the discrete spaces

Ûkh := UkT × UkF , UkT := "T∈ThP
k(T ), UkF := "F∈Fh

Pk(F ). (8)

For a generic pair v̂h ∈ Ûkh , we write

v̂h := (vT , vF ), vT := (vT )T∈Th ∈ U
k
T , vF := (vF )F∈Fh

∈ UkF . (9)

We denote by Ûkh0 the linear subspace of Ûkh in which all the degrees of freedom attached
to the boundary faces are null. Since the discrete bilinear forms are devised cellwise, it is
convenient to adopt a local viewpoint. For a generic pair v̂h ∈ Ûkh , its degrees of freedom
associated with a generic mesh cell T ∈ Th are denoted by

v̂T := (vT , v∂T := (vF )F∈F∂T
) ∈ ÛkT := Pk(T )× Pk(F∂T ), (10)

where Pk(F∂T ) := "F∈F∂T
Pk(F ) and F∂T := {F ∈ Fh | F ⊂ ∂T} collects the mesh faces

composing the boundary of T .
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4.2 The discrete problem

Let us first define the bilinear forms to discretize the Helmholtz equation. The local
hybridized dG bilinear form on a generic mesh cell T ∈ Th is such that for all v̂T , ŵT ∈ ÛkT ,

aT (v̂T , ŵT ) := (∇vT ,∇wT )T − ω2(vT , wT )T

− (∇vT ·nT , wT − w∂T )∂T − (vT − v∂T ,∇wT ·nT )∂T ,
(11)

and the local stabilization bilinear form is defined such that for all v̂T , ŵT ∈ ÛkT ,

sT (v̂T , ŵT ) := h−1
T (vT − v∂T , wT − w∂T )∂T . (12)

The global bilinear forms are then defined such that ah(v̂h, ŵh) :=
∑

T∈Th aT (v̂T , ŵT ) and

sh(v̂h, ŵh) :=
∑

T∈Th sT (v̂T , ŵT ) for all v̂h, ŵh ∈ Ûkh .
In what follows, we consider that the only available measurements are perturbed by

some noise. We denote by
gδ := g + δ (13)

the available measurements, where g is the value of the exact solution in $ (see (1b))
and δ is some random noise. We will see that the a priori error bound depends on the
amplitude of δ (see Theorem 10). Noise can also be considered on the right-hand side f of
the Helmholtz equation. The adaptation of the analysis is straightforward, but has been
omitted to enhance the readability of the proofs.

We introduce the discrete Lagrangian Lh : Ûkh × Ûkh0 → R such that for all (v̂h, ζ̂h) ∈
Ûkh × Ûkh0,

Lh(v̂h, ζ̂h) :=
1

2
`−2
Ω ‖vT − gδ‖

2
$ +

1

2
sγh(v̂h, v̂h)− 1

2
σh(ζ̂h, ζ̂h) + ah(v̂h, ζ̂h)− (f, ζT )Ω, (14)

where gδ is defined in (13), and the length scale `Ω makes the expression of Lh dimension-
ally consistent. We refer to the first argument of Lh as the primal variable and to the second
argument as the dual variable. Moreover in (14), the bilinear form sγh : Ûkh × Ûkh → R
is built using the above-defined stabilization bilinear form sh and a discrete Tikhonov
regularization in such a way that for all v̂h, ŵh ∈ Ûkh ,

sγh(v̂h, ŵh) := sh(v̂h, ŵh) + γ`
−2(k+1)
Ω h2k(vT , wT )Ω, (15)

with γ ≥ 0 (we will need to assume γ > 0 to derive the error estimates), and the bilinear
form σh : Ûkh0 × Ûkh0 → R acts as a stabilization term on the dual variable and is defined

such that for all ζ̂h, η̂h ∈ Ûkh0,

σh(ζ̂h, η̂h) :=
∑
T∈Th

(∇ζT ,∇ηT )T + sh(ζ̂h, η̂h). (16)

Notice that (12) is a natural stabilization term in the context of hybridized dG methods,
and its role is to weakly enforce the matching of the face unknowns and the trace of the cell

unknowns in each mesh cell. Moreover, the Tikhonov regularization γ`
−2(k+1)
Ω h2k(vT , wT )Ω

in (15) provides a weak control on the L2-norm of the solution that is needed to bound
the error term E$(θcT ); see step (iii) in the proof of Theorem 10.
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The discrete unique continuation problem subject to the Helmholtz equation is defined
by looking for a critical point of the discrete Lagrangian. In other words, we seek (ûh, ξ̂h) ∈
Ûkh × Ûkh0 such that

m$(uT , wT ) + sγh(ûh, ŵh) + ah(ŵh, ξ̂h) = m$(gδ, wT ), ∀ŵh ∈ Ûkh , (17a)

ah(ûh, η̂h)− σh(ξ̂h, η̂h) = (f, ηT )Ω, ∀η̂h ∈ Ûkh0, (17b)

with m$(φ, ψ) := `−2
Ω (φ, ψ)$ for all φ, ψ ∈ L2(Ω). We will prove in Section 5 that the

square linear problem (17) has a unique solution, and that (ûh, η̂h) → (u, 0) as h → 0
when δ = 0. Since the discrete Lagrangian is convex w.r.t. the primal variable and
concave w.r.t. the dual variable, the pair (ûh, ξ̂h) ∈ Ûkh × Ûkh0 solves (17) iff it is a saddle-
point of Lh. Notice that the convexity of Lh w.r.t. v̂h involves only the L2($)-norm and
the stabilization bilinear form sh, whereas the concavity of Lh w.r.t. η̂h involves a stronger
H1-like norm. Notice also that if σh := 0, (ûh, ξ̂h) solves (17) iff ûh minimizes over Ûkh the
functional v̂h 7→ 1

2`
−2
Ω ‖vT − gδ‖2$ + 1

2s
γ
h(v̂h, v̂h) under the constraint that ûh satisfies the

discrete Helmholtz equation ah(ûh, η̂h) = (f, ηT )Ω for all η̂h ∈ Ûkh0.

Remark 4.1. (Mesh assumptions) Since the mesh Th is assumed to be fitted to the
subset $, we have (vT , wT )$ =

∑
T∈T $

h
(vT , wT )T for all vT , wT ∈ UkT , where T $h := {T ∈

Th | T ⊂ $}. Observe that even if the mesh is not fitted to $, the subset of $ composed
of the cells in T $h can be used in the analysis, possibly assuming h small enough if the
geometry condition from Section 3 must hold. Furthermore, since the mesh family is
assumed to be quasi-uniform, we use the global mesh-size h in the discrete Tikhonov
regularization (15).

4.3 Static condensation

The discrete problem (17) can be solved efficiently by eliminating locally all the cell un-
knowns using static condensation. This local elimination leads to a global transmission
problem on the mesh skeleton involving only the face unknowns with a stencil that couples
unknowns attached to neighboring faces (in the sense of cells). Once this global trans-
mission problem is solved, the cell unknowns are recovered by local solves. We refer the
reader to, e.g., [12].

Let us verify that the cell unknowns can indeed be eliminated locally by expressing
them in terms of the data and the face unknowns on F∂T . Fix T ∈ Th and (u∂T , ξ∂T ) ∈
[Pk(F∂T )]2. To eliminate the cell unknowns, we want to solve the following problem:
Find (uT , ξT ) ∈ [Pk(T )]2 such that, setting ûT := (uT , u∂T ) and ξ̂T := (ξT , ξ∂T ), the pair
(ûT , ξ̂T ) solves 

`−2
Ω (uT , wT )T∩$ + sT (ûT , ŵT ) + γ`

−2(k+1)
Ω h2k(uT , wT )T

+ aT (ŵT , ξ̂T ) = `−2
Ω (gδ, wT )T∩$,

aT (ûT , η̂T )− (∇ξT ,∇ηT )T − sT (ξ̂T , η̂T ) = (f, ηT )T ,

(18)

for all ŵT := (wT , 0) with wT ∈ Pk(T ) and all η̂T := (ηT , 0) with ηT ∈ Pk(T ).

Lemma 3 (Local problem). Problem (18) admits a unique solution for every γ ≥ 0.
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Proof. Since (18) amounts to a square linear system, we only need to show uniqueness of
the solution for zero data and u∂T = ξ∂T = 0. First, if γ > 0, we take wT := uT and
ηT = −ξT and get

`−2
Ω ‖uT ‖

2
T∩$ + sT (ûT , ûT ) + γ`

−2(k+1)
Ω h2k‖uT ‖2T + ‖∇zT ‖2T + sT (ξ̂T , ξ̂T ) = 0.

This implies that uT = ξT = 0. In the case where γ = 0, we can prove again that
uT = ξT = 0 by choosing vT := h2

T (−∆uT −ω2uT ). Proceeding as in step (iii) of the proof
of Lemma 5 below, one shows that ‖∆uT + ω2uT ‖T = 0, which proves that uT = 0 since
ω > 0 by assumption. (Notice that if ω = 0, we get ‖∆uT ‖T = 0, and since sT (ûT , ûT ) = 0,
we have uT |∂T = 0, and we conclude that uT = 0.)

5 Analysis

In this section, we analyze the convergence of the discretization method introduced above.
In what follows, we often abbreviate A . B the inequality A ≤ CB for positive real
numbers A and B, where the constant C is independent of h and ω. At this stage, the
constant C only depends on the mesh shape-regularity and the polynomial degree k. For
the reader’s convenience, we collect in the following lemma several classical inequalities
used in the analysis; see, e.g., [17, Chap. 12] for proofs.

Lemma 4 (Analysis tools). Let k ∈ N. There is C > 0, depending on k, the mesh
regularity, and d, such that for all q ∈ Pk(T ) and all T ∈ Th, the following discrete trace
and inverse inequalities hold:

‖q‖∂T ≤ Ch
− 1

2
T ‖q‖T , ‖∇q‖T ≤ Ch−1

T ‖q‖T . (19)

Moreover, there is C, depending on the mesh regularity and k, such that for all v ∈ H1(T )
and all T ∈ Th, the trace inequality

‖v‖∂T ≤ C
(
h
− 1

2
T ‖v‖T + h

1
2
T ‖∇v‖T

)
(20)

holds, as does the Poincaré inequality ‖v − v‖T ≤ ChT ‖∇v‖T , where v denotes the mean
value of v over T .

5.1 Residual stability

In this section, we will prove the inf-sup stability (and hence the well-posedness) of the
discrete problem (17) using a norm based on some residual quantities. At this stage, we
can just assume that the regularization parameter satisfies γ ≥ 0. We first define for all
vT ∈ UkT +H1(Ω),

‖vT ‖2R :=
∑
T∈Th

h2
T ‖∆vT + ω2vT ‖2T +

∑
F∈F int

h

hF ‖J∇vT KF ·nF ‖2F . (21)

The notation UkT + H1(Ω) stands for the sum of the two linear spaces. Notice that the
map vT 7→ ‖vT ‖R defines a norm on UkT since a polynomial satisfying ∆vT + ω2vT = 0
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is necessarily null (since ω > 0 by assumption). Consequently, the map v̂h 7→ ‖vT ‖R +

sh(v̂h, v̂h)
1
2 defines a norm on Ûkh . We equip the product space Ûkh × Ûkh0 with the following

norm:
|||v̂h, ζ̂h|||2 := `−2

Ω ‖vT ‖
2
$ + sγh(v̂h, v̂h) + ‖vT ‖2R + σh(ζ̂h, ζ̂h). (22)

Since σh(·, ·)
1
2 defines a norm on Ûkh0, |||·, ·||| indeed defines a norm on Ûkh × Ûkh0 (notice that

sh ≤ sγh since γ ≥ 0). To allow for a more compact notation, it is convenient to introduce

the global bilinear form Ah such that for all (v̂h, ζ̂h), (ŵh, η̂h) ∈ Ûkh × Ûkh0,

Ah((v̂h, ζ̂h), (ŵh, η̂h)) := m$(vT , wT ) + sγh(v̂h, ŵh) + ah(ŵh, ζ̂h) + ah(v̂h, η̂h)− σh(ζ̂h, η̂h),
(23)

so that (17) can be rewritten as follows: Find (ûh, ξ̂h) ∈ Ûkh × Ûkh0 such that

Ah((ûh, ξ̂h), (ŵh, η̂h)) = m$(gδ, wT ) + (f, ηT )Ω ∀(ŵh, η̂h) ∈ Ûkh × Ûkh0. (24)

Let us now prove an inf-sup condition on the bilinear form Ah w.r.t. the triple norm
defined in (22).

Lemma 5 (Inf-sup stability). Assume that γ ≥ 0. The following holds true for all
(v̂h, ζ̂h) ∈ Ûkh × Ûkh0:

|||v̂h, ζ̂h||| . sup
(ŵh,η̂h)∈Ûk

h×Û
k
h0\{(0,0)}

|Ah((v̂h, ζ̂h), (ŵh, η̂h))|
|||ŵh, η̂h|||

. (25)

Proof. Let (v̂h, ζ̂h) ∈ Ûkh × Ûkh0 and let S denote the supremum on the right-hand side
of (25).
(i) Owing to the definition (23) of the bilinear form Ah, we infer that

`−2
Ω ‖vT ‖

2
$ + sγh(v̂h, v̂h) + σh(ζ̂h, ζ̂h) = Ah((v̂h, ζ̂h), (v̂h,−ζ̂h)) . S|||v̂h, ζ̂h|||, (26)

so that it only remains to bound ‖vT ‖2R.
(ii) We consider η̂h := (0, (ηF )F∈Fh

) with ηF := hF J∇vT KF ·nF for all F ∈ F int
h and

ηF := 0 for all F ∈ F∂h (notice that η̂h ∈ Ûkh0). Since |||0, η̂h||| = σh(η̂h, η̂h)
1
2 , we have∑

F∈F int
h

hF ‖J∇vT KF ·nF ‖2F = ah(v̂h, η̂h) = Ah((v̂h, ζ̂h), (0, η̂h)) + σh(ζ̂h, η̂h)

≤ Sσh(η̂h, η̂h)
1
2 + σh(ζ̂h, η̂h)

≤
(
S + σh(ζ̂h, ζ̂h)

1
2
)
σh(η̂h, η̂h)

1
2 ,

where the last bound follows from the Cauchy–Schwarz inequality applied to σh. Moreover,
we have σh(η̂h, η̂h) =

∑
T∈Th h

−1
T ‖η∂T ‖2∂T .

∑
F∈F int

h
hF ‖J∇vT KF ·nF ‖2F . This implies that∑

F∈F int
h

hF ‖J∇vT KF ·nF ‖2F . S2 + σh(ζ̂h, ζ̂h). (27)

(iii) We now consider η̂h := ((ηT )T∈Th , 0) with ηT := −h2
T (∆vT + ω2vT ) for all T ∈ Th
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(notice that η̂h ∈ Ûkh0). Recalling the definition (11) of the local bilinear form aT and
integrating by parts in each mesh cell, we have

ah(v̂h, η̂h) =
∑
T∈Th

(
(∇vT ,∇ηT )T − ω2(vT , ηT )T − (∇vT ·nT , ηT )∂T

− (vT − v∂T ,∇ηT ·nT )∂T

)
=
∑
T∈Th

(
(−∆vT − ω2vT , ηT )T − (vT − v∂T ,∇ηT ·nT )∂T

)
.

This implies that∑
T∈Th

h2
T ‖∆vT + ω2vT ‖2T

= Ah((v̂h, ζ̂h), (0, η̂h)) + σh(ζ̂h, η̂h) +
∑
T∈Th

(vT − v∂T ,∇ηT ·nT )∂T

. Sσh(η̂h, η̂h)
1
2 +

(
σh(ζ̂h, ζ̂h) + sh(v̂h, v̂h)

) 1
2σh(η̂h, η̂h)

1
2 ,

where we used the discrete trace inequality h
1
2
T ‖∇ηT ‖∂T . ‖∇ηT ‖T (see Lemma 4) and the

definitions of sh and σh. Moreover, invoking the inverse inequality ‖∇ηT ‖T . h−1
T ‖ηT ‖T

and the discrete trace inequality ‖ηT ‖∂T . h
− 1

2
T ‖ηT ‖T , we infer that σh(η̂h, η̂h) .

∑
T∈Th h

−2
T ‖ηT ‖2T .

This implies that ∑
T∈Th

h2
T ‖∆vT + ω2vT ‖2T . S2 + sh(v̂h, v̂h) + σh(ζ̂h, ζ̂h). (28)

(iv) Combining the estimates (26), (27), and (28), and recalling that sh ≤ sγh, we infer

that |||v̂h, ζ̂h|||2 . S|||v̂h, ζ̂h|||+ S2, which readily proves the expected inf-sup condition.

Lemma 6 (Unique solvability). The discrete problem (17) admits a unique solution for
all γ ≥ 0.

Proof. The proof is a direct consequence of Lemma 5 since (17) is equivalent to a square
linear system.

5.2 Consistency and a priori residual bound

We denote by u the solution to (1) and by (ûh, ξ̂h) the solution to (17). Let Îkh(u) :=

(IkT (u), IkF (u)) ∈ Ûkh be defined in each mesh cell T ∈ Th by (IkT (u), Ik∂T (u)) with IkT (u) the
L2-projection of u onto Pk(T ) and Ik∂T (u)|F the L2-projection onto Pk(F ) for all F ∈ F∂T .
We define the discrete approximation error and the interpolation error as follows:

êh := ûh − Îkh(u) ∈ Ûkh , θT := u− IkT (u) ∈ H1(Ω) + UkT . (29)

Lemma 7 (Consistency). Assume that there exists ε > 0 such that u ∈ H3/2+ε(Ω).
Assume that γ ≥ 0. For all η̂h ∈ Ukh0, we have the estimate

|ah(êh, η̂h)− σh(ξ̂h, η̂h)| . ‖θT ‖#σh(η̂h, η̂h)
1
2 , (30)
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with

‖θT ‖2# :=
∑
T∈Th

(
‖∇θT ‖2T + (ωhT )4h−2

T ‖θT ‖
2
T + hT ‖∇θT ‖2∂T + h−1

T ‖θT ‖
2
∂T

)
. (31)

Proof. (i) Using (17b), (1a), and integrations by parts, we get

ah(êh, η̂h)− σh(ξ̂h, η̂h)

= (f, ηT )Ω − ah(Îkh(u), η̂h)

=
∑
T∈Th

(
− (∆u+ ω2u, ηT )T − (∇IkT (u),∇ηT )T + ω2(IkT (u), ηT )T

+ (∇IkT (u)·nT , ηT − η∂T )∂T + (IkT (u)− Ik∂T (u),∇ηT ·nT )∂T

)
=
∑
T∈Th

(
(∇θT ,∇ηT )T − ω2(θT , ηT )T

− (∇θT ·nT , ηT − η∂T )∂T − (θT ,∇ηT ·nT )∂T

)
, (32)

where we used that
∑

T∈Th(∇u·nT , η∂T )∂T = 0 since ∇u and η∂T are single-valued on

all F ∈ F int
h and η∂T |F = 0 for all F ∈ F∂h , and that (u − Ik∂T (u),∇ηT ·nT )∂T = 0 since

∇ηT ·nT ∈ Pk(F∂T ).
(ii) We need to bound the four terms on the right-hand side of (32). For the first and
the third terms, we just invoke the Cauchy–Schwarz inequality. For the second term,
we observe that (θT , ηT )T = (θT , ηT − ηT )T , where ηT is the mean value of ηT over T .
Owing to the Cauchy–Schwarz inequality and the Poincaré inéquality (see Lemma 4), we
infer that |(θT , ηT )T | . ‖θT ‖T ‖ηT − ηT ‖T . hT ‖θT ‖T ‖∇ηT ‖T . Finally, the fourth term
is bounded by means of the Cauchy–Schwarz inequality and the discrete trace inequality
from Lemma 4.

We can now derive an a priori residual bound, that is, a bound on the discrete approx-
imation error (êh, ξ̂h) in the triple norm defined in (22). First, we recall an approximation
estimate for the interpolation operator Îkh .

Lemma 8 (Approximation). Let s > 3
2 and set r := min(s, k + 1). Assume that ωh ≤ 1.

The following holds true for all v ∈ Hs(Ω):

‖v − IkT (v)‖# + ‖v − IkT (v)‖R + sh(Îkh(v), Îkh(v))
1
2 + ‖v − IkT (v)‖$ . hr−1|v|Hr(Ω). (33)

Proof. The claim follows using the trace inequality (20) and standard approximation re-
sults for the L2-projection.

Lemma 9 (A priori residual bound). Assume that γ ≥ 0 and ωh ≤ 1. Assume that the

exact solution is in Hk+1(Ω), and set C(u) := |u|Hk+1(Ω) + `
−(k+1)
Ω ‖u‖Ω. The following

residual estimate holds true:

|||êh, ξ̂h|||+ sh(ûh, ûh)
1
2 . hk max(1, γ)

1
2C(u) + `−1

Ω ‖δ‖$. (34)
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Proof. (i) Using inf-sup stability (Lemma 5), we have

|||êh, ξ̂h||| . sup
(ŵh,η̂h)∈Ûk

h×Û
k
h0\{(0,0)}

|Ah((êh, ξ̂h), (ŵh, η̂h))|
|||ŵh, η̂h|||

.

(ii) Using the definition of Ah and consistency (Lemma 7; notice that by assumption
u ∈ H1+ε(Ω) with ε > 1

2 since k ≥ 1), we infer that for all η̂h ∈ Ûkh0,

|Ah((êh, ξ̂h), (0, η̂h))| = |ah(êh, η̂h)− σh(ξ̂h, η̂h)| . ‖θT ‖#σh(η̂h, η̂h)
1
2 ,

where θT is defined in (29) and ‖θT ‖# in (31). Moreover, using again the definition of Ah,

the discrete equation (17a), and the fact that u|$ = g, we have for all ŵh ∈ Ûkh ,

|Ah((êh, ξ̂h), (ŵh, 0))| = |ah(ŵh, ξ̂h) + sγh(êh, ŵh) +m$(eT , wT )|
= | − sγh(Îkh(u), ŵh) +m$(θT , wT ) +m$(δ, wT )|

≤
(
sγh(Îkh(u), Îkh(u))

1
2 + `−1

Ω ‖θT ‖$ + `−1
Ω ‖δ‖$

)
|||ŵh, 0|||,

since sγh(ŵh, ŵh) + `−2
Ω ‖wT ‖2$ ≤ |||ŵh, 0|||2.

(iii) It follows from the three above bounds that

|||êh, ξ̂h||| . ‖θT ‖# + sγh(Îkh(u), Îkh(u))
1
2 + `−1

Ω ‖θT ‖$ + `−1
Ω ‖δ‖$.

Moreover, the above right-hand side also bounds sh(ûh, ûh)
1
2 since

sh(ûh, ûh)
1
2 ≤ sh(êh, êh)

1
2 + sh(Îkh(u), Îkh(u))

1
2 ≤ |||êh, ξ̂h|||+ sγh(Îkh(u), Îkh(u))

1
2 .

Recalling that sγh(Îkh(u), Îkh(u)) = sh(Îkh(u), Îkh(u)) + γ`
−2(k+1)
Ω h2k‖IkT (u)‖2Ω, the claim now

follows since on the one hand

‖θT ‖# + sh(Îkh(u), Îkh(u))
1
2 + `−1

Ω ‖θT ‖$ . hk|u|Hk+1(Ω),

where we used Lemma 8 and h`−1
Ω ≤ 1 (since hT ≤ `Ω = diam(Ω) for all T ∈ Th), and on

the other hand
γ`
−2(k+1)
Ω h2k‖IkT (u)‖2Ω ≤ γ`

−2(k+1)
Ω h2k‖u‖2Ω,

owing to the L2-stability of IkT .

5.3 Error estimate using conditional stability

The objective of this section is to combine the conditional stability estimates on the
continuous problem from Section 3 with the a priori residual bound from Lemma 9 to
prove an error estimate in some subset B ⊂⊂ Ω. Since we are manipulating piecewise
smooth functions (e.g., those in UkT ), we introduce the broken gradient operator ∇T :
H1(Ω) + UkT → L2(Ω;Rd) acting cellwise. For a function vT ∈ H1(Ω) + UkT , we consider
the norm

‖vT ‖1,B := ‖∇T vT ‖B + ω‖vT ‖B. (35)
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Since the conditional stability bounds from Section 3 hold for functions in H1(Ω), we
need to introduce a continuous interpolation of the discrete solution. Since the mesh is
assumed to be simplicial, there exists an H1-conforming subspace of UkT with optimal
approximation properties; this space can be built using Lagrange finite elements. Let
πc
T denote the L2-orthogonal projection onto this continuous subspace. We will use the

following well-known approximation result:

h−1‖πc
T (vT )− vT ‖Ω + ‖∇T (πc

T (vT )− vT )‖Ω ≤ sh(v̂h, v̂h)
1
2 , ∀v̂h ∈ Ûkh . (36)

The estimate (36) is proved using the construction of a particular interpolant into the
space of continuous functions, together with the stability of the L2-projection (recall that
we assume that the mesh sequence is quasi-uniform). For details, we refer the reader to,
e.g., [7, Lemma 3.2 and Lemma 5.3].

Theorem 10 (Error estimate). Let u solve (1) and let (ûh, ξ̂h) solve (17). Recall the nota-
tion ûh := (uT , uF ) (see (9)) and that δ denotes the noise in the measurements (see (13)).

Assume that u ∈ Hk+1(Ω) and recall that C(u) := |u|Hk+1(Ω) + `
−(k+1)
Ω ‖u‖Ω. Assume that

γ > 0 and that ωh ≤ 1. Let C(ω) > 0 and α ∈ (0, 1] result from Lemma 1 (recall that both
real numbers depend on the geometry of $ and B, that α is independent of the frequency
ω, and that the same holds true for C(ω) for the geometry defined in (6)). The following
holds true:

‖u− uT ‖1,B . C(ω)ω(h/`Ω)kα
(
`k+1
Ω C(u) + (h/`Ω)−k‖δ‖$

)
, (37)

where the hidden constant depends linearly on max(γ, 1, γ−1)
1
2 (and as above on the mesh

shape-regularity and the polynomial degree k).

Proof. (i) Adding and subtracting πc
T (uT ), followed by the triangle inequality, and using

(36), we infer that

‖u− uT ‖1,B ≤ ‖u− πc
T (uT )‖1,B + (1 + ωh)sh(ûh, ûh)

1
2 .

Owing to the assumption ωh ≤ 1 and invoking Lemma 9, we obtain

(1 + ωh)sh(ûh, ûh)
1
2 . hk max(1, γ)

1
2C(u) + `−1

Ω ‖δ‖$.

(ii) It remains to bound ‖θc
T ‖1,B with θc

T := u − πc
T (uT ). Since θc

T ∈ H1(Ω), we have
‖θc
T ‖1,B = ‖∇θc

T ‖B + ω‖θc
T ‖B, and Lemma 1 gives

‖θc
T ‖1,B ≤ C(ω)ωEΩ(θc

T )1−αE$(θc
T )α. (38)

Thus, we need bounds on ‖θc
T ‖$, ‖θc

T ‖Ω, and ‖∆θc
T + ω2θc

T ‖H−1(Ω).
(iii) Using the triangle inequality, we obtain

‖θc
T ‖$ ≤ ‖u− IkT (u)‖$ + ‖IkT (u)− uT ‖$ + ‖uT − πc

T (uT )‖$
. hk+1|u|Hk+1($) + ‖eT ‖$ + hsh(ûh, ûh)

1
2

. `Ωh
k max(1, γ)

1
2C(u) + ‖δ‖$, (39)
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where we used Lemma 8 and (36) on the second line, and the residual a priori estimate
from Lemma 9 on the third line (notice that ‖eT ‖$ ≤ `Ω|||êh, ξ̂h||| and h ≤ `Ω). Proceeding
in a similar way leads to

‖θc
T ‖Ω . hk+1|u|Hk+1(Ω) + ‖eT ‖Ω + hsh(ûh, ûh)

1
2

. `Ωh
k max(1, γ)

1
2C(u) + ‖δ‖$ + ‖eT ‖Ω.

This time we invoke the discrete Tikhonov regularization to control ‖eT ‖Ω. Owing to
Lemma 9, we infer that

‖eT ‖Ω ≤ γ−
1
2 `k+1

Ω h−ksγh(êh, êh)
1
2 . `k+1

Ω max(γ−1, 1)
1
2C(u) + γ−

1
2 `kΩh

−k‖δ‖$.

Combining the last two bounds and since h ≤ `Ω, we obtain

‖θc
T ‖Ω . `k+1

Ω max(γ−1, 1, γ)
1
2C(u) + max(γ−1, 1)

1
2 `kΩh

−k‖δ‖$. (40)

(iv) For the dual residual norm, we observe that

‖∆θc
T + ω2θc

T ‖H−1(Ω) = sup
η∈H1

0 (Ω),‖∇η‖Ω=1

a(θc
T , η),

with the bilinear form a defined in (3). To accommodate the use of a piecewise smooth
function as the first argument in the bilinear form, let us set aT (vT , η) := (∇T vT ,∇η)Ω−
ω2(vT , η)Ω for all vT ∈ H1(Ω) + UkT and all η ∈ H1

0 (Ω). We have

a(θc
T , η) = aT (θc

T , η) = aT (uT − πc
T (uT ), η) + aT (u− uT , η),

and we bound the two terms separately. For the first term on the right-hand side, we use
the Cauchy–Schwarz inequality, (36), that πc

T is the L2-orthogonal projection onto the
continuous polynomial subspace, and that ‖η − πc

T (η)‖Ω . h‖∇η‖Ω. This gives

aT (uT − πc
T (uT ), η) = (∇T (uT − πc

T (uT )),∇η)Ω + ω2(uT − πc
T (uT ), η)Ω

= (∇T (uT − πc
T (uT )),∇η)Ω + ω2(uT − πc

T (uT ), η − πc
T (η))Ω

. (1 + ω2h2)sh(ûh, ûh)
1
2 ‖∇η‖Ω . sh(ûh, ûh)

1
2 ‖∇η‖Ω,

where we used the assumption that ωh ≤ 1. Let us now consider the second term. Let
η̂h := Î1

h(η) ∈ Ûkh0, i.e., we have ηT := I1
T (η) for all T ∈ Th and ηF := I1

F (η) for all F ∈ Fh
(recall that k ≥ 1). Invoking (2) and (17b), we infer that

aT (u− uT , η) = a(u, η)− aT (uT , η) = (f, η)Ω − aT (uT , η)

= (f, η − ηT )Ω + ah(ûh, η̂h)− σh(ξ̂h, η̂h)− aT (uT , η)

= −(∆u+ ω2u, η − ηT )Ω + ah(ûh, η̂h)− aT (uT , η)− σh(ξ̂h, η̂h).
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Recalling the definitions of the bilinear forms ah and aT and integrating by parts in each
mesh cell, we infer that

ah(ûh, η̂h)− aT (uT , η)

=
∑
T∈Th

(
(∇uT ,∇(ηT − η))T − ω2(uT , ηT − η)T − (∇uT ·nT , ηT − η∂T )∂T

− (uT − u∂T ,∇ηT ·nT )∂T

)
=
∑
T∈Th

(
(∆uT + ω2uT , η − ηT )T − (uT − u∂T ,∇ηT ·nT )∂T

− (∇uT ·nT , η − η∂T )∂T

)
.

Since η−η∂T is single-valued at any interface F ∈ F int
h and vanishes at any boundary face

F ∈ F∂h , the last term on the above right-hand side can be rearranged as follows:∑
T∈Th

(∇uT ·nT , η − η∂T )∂T =
∑

F∈F int
h

([[∇uT ]]F ·nF , η − ηF )F .

Putting the above identities together shows that

aT (u− uT , η) =
∑
T∈Th

(∆(u− uT ) + ω2(u− uT ), ηT − η)T

+
∑

F∈F int
h

([[∇uT ]]F ·nF , ηF − η)F

−
∑
T∈Th

(uT − u∂T ,∇ηT ·nT )∂T − σh(ξ̂h, η̂h).

Let us denote by L1, L2, L3 the terms on the three lines of the above right-hand side.
Owing to the Cauchy–Schwarz inequality and the approximation properties of Î1

h, we infer
that

|L1 + L2| . ‖u− uT ‖R‖∇η‖Ω,
where ‖·‖R is defined in (21). Moreover, since σh(η̂h, η̂h) +

∑
T∈Th hT ‖∇ηT ‖

2
∂T . ‖∇η‖2Ω,

we infer that
|L3| .

(
sh(ûh, ûh)

1
2 + σh(ξ̂h, ξ̂h)

1
2
)
‖∇η‖Ω.

In conclusion, we can estimate the dual residual norm as follows:

‖∆θc
T + ω2θc

T ‖H−1(Ω) . ‖u− uT ‖R + sh(ûh, ûh)
1
2 + σh(ξ̂h, ξ̂h)

1
2 ,

and using the triangle inequality and recalling the definition of the triple norm, we obtain

‖∆θc
T + ω2θc

T ‖H−1(Ω) . ‖u− IkT (u)‖R + sh(ûh, ûh)
1
2 + |||êh, ξ̂h|||.

Invoking the residual a priori estimate from Lemma 9 and the approximation result from
Lemma 8 which imply that ‖u− IkT (u)‖R . hk|u|Hk+1(Ω) (recall that ωh ≤ 1 by assump-
tion), we infer that

`Ω‖∆θc
T + ω2θc

T ‖H−1(Ω) . `Ωh
k max(1, γ)

1
2C(u) + ‖δ‖$. (41)
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(v) Collecting the bounds (39), (40), and (41), we see that

E$(θc
T )αEΩ(θc

T )1−α

. max(γ, 1, γ−1)
1
2 (hk`ΩC(u) + ‖δ‖$)α(`k+1

Ω C(u) + (h/`Ω)−k‖δ‖$)1−α

. max(γ, 1, γ−1)
1
2 (h/`Ω)αk(`k+1

Ω C(u) + (h/`Ω)−k‖δ‖$).

Inserting this bound into (38) concludes the proof.

Remark 5.1. (Estimate (37)) The error estimate (37) indicates two situations regard-
ing mesh refinement (h → 0) with a fixed amount of data perturbation (quantified by
‖δ‖$). In the well-posed case (α = 1), the error upper bound reaches a plateau when
the approximation error lies below the data perturbation. Instead, in the ill-posed case
(α < 1), mesh refinement will eventually lead to poorer accuracy. This degeneration of
the bound is a consequence of the fact that, in general, a perturbation of the data results
in nonexistence of a solution to the unique continuation problem, since the perturbed gδ
is not the restriction of a solution of (1a) to $. Stagnation can be achieved also in the
ill-posed case by imposing a lower bound depending on C(u), `Ω, and δ on the coeffi-
cient in the Tikhonov regularization term of (15). If, for instance, one wishes to ensure
that no more than a factor two can be lost due to data perturbations, the lower bound
is obtained by equating the two contributions `k+1

Ω C(u) and (h/`Ω)−k‖δ‖$. The second

term on the right-hand side of (15) then becomes γ`
−2(k+1)
Ω max(h, hmin)2k(vT , wT )Ω with

hmin :=
(
‖δ‖$
`ΩC(u)

) 1
k
, and stagnation occurs when h ≤ hmin (in practice, C(u) must of course

be estimated).

5.4 Stable approximation of averaged quantities

The ill-posed problem can be seen as a problem that is close to resonance for all values
of ω. To see this, consider the following Helmholtz Cauchy problem [9, Example 3] with
n ∈ N \ {0}: 

∆z + ω2z = 0 in Ω := (0, π)× (0, 1),

z(x, 0) = 0 for x ∈ [0, π],

zy(x, 0) = sin(nx) for x ∈ [0, π].

For n > ω, the solution is given by

z(x, y) =
1√

n2 − ω2
sin(nx) sinh(

√
n2 − ω2y), (42)

for n = ω by z(x, y) = sin(nx)y, and for n < ω by

z(x, y) =
1√

ω2 − n2
sin(nx) sin(

√
ω2 − n2y). (43)

This is the Helmholtz equivalent to the classical Hadamard solution for the elliptic Cauchy
problem [18], which is recovered for ω = 0. We observe that, contrary to the Laplace case,
for the Helmholtz equation perturbations with n < ω do not grow exponentially, whereas
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for n > ω the exponential growth is actually moderated by the frequency ω. In particular,
exponentially growing modes must oscillate with a higher frequency than the solution.
For the unique continuation problem, this means that regardless of ω, there are always
functions in the kernel of the Helmholtz operator that are small in the vicinity of $ but
grow exponentially away from the data domain. However, since these unstable modes are
more oscillating than the solution and are characterized by the kernel of the Helmholtz
operator, a natural question is whether some averaged quantities can be approximated
with better stability. That is, can we design averages for which functions such as z are
filtered out? Whether this is possible hinges upon the existence of certain functions that
we will now characterize.

We assume that there exists a function ϕ̃ fulfilling the following assumptions:

ϕ̃ ∈ C1(Ω) ∩H2(Ω), ϕ̃|∂Ω = ∇ϕ̃ · n|∂Ω = 0, (44a)

∆ϕ̃+ ω2ϕ̃ ≤ 0 in Ω, ‖∆ϕ̃+ ω2ϕ̃‖L1(Ω) > 0. (44b)

An explicit construction is proposed in Lemma 12 below. We define the normalized func-
tion ϕ := ϕ̃/‖∆ϕ̃ + ω2ϕ̃‖L1(Ω). Let ψ := −∆ϕ− ω2ϕ. Then ψ ≥ 0 and

∫
Ω ψ = 1, so that

it makes sense to consider the local average functional

jψ(v) := (v, ψ)Ω. (45)

Let us now prove that the average error |jψ(u−uT )| can be bounded independently of the
stability properties of the unique continuation problem.

Proposition 11 (Average error). Let u solve (1) and let (ûh, ξ̂h) solve (17). Recall
the notation ûh := (uT , uF ) (see (9)) and that δ denotes the noise in the measurements

(see (13)). Assume that u ∈ Hk+1(Ω) and recall that C(u) := |u|Hk+1(Ω) + `
−(k+1)
Ω ‖u‖Ω.

The following holds true:

|jψ(u− uT )| . (1 + ω2h2)hkC(u) + `−1
Ω ‖δ‖$, (46)

where the hidden constant depends on ϕ̃ (and as above on the mesh shape-regularity and
the polynomial degree k).

Proof. Using the definition of ψ and integrating by parts cellwise, we infer that

jψ(u− uT ) =
∑
T∈Th

(u− uT ,−∆ϕ− ω2ϕ)T

=
∑
T∈Th

(
(∇(u− uT ),∇ϕ)T − ω2(u− uT , ϕ)T + (∇ϕ·nT , uT − u∂T )∂T

)
.

Since ûh satisfies (17b), using η̂h := Îkh(ϕ) ∈ Ûkh0, we get∑
T∈Th

(
− (∇(u− uT ),∇IkT (ϕ))T + ω2(u− uT , IkT (ϕ))T − (uT − u∂T ,∇IkT (ϕ)·nT )∂T

+(∇(u− uT )·nT , IkT (ϕ)− Ik∂T (ϕ))∂T

)
− σh(ξ̂h, Î

k
h(ϕ)) = 0.
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We then have

jψ(u− uT ) =
∑
T∈Th

(
(∇(u− uT ),∇(ϕ− IkT (ϕ)))T − ω2(u− uT , ϕ− IkT (ϕ))T

+ (∇(ϕ− IkT (ϕ))·nT , uT − u∂T )∂T

+ (∇(u− uT )·nT , IkT (ϕ)− Ik∂T (ϕ))∂T

)
− σh(ξ̂h, Î

k
h(ϕ)).

Integrating by parts cellwise once again, we obtain the error representation

jψ(u− uT ) = −σh(ξ̂h, Î
k
h(ϕ)) +

∑
T∈Th

(
(∆(uT − u) + ω2(uT − u), ϕ− IkT (ϕ))T

+ (∇(u− uT )·nT , ϕ− Ik∂T (ϕ))∂T + (∇(ϕ− IkT (ϕ))·nT , uT − u∂T )∂T

)
.

We observe that∑
T∈Th

(∇(u− uT )·nT , ϕ− Ik∂T (ϕ))∂T =
∑

F∈F int
h

(J∇(u− uT )KF ·nF , ϕ− IkF (ϕ))F .

Invoking the Cauchy–Schwarz inequality and the approximation properties of Îkh(ϕ), we
see that

|jψ(u− uT )| . ‖u− uT ‖R + sh(ûh, ûh) + σh(ξ̂h, ξ̂h)
1
2 ,

where the hidden constant has the dependencies made in the statement. Invoking the a
priori residual estimate from Lemma 9 proves the claim.

We close this section by giving an elementary construction of a suitable function ϕ̃ to
be used in the definition of the local average functional under the assumption that ω is
large enough. Recall that d denotes the space dimension and that we assume d ≥ 2.

Lemma 12 (Suitable function ϕ̃). Assume (without loss of generality) that 0 ∈ Ω and let
r3 > 0 be such that B(0, r3) ⊂ Ω. Assume that ωr3 ≥ 2d. Then there exists ϕ̃ ∈ C1(Ω)
supported in B(0, r3) fulfilling (44).

Proof. We build a suitable function ϕ̃ with radial symmetry, i.e., ϕ̃ ≡ ϕ̃(r). The assump-
tion ωr3 ≥ 2d implies that there exist δr > 0 and ζ ≥ d− 2 such that

r3 = (2 + ζ)δr, δr ≥ 1

ω

√
2
d+ ζ

1 + ζ
. (47)

Indeed, these conditions can be realized if ωr3 ≥ κ(ζ) :=
√

2d+ζ
1+ζ (2 + ζ), and since the

function κ is increasing, a sufficient condition for the existence of ζ ≥ d − 2 is ωr3 ≥
κ(d − 2) = 2d. Let us then set r0 := 0, r1 := ζδr, r2 := (1 + ζ)δr, and recall that
r3 = (2 + ζ)δr. We build a piecewise quadratic function such that ϕ̃ ∈ C1(R−), ϕ̃′(r) = 0
for all r ∈ [r0, r1], ϕ̃(r) = ϕ̃′(r) = 0 for all r > r3, and ϕ̃′′(r)|[r1,r2] = −ϕ̃′′(r)|[r2,r3] = χ > 0.
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The parameter χ > 0 is irrelevant owing to the normalization step, and it is kept only to
be dimensionally consistent. Using integration and the above design conditions leads to

ϕ̃(r) =


−χδr2 r ∈ [r0, r1],

χ (r−r2+δr)2

2 − χδr2 r ∈ [r1, r2],

−χ (r−r3)2

2 r ∈ [r2, r3],
0 r > r3.

Recall that the Helmholtz operator for functions with radial symmetry in d space dimen-
sions is given by Hr := d2

dr2 + (d−1)
r

d
dr + ω2I, where I is the identity operator. Applying

Hr to ϕ̃ leads to

Hr(ϕ̃) =


−ω2χδr2 r ∈ [r0, r1],

χ
(
d+ (d− 1) (δr−r2)

r + ω2
(

(r−r2+δr)2

2 − δr2
))

r ∈ [r1, r2],

χ
(
−d+ (d− 1) r3r − ω

2 (r−r3)2

2

)
r ∈ [r2, r3],

0 r ≥ r3.

We have for all r ∈ [r2, r3],

χ−1Hr(ϕ̃) = −d+ (d− 1)
r3

r
− ω2 (r − r3)2

2
≤ −d+ (d− 1)

r3

r
≤ −d+ (d− 1)

(2 + ζ)

(1 + ζ)
≤ 0,

since r3 = (2 + ζ)δr and 1
r ≤

1
(1+ζ)δr in [r2, r3]. This implies that Hr(ϕ̃)|[r2,r3] ≤ 0 under

the condition ζ ≥ d − 2. Moreover, using that δr − r2 = −ζδr, −1
r ≤ −

1
(1+ζ)δr , and

(r − r2 + δr)2 ≤ δr2 for all r ∈ [r1, r2], we have

χ−1Hr(ϕ̃)|[r1,r2] ≤
d+ ζ

1 + ζ
− ω2 δr

2

2
.

A sufficient condition for Hr(ϕ̃)|[r1,r2] ≤ 0 is then given by the second condition in (47),
and altogether this proves that Hr(ϕ̃) ≤ 0. Finally, ‖Hr(ϕ̃)‖L1(Ω) > 0 since (for instance)
Hr(ϕ̃)|[r0,r1] < 0. An example of functions −ϕ̃ and −Hr(ϕ̃) is given in Figure 2.

Remark 5.2. (Localization, normalization) The assumption ωr3 ≥ 2d shows that the
above construction breaks down in the limit ω → 0; i.e., it is not clear if there are any stable
averages for the ill-posed Poisson problem. On the other hand, if ω is large enough for the
above condition to be fulfilled, it is typically interesting to choose ζ as large as possible,
i.e., ζ = χ−1(ωr3) so that the transition layer in the graph of ϕ̃ is as thin as possible.
Finally, we notice that straightforward computations show that the normalization factor
‖∆ϕ̃ + ω2ϕ̃‖L1(Ω) is of the order O(δrd(1 + (ωδr)2)), where δrd is proportional to the
volume of the support of ϕ̃.

6 Numerical tests

In this section, we present numerical simulations to verify the results of Section 5. We con-
sider the domain Ω := (0, 1)2 so that `Ω =

√
2. We use four meshes that are triangulations
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Figure 2: Example of radial cross section of −ϕ̃ (left) and −Hr(ϕ̃) (right). The parameter
values are r3 = 1.0, ζ = 3, δr = 0.2, ω = δr

√
2
√

(2 + ζ)/(1 + ζ), χ = 5.

Figure 3: First two meshes used. Left: h = 0.05689. Right: h = 0.02845.
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Figure 4: First geometry. Left: $ (highlighted in dark gray). Right: B (highlighted in
light gray).

Figure 5: Second geometry. Left: $ (highlighted in dark gray). Right: B (highlighted in
light gray).

built from successive refinements of Cartesian meshes (see Figure 3). The corresponding
maximal diameters are h = 0.05689, h = 0.02845, h = 0.01422 and h = 0.007111.

We consider two geometries for$ and B. The first geometry, with$ := Ω\
(
(0, 0.875)×

(0.125, 0.875)
)

and B := Ω \
(
(0, 0.125) × (0.125, 0.875)

)
(see Figure 4), satisfies the

bound (7) which is robust with respect to ω. The second geometry, with $ := (0.25, 0.75)×
(0, 0.5) and B := (0.125, 0.875) × (0, 0.875) (see Figure 5), satisfies the more general
bound (5) that is sensitive to the value of ω. Notice that the second geometry violates the
condition (B \$) ⊂⊂ Ω on a small part of the lower boundary. This allows us to verify
numerically that such a small violation of the condition does not necessarily destroy the
convergence behavior, even in the case of high-order approximation since a convergence of
order hkα is nonetheless observed.

The numerical simulations are run by using the exact solution defined in (42) with
n := 5 for ω = 1 and n := 11 for ω = 10, so that both solutions exhibit a similar
exponential blowup (we have

√
n2 − ω2 =

√
24 in the first case and

√
n2 − ω2 =

√
21 in

the second case). Note that f := 0 in both cases. We use the value γ := 1 for the Tikhonov
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Figure 6: Relative H1-error in B for the first geometry and moderate data perturbation.
Left: ω = 1. Right: ω = 10.

regularization. All the errors are measured in the H1-seminorm

|u− uT |2H1(Th) :=
∑
T∈Th

‖∇(u− uT )‖2T ,

and to facilitate comparisons, we report relative errors, i.e., rescaled by |u|H1(Ω). All the
numerical tests are run using the static condensation procedure described in Section 4.3;
this is a key step to ensuring the computational efficiency of the scheme.

6.1 Moderate perturbations

Perturbations are used to pollute the data in the following way. At every Gauss point, we
add to the exact value of g a perturbation equal to rand() ∗ (`−1

Ω hT )k, where hT denotes
the diameter of the cell T ∈ Th containing the Gauss point and rand() is a C++ function
that returns a random number in (−1, 1).

The relative errors in B in the H1-seminorm for the first geometry are reported in
Figure 6. We observe that we obtain optimal convergence rates for ω = 1 and ω = 10
(i.e., convergence of order k). The dual variable also converges at optimal rate k. Note
that for ω = 10, the method with k = 1 does not immediately reach optimal convergence,
contrary to the orders k ∈ {2, 3}. This corroborates the fact that high-order polynomials
are more efficient when ω grows. Overall, as expected, the results are better for ω = 1.

The relative errors in B in the H1-seminorm for the second geometry are reported
in Figure 7. Here, we observe that the ill-posedness of the problem is more severe than
for the first geometry, so that the parameter α in the conditional stability estimate is
expected to be smaller than one. This is confirmed by the numerical results since the
convergence rates are reduced compared to Figure 6. We observe a convergence rate of
about 0.5 for k = 2 and 1 for k = 3, and the convergence is very slow for k = 1. Notice
that here the dual variable converges with a slightly reduced optimal rate (about k − 1

2).
This may indicate that the considered meshes are not fine enough to reach the asymptotic
convergence rates.
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Figure 7: H1-error in B for the second geometry and moderate data perturbation. Left:
ω = 1. Right: ω = 10.
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Figure 8: H1-error in B for the first geometry, ω = 1, and large data perturbations. Left:
θ = 1. Right: θ = 2.

6.2 Larger perturbations

We now pollute the data with larger perturbations. At every Gauss point, we add to the
exact value of g a perturbation that is equal to rand()∗(`−1

Ω hT )k−θ with θ ∈ {1, 2}. Notice
that the results for θ = 0 were presented in Section 6.1. We report the results for the
first geometry and ω = 1 in Figure 8. We observe similar results for θ = 0 and θ = 1.
However, for θ = 2 the convergence is slower. Very similar results are obtained for ω = 10.
The second geometry is, however, less sensitive to the perturbations, and the results are
similar for θ = 0, θ = 1, and θ = 2. This can be a consequence of the larger stability
constants (the second geometry fulfills (5) instead of (7)).

6.3 On the use of a higher-order method

We want to evaluate the possibility of using a higher-order method. Since we are working
with discrete unknowns attached to the mesh cells and the mesh faces, one possibility is
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to consider hybrid high-order (HHO) methods, as originally devised in [16, 15]. The two
main differences with the above hybridized dG method is that the HHO method uses a
local gradient reconstruction in each mesh cell from the cell and the face unknowns and
that it employs a stabilization bilinear form such that a higher-order form of consistency
is achieved. One possibility in the HHO method is to consider a mixed-order setting where
the cell unknowns are polynomials of degree (k+1) and the face unknowns are polynomials
of degree k ≥ 0. The advantage of this choice is that the stabilization bilinear form is
simpler to formulate and amounts to the Lehrenfeld–Schöberl (LS) stabilization [24, 25]
devised in the context of hybridizable discontinuous Galerkin (HDG) methods [13].

The HHO method with the LS stabilization is defined as follows. For every T ∈ Th,
the local unknowns belong to

ÛkT := Pk+1(T )× Pk(F∂T ). (48)

We define a gradient reconstruction Gk
T : ÛkT → Pk(T ;R2) such that

(Gk
T (v̂T ), q)T := (∇vT , q)T − (vT − v∂T , q·nT )∂T , ∀q ∈ Pk(T ;R2), (49)

for all v̂T ∈ ÛkT , and the local LS stabilization bilinear form is such that

slsT (v̂T , ŵT ) := h−1
T (Πk

∂T (vT )− v∂T ,Πk
∂T (wT )− w∂T )∂T , ∀v̂T , ŵT ∈ ÛkT , (50)

where Πk
∂T stands for the L2-projection onto Pk(F∂T ). We then set

aT (v̂T , ŵT ) := (Gk
T (v̂T ),Gk

T (ŵT ))T − ω2(vT , wT )T , (51)

and we consider the problem (17) with the following modifications:

ah(v̂h, ŵh) :=
∑
T∈Th

aT (v̂T , ŵT ), (52a)

sγh(v̂h, ŵh) := s̃h(v̂h, ŵh) + γ`
−2(k+1)
Ω h2k(vT , wT )Ω, (52b)

σh(ζ̂h, η̂h) :=
∑
T∈Th

(∇ζT ,∇ηT )T + s̃h(ζ̂h, η̂h), (52c)

where the stabilization bilinear form s̃h results from the elementwise summation of the
local LS stabilization defined in (50). At the theoretical level, the LS stabilization, which
is crucial to delivering convergence rates of order (k + 1) in the H1-seminorm in the
well-posed case, is problematic in the ill-posed case since the proof of Theorem 10 fails,
especially the estimate (36), because we only control the projection Πk

∂T of the jump and
not the full jump. Our numerical results indicate though that this theoretical bottleneck
may be pessimistic, at least in some situations. For purposes of comparison, we also
consider the above modifications in (52) but with the full stabilization bilinear form sh
defined in (12). Then the proof of Theorem 10 goes through, but the price to pay is that
the H1-convergence rate is expected to be of order k only.

We consider perturbations of amplitude (h/`Ω)k, defined as in the previous numerical
tests (with θ = 0). We study only the first geometry. The results are reported in Figure 9
for ω = 1 and in Figure 10 for ω = 10. When using the LS stabilization, we observe better
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Figure 9: HHO-H1-error in B for the first geometry and ω = 1. Left: LS stabilization.
Right: full stabilization.
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Figure 10: HHO-H1-error in B for the first geometry and ω = 10. Left: LS stabilization.
Right: full stabilization.
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convergence rates for k ∈ {1, 2}, but convergence stops on the last refinement for k = 3.
The results obtained for the HHO method with full stabilization are close to those of the
hybridized dG scheme studied in the present work. These numerical tests let us think
that it may be possible to obtain higher-order convergence on the present continuation
problem with an HHO method; a further study could include a Tikhonov regularization
and a noise level of order (k + 1) instead of k. However, a theoretical gap still remains,
and we postpone further analysis to future work.

7 Conclusion

In this paper, we have proposed and analyzed a high-order hybridized discontinuous
Galerkin method for the approximation of an ill-posed wave propagation problem in the
frequency domain. Using conditional stability estimates, we have proven error estimates
that reflect the approximation order of the polynomial space, the degree of ill-posedness as
expressed by the available conditional stability estimates and the effect of perturbations
in data. We have also shown that certain averaged quantities can be approximated with
Lipschitz stability. The results were illustrated by a series of numerical examples. The
advantages of the high-order approximation are clearly seen, in particular for higher wave
numbers. However, care must be taken to stop the mesh refinement when the perturba-
tions are stronger than the threshold allowed by the estimates, since otherwise the solution
quality degenerates. Alternatively, the coefficient of the Tikhonov regularization term can
be made lower bounded, on the scale of the perturbations, leading to stability on finer
scales (without convergence). Several future research directions are possible—for instance,
unique continuation subject to the wave equation (see also [11] for a related space-time
approach) in the time domain or Maxwell’s equations in the frequency domain.
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