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Abstract—A general non-Gaussian semiparametric model is
adopted to characterize the measurement vectors, or snapshots,
collected by a linear array. Moreover, the recently derived robust
semiparametric efficient R-estimator of the data covariance ma-
trix is exploited to implement an original version of the MUSIC
estimator. The efficiency of the resulting R-MUSIC algorithm
is investigated by comparing its Mean Squared Error (MSE) in
the estimation of the source spatial frequencies with the relevant
Semiparametric Stochastic Cramér-Rao Bound (SSCRB).

Index Terms—Semiparametric models, robust covariance ma-
trix estimation, MUSIC algorithm, Semiparametric Stochastic
Cramér-Rao Bound.

I. INTRODUCTION

In array processing, the word “robustness” has been de-
clined in many different ways depending on the specific
application at hand. According to that branch of mathematical
statistics started with the seminal works of Huber and Hampel
[1], [2], in this paper we will focus on the distributional
robustness of inference procedures. Distributionally robust
methodologies are, in fact, of fundamental importance in situ-
ations where a not perfect a priori knowledge of the statistical
behaviours of the collected measurements (summarized in their
joint distribution) leads to a significant degradation in the
performance from the expected nominal one. Since the exact
input data distribution is rarely a priori known, the design of
robust approaches has been gaining considerable attention in
many applicative fields [3], [4].

In this paper, we deal with the Direction of Arrival (DOA)
estimation of K sources from a set of L independent, iden-
tically distributed (i.i.d.) measurement vectors {z;}% ,, also
called snapshots, collected by a linear sensor array. As it can
be observed from the vast literature on this topic, a lot of
effort has been devoted to derive optimal DOA estimation
algorithms to be used in a specific (and a priori known) signal
and disturbance environment that, for the sake of tractability, is
generally assumed to be Gaussian. This simplifying assump-
tion, however, violates the everyday practice that highlights
the non-Gaussian, heavy-tailed behaviour of the data.

As suggested in [5], [6] and [7] a suitable class of non-
Gaussian, heavy-tailed distributions able to describe the sta-
tistical behaviour of the snapshots is given by the Complex
Elliptically Symmetric (CES) distributions. The CES model
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generalizes all the commonly used array processing data mod-
els (Gaussian and Compound Gaussian ones, among others)
and its reliability has been validated by extensive measurement
campaigns and related data analysis (see [8], [9] and references
therein). Formally, a snapshot CV > z; ~ CESy(z;0,h) is
said to be zero-mean CES-distributed if its probability density
function (pdf) can be expressed as [9]:

pz(21]0,h) = [3(0)| 7' h (2" 2(0) " =), (D

where 8 € O is a finite-dimensional vector, containing
the parameters of interest, that parametrizes the covari-
ance/scatter matrix 3(@).! The other infinite-dimensional
parameter, characterizing the actual CES data distribution,
is the density generator h that belongs to the set G =
{h:RT = R |[FtN " h(t)dt < oo, [pz =1} [9].

Since, as said before, in practical application it is unrealistic
to assume the a priori knowledge of the specific data distribu-
tion, the density generator h has to be considered as a nuisance
function. Consequently, the joint pdf of a set of L i.i.d. zero-
mean, CES-distributed snapshots has to be considered as an
element of a semiparametric model of the form [10], [11]:

L
,Pg’hé {Hl_lpz(zl;g,h);ee(a,hEQ}- (2)

Therefore, the estimation of @ € © has to be framed in the
context of semiparametric inference problems and it has to
be handled by means of distributionally robust algorithms that
does not rely on the knowledge of the density generator h.

The goal of this paper is then to investigate the performance
of a subspace-based MUSIC DOA estimator built around a
new distributionally robust and semiparametric efficient R-
estimator of the snapshot covariance matrix. Such original R-
estimator, whose exploitation in radar signal processing is still
at its infancy, has been firstly proposed by Hallin, Oja and
Paindaveine in [12] for Real ES data, while its extension to
CES data is provided in our recent work [13].

Before moving forward, it is important to underline that
other semiparametric estimators for the covariance matrix of a
set of non-Gaussian data vectors have already been proposed
in signal processing literature. As en example, we refer to

Note that this formulation includes the case where the whole scatter matrix
3 is unknown. In fact, we can always define @ = vec(X), where the
vectorization operator vec is formally defined in the notation section.



[14], [15] for an Empirical Likelihood approach to structured
covariance matrix estimation.

The paper is organized as follows. At first, a general
semiparametric CES snapshot model is provided in Sec. II
This model generalizes and encompasses as special case
the Gaussian snapshot model commonly adopted in array
processing literature. Then, Sec. III presents the main ideas
behind the distributionally robust and semiparametric efficient
R-estimator of the snapshot covariance matrix along with
its exploitation to derive a MUSIC-based DOA estimation
algorithm. In order to assess the semiparametric efficiency
of the derived R-MUSIC estimator, we compare its Mean
Squared Error (MSE) with the Semiparametric Stochastic
Cramér-Rao Bound (SSCRB) recently derived in [11], [16]
and recalled here in Sec. IV. The simulation results about the
MSE performance of the proposed R-MUSIC estimator are
provided in Sec. V while our concluding remarks are collected
in Sec. VL

Notation: In the rest of the paper, italics indicates scalar
quantities (a), lower case and upper case boldface indicate
column vectors (a) and matrices (A), respectively. The (i, j)
entry of a matrix A is indicated as a;; = [A]; ;. A matrix
A whose first top-left entry is constrained to be equal to
1, i.e. a;; £ 1, is indicated as A;. The operator vec maps
column-wise the entry of an N x N matrix A in an N2-
dimensional column vector vec (A). The operator vec(A)
defines the N2 — 1-dimensional vector obtained from vec (A)
by deleting its first element, i.e. vec (A) £ [a;1,vec(A)T]T.
The subscript “0” indicates the actual (or frue) quantities
characterizing the data generating process. Specifically, 8, hg
and po(z;) £ pz (2|60, ho) defines the true parameter vector,
the true density generator and the true data pdf, respectively.
The symbol =, stands for “has the same distribution as”.
Finally, let us define the matrices P £ [es]es|- - |enz]”,
where e; is the i-th vector of the canonical basis of RY 2,
and H\J/_ec(IN) =Iy2 — N~ tvec(Iy)vec(In)T.

II. THE SEMIPARAMETRIC CES SNAPSHOT MODEL

The aim of this Section is to the introduce the non-
Gaussian snapshot model that we are going to assume for the
measurement collected by the sensor array. At first, we briefly
recall the basic properties of CES distributions. Then, the CES
snapshot model is presented and its advantages with respect to
the classical Gaussian data model are discussed and analysed.

A. Basics on CES distributions

The theory of CES distributions has been extensively dis-
cussed in many dedicated works, both in statistics and signal
processing literature. Among the many, we refer to the excel-
lent tutorial paper [9] and to our previous works [10], [11]
where CES distributions have been framed in the context of
semiparametric models. Here, for the sake of clarity, we limit
ourselves to provide a very short summary that may help the
non-expert reader to go through the next sections of this paper.

Let CV*N 5 3 £ 3(6)) be the true scatter matrix,
assumed to be of full-rank, parametrized by 6, € O. Then,
any zero-mean, CES-distributed vector z; can be written as

Z; =4 \@25/2111,

i) w; ~U(CSN~1) is a complex random vector uniformly
distributed on the complex unit (N — 1)-sphere,

i) Q=42{%5"21 2 Qi ~ poolg) =" /rv)g" " ho(q)
is called 2nd-order modular variate,

iii) The covariance matrix of z; can be expressed as function
of the scatter matrix Xy and Q as My £ E{zz]'} =
N71E{Q}%,.

For identifiability reason as well as for ease of problem
interpretation, we impose the equality between the covariance
matrix M and the scatter matrix X,. To this end, as direct
consequence of point iii), we need to constrain the density
generator hg to belong to the following (constrained) set of
functions:

where : 3)

Gé{heglE{Q}:N} 4)

where E{Q} £ [[" qpg o( e I aVho(q)da.
The expectation operator with respect to pd s depending on the

“constrained” density generator hg € G will be indicated as
E{-}. Finally, we define as shape matrix V a normalized ver-
sion of the covariance/scatter matrix. Common normalizations
are tr(Vo) = N or V| = 1. Here, for the reasons discussed
in [13], we choose the following V1o £ 3¢/[X0]1,1 leading
to shape matrices having the first top-left element equal to 1.

B. CES distributed snapshots

Let us first recall the classical Gaussian snapshot model
widely used in array processing literature. We consider an
array of arbitrary geometry with /N omnidirectional sensors.
Moreover, let us assume a far-filed scenario with K nar-
rowband sources impinging on the array from K different
spatial frequencies collected in the vector v = (vy,...,vk)7T.
The steering matrix A(v) = [a(1)|---|a(vk)] € CVXK
is defined as the matrix whose k™ column is given by the
steering vector a(vy) characterizing the array geometry.

The classical snapshot model is given by [17], [18]:

Ags; +1; £ 2, ~CN(0,2(6y)), 6)

e A, indicated the steering matrix evaluated at the true
spatial frequency vector v, i.e. Ag = A(vyp),

e CK 38 ~CN(0,T),VI is the Gaussian source vector
and I'y is the source correlation matrix,

e CV 3 n; ~ CN(0,021y),Vl is the white Gaussian
measurement noise with power o3.

o The unknown parameters can be collected in

Boé[ug,cg703}T€@7 6)

where © C [-0.5,0.5)% x RE* x R+ and ¢ is a vector
set up by the K diagonal entries as well as the K (K+1)—
2K real and imaginary parts of the off-diagonal entries
of the source correlation matrix I'g.



From the model in (5), the snapshot covariance/scatter matrix
can easily be obtained as:

2(90) = E{ZZZF} = A()F()A(I)_I + 081N~ (7)

Note that the covariance structure in (7) does not necessary
require the sources or the noise to be Gaussian distributed, but
it holds true for any uncorrelated random vectors s; and n;
having finite second-order moments.

Even if widely used due to its analytical tractability, the
linear snapshot model in (5) suffers from a strong limitation:
the source and noise vectors are assumed to be two inde-
pendent and Gaussian-distributed vectors, and consequently
their linear combination (i.e. the resulting snapshot) is also
Gaussian-distributed. In practical applications however, this
Gaussianity assumption is not a realistic one, at least for the
noise/clutter contribution. In addition, when wrongly adopted,
it can lead to severe performance degradation. For this reason,
instead of assuming two separate Gaussian models, one for the
sources and one for the disturbance, we prefer to adopt directly
a non-Gaussian model for the snapshots without specifying the
source and disturbance models [5], [6], [7]. In particular, we
assume that the L i.i.d. snapshots are distributed as [11], [16]:

z; ~ CESN(z, 600, ho), ®)

where 0y € © is the parameter vector defined in (6), while
ho € G as to be considered as an additional nuisance function.
The snapshot model in (8) has two big advantages with respect
to the classical one:

i) It is able to catch the non-Gaussian, heavy-tailed be-
haviour of the collected measurements,

ii) It is semiparametric in nature, i.e. it can encompass a
wide range of non-Gaussian models without any need
of pre-selecting a specific data distribution. In fact, the
actual density generator hg is considered as an infinite-
dimensional unknown parameter.

If, on one hand, the generality of the semiparametric CES
model in (8) guarantees that the risk of model misspecification
is minimized [19], on the other hand its semiparametric nature
asks for more sophisticated, distributionally robust, inference
procedure to estimate the parameters of interest, i.e. the source
spatial frequency vector v contained in 6.

To conclude, it is worth noticing that the semiparametric
CES snapshot model in (8) encompasses, as special case,
the classical Gaussian one. In fact, the model in (5) can be
obtained from the one in (8) by setting hy = exp(—t) as
density generator for the snapshots.

III. THE R-MUSIC ALGORITHM

Given the measurement model in (8), a major goal of any
array processing inference is to estimate the spatial frequency
vector v, (i.e. the DOA) from the set of collected snapshots
{z;}}F.,. Among the variety of DOA estimation algorithms
proposed in the array processing literature, we will focus here
on that subclass described by a (vector-valued) function A €
‘H characterized by the following two properties:

Pl A depends on the snapshots {z;}/ ; only through their
estimated covariance matrix 3:

HQASEF—)V:(ZQ,...,I/K)T )
P2 A is a positively homogeneous function of order zero:
A(aS) = A(Z), Va > 0. (10)

It is easy to verify that the class H encompasses all the
subspace-based methods, and in particular, the MUSIC algo-
rithm as special cases. In particular, let V1 o = 3q/[Z0]1.1 be
the shape matrix as defined in subsec. II-A. Moreover, let \2
be an estimate of V' o obtained from the collected snapshots
{zi}}_,. Then the MUSIC pseudospectrum is given by [20]:

N -1

Pu) 2 [0 ) ]

where, as before, v is the variable representing the spatial
frequency, a(v) is the steering vector and K is the total
number of sources (assumed to be a priori known). The
vectors {fx41,...,n} forms an orthogonal basis for the so
called noise subspace and they can be obtained as the N — K
eigenvectors corresponding to the N — K smallest eigenvalues
of the estimated shape matrix V1. The MUSIC estimator A,
of the source spatial frequencies can be obtained by searching
for the position of the first K local maxima of Py (v):

Y

Ay \71 — U = argmax Py (v). (12)
174

As we can see from (11), the calculation of the MUSIC
pseudospectrum does not rely on the a priori knowledge of the
joint distribution of the snapshots, so it can be considered as a
proper semiparametric DOA estimation algorithm. However,
its distributional robustness and (semiparametric) efficiency
strongly depends on the choice of the shape matrix estimator.
In [16] we showed that the commonly adopted robust M-
estimators, such as Tyler’s or Huber’s estimators, does not
lead to semiparametric efficient DOA estimates. Therefore,
in this paper, we propose the use of an original R-estimator
V1,r that has been proved to possess two desirable properties
when applied to CES data: the distributional robustness and
the semiparametric efficiency.

A. An original R-estimator of the shape matrix

The shape matrix estimator that we are going to introduce
belongs to the class of R-estimators. This name is motivated
by the fact that this family of robust estimators rely on the
properties of the ranks 2 of a set of order statistics. The in-
depth theoretical analysis of this R-estimator can be found in
[13], while here we report only the final expression along with
a short discussion about its practical implementation.

To define the R-estimator Vi r, we need a preliminary
estimator of the shape matrix. Even if any +/L-consistent
estimators will do, it is advisable to use the Tyler’s estimator

ety £ {Ql}lL:1 be a set of continuous random variables and let V, £
{Qra) < Qr(2) < ... < Qr(r)} be its relevant ordered (in an ascending
way) set. Then, the rank r; of Q; € V is its position index in V,.



Vl,Ty due to its robustness properties [21]. In particular, let
{z1}£., a set of CES-distributed snapshots as in (8), then
\A/'LTy can be obtained as the convergence point (p — ©0)
of the following iteration [22], [23]:

{ > (p+1) — % Zlel zlz{{/le[g(p)]*lzl

> 1 S -~
Vgp;:y) A E(p+1)/[z(p+l)]1,l.

(13)

Consequently, by relying on \A/'17Ty in (13) and according to

[13], the R-estimator of the (complex-valued) shape matrix

Vi, can be expressed as:3

1

La [L\A/l’Ty
L -

<Ly, 3 Koaw (111 ) veetai @)

=1

~ R 1
LQC(VLR) = LQC(VLTZ/) - gl Tyi|

(14)

* Ly, ., =P (VL%Q ®V1,1T/y2) ey and T g )
and P are defined in the notation section,

o {ry}L, are the ranks of the continuous random variables
A? £ ZAlH[Vl,Ty]_lzl, l=1,...,L,

o U £ [V1,Ty]_l/2zz/\/Qil*, l=1,...,L,

o The data-dependent term & is given in [13, Sec. V.B],

o Keaw(u) £ —®;"(u) where ®;' indicates the inverse

function of the cdf of a Gamma-distributed random

variable with parameters (N, 1).

As amply discussed in [13], the advantage of the R-
estimator in (14) with respect to other robust competitors is in
the fact that V g is distributionally robust as the Tyler’s or
Huber’s M -estimators but, unlike them, it is also Asemiparamet-
ric efficient. Roughly speaking, this means that V; g achieves
the Semiparametric Cramér-Rao bound (SCRB) [10], [11] on
the estimation of the shape matrix Vo irrespective of the
unknown density generator hg. In Sec. V, we will investigate
whether the semiparametric efficiency of V g in the estima-
tion of V1 o will lead to a better performance of the MUSIC
DOA estimator based on it. Specifically, the semiparametric
efficiency of the MUSIC functional & = Ap(Vy,g) given
in Sec. III will be assessed by comparing its MSE with the
relevant Semiparametric Stochastic CRB (SSCRB).

IV. THE SEMIPARAMETRIC STOCHASTIC CRB

A classical result in array processing is the so-called
Stochastic Cramér-Rao Bound [17], [18], [20]. In particular,
given the Gaussian snapshot model in (5), the Stochastic
CRB provides us with a lower bound on the MSE of any
(unbiased) estimators of the spatial frequency vector v, in
the presence of two finite-dimensional nuisance terms, i.e. the
source correlation vector ¢y and the noise power o3. Clearly,
this result is no longer valid if the semiparametric CES model
in (8) is assumed for the collected snapshots. However, a
generalization of the Stochastic CRB for estimation problem
based on (8) has been recently derived in [11]. Specifically,
in [11], a lower bound to the MSE of any \/L-consistent,

3Matlab and Python codes can be found at https:/github.com/StefanoFor/.

distributionally robust, estimators of 24y has been obtained
in the presence of the (finite-dimensional) nuisance terms (g
and o3 along with the infinite-dimensional nuisance density
generator hg. Such Semiparametric Stochastic CRB can be
expressed as:

2
SSCRB(vp|Co, 02, ho) — — ¥ + 1o

-1
- QLE{QQwo(Q)Q}C(VO’CO) )

(15)
where @ is defined in subsec. II-A, the function g is such
that ¢ (t) = dln ho(t)/dt and C(vy, o) is given by:

— T
C(vy,¢o) £ Re (D{TIx, Do) © (To A S5 ATy, (16)

where © is the Hadamard product, Doy £ [dg 1, ,do k],
d07k & da(yk)/dykhg,k and H‘kn = IN —Ao(Aér{Ao)_lA(I){.

In [16], we showed that MUSIC functionals built upon
robust M -estimators of the shape matrix, such us Tyler’s and
Huber’s ones, are not efficient with respect to the SSCRB
in (15). Then, two questions arise now: can we obtain better
performance by relying on the R-estimator Vi g in (14)?
In addition, will the resulting R-MUSIC functional vp =
A (Vi r) be semiparametric efficient with respect to the
SSCRB in (15)? We will try to answer to these two important
questions in the next Section.

V. NUMERICAL ANALYSIS

Finally, we present a numerical investigation of the R-
MUSIC DOA estimator and of its semiparametric efficiency.
Specifically, we compare its MSE on the estimation of the
spatial frequency vector vy with the SSCRB in (15). We
would like to underline however that our simulations have
been performed in a realistic “finite-sample” regime, i.e. for a
reasonable number L of snapshots, while, rigorously speaking,
efficiency is an asymptotic (L — 00) property.

For simplicity, we consider a uniformly linear ar-
ray (ULA) whose steering vector is given by a(v) =
(1,672 ..., 2" (N=1")T 4 We simulate L i.i.d. snapshots
{z}E | according to the semiparametric CES model in (8)
under two different density generators leading to a set of 1)
t-distributed data and of 2) Generalized Gaussian (G() data.

The simulation parameters are set up as follows:

o Two correlated sources (K = 2) at spatial frequencies
v1 = 0.1 and v5 = 0.2 with correlation matrix

o= < U% p0120 2 )
pPO102 g5
where 07 = 03 = o2 - 10(SNR/10),
o The noise power 08 = 1, the Signal-to-Noise ratio
SNR = 5dB and the correlation coefficient p = 0.5,
o The number of snapshots is L = 5N where N = 8§,
o The number of Monte Carlo runs is 106.

For the purpose of comparison, we consider three MUSIC
functionals:

4Let d be the ULA element spacing and ) its operating wavelength. Then
v = d/xsin(v) where ~ is the conic angle.



« SCM-MUSIC: Dscar 2 Ay (Vi scar) where the Sam-
ple Covariance Matrix (SCM) is a standard estimator of
the snapshot shape matrix and it is given by:

S L
E ESC s 1
Visow = =, Ssom =7 mzl, (17)
[(Esonmin =1

o Tyler-MUSIC [24]: ©r, 2 An(Vir,), where the
Tyler’s estimator \A/'17Ty has been showed in (13),

e R-MUSIC: b = Ay (Vl r) where the semiparametric
efficient R-estimator \71, r is given in (14).

As MSE indices, we adopt the following one:

Sa £ B{||(Za — v0) (D0 —10)"||r},

where || - || is the Frobenius norm and o =
{SCM,Ty,R}. As SSCRB index, we report esscrp =
[[SSCRB(v|0, 02, ho)|| - Note that the closed form expres-
sion of the SSCRB in (15) can be found in [11], [16].

(18)

A. t-distributed data

The complex t-distribution belongs to the CES family and
its pdf can be obtained from the general expression in (1) by
using the following density generator [9]:

A —(AN)
<A> (A +t) St eRT, (19)
n n

where the degrees of freedom A € (1,00) controls the data
non-Gaussianity while the scale parameter 1 has to be set as
17 =A/(A—1) in order to satisfy the constraint in (4). Fig. 1
shows the MSE of the three considered MUSIC functionals as
function of the non-Gaussianity parameter A. As expected, for
small value of ), i.e. for highly non-Gaussian data, sy has
very bad estimation performance due to the non robustness of
the SCM estimator V1 gcas. On the other hand, for A — oo its
performance improves since the data distribution collapses into
the Gaussian one. Due to the well-known robustness properties
of the Tyler’s shape matrix estimator V 7, the MSE of the
Tyler-MUSIC functional &7, is invariant with respect to A but
its MSE index <7, remains far from the SSCRB, in particular
when the data tends to be Gaussian. Due to its semiparametric
efficiency property, the R-MUSIC functional £, outperforms
both the SCM-MUSIC and the Tyler-MUSIC for every value
of the non-Gaussianity parameter A. However, neither oy is
able to achieve the SSCRB. Some hints about this lack of
efficiency and some possible future research direction aiming
at deriving semiparametric efficient DOA functionals will be
provided in our conclusion collected in Sec. VL.

ho(t) = m

B. GG-distributed data

Another example of CES distribution is the Generalized
Gaussian (GG) one. In particular, the GG pdf can be obtained
from the general expression in (1) by using the following
density generator [9]:

sD(N)b~—N/s

"ol = TNy

t2 4
exp(—— ), teR".  (20)
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Fig. 1: MSE indices and SSCRB vs A for ¢-distributed data.

The GG distribution is able to characterize data with heavier
tails (s < 1) and with lighter tails (s > 1) as compared to a
Gaussian dataset (s = 1). The scale b is a free parameter
that, as for n in the ¢-distribution, has to be set in order
to satisfy the constraint is (4). In particular, we have that
b= [NT(N/s)/T((N +1)/s)]®. On the same line of Fig. 1,
Fig. 2 shows the MSE indices of the tree MUSIC functional
as function of the non-Gaussianity parameter s for GG-
distributed data. The simulation results in Fig. 2 confirm the
ones previously discussed for ¢-distributed data:

o The MSE of the Tyler-MUSIC functional £, is invariant
with respect to the data non-Gaussianity. However, its
MSE index is far from the SSCRB, in particular for
Gaussian (s = 1) and sub-Gaussian (s > 1) data.

e The SCM-MUSIC functional ©gcps suffers in heavy
tailed data (s < 1), while outperforms the Tyler-MUSIC
in Gaussian (s = 1) and sub-Gaussian data (s > 1).

e The R-MUSIC functional ©i outperforms both Tyler-
MUSIC and SCM-MUSIC estimators in heavy-tailed
scenarios (s < 1), while its MSE is comparable to the
one of the SCM-MUSIC functional in Gaussian (s = 1)
and sub-Gaussian (s > 1) environment.

This simulative investigation of the performance of the three
MUSIC estimation functionals leaves open a fundamental
question: is it possible to derive a semiparametric efficient
estimator of source spatial frequencies for CES distributed
snapshots? A preliminary answer and some related hints will
be given in our concluding remarks.

VI. CONCLUDING REMARKS

The goal of this paper was twofold: following [5]-[7],
we first aimed at reformulating the classical Gaussian-based
snapshot model for DOA estimation in a much more general
and realistic semiparametric CES model. Then, the semi-
parametric efficiency of a MUSIC DOA functional exploit-
ing the recently derived shape matrix R-estimator [13] has
been assessed through numerical simulations. This preliminary
investigation has shown that, in heavy-tailed data, the R-
MUSIC functional outperforms (at least) two classical MUSIC
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Fig. 2: MSE indices and SSCRB vs s for GG-distributed data.

estimators built from the SCM and the Tyler’s M -estimator of
shape. However, it fails to be semiparametric efficient with
respect to the SSCRB [11], [16]. We believe that one of
the reason of this lack of efficiency is in the fact that the
MUSIC functional is based on the eigen-decomposition of the
(estimated) snapshot shape matrix. Consequently, even if the
adopted shape matrix estimator is semiparametric efficient (as
the R-estimator in [12], [13]), this does not imply that its
eigenvectors, obtained for example through a singular value
decomposition (SVD), represent a semiparametric efficient
estimate of the true eigenspace. This means that, instead of
implementing an estimator of a shape matrix and, from it,
evaluate the eigenvectors to be used in the MUSIC functional,
we should estimate the noise eigenspace directly from the
collected snapshots. To this end, the recent work [25] has
investigated the possibility to derive distributionally robust
and semiparametric efficient estimators of the eigenvectors of
the shape matrix of a CES distributed dataset. This promising
approach could be the key to obtain semiparametric efficient
sub-space-based DOA estimators in general non-Gaussian and
heavy-tailed environment. In addition to this, future works
will aim at providing a performance comparison with other
existing robust DOA estimation methods. Among others, the
comparison with the G-MUSIC algorithm [26] is of both prac-
tical and theoretical importance. In fact, building upon robust
statistics and random matrix theory (RMT), the G-MUSIC
DOA estimator has been proved to have better performance
with respect to others robust competitors. However, the study
of its semiparametric efficiency is still an open problem.
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