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Robust Semiparametric Efficient Estimators in Complex Elliptically
Symmetric Distributions

Stefano Fortunati, Alexandre Renaux, Frédéric Pascal

I. LE CAM’S ONE-STEP ESTIMATORS IN A NUTSHELL

The aim of this first section is to provide the reader of our paper with some additional discussion about
the general theory of efficient one-step estimators. This class of estimators has its root in the concept of Local
Asymptotic Normality (LAN) of a statistical model. The LAN property has been introduced for the first time by
Le Cam in his fundamental work [1] (see also [2, Ch. 6]) and it has since established itself as a milestone in
modern statistics. Leaving aside the deep theoretical implications that the LAN property has for a given family
of distributions, there is at least one outcome of great interest for any practitioner working in signal processing
(SP) and related fields. As Le Cam showed, if a statistical model is Locally Asymptotic Normal, then it is
possible to derive asymptotically efficient estimators that, unlike the Maximum Likelihood (ML) one, do not
search for the maxima of the log-likelihood function. This fact is of great importance in practical applications,
where the ML estimator can present computational difficulties in the resulting optimization problem or even
existence/uniqueness issues [3, Ch. 6].

We start by introducing the concept of Hellinger differentiability, or differentiability in quadratic mean. Then,
the definition of the LAN property for parametric models will be given and its exploitation, in deriving efficient
one-step estimators, discussed. Finally, the generalization of the previously developed theory to semiparametric
models will be provided.

Algebraic notation: Throughout this document, italics indicates scalar quantities (a), lower case and upper case
boldface indicate column vectors (a) and matrices (A), respectively. Each entry of a matrix A is indicated as
aij , [A]i,j . IN defines the N × N identity matrix. The superscript > indicates the transpose operator, then
A−> , (A−1)> = (A>)−1. The Euclidean norm of a vector a is indicated as ||a||. The determinant and the
Frobenius norm of a matrix A are indicated as |A| and ||A||F , respectively.

Small o notation: Given a real-valued function f(x) and a strictly positive real-valued function g(x), f(x) =

o(g(x)) if for every positive real number a, there exists a real number x0 such that |f(x)| ≤ ag(x), ∀x ≥ x0.
Statistical notation: Let xl be a sequence of random variables in the same probability space. We write:

• xl = oP (1) if liml→∞ Pr {|xl| ≥ ε} = 0, ∀ε > 0 (convergence in probability to 0),
• xl = OP (1) if for any ε > 0, there exists a finite M > 0 and a finite L > 0, s.t. Pr {|xl| > M} < ε,∀l > L

(stochastic boundedness).

The cumulative distribution function (cdf) and the related probability density function (pdf) of a random variable
x or a random vector x are indicated as PX and pX , respectively. For random variables and vectors, d

= stands
for “has the same distribution as”. The symbol ∼

L→∞
indicates the convergence in distribution. We indicate the

true pdf as p0(x) , pX(x|φ0, g0), where φ0 and g0 indicate the true parameter vector to be estimated and the
true nuisance function, respectively. We define as Eφ,g{f(x)} =

∫
f(x)pX(x|φ, g)dx the expectation operator

of a measurable function f of a random vector x. Moreover, we simply indicate as E0{·} the expectation with
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respect to (w.r.t.) the true pdf p0(x). The superscript ? indicates a
√
L-consistent, preliminary, estimator φ̂? of

φ0, s.t.
√
L (φ? − φ0) = OP (1).

Let x ∈ RN be a real-valued random vector and let pX be its probability density function (pdf). A parametric
model, characterizing the statistical behavior of x, will be indicated as:

Pφ = {pX |pX(x|φ);φ ∈ Ω ⊆ Rq} , (62)

while a semiparametric model will be described as:

Pφ,g = {pX |pX(x|φ, g);φ ∈ Ω ⊆ Rq, g ∈ G} , (63)

where G is a suitable set of functions.

A. Hellinger differentiability

Let φ ∈ Ω ⊆ Rq be the parameter vector and let pX(x|φ) ∈ Pφ be a pdf belonging to the parametric model
Pφ in Eq. (62). We define uφ(x) as the following parametric map:

uφ : Ω→ L2

φ 7→ uφ(x) ,
√
pX(x|φ),

(64)

where L2 indicates the set of all the square integrable functions. We say that uφ is Hellinger differentiable in
φ ∈ Ω if there exists a vector u̇φ ≡ u̇φ(x) such that [4, Ch. 2, Def. 1], [5, Ch. 5.5]:∫ [

uφ+h(x)− uφ(x)− h>u̇φ(x)
]2
dx = o(||h||), h ∈ Ω, ||h|| → 0. (65)

Then u̇φ ≡ u̇φ(x) is the Hellinger derivative of uφ in φ ∈ Ω. According to [4, Ch. 2, Def. 2], a parametric
model Pφ is said to be regular if each pX(x|φ) ∈ Pφ is Hellinger differentiable at every φ ∈ Ω.

The Hellinger differentiability was introduced by Le Cam as the weakest regularity condition required to develop
the LAN theory. However, even if extremely useful for theoretical purposes, the Hellinger differentiability is not
really suitable to derive practical inference algorithms. Fortunately, statistical models involved in practical signal
processing (SP) applications can generally satisfy more stringent assumptions than the one in Eq. (65). This
allows us to link the regularity “á la Le Cam” of a parametric model to more familiar quantities, e.g. the score
vector and the Fisher Information Matrix (FIM), as detailed in the following Proposition (see [4, Ch. 2, Prop.
1] for the proof).

Proposition 1. Let x be a set of N -dimensional, real-valued, random vector sampled from a pdf pX ∈ Pφ in
Eq. (62). Let sφ ≡ sφ(x) be the score vector defined as:

sφ(x) , ∇φ ln pX(x|φ) (66)

and let I(φ) be the Fisher Information Matrix (FIM):

I(φ) , Eφ

{
sφ(x)s>φ(x)

}
. (67)

Then, the parametric model Pφ is regular “á la Le Cam” if the following three sufficient (but not necessary)
conditions are satisfied:

i) pX(x|φ) is continuously differentiable in φ ∈ Ω for almost all x with gradient ∇φpX(x|φ),
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ii) Eφ{sφ(x)>sφ(x)} <∞,
iii) The FIM in Eq. (67) is non-singular and continuous in φ ∈ Ω.

If i), ii) and iii) hold true, the Hellinger derivative u̇φ defined in Eq. (65) can be explicitly expressed as function
of the score vector sφ in Eq. (66) as:

u̇φ(x) =
1

2

√
pX(x|φ)sφ(x). (68)

The regularity conditions i), ii) and iii) in Prop. 1 requires, among others, the pointwise differentiability of the
pdf and consequently they are more stringent than the integral condition in Eq. (65). However, they are generally
satisfied by the vast majority of the statistical models exploited in practical inference problems. For this reason,
in the following discussion, we will assume them for granted but we will always indicate when the obtained
results can be derived starting form the weaker regularity condition in Eq. (65).

B. LAN property and ES distributions

The following Proposition introduces the fundamental LAN property ( [1], [2, Ch. 6], [5, Ch. 7.6]) of a
parametric model satisfying the regularity conditions stated in Prop. 1.

Proposition 2. Let {xl}Ll=1 be a set of real-valued, i.i.d. observations sampled from a pdf pX belonging to a
regular parametric model Pφ in Eq. (62). Let ∆φ(x1, . . . ,xL) be a random vector, usually referred to as central
sequence, defined as:

∆φ(x1, . . . ,xL) ≡∆φ , L−1/2
∑L

l=1
sφ(xl), (69)

where sφ(xl) is the score vector given in Eq. (66).
Then, any pX(x|φ) ∈ Pφ satisfies the following LAN property:

ln

∏L
l=1 pX(xl|φ + L−1/2h)∏L

l=1 pX(xl|φ)
= h>∆φ −

1

2
h>I(φ)h + oP (1), ∀φ,h ∈ Ω, (70)

where I(φ) is the FIM given in Eq. (67).
Moreover ∆φ satisfies the following two properties:

C1 Asymptotic differentiability (or asymptotic linearity): for all φ,h ∈ Ω

∆φ+L−1/2h −∆φ = −I(φ)h + oP (1), (71)

C2 Asymptotic normality:
∆φ ∼

L→∞
N (0, I(φ)), ∀φ ∈ Ω. (72)

Remark: The proof of Prop. 2 and extensive in-depth discussion about the LAN property can be found in [1],
[2, Ch. 6], and [5, Ch. 7.6].

Before moving on, it is important to stress that the LAN property can be defined in much more general settings,
e.g. for non-i.i.d. observations and for statistical models that do not admit a FIM or even a score vector. Actually,
under the regularity conditions in Prop. 1, the expansion in Eq. (70) can be thought as the second-order Taylor
approximation of the log-likelihood function [5, Ch. 7.2]. Anyway, as said before, even if they are not the weakest
ones, the assumptions made in Prop. 2 are satisfied by many data generating processes in SP applications. In
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particular, they are met by the Elliptical Symmetric (ES) distributions. Specifically, let us define the parametric
model of the Real ES (RES) distributions as:

Pφ =
{
pX |pX(x|φ) = 2−N/2|V1|−1/2g0

(
(xl − µ)>V−1

1 (xl − µ)
)

;φ ∈ Ω
}
, (73)

and the parameter vector φ is defined in Eq. (6) of our paper as φ ,
(
µ>, vecs(V1)>

)>, where µ ∈ RN

is the location vector and V1 ∈ MR
N is the shape matrix s.t. [V1]1,1 = 1. The general proof of the fact that

the RES model in Eq. (73) is regular and satisfies the LAN property in Prop. 2 has been provided by Hallin
and Paindaveine in [6, Prop. 2.1] (see also [6, Appendix 1]). As mentioned above, this is of great practical
importance because, as proved by Le Cam in [1], [2, Ch. 6], if a parametric model is Local Asymptotic Normal,
then asymptotically efficient estimators of the parameter of interest φ can be built using a “one-step linear
correction” to any preliminary

√
L-consistent estimator φ̂? of the true parameter vector φ0.

C. Efficient one-step parametric estimators

In parametric setting, the standard procedure to derive efficient estimators is given by the Maximum Likelihood
theory. Specifically, given a set of i.i.d. data {xl}Ll=1, an asymptotically efficient estimate of the true parameter
vector φ0 ∈ Ω ⊆ Rq, if it exists, can be obtained as:

φ̂ML , argmax
φ∈Ω

∑L

l=1
ln pX(xl|φ). (74)

As every practitioner knows, solving the optimization problem in Eq. (74) may result to be a prohibitive task
and, in some cases, φ̂ML may not even exist or may not be unique [3, Ch. 6]. So, it would be useful to figure
out a different methodology to derive efficient estimates.

Under the regularity conditions stated in Prop. 1, if φ̂ML exists, then it satisfies:

∆φ(x1, . . . ,xM )|φ=φ̂ML
≡∆φ̂ML

= 0, (75)

where ∆φ is the central sequence defined in Eq. (69). Eq. (75) can be thought as a set of q nonlinear equations,
then we can define a new estimator φ̂ given by the one-step Newton-Raphson approximate solution of Eq. (75)
as:

φ̂ = φ̃− [J∆(φ̃)]−1∆φ̃, (76)

where φ̃ is a “good” starting point and J∆(φ̃) indicates the Jacobian matrix of ∆φ evaluated at φ̃. Note that the
approximation in Eq. (76) is valid even if φ̂ML does not exists. In [1] and [2, Ch. 6], Le Cam formalized and
generalized this intuitive procedure by providing an asymptotic characterization of the class of efficient one-step
estimators. This fundamental result is summarized in the following theorem (see also [5, Ch. 5.7]).

Theorem 1. Let {xl}Ll=1 be a set of i.i.d. observations sampled from the “true” pdf p0 ∈ Pφ satisfying the LAN
property as in Prop. 2. Let φ̂? any preliminary

√
L-consistent estimator of the true parameter vector φ0 ∈ Ω.

Then, the one-step estimator
φ̂ = φ̂? + L−1/2I(φ̂?)−1∆φ̂? , (77)

has the following properties:

P1
√
L-consistency √

L
(
φ̂− φ0

)
= OP (1), (78)
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P2 Asymptotic normality and efficiency
√
L
(
φ̂− φ0

)
∼

L→∞
N (0, I(φ0)−1), (79)

where I(φ0)−1 = CRB(φ0) is the Cramér-Rao Bound.

Proof: Let us start by showing that the expression defining the one-step estimator in Eq. (77) can be derived
directly from the Newton-Raphson approximation in Eq. (76), using the asymptotic differentiability property C1,
given in Eq. (71), of the central sequence. Specifically, in analogy with the definition of Jacobian matrix, we
have that:

J∆(φ) ≡ −L1/2I(φ) + oP (1), ∀φ ∈ Ω. (80)

Finally, substituting Eq. (80) in Eq. (76), and noticing that φ̂? is a good starting point since it is, by definition,
in the

√
L-neighborhood of φ0, yields the expression Eq. (77).

The proof of the
√
L-consistency property P1 of φ̂ can be found in [4, Sec. 2.5, Th. 2]. To prove the property

P2, we start from the intermediate result provided in [4, Sec. 2.3, Th. 1], that is I(φ)−1∆φ ∼
L→∞

N (0, I(φ)−1).

Consequently, using the fact that φ̂? is
√
L-consistent, the asymptotic normality and efficiency of φ̂ in Eq. (77)

follows form a direct application of the Slutsky’s theorem [5, Lemma 2.8]. Note that the same warning raised
up for Prop. 2 holds here for Theorem 1. In fact, in [4, Sec. 2.3, Th. 1 and Sec. 2.5, Th. 2] only the Hellinger
differentiability is required, while here we need to assume the existence of the gradient (w.r.t. φ ∈ Ω) of the
log-likelihood function.

Since, as shown in [6, Prop. 2.1], the RES model in Eq. (73) satisfies the LAN property, Theorem 1 can be
readily applied to derive a one-step efficient estimator of the true parameter vector φ0 ,

(
µ>0 , vecs(V1,0)>

)>.
The closed form expressions of the score vector sφ (and consequently the one of the central sequence ∆φ) and
of the FIM I(φ), needed to implement the estimator in Eq. (77), can be directly obtained by the ones already
derived in our previous work [7]. Moreover, as preliminary

√
L-consistent estimator we may use:

φ̂? =
(
µ̂>Ty, vecs(V̂1,T y)

>
)>

, (81)

where µ̂>Ty and V̂1,T y are the joint Tyler’s estimates of the location vector and of the shape matrix constrained
to have [V̂1,T y]1,1 = 1 [8], [9].

The result in Theorem 1 would be enough to derive original, asymptotically efficient, estimators of the location
vector µ0 and of the shape matrix V1,0 in the classical parametric context. Here however, we want to go one
step further towards the semiparametric framework.

D. One-step, semiparametric estimators

A semiparametric model Pφ,g is a set of pdfs parameterized by a finite-dimensional parameter vector φ ∈ Ω ⊆
Rq and by a function g ∈ G that usually plays the role of an infinite-dimensional nuisance parameter [4], [10]. As
amply discussed in [7] and [11] the ES distributions are a perfect candidate to be modeled as a semiparametric
model, since we generally do not have any a priori information on the actual density generator g0 characterizing
the specific distribution of the observations. Specifically, the RES semiparametric model can be expressed as:

Pφ,g =
{
pX |pX(x|φ, g) = 2−N/2|V1|−1/2g

(
(xl − µ)>V−1

1 (xl − µ)
)

;φ ∈ Ω, g ∈ G
}
, (82)
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where, as for the parametric case, φ =
(
µ>, vecs(V1)>

)> while G is the set of all the “proper” density generators,
i.e. G =

{
g : R+ → R+

∣∣∫∞
0 tN/2−1g(t)dt <∞,

∫
pXdx = 1

}
[12].

The question that we are going to address here is the following: is it possible to generalize the concept of one-
step estimators, as formalized in Theorem 1, to semiparametric inference problems? To answer to this important
point, let us start by focusing on the main building blocks needed to derive the one-step estimator φ̂ given, for
the parametric case, in Eq. (77). As already discussed in the dedicated statistical literature (see e.g. [4], [10],
[13]) and in our recent works [7], [11], [14], the semiparametric counterpart of the score vector sφ is the efficient
score vector s̄φ,g0 defined as (see [14] and [7, Th. IV.1]):

s̄φ,g0(x) ≡ s̄φ,g0 , sφ −Π(sφ|Tg0), (83)

where Π(sφ|Tg0) is the orthogonal projection of the score vector sφ in Eq. (66) on the semiparametric nui-
sance tangent space Tg0 [15], [5, Ch. 25.4]. The semiparametric counterpart of the FIM I(φ) is the efficient
semiparametric FIM (SFIM) [14], [7, Th. IV.1]:

Ī(φ|g0) , Eφ,g0{s̄φ,g0(x)s̄φ,g0(x)>}. (84)

On the same line of Eq. (69), we introduce the efficient central sequence ∆φ,g simply as:

∆φ,g(x1, . . . ,xL) ≡∆φ,g , L−1/2
∑L

l=1
s̄φ,g(xl), ∀φ ∈ Ω, g ∈ G. (85)

The natural “semiparametric” generalization of the ML estimating equations in Eq. (75) would be [5, Ch. 25.8]

∆φ,g(x1, . . . ,xM )|φ=φ̂ML,g=ĝ?
≡∆φ̂ML,ĝ?

= 0. (86)

It must be readily noted that the critical difference between the ML estimating equation in Eq. (75) and their
semiparametric generalization in Eq. (86) is that the latter involve a preliminary

√
L-consistent, non-parametric,

estimator ĝ? of the nuisance function g. Unfortunately, as discussed in [5, Ch. 25.8] and in [4, Ch. 7], it is
generally impossible to find an estimator of the infinite-dimensional nuisance g that converge to the true function
g0 at the OP (L−1/2) rate characterizing most of the parametric estimators. Roughly speaking, the non-parametric
estimation of a function requires much more data then the ones needed to estimate a finite-dimensional parameter.

For the specific problem of the semiparametric shape matrix estimation in RES distributions, in their seminal
work [16], Hallin, Oja and Paindaveine proposed a different approach that does not involve the non-parametric
estimation of g0, still providing nearly semiparametric efficient estimator of φ =

(
µ>, vecs(V1)>

)>. The basic
idea developed in [16] is to split the semiparametric estimation problem at hand in two parts:

1) Assume that the true density generator g0 is known and solve Eq. (86) to derive a “clairvoyant” semipara-
metric estimatior φ̂s.

2) Robustify φ̂s by using a distribution-free, rank based, procedure.

To better understand this approach, let us start by analyzing the properties of the clairvoyant efficient central
sequence ∆φ,g0 of a set of RES distributed data.

Proposition 3. Let {xl}Ll=1 be a set of i.i.d. observations sampled from a RES pdf p0 ∈ Pφ,g in Eq. (82). Then,
the clairvoyant efficient central sequence ∆φ,g0 satisfies the following two properties:

CS1 Asymptotic differentiability (or asymptotic linearity): for all φ,h ∈ Ω

∆φ+L−1/2h,g0 −∆φ,g0 = −Ī(φ|g0)h + oP (1), (87)



7

CS2 Asymptotic normality
∆φ,g0 ∼

L→∞
N (0, Ī(φ|g0)), ∀φ ∈ Ω. (88)

Remark: The proof can be found in [6, Sec. 3].
The result in Prop. 3 suggests us that, for the semiparametric RES estimation problem at hand, it may be

possible to derive semiparametric and asymptotically efficient estimators using a procedure similar to the one
provided in Theorem 1, simply by substituting the parametric score vector and FIM with their semiparametric
counterparts. This intuition is formalized by the next theorem that is also given in our main paper as Theorem 1.

Theorem 2. Let {xl}Ll=1 be a set of i.i.d. observations sampled from a RES distribution with pdf p0 ∈ Pφ,g in Eq.
(82). Let φ̂? be any preliminary

√
L-consistent estimator of the true parameter vector φ0 =

(
µ>0 , vecs(V1,0)>

)>.
Then, the clairvoyant semiparametric one-step estimator

φ̂s = φ̂? + L−1/2Ī(φ̂?|g0)−1∆φ̂?,g0
, (89)

has the following properties:

PS1
√
L-consistency √

L
(
φ̂s − φ0

)
= OP (1), (90)

PS2 Asymptotic normality and efficiency
√
L
(
φ̂s − φ0

)
∼

L→∞
N (0, Ī(φ0|g0)−1), (91)

where Ī(φ0|g0)−1 = CSCRB(φ0|g0) = CSCRB(µ0,V1,0|g0) and the constrained semiparametric CRB
(CSCRB) [7] is evaluated for the constraint [V1,0]1,1 = 1.

Proof: The expression of the semiparametric one-step estimator in Eq. (89) can be obtained using the same
arguments discussed in Theorem 1. The proof of the

√
L-consistency property PS1 of φ̂s can be found in [4, Sec.

7.8, Th. 1]. To prove the asymptotic normality, we start from the intermediate result, given in [4, Sec. 3.3, Th.
2], that Ī(φ|g0)−1∆φ,g0 ∼

L→∞
N (0, Ī(φ|g0)−1). Then, from the expression Eq. (89) and from the fact that φ̂?

is
√
L-consistent, the asymptotic normality and efficiency property PS2 of φ̂s follows from a direct application

of the Slutsky’s theorem (see also [4, Sec. 7.8, Cor. 1]). Again, here we need to assume the existence of the
gradient (w.r.t. φ ∈ Ω) of the log-likelihood function, while in the proof [4, Sec. 7.8, Th. 1] only the Hellinger
differentiability is required.

As previously underlined and as we can see from its closed form expression in Eq. (89), the clairvoyant estimator
φ̂s relies on the true density generator g0, so it is not useful for inference problems in the semiparametric model
(82) where the density generator is an unknown nuisance function. However, it has the fundamental role to link
the parametric one-step Le Cam’s estimator in Eq. (77) with a distributionally robust estimator of the shape
matrix, as shown in [16] and recalled in Section III of our paper.

II. NUMERICAL ANALYSIS FOR REAL t-DISTRIBUTED DATA

This Section mimics Sec. V of the main paper and provides a numerical investigation about the statistical
performance of the real R-estimator in Eq. (38) in real t-distributed data.

As in the main paper, in order to distinguish different estimators, each of them will be indicated as V̂ϕ
1,γ where

γ and ϕ specify the estimator at hand. Moreover, we re-normalized V̂ϕ
1,γ in order to have tr(V̂ϕ

1,γ) = N , i.e.
V̂ϕ
γ = NV̂ϕ

1,γ/tr(V̂
ϕ
1,γ).
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As a reference, in the figures we also report the Constrained Semiparametric CRB (CSCRB) derived, in closed
form, in [7]. As performance index for the shape matrix estimators, we use

ςϕγ = ||E{vecs(V̂ϕ
γ −V0)vecs(V̂ϕ

γ −V0)>}||F , (92)

Similarly, as performance bound, we adopt the index:

εCSCRB = ||[CSCRB(Σ0, g0)]||F . (93)

Unlike the main paper, where a set of complex GG-distributed data are considered, here we generate the dataset
according to a real t-distribution. The density generator for the t-distribution is [12]: 1

g0(t) =
2N/2Γ(λ+N

2 )

(λπ)N/2Γ(λ/2)

(
1 +

t

λ

)−λ+N
2

, t ∈ R+ (94)

and the degrees of freedom λ ∈ (0,∞) controls the non-Gaussianity of the data. In particular, for small values
of λ the data are highly non-Gaussian while, as λ → ∞, the distribution collapses into the Gaussian one. The
simulation parameters for this study case are:

• [Σ0]i,j = ρ|i−j|, i, j = 1, . . . , N ; ρ = 0.8 and N = 8.
• The “small perturbation” matrix H0 is chosen to be a symmetric random matrix s.t. H0 = (G + GT )/2

where [G]i,j ∼ N (0, υ2), [G]1,1 = 0 and υ = 0.01. Note that υ should be small enough to guarantee that
V̂?

1 + L−1/2H0 ∈MR
N .

As discussed in the main paper, the R-estimator in Eq. (38) depends on two “user-defined” quantities: 1) the
preliminary estimator V̂?

1 and 2) the score function Kg. In order to assess the impact of their choice on the
performance of the R-estimator, we perform our simulations by using the Tyler’s and the Huber’s estimators
as preliminary estimators. Moreover, for the Huber’s estimator, three different values of the tuning parameter q
(i.e. q = 0.9, 0.5, 0.1) have been adopted [17, Sec. V.C]. Moreover, as score functions, we exploit the van der
Waerden one and the tν-score for ν = 0.1, 1, 5, given in Eqs. (34) and (35) of the main paper. As we will see in
the following, the simulation results obtained for the real case are perfectly in line with the one reported in the
main paper for the complex case.

A. Semiparametric efficiency

In Figs. 1(a) and 1(b), MSE indices of the real R-estimator in Eq. (38) are plotted as function of the number
L of t-distributed observations with λ = 5 and then compared with the CSCRB. Specifically, in Fig. 1(a) the
asymptotic efficiency of the R-estimator, exploiting a van der Waerden score, is investigated for the two considered
preliminary estimators, i.e. Tyler’s and Huber’s one. As for the complex case, the impact of the choice of the
preliminary estimator on the efficiency of the R-estimator is negligible. Similarly, the asymptotic impact of the
choice of the score functions is also negligible, as shown in Fig. 1(b). However, as for the complex case, the
score function plays a role in the “finite-sample” performance of the estimator. To see this, in Fig. 1(c), we report
the MSE indices obtained for the van der Waerden and tν- scores as function of the degrees of freedom λ for
L = 5N . Note that, for λ = 5, the t5-score is perfectly specified and then it provides the lowest MSE value at
λ = 5. However, as for the complex case, the van der Waerden score confirms its surprisingly good performance
(see the discussion on the “Chernoff-Savage result” provided in the main paper).

1Note that the expression of the density generator in Eq. (94) can be obtained from the one given in [7, Eq. (75)] by putting η = 1.
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(a) MSE indices vs preliminary Tyler’s and Huber’s
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(b) MSE indices vs different score functions Kg as
function of L (λ = 5).
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Fig. 1: MSE performance of the real R-estimator.

The tν-scores are more flexible since the additional parameter ν can be used to tune the desired trade-off
between semiparametric efficiency and robustness to outliers, as we will see ahead. In particular, tν-scores
characterized by a small value of ν increases the robustness of the resulting R-estimator at the price of a loss
of efficiency. On the other hand, larger values of ν will provide a better efficiency, sacrificing the robustness as
addressed in the next section.

B. Robustness to outliers

Following Sec. V.B of the main paper, in this subsection we evaluate the “finite-sample” Breakdown Point
(BP) [18] and the Empirical Influence Function (EIF) [19] for the real R-estimator in Eq. (38).

We indicate with X = {xl}Ll=1 ∼ RES(0,V1, g0) the “pure” t-distributed data set whose g0 is given in Eq.
(94) and with Xε = {xl}Ll=1 ∼ fXε the ε-contaminated data set s.t.:

fXε(x|V1, g0, %) = (1− ε)RES(0,V1, h0) + εqX(%), (95)

where ε ∈ [0, 1/2] is a contamination parameter. The function qX(%) represents the pdf of an outlier x̃ that we
arbitrary choose to be as x̃ = τ−1u where u ∼ U(SRN ) while τ ∼ Gam(%, 1/%) and Gam indicates the Gamma
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Fig. 2: BP and EIF of the real R-estimator in t-distributed data.

distribution. The reader can find additional discussion about this model in Sec. V.B of the main paper.
Let V̂ϕ

γ (X) and V̂ϕ
γ (Xε) be two shape matrix estimators evaluated from the pure and the ε-contaminated data

sets, respectively. As for the complex case, the finite-sample BP curves can be evaluated as [18]:

BPϕγ (ε) , max
{
λϕγ,1(ε), 1/λϕγ,N (ε)

}
, (96)

where λϕγ,i(ε) is the i-th ordered eigenvalue of the matrix [V̂ϕ
γ (X)]−1V̂ϕ

γ (Zε), s.t. λϕγ,1(ε) ≥ · · · ≥ λϕγ,N (ε). Note
that BPϕγ (0) = 1.

Fig. 2(a) reports the BP curves of the real R-estimator in Eq. (38) built upon the van der Waerden and three
tν- scores (ν = 0.1, 1, 5). Since BPϕγ (ε) depends on X and Xε, we plot its averaged value over 104 realizations
of these data sets. For the sake of comparison, we report also the BP value of Tyler’s estimator. The BP of the
non-robust Sample Covariance Matrix (SCM) estimator explodes to 1017 as soon as ε 6= 0, so we do not include
it in the plot. As for the complex case, all the BP curves, related to the R-estimator in Eq. (38) are bounded
(w.r.t. the one of the non robust SCM) and close to the Tyler’s one for every value of ε.

Let us now focus on the EIF. Similarly to the complex case discussed in our paper, the EIF can be defined as:

EIFϕγ , (L+ 1)||V̂ϕ
γ (X)− V̂ϕ

γ (X, x̃)||F , (97)

where x̃ is an outlier distributed according to the pdf qX(%) defined in Eq. (95). We refer the reader to the main
paper for additional discussion on the definition of the EIF in Eq. (97). In Fig. 2(b), we report the EIF of the
real R-estimator in Eq. (38) built upon the van der Waerden and three tν- scores (ν = 0.1, 1, 5). As benchmark,
the EIF of the Tyler’s estimator is adopted since it is known that the relevant IF is continuous and bounded [17].
On the other hand, the EIF of the non-robust SCM grows rapidly to 104 as the norm of the outlier x̃ increases
(i.e. when % → 0), so we do not include it in the plot. As for the complex case, Fig. 2(b) shows that the EIFs
of the R-estimator Eq. (38) remain bounded and close to the one of the Tyler’s estimator for arbitrary large vale
of ||x̃|| (%→ 0).
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