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Robust Semiparametric Efficient Estimators in
Complex Elliptically Symmetric Distributions

Stefano Fortunati, Member, IEEE, Alexandre Renaux, Member, IEEE, Frédéric Pascal, Senior Member, IEEE

Abstract—Covariance matrices play a major role in statis-
tics, signal processing and machine learning applications. This
paper focuses on the semiparametric covariance/scatter matrix
estimation problem in elliptical distributions. The class of el-
liptical distributions can be seen as a semiparametric model
where the finite-dimensional vector of interest is given by the
location vector and by the (vectorized) covariance/scatter matrix,
while the density generator represents an infinite-dimensional
nuisance function. The main aim of this work is then to provide
possible estimators of the finite-dimensional parameter vector
able to reconcile the two dichotomic concepts of robustness
and (semiparametric) efficiency. An R-estimator satisfying these
requirements has been recently proposed by Hallin, Oja and
Paindaveine for real-valued elliptical data by exploiting the Le
Cam’s theory of one-step efficient estimators and the rank-based
statistics. In this paper, we firstly recall the building blocks
underlying the derivation of such real-valued R-estimator, then
its extension to complex-valued data is proposed. Moreover,
through numerical simulations, its estimation performance and
robustness to outliers are investigated in a finite-sample regime.

Index Terms—Semiparametric models, robust estimation, el-
liptically symmetric distributions, scatter matrix estimation, Le
Cam’s one-step estimator, ranks.

I. INTRODUCTION

Semiparametric inference is the branch of theoretical and
applied statistics dealing with point estimation or testing in
semiparametric model. In short, a semiparametric model is a
family of probability density functions (pdfs) parameterized
by a finite-dimensional parameter vector of interest, say φ ∈
Ω ⊆ Rq (or Cq), and by an infinite-dimensional parameter,
say g ∈ G, where G is a suitable set of functions [1]. In the
vast majority of applications where semiparametric models are
used, the infinite-dimensional parameter g plays the role of a
nuisance function.

Despite of their generality and practical relevance, the use of
semiparametric models in Signal Processing (SP) applications
is still limited to very few cases. To name some examples,
we refer to [2] for a semiparametric approach to blind source
separation, to [3] for robust non-linear regression and to [4] for
empirical likelihood methods applied to covariance estimation.
More recently, in [5,6], the class of the Real and Complex
Elliptically Symmetric (RES and CES) distributions [7] has
been revised from a semiparametric standpoint (see also [8]–
[12] in the statistical literature). The family of Elliptically
Symmetric (ES) distributions is in fact a typical example of
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semiparametric model where the finite-dimensional parameter
vector of interest is given by the location vector µ and
by the (vectorized version of) the covariance/scatter matrix
Σ, while the density generator g can be considered as a
nuisance function. In particular, in [5] the RES class has been
framed in the context of semiparametric group models, then
a Semiparametric Cramér-Rao Bound (SCRB) for the joint
estimation of µ and Σ in the presence of the nuisance density
generator g has been derived. The second work [6] extended
the previously obtained SCRB to semiparametric estimation of
complex parameters in CES distributed data. A semiparametric
version of the celebrated Slepian-Bangs formula has been also
proposed. However, the following fundamental question has
not been addressed in [5,6] which were focused on lower
bounds: is it possible to derive a robust and semiparametric
efficient estimator of the covariance/scatter matrix Σ of a set
of ES distributed observations? As we will see ahead, a first
positive answer to this question has been provided in [10] for
the RES case while its extension to CES distributions will be
given in this paper.

To start, let us take a closer look to the two main features
that this estimator should have. Firstly, it should be semi-
parametric efficient, at least asymptotically. In other words,
we require that the error covariance matrix of this estimator
should be equal to the SCRB given in [5,6] as the number of
observations goes to infinity. The second desirable feature is
the distributional robustness. As said before, a semiparametric
model allows for the presence of a nuisance function that,
in the case of ES distributed observations, is the unknown
density generator g characterizing the shape of their actual
distribution. So, a distributionally robust estimator is basically
an estimator of Σ whose statistical properties do not rely on
g ∈ G, and consequently on the actual ES distribution of the
data. It is worth to underline that, even if robust estimators of
covariance matrices are already available in the statistics and
SP literature ([7,13]–[17], [18, Ch. 4] and references therein),
they fail to be semiparametric efficient as shown in [5,6].

A good candidate for the estimator that we are looking for
is the one proposed by Hallin, Oja and Paindaveine in their
seminal paper [10]. Building upon their previous work [9], in
[10] the Authors propose an estimator of the constrained, real-
valued scatter matrix Σ in RES distributed data that meets
the two requirements of nearly semiparametric efficiency
and distributional robustness. To achieve the semiparametric
efficiency, the Le Cam’s theory of one-step efficient estimators
[19], [20, Ch. 6] has been exploited. In fact, as showed
by Le Cam, it is possible to derive asymptotically efficient
estimators that, unlike the Maximum Likelihood (ML) one, do
not search for the maxima of the log-likelihood function. This
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is of great importance in practical applications, where the ML
estimator can present computational difficulties in the resulting
optimization problem or even existence/uniqueness issues [21,
Ch. 6]. The second requirement of distributional robustness has
been addressed in [10] using a rank-based approach [22], [23,
Ch. 13]. Originally developed in the context of order statistics,
rank-based methods have been used in robust statistics to
derive distributionally robust estimators and tests that are
usually referred to as R-estimators and R-tests [24, Ch. 3].

After a semiparametric formalization of the shape matrix
estimation problem given in Section II, the subsequent Section
III provides a review of the methodology used in [10] to derive
a semiparametric efficient R-estimator of the constrained, real-
valued, scatter matrix Σ in RES distributed data. This first
part has the twofold goal of i) introducing two statistical
procedures (i.e. semiparametric one-step estimators and rank-
based robustification) that are not yet widespread among
the SP community and then ii) showing how they can be
applied to derive original estimators of scatter matrices. To this
end, additional in-depth supporting material will be provided
separately from the main body of the paper. In addition, the
code containing our Matlab and Python implementation of
both real- and complex-valued R-estimator can be found at
[25]. Section IV focuses on the extension of the previously
derived outcomes to the complex-valued parameter case with
Complex ES distributed data. In Section V the Mean Squared
Error (MSE) performance and the robustness properties of
the proposed semiparametric efficient R-estimator will be in-
vestigated through numerical simulations in a “finite-sample”
regime. The theoretical analysis, in fact, can only provide us
with asymptotic guarantees on the good behavior of an estima-
tor but, since in practice the number of available observation is
always finite, a “finite-sample” performance characterization is
necessary as well. To this end, the error covariance matrix of
the proposed R-estimator (evaluated using independent Monte
Carlo runs) will be compared with the SCRB in [5,6] in
different scenarios. The second feature that is going to be
assessed in Section V is the robustness to the presence of
outliers in the observations. In the present context, an outlier
can be represented by an observation vector whose distribution
does not belong to the ES family.

Algebraic notation: Throughout this paper, italics indicates
scalar quantities (a), lower case and upper case boldface
indicate column vectors (a) and matrices (A), respectively.
Each entry of a matrix A is indicated as aij , [A]i,j . IN
defines the N ×N identity matrix. The superscripts ∗, > and
H indicate the complex conjugation, the transpose and the Her-
mitian operators respectively, then AH = (A∗)>. Moreover,
A−> , (A−1)> = (A>)−1, A−∗ , (A−1)∗ = (A∗)−1 and
A−H , (A−1)H = (AH)−1. The Euclidean norm of a vector
a is indicated as ||a||. The determinant and the Frobenius norm
of a matrix A are indicated as |A| and ||A||F , respectively.
The symbol vec indicates the standard vectorization operator
that maps column-wise the entry of an N ×N matrix A in an
N2-dimensional column vector vec (A). The operator vec(A)
defines the N2− 1-dimensional vector obtained from vec (A)
by deleting its first element, i.e. vec (A) , [a11, vec(A)>]>.
A matrix A whose first top-left entry is constrained to be equal

to 1, i.e. a11 , 1, is indicated as A1.
For any N ×N symmetric matrix A:
• vecs(A) indicates the N(N+1)/2-dimensional vector of

the entries of the lower (or upper) triangular part of A.
• According to the notation previously introduced,

vecs(A) , [a11, vecs(A)>]>.
• If a11 = 0, then MN is the N(N+1)/2−1×N2 matrix

such that (s.t.) M>
Nvecs(A) = vec (A). Note that M>

N

can be obtained from the duplication matrix DN [26,27]
by removing its first column. Note that DN is implicitly
defined as the unique N2×N(N+1)/2 matrix satisfying
DNvecs(A) = vec (A) for any symmetric matrix A.

Statistical notation: Let xl be a sequence of random vari-
ables in the same probability space. We write:
• xl = oP (1) if liml→∞ Pr {|xl| ≥ ε} = 0,∀ε > 0

(convergence in probability to 0),
• xl = OP (1) if for any ε > 0, there exists a finite M > 0

and a finite L > 0, s.t. Pr {|xl| > M} < ε,∀l > L
(stochastic boundedness).

The cumulative distribution function (cdf) and the related
probability density function (pdf) of a random variable x or a
random vector x are indicated as PX and pX , respectively.
For random variables and vectors, d

= stands for “has the
same distribution as”. The symbol ∼

L→∞
indicates the con-

vergence in distribution. According to the notation introduced
in [5,6,28], we indicate the true pdf as p0(x) , pX(x|φ0, g0),
where φ0 and g0 indicate the true parameter vector to be
estimated and the true nuisance function, respectively. We
define as Eφ,g{f(x)} =

∫
f(x)pX(x|φ, g)dx the expectation

operator of a measurable function f of a random vector
x. Moreover, we simply indicate as E0{·} the expectation
with respect to (w.r.t.) the true pdf p0(x). The superscript ?
indicates a

√
L-consistent, preliminary, estimator φ̂? of φ0, s.t.√

L (φ? − φ0) = OP (1). The dependence of x of a function
f(x) is often dropped for notation simplicity: f ≡ f(x).

II. THE SEMIPARAMETRIC SHAPE MATRIX ESTIMATION

Let {xl}Ll=1 be a set of N -dimensional, real-valued, inde-
pendent and identically distributed (i.i.d.) observation vectors.
Each observation is assumed to be sampled from a real
elliptical pdf [7,29,30] of the form:

pX(xl|µ,Σ, g) = 2−N/2|Σ|−1/2g
(
(xl − µ)>Σ−1(xl − µ)

)
,

(1)
where µ ∈ RN is a location vector, Σ ∈ MR

N is a
N × N scatter matrix in the set MR

N of the symmetric,
positive definite, real matrices. The function g ∈ G is the
density generator, an infinite-dimensional parameter that
characterizes the specific distribution in the RES family. In
order to guarantee the integrability of the pdf in Eq. (1), the
set of all the possible density generators is defined as G ={
g : R+ → R+

∣∣∫∞
0
tN/2−1g(t)dt <∞,

∫
pXdx = 1

}
[29].

Each random vector whose pdf is given by Eq. (1), say
x ∼ RESN (µ,Σ, g), admits the following stochastic
representation [7,29]:

x
d
= µ +RΣ1/2u, (2)
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where u ∼ U(SRN ) is uniformly distributed on the unit sphere
SRN , {u ∈ RN |||u|| = 1}, R ,

√
Q is called modular

variate while Q, usually referred to as 2nd-order modular
variate, is such that (s.t.)

Q d
= (xl − µ)>Σ−1(xl − µ) , Ql,∀l. (3)

Moreover, Q has pdf given by:

pQ(q) = (π/2)N/2Γ(N/2)−1qN/2−1g(q), (4)

where Γ(·) stands for the Gamma function.
The expression of the elliptical pdf in Eq. (1) and the

stochastic representation in Eq. (2) are not uniquely defined
due to the well-know scale ambiguity between the scatter
matrix Σ and the density generator g. Specifically, from
Eq. (1), it is immediate to verify that RESN (µ,Σ, g(t)) ≡
RESN (µ, cΣ, g(ct)),∀c > 0. In an equivalent way, from
Eq. (2), we have that x

d
= µ + RΣ1/2u

d
= µ +

(c−1R)(cΣ1/2)u,∀c > 0. This readily implies that Σ is iden-
tifiable only up to a scale factor and consequently only a scaled
version of Σ can be estimated. To avoid this identifiability
problem, following [7,11,12], let us define the symmetric and
positive definite shape matrix V as:

V = Σ/s(Σ), (5)

where s :MR
N → R+ is a scalar functional onMR

N satisfying
the following assumptions [11,12]:

A1 Homogeneity: s(c ·Σ) = c · s(Σ),∀c > 0,
A2 Differentiability over MR

N with ∂s(Σ)
∂[Σ]1,1

6= 0,
A3 s(IN ) = 1.

Typical examples of this class of scale functional are s(Σ) =
[Σ]1,1, s(Σ) = tr(Σ)/N and s(Σ) = |Σ|1/N . Each scale
functional s corresponds to a differentiable constraint on the
shape matrix V. As an example, the constraints induced by
the three above-mentioned scale functionals are v11 = 1,
tr(V) = N and |V|1/N = 1. It is easy to verify that,
under A1, A2 and A3, the first top-left entry of V, i.e. v11,
can always be expressed as function of the other entries.
This consideration, along with the fact that V is symmetric
by definition, suggests us that, to avoid the identifiability
problem, in the semiparametric estimation problem, we just
need to consider the vector vecs(V) as unknown. Moreover,
as discussed in [11] and verified here in Sec. V, the optimality
properties of the proposed semiparametric estimator of the
shape matrix do not depend on the particular scale functional.
Consequently, in order to avoid tedious matrix calculation
that may confuse the derivation of the algorithm, we choose
the simple scale functional s(Σ) = [Σ]1,1, i.e. the one that
constrains the shape matrix V to have its first top-left entry
equal to 1. In the rest of the paper, a generic shape matrix
satisfying this constraint is indicated as V1 according with
the notation previously introduced.

Having said that, we can formally state the semiparametric
estimation problem that we are going to analyze in the
following sections. Let Ω ⊆ Rq be a parameter space of
dimension q = N(N+3)/2−1 (= N+N(N+1)/2−1 where

the “−1” term is due to the 1-dimensional scale constraint).
Each element of Ω is a vector φ of the form:

φ =
(
µ>, vecs(V1)>

)>
, (6)

where µ ∈ RN and V1 ∈ MR
N . Let us define the RES semi-

parametric model as the following set of (uniquely defined)
pdfs:

Pφ,g =
{
pX |pX(x|φ, g) = 2−N/2|V1|−1/2×

g
(
(xl − µ)>V−11 (xl − µ)

)
;φ ∈ Ω, g ∈ G

}
.

(7)

The semiparametric estimation problem that we want to ad-
dress is then to find a robust and semiparametric efficient
estimator of a true parameter vector φ0 ∈ Ω in the presence
of a nuisance function g0 ∈ G.

III. AN R-ESTIMATOR FOR SHAPE MATRICES IN RES DATA

The aim of this section is to trace the procedure adopted in
[10] to derive the R-estimator of real-valued scatter matrices
in RES data. In particular, the concepts of Le Cam’s one-step
estimators and ranks-based robustification will be firstly intro-
duced and their application to the particular semiparametric
estimation problem at hand discussed. Finally, a ready-to-use
expression of the resulting R-estimator is provided, while the
related Matlab and Python implementation is given in [25].

A. Semiparametric efficient one-step estimators

The main ingredient for the derivation of a one-step estima-
tor for the parametric part (location vector and scatter matrix)
of the semiparametric RES model Pφ,g in Eq. (7) is the notion
of efficient score vector. Specifically, the efficient score vector
s̄φ,g0 for the estimation of φ ∈ Ω in the presence of a nuisance
density generator g0 ∈ G is given by [28], [5, Th. IV.1]:

s̄φ,g0(xl) ≡ s̄φ,g0 , sφ,g0 −Π(sφ,g0 |Tg0), (8)

where sφ,g0(xl) is the usual score vector defined as:

sφ,g0(xl) , ∇φ ln pX(xl|φ, g0) =

(
sµ,g0(xl)

svecs(V1),g0(xl)

)
,

(9)
and Π(sφ,g0 |Tg0) is the orthogonal projection of the score
vector sφ,g0 in Eq. (9) on the semiparametric nuisance tangent
space Tg0 [5,31]. Then, the semiparametric counterpart of the
Fisher Information Matrix (FIM) is the efficient semiparamet-
ric FIM (SFIM) [28],[5, Th. IV.1]:

Ī(φ|g0) , Eφ,g0{s̄φ,g0(x)s̄φ,g0(x)>}. (10)

Finally, we introduce the efficient central sequence as:

∆φ,g0(x1, . . . ,xL) ≡∆φ,g0 , L−1/2
∑L

l=1
s̄φ,g0(xl).

(11)
Note that the previous three quantities depend on the true, and
generally unknown, density generator g0.

The next Theorem provides us with the expression of the
one-step estimator of φ together with its asymptotic properties.

Theorem 1. Let {xl}Ll=1 be a set of i.i.d. observations sampled
from a RES distribution whose pdf p0(x) ∈ Pφ,g in Eq. (7).
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Let φ̂? be any preliminary
√
L-consistent estimator of the

true parameter vector φ0 ,
(
µ>0 , vecs(V1,0)>

)>
. Then, the

semiparametric one-step estimator

φ̂s = φ̂? + L−1/2Ī(φ̂?|g0)−1∆φ̂?,g0
, (12)

has the following properties:
PS1

√
L-consistency

√
L
(
φ̂s − φ0

)
= OP (1), (13)

PS2 Asymptotic normality and efficiency
√
L
(
φ̂s − φ0

)
∼

L→∞
N (0, Ī(φ0|g0)−1), (14)

where Ī(φ0|g0)−1 = CSCRB(µ0,V1,0|g0) and the con-
strained semiparametric CRB (CSCRB) [5] is evaluated
for the constraint [V1,0]11 = 1.

Remark: The proof of Theorem 1 is given in [10] (see
the proof of the Proposition 2.1). In addition, we refer the
interested reader to our supporting material for a tutorial
introduction of the Le Cam’s theory underlying it.

Even if semiparametric efficient, the “clairvoyant” estimator
φ̂s in Eq. (12) relies on the true, and generally unknown,
density generator g0, so it is not useful for practical inference
problems. Consequently, a distributionally robust alternative
to φ̂s has to be derived, at the price of a possible loss in
efficiency. Before addressing the crucial issue of robustness,
we provide a “tangible” expression of the clairvoyant estimator
of V1 that will be useful ahead.

B. Semiparametric clairvoyant estimator of shape matrices

To construct φ̂s in Eq. (12) we need explicit expressions
of the efficient score vector s̄φ,g0 = (s̄>µ,g0 , s̄

>
vecs(V1),g0

)>,
the efficient SFIM Ī(φ|g0) and a preliminary

√
L-consistent

estimators φ̂? of φ0. Building upon the results in our previous
work [5], s̄µ and s̄vecs(V1) can be expressed as [5, Eq. (53)]:

s̄µ,g0 = sµ,g0 = −2
√
Qlψ0(Ql)V

−1/2
1 ul, (15)

s̄vecs(V1),g0 = −Qlψ0(Ql)KV1
vec(ulu

>
l ), (16)

where Ql is defined in Eq. (3) and

KV1
= MN

(
V
−1/2
1 ⊗V

−1/2
1

)
Π⊥vec(IN ), (17)

ul = (QlV1)−1/2(xl − µ), (18)

ψ0(t) = d ln g0(t)/dt, (19)

Π⊥vec(IN ) = IN2 −N−1vec(IN )vec(IN )>, (20)

where MN is defined in the notation section. Before moving
forward, some comments are in order. As already proved
in [5], the efficient score vector s̄µ,g0 in Eq. (15) of the
mean vector is equal to the score vector sµ,g0 , or in other
words, s̄µ,g0 is orthogonal to the nuisance tangent space Tg0 .
This implies that, knowing or not knowing the true density
generator g0 does not have any impact on the asymptotic
performance of an estimator of µ. The expression of the
efficient score vector for the shape matrix in Eq. (16) of this

paper comes directly from Eq. (53) of [5]. Even if clearly
related, the main difference between these two expressions is
in the fact that, while in Eq. (53) of [5] the gradient is taken
w.r.t. vecs(Σ0) where Σ0 is the unconstrained scatter matrix,
in this paper the gradient is taken w.r.t. vecs(V1) where V1

is the constrained shape matrix s.t. [V1]11 = 1. This is the
reason why we have the matrix MN instead of the duplication
matrix DN as in Eq. (53) of [5]. Moreover, Eq. (16) follows
from Eq. (53) of [5] through basic matrix algebra and the fact
that tr(ulu

>
l ) = ||ul||2 = 1,∀l and allows us to write a more

compact expression for svecs(V1),g0 .
The efficient SFIM Ī(φ|g0) in Eq. (10) can be immediately

obtained from the results in Eq. (15) and Eq. (16) and from
the expression given in [5, Eq. (54)] as:

Ī(φ|g0) , Eφ,g0{s̄φ,g0(x)s̄φ,g0(x)>}

=

(
Ī(µ|g0) 0

0T Ī(vecs(V1)|g0).

)
,

(21)

The block-diagonal structure of Ī(φ|g0) in Eq. (21) implies
that a lack of a priori knowledge about the mean vector µ
does not have any impact on the asymptotic performance of an
estimator of the shape matrix V1. In other words, the estimate
of µ and the one of V1 are asymptotically decorrelated. This
and the above-mentioned fact that s̄µ,g0 ⊥ Tg0 allow us to
consider the estimation of µ and the one of V1 as two separate
problems. For this reason, from now on, we will focus our
attention only on the estimation of V1.

From Eq. (16) and building upon the expression already
derived in Eq. (56) of [5], we have that:

Ī(vecs(V1)|g0) = α0KV1
K>V1

, where (22)

α0 , 2E{Q2ψ0(Q)2}/N(N+2). (23)

By substituting the expression of s̄vecs(V1),g0 given in Eq. (16)
in the definition of the efficient central sequence in Eq. (11),
we get:

∆V1,g0 = −L−1/2KV1

∑L

l=1
Qlψ0(Ql)vec(ulu

>
l ). (24)

Finally, we just need to put Eq. (24) and the expression of
Ī(vecs(V1)|g0), given in Eq. (22), in the definition of one-step
estimator in Eq. (12). This yields the following estimator:

vecs(V̂1,s) = vecs(V̂?
1)− 1

Lα0

[
KV̂?

1
K>

V̂?
1

]−1
×

KV̂?
1

∑L

l=1
Q̂?l ψ0(Q̂?l )vec(û?l (û

?
l )
>),

(25)

where:
Q̂?l , (xl − µ̂?)>[V̂?

1]−1(xl − µ̂?), (26)

û?l , (Q̂?l )
−1/2[V̂?

1]−1/2(xl − µ̂?), (27)

while, as the notation suggests, the matrix KV̂?
1

is obtained
from KV1

in Eq. (17) by substituting V1 with its preliminary
estimator V̂?

1 .
The last thing to do is to choose preliminary estimators for

the mean vector and for the shape matrix. To this end, we
can use the joint Tyler’s shape and mean vector estimator [32,
Eq. (6)], i.e. µ̂? = µ̂Ty and V̂?

1 = V̂1,Ty with the constraint
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[V̂1,Ty]11 = 1. This is a good choice since such φ̂? is
√
L-

consistent under any possible density generator g ∈ G.
As previously said, the clairvoyant estimators provided

in Eq. (25) cannot be directly exploited for semiparametric
inference since it still depends on the true density generator
g0 from two different standpoints:

i) Statistical dependence: The estimator V̂1,s in Eq. (25)
relies on the random variables {Q̂?l }Ll=1 whose pdf de-
pends on g0 through the one of the data {xl}Ll=1 (see Eq.
(26)).

ii) Functional dependence: The scalar α0 in Eq. (23) is
function of E{Q2ψ0(Q)2} that depends on g0 through
the function ψ0 in Eq. (19) and the pdf of Q in Eq. (4).

In [10], Hallin, Oja and Paindaveine showed that rank-based
statistics can be exploited to overcome the above-mentioned
dependences and obtain a distributionally robust estimator
of the shape matrix able to dispense with the knowledge
of g0. However, to fully understand the theory underlying
the outcomes of [10], a strong knowledge of the Le Cam
theory and of its invariance-based extension to semiparametric
framework [33] is required. The aim of the following subsec-
tions is then to supply any SP practitioner with a “ready-to-
use” formulation of the resulting R-estimator. Anyway, the
interested reader can find additional tutorial-style discussions
about the semiparametric extension of the Le Cam’s theory in
the supporting material of this paper.

C. Preliminaries on rank-based statistics

Let {xl}Ll=1 be a set of L continuous i.i.d. random vari-
ables s.t. xl ∼ pX ,∀l. We define the vector of the order
statistics as vX , [xL(1), xL(2), . . . , xL(L)]

> whose entries
xL(1) < xL(2) < · · · < xL(L) are the values of {xl}Ll=1

ordered in an ascending way.1 Then, the rank rl ∈ N/{0}
of xl is the position index of xl in vX . Finally, we define
rX , [r1, . . . , rL]> ∈ NL as the vector collecting the ranks.

Lemma 1. Let K be the family of score functions 2 K :
(0, 1) → R+ that are continuous, square integrable and that
can be expressed as the difference of two monotone increasing
functions. Then, we have:

1) The vectors vX and rX are independent,
2) Regardless the actual pdf pX , the rank vector rX is

uniformly distributed on the set of all L! permutations
on {1, 2, . . . , L} and ! stands for the factorial notation,

3) For each l = 1, . . . , L, we have that K
(

rl
L+1

)
=

K (ul) + oP (1) where K ∈ K and ul ∼ U [0, 1] is a
random variable uniformly distributed in (0, 1).

Remark: The proof can be found in [22], [23, Ch. 13].
To understand why Lemma 1 is useful to derive a distribu-

tionally robust and semiparametric efficient estimator of the
shape matrix we should take a step back.

1Note that, since xl, ∀l are continuous random variable the equality occurs
with probability 0.

2Even if this can create some ambiguity, we decide to indicate the elements
in K as “score functions” in order to maintain the consistency with the
terminology used in classical references about ranks.

D. Robust approximations of ∆V1,g0 and Ī(vecs(V1)|g0)

From the stochastic representation in Eq. (2), there is a one-
to-one correspondence between a RES distributed observation
vector xl ∼ RESN (µ,Σ, g0) and the couple (Ql,ul), where
Ql

d
= Q is defined in Eq. (3) and whose pdf pQ is given in

Eq. (4), while u ∼ U(SRN ). Then, Point 2) in the Lemma 1
tells us that the distribution of rQ is invariant w.r.t. the pdf pQ
in Eq. (4) that depends on the actual, and generally unknown,
density generator g0 ∈ G. This feature is very attractive for
robust inference since it allows us to derive rank-based (or
R-) estimators and tests that are distributionally robust. Point
3) of Lemma 1 provides us with the missing piece to obtain
a distributionally robust approximation of the efficient central
sequence ∆V1,g0 . Specifically, let

PQ,0(q) = (π/2)N/2Γ(N/2)−1
∫ q

0

tN/2−1g0(t)dt (28)

be the true, and generally unknown, cdf of 2nd-order modular
variates whose pdf is given in Eq. (4). Let us now recall the
basic fact that (see e.g. [34, Th. 2.1.10])

P−1Q,0(ul) = Ql, ul ∼ U [0, 1], Ql ∼ PQ,0 ∀l (29)

where P−1Q,0 indicates the inverse function of the cdf. Finally,
we have to introduce the “true” score function

K0(u) = −P−1Q,0(u)ψ0(P−1Q,0(u)), u ∈ (0, 1), (30)

that can be shown to belong to the set K [35]. Note that K0

depends on the true density generator g0 through ψ0 in Eq.
(19) and PQ,0 in Eq. (28). From Point 3) of Lemma 1 and by
using the relation Eq. (29) we have

K0

(
rl

L+ 1

)
= −Qlψ0(Ql) + oP (1). (31)

Consequently, substituting Eq. (31) in Eq. (16) yields to the
following approximation of the efficient central sequence in
Eq. (24):

∆V1,g0 =
1√
L

KV1

L∑
l=1

K0

(
rl

L+ 1

)
vec(ulu

>
l ) + oP (1).

(32)
The expression in Eq. (32) depends “statistically” only on the
ranks rl and on the random vectors ul whose distributions
are invariant w.r.t. the actual RES distribution of the data.
However, we still have a functional dependence from g0 due
to the score function K0. To get rid of this dependence, we
may adopt a “misspecified approach” [36]: since we do not
know which is the true density generator g0, let us build
the score function Kg by substituting in Eq. (30) a, possibly
misspecified, g ∈ G instead of the unknown g0. Consequently,
by substituting V1 with a consistent preliminary estimator V̂?

1 ,
a distributionally robust approximation of the efficient central
sequence ∆V1 in Eq. (24) can be obtained as:

∆̃V̂?
1
,

1√
L

KV̂?
1

L∑
l=1

Kg

(
r?l

L+ 1

)
vec(û?l (û

?
l )
>), (33)

where r?l is the rank of Q̂?l already defined in Eq. (26) and
û?l is given in Eq. (27). As a useful example of score function
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Kg , we may cite the van der Waerden score function KvdW .
Specifically, KvdW is obtained by assuming a, possibly mis-
specified, Gaussian distribution for the acquired data. Since,
under Gaussianity, the density generator is gG(t) = exp(−t/2)
and Q in Eq. (3) is distributed as a χ-squared random variable
with N degrees of freedom, i.e. Q ∼ χ2(N), from Eq. (30)
we have:

KvdW (u) = Ψ−1(u)/2, u ∈ (0, 1), (34)

where Ψ(u) indicates the cdf of χ2(N). On the same line, if
we assume a t-distribution for the collected data, we obtain
the score function:

Ktν (u) =
N(N + ν)F−1N,ν(u)

2(ν +NF−1N,ν(u))
, u ∈ (0, 1), (35)

where FN,ν(u) stands for the cdf of a Fisher random variable
with N and ν ∈ (0,∞) degrees of freedom, i.e. FN,ν .
In particular, the expression of Ktν comes from the fact
that, under an assumed t-distribution, the density generator
is gtν (t) = (1 + t/ν)−(ν+N)/2 while Q/N ∼ FN,ν [30, Ex.
2.5]. Note that, from the properties of the F -distribution [37,
Ch. 27], it follows that limν→∞Ktν (u) = KvdW (u). This
is not surprising since it is well known that the t-distribution
collapses into the Gaussian one as ν →∞. We note, that other
possible score function may be built upon the loss functions
discussed in [38].

As expected, a misspecification of the density generator
will bring to a loss in semiparametric efficiency. Remarkably,
as we will see in Sec. V, such performance loss are small,
especially if the Gaussian van der Waerden score is adopted.
A theoretical justification of this surprisingly small loss of
efficiency may be related to the so-called “Chernoff-Savage
result” for non-parametric R-tests [39]. Some preliminary
investigation towards this direction have been provided in [35],
but a comprehensive and in-depth analysis of this phenomenon
is still missing. Even if of crucial importance, this aspect falls
outside the aims of this paper and it is left to future works.

Let us now focus on the efficient SFIM in Eq. (22). In [10],
it is proved that Ī(vecs(V1)|g0) can be approximated as:

Ī(vecs(V1)|g0) = α̂KV̂?
1
K>

V̂?
1

+ oP (1), (36)

where α̂ is a consistent estimator of α0 in Eq. (23). In
particular, in [10, Sec. 4] it is shown that a possible candidate
for α̂ is:

α̂ = ||∆̃V̂?1+L−1/2H0−∆̃V̂?1
||/||KV̂?1

K>
V̂?1

vecs(H0)||, (37)

where H0 may be any symmetric matrix whose first top-
left entry is equal to 0, i.e. [H0]1,1 = 0. Therefore, the
consistent estimator α̂ depends on this “small perturbation”
matrix H0 that can be considered as an hyper-parameter to
be defined by the user. Some consideration on the choice
of H0 will be provided in Sec. V-C where a numerical
analysis of the performance of the proposed shape matrix
estimator is presented. Note that the estimator α̂ in Eq. (37)
is only an example of a possible estimator for α0, but other
procedures may be adopted as well. In [10, Sec. 4.2] for
example, an ML-based approach is implemented to derive

a consistent and efficient estimator for α0. However, such
ML-based estimator requires the solution of an optimization
problem that may become computationally heavy as the matrix
dimension increases.

We conclude this subsection with an important remark on
the distributional robustness of ∆̃V̂?

1
in Eq. (33) and of the

approximation of the SFIM given in Eq. (36). These two terms,
needed to build a robust version of the R-estimator in Eq. (25),
depend on four random quantities: the preliminary estimator
V̂?

1 , the ranks r?l , the vectors û?l and α̂. If, as consistent
preliminary estimator, we use a distribution-free estimator as
the Tyler’s one, it can be easily shown that r?l and û?l are
distribution-free as well. This implies that the “approximated”
central sequence ∆̃V̂?

1
is itself distribution-free [10, Prop.

2.1]. This is not the case for the estimator α̂ in Eq. (37).
In fact, even if ∆̃V̂?

1
is distribution-free, this is not true for its

“perturbed” version ∆̃V̂?
1+L

−1/2H0 as proved in [10, Prop. 2.1,
Point (iv)]. Consequently, the resulting R-estimator will not be
fully distribution-free. However, it still remain distributionally
robust, since α̂ is proven to be a consistent estimator of α0

for every possible density generator g ∈ G [10, Sec. 4].

E. The final expression for the real-valued R-estimator

The desired R-estimator of real-valued shape matrices in
RES distributed data can then be obtained from the the ex-
pression of the semiparametric one-step estimator in Theorem
1 by replacing the efficient central sequence ∆φ̂?,g0

and
the efficient SFIM Ī(vecs(V1)|g0) with their approximations
provided in Eqs. (33) and (36), respectively. In particular, a
distributionally robust, one-step estimator of V1 is given by:

vecs(V̂1,R) = vecs(V̂?
1) +

1

Lα̂

[
KV̂?

1
K>

V̂?
1

]−1
×

KV̂?
1

∑L

l=1
Kg

(
r?l

L+ 1

)
vec(û?l (û

?
l )
>),

(38)

where {r?l }Ll=1 are the ranks of the random variables {Q̂?l }Ll=1

defined in Eq. (26), while û?l is defined in Eq. (27). Again,
as preliminary estimator of the (constrained) shape matrix we
may use the Tyler’s estimator V̂?

1 = V̂1,Ty.
Before moving on, one last comment is in order. It is

immediate to verify from the expressions of V̂1,R and α̂, given
in Eqs. (38) and (37) respectively, that the R-estimator, as
function of the score Kg , satisfies the following homogeneity
property: V̂1,R(cKg) = V̂1,R(Kg) for every positive scalar
c > 0. However, if a different estimator of α0 is adopted, this
may not be the case and the score should be normalized, e.g.
as
∫ 1

0
Kg(u) = N [40, Assumption S3].

IV. EXTENSION TO COMPLEX ES DISTRIBUTIONS

Building upon the previously obtained results, this section
aims at providing an extension of the R-estimator in Eq. (38)
to the complex-valued shape matrix estimation problem in
CES-distributed data. As already shown in [7], [18, Ch. 4] and
[6, Def. II.1], there exists a one-to-one mapping between the
set of the CES distributions and a subset of the RES ones. This
implies that the theory already developed for the real-valued
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case can be applied straight to complex-valued data. However,
the use of a real representation of complex quantities usually
leads to a loss in the clarity and even in the “interpretability”
of the results. This is because the entries of the complex
parameter vector are “scrambled” by the C → R2 mapping
and the analysis of the statistical properties of the resulting
real version of the estimator may be quite cumbersome. This
problem is even more serious when we have to estimate a com-
plex matrix where, in addition to the “scrambling” of the real
and imaginary parts due to the C→ R2 mapping, we must take
care of the row-column ordering. Having a mathematical tool
that allows us to operate directly in the complex field enables
us to represent the entries of the parameter vector/matrix in a
compact way gaining a lot in terms of both interpretability and
feasibility of the obtained estimator. Best practice is then to
use the Wirtinger calculus [41]–[44]. Basically, the Wirtinger
calculus generalizes the concept of complex derivative to non-
holomorphic, real-valued functions of complex variables. In
our recent paper [6], the Wirtinger calculus has been exploited
to derive the SCRB for the joint estimation of the complex-
valued location vector and scatter matrix of a set of CES
distributed data. In particular, the complex-valued counterparts
of the efficient score vector and of the SFIM for shape matrices
in CES data have been evaluated in [6]. As for the real-valued
case, these two quantities are the basic ingredients to derive
a complex version of the R-estimator in Eq. (38). Note that,
due to the strong similarity between the properties of the CES
and RES distributed random vectors, in the following we will
mostly reuse the same notation introduced in Section II for
the corresponding entities.

A. CES distributed data: a recall

Let {zl}Ll=1 ∈ CN be a set of complex i.i.d. obser-
vation vectors. Let GC be the following set of functions
GC =

{
h : R+ → R+|

∫∞
0
tN−1h(t)dt <∞,

∫
pZdz = 1

}
[7]. Moreover, we indicate withMC

N the set of the Hermitian,
positive definite, N ×N complex matrices.

Any CES-distributed random vector zl = xR,l + jxI,l ∼
CES(µ,Σ, h) satisfies the properties [7],[6, Sec. II]:
• zl ∈ CN is CES distributed iff [x>R,l,x

>
I,l]
> ∈ R2N has

a 2N -variate RES distribution,
• Its pdf pZ is fully specified by the location vector µ ∈

CN , by the scatter matrix Σ ∈ MC
N and by the density

generator h ∈ GC and it can be expressed as:

pZ(zl|µ,Σ, h) = |Σ|−1h
(
(zl − µ)HΣ−1(zl − µ)

)
.

(39)
• Stochastic representation: zl

d
= µ + RΣ1/2u, where R

is the modular variate and u ∼ U(SCN ) is uniformly
distributed on SCN , {u ∈ CN |||u|| = 1}.

• The 2nd-order modular variate Q , R2 is s.t.

Q d
= (zl − µ)HΣ−1(zl − µ) , Ql,∀l, (40)

and it admits a pdf pQ of the form:

pQ(q) = πNΓ(N)−1qN−1h(q). (41)

Exactly as for the real-valued case, the complex scatter
matrix Σ is not identifiable and only a scaled version of it

can be estimated. Then, the shape matrix V , Σ/s(Σ) has
to be introduced, where s(·) is a scalar functional on MC

N

satisfying conditions A1, A2 and A3 given in Sec. II. As for
the real case, among all the possible scale functionals, we
choose s(Σ) = [Σ]1,1 for simplicity.

At first, we need to define the unknown complex-valued
parameter vector φ to be estimated. As shown in [6] and in
analogy with the real-valued case, the estimation of the mean
vector and of the shape matrix are asymptotically decorrelated.
Consequently, we focus only of the shape matrix estimation
from the “centered” data set {zl − µ̂?}Ll=1, where µ̂? is any√
L-consistent estimator of µ ∈ CN . The interested reader

may find additional considerations of the joint estimation of
µ and V1 in [45]. According to the basics of the Wirtinger
calculus, φ has to be constructed stacking in a single vector
the unknown parameters and their complex conjugate [41,44].
Then, according to the detailed discussion provided in [6, Sec.
III.A], we have that φ = vec(V1).

As shown in Theorem 1, the basic building blocks for
a semiparametric efficient estimators are the semiparametric
efficient score vector s̄φ,h0 ≡ s̄vec(V1),h0

and the efficient
SFIM Ī(vec(V1)|h0). Both s̄vec(V1),h0

and Ī(vec(V1)|h0)
have been already introduced in full details in our previous
work [6] and their expressions are recalled here for clarity.
Let us start by defining the following matrices:

P = [e2|e3| · · · |eN2 ] , (42)

where ei is the i-th vector of the canonical basis of RN2

,

LV1 = P
(
V
−T/2
1 ⊗V

−1/2
1

)
Π⊥vec(IN ), (43)

and Π⊥vec(IN ) has already been defined in Eq. (20). Then, from
the calculation in [6, Sec. III.B],3 using some matrix algebra,
we obtain the following expression for the complex efficient
semiparametric score vector

s̄vec(V1),h0
= −Qlψ0(Ql)LV1vec(ulu

H
l ), (44)

where ψ0(t) = d lnh0(t)/dt, ul , (QlV1)−1/2(zl − µ) and
Ql has been defined in Eq. (40). Note that the function ψ0 here
is defined by means of the true density generator h0 related
to the CES pdf in Eq. (39). Moreover, from [6, Eq. (29)]:

Ī(vec(V1)|h0) = αC,0LV1L
H
V1
, where (45)

αC,0 , E{Q2ψ0(Q)2}/N(N+1). (46)

It is worth to underline that the matrix P in Eq. (42) has been
introduced in order to take into account the fact that the first
top-left entry of V1 is equal to 1, i.e. [V1]1,1 = 1, and it does
not have to be estimated.

B. An R-estimator for shape matrices in CES data

The derivation of the complex-valued R-estimator mimics
the one proposed in Section III for the real case. In particu-

3Note that in [6, Eq. (25)] there is a typo. In fact, a minus “−” is missing
in front of the right-hand side.
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lar, an approximation of the complex-valued efficient central
sequence can be obtained as:

∆̃C
V̂?

1

,
1√
L

LV̂?
1

L∑
l=1

Kh

(
r?l

L+ 1

)
vec(û?l (û

?
l )

H), (47)

where V̂?
1 is any

√
L-consistent estimator of the (complex-

valued) shape matrix and r?l is the rank of Q̂?l defined, in
analogy with Eq. (26), as

Q̂?l , (zl − µ̂?)H[V̂?
1]−1(zl − µ̂?), (48)

û?l , (Q̂?l )
−1/2[V̂?

1]−1/2(zl − µ̂?). (49)

Moreover, the score function Kh(·) is the “complex” coun-
terpart of the one defined in Eq. (30). Specifically, Kh(·) can
be obtained from the expression Eq. (30) by evaluating P−1Q
and ψ0 by means of an assumed, and possibly misspecified,
h ∈ GC instead of its real counterpart g ∈ G. For example, the
“complex version” of the van der Waerden score function in
Eq. (34) can be obtained from Eq. (30) by noticing that the
complex circular Gaussian distribution has a density generator
given by hCG(t) = exp(−t) while Q ∼ Gamma(N, 1) [7].
Then, the “complex” van der Waerden score function is:

KCvdW (u) = Φ−1G (u), u ∈ (0, 1), (50)

where ΦG indicates the cdf of a Gamma-distributed random
variable with parameters (N, 1). Similarly, the “complex ver-
sion” of the tν-score in Eq. (35) is given by:

KCtν (u) =
N(2N + ν)F−12N,ν(u)

ν + 2NF−12N,ν(u)
, u ∈ (0, 1), (51)

where, as in Eq. (35), F2N,ν(u) stands for the Fisher cdf with
2N and ν ∈ (0,∞) degrees of freedom, where we used the
fact that hCG(t) = (1 + 2t/ν)−(2N+ν)/2 and Q/N ∼ F2N,ν

[7]. We note that, as for the real case previously discussed,
we have that limν→∞KCtν (u) = KCvdW (u). The complex-
valued approximation of the efficient SFIM in Eq. (45) can be
obtained as:

Ī(vec(V1)|h0) = α̂CLV̂?
1
LH

V̂?
1

+ oP (1), where (52)

α̂C = ||∆̃C
V̂?1+L−1/2H0

C
−∆̃C

V̂?1
||/||LV̂?1

LH
V̂?1

vec(H0
C)||, (53)

and H0
C is a “small perturbation”, Hermitian, matrix s. t.

[H0
C]1,1 = 0. Finally, putting together the previous results,

the complex extension of the distributionally robust, one-step
estimator in Eq. (38) can be obtained as:

vec(V̂1,R) = vec(V̂?
1) +

1

Lα̂C

[
LV̂?

1
LH

V̂?
1

]−1
×

LV̂?
1

∑L

l=1
Kh

(
r?l

L+ 1

)
vec(û?l (û

?
l )

H).
(54)

In the following, the pseudocode to implement the proposed
R-estimator is reported, while its related Matlab and Python
code can be found at [25]. A good preliminary estimator of
the constrained, complex-valued shape matrix, may be Tyler’s
estimator V̂?

1 = V̂1,Ty.

Algorithm 1 Semiparametric efficient R-estimator for V1

Input: z1, . . . , zL; µ̂?; V̂?
1; Kh(·); H0

C.
Output: V̂1,R.

1: for l = 1 to L do
2: Q̂?l ← (zl − µ̂?)H[V̂?

1]−1(zl − µ̂?),
3: û?l ← (Q̂?l )

−1/2[V̂?
1]−1/2(zl − µ̂?),

4: end for
5: Evaluate the ranks {r?1 , . . . , r?L} of {Q̂?1, . . . , Q̂?L},
6: LV̂?

1
← P([V̂?

1]−T/2 ⊗ [V̂?
1]−1/2)Π⊥vec(IN ),

7: ∆̃C
V̂?

1

← L−1/2LV̂?
1

∑L
l=1Kh

(
r?l
L+1

)
vec(û?l (û

?
l )

H),

8: Evaluate ∆̃C
V̂?

1+L
−1/2H0

C
following step 7 with V̂?

1 ←
V̂?

1 + L−1/2H0
C,

9: Evaluate α̂C as in Eq. (53).
10: vec(V̂1,R)← vec(V̂?

1) + L−1/2[α̂CLV̂?
1
LH

V̂?
1

]−1∆̃C
V̂?

1

,

11: Reshape vec(V̂1,R) in a N×N matrix with [V̂1,R]1,1 = 1.
12: return V̂1,R

V. NUMERICAL ANALYSIS

In this section, through numerical simulations, we inves-
tigate three different aspects of the considered R-estimator
of shape matrices: i) its semiparametric efficiency, ii) its
robustness to outliers and iii) its algorithmic properties. In
the following, we limit ourselves to report the results related
to the complex-valued R-estimator proposed in Sec. IV, while
the corresponding analysis of the real-valued case is provided
in the supporting material.

In order to distinguish different estimators, each of them will
be indicated as V̂ϕ

1,γ where γ and ϕ specify the estimator at
hand as we will see below. For the sake of consistency with the
SP literature on scatter matrix estimation, in the figures, we re-
normalized V̂ϕ

1,γ in order to have tr(V̂ϕ
1,γ) = N . According to

the discussion on Sec. II, we can define the re-scaled estimator
as:

V̂ϕ
γ = NV̂ϕ

1,γ/tr(V̂
ϕ
1,γ). (55)

Plotting the MSE of this re-scaled estimator will allow us to
underline the fact that the semiparametric efficiency property
of the derived R-estimator does not depend on the particular
scale functional adopted. As a reference, in the figures we
also report the Constrained Semiparametric CRB (CSCRB)
derived in closed form in [6]. As performance index for the
shape matrix estimators, we use

ςϕγ = ||E{vec(V̂ϕ
γ −V0)vec(V̂ϕ

γ −V0)H}||F , (56)

Similarly, as performance bound, we adopt the index:

εCSCRB = ||[CSCRB(Σ0, g0)]||F . (57)

Note that the CSCRB in [6] is evaluated for a generic scatter
matrix, then we have to choose the constraint accordingly to
the definition of the shape matrix at hand (see Sec. II).

We generate the data according to a (true but unknown to the
estimators) complex Generalized Gaussian (GG) distribution.
The interested reader may find additional simulation related to
the complex t-distribution in [46]. The data power is chosen
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to be σ2
X = EQ{Q}/N = 4. Finally, all the numerical

indices have been evaluated through 106 Monte Carlo runs.
The density generator of the complex Generalized Gaussian
(GG) distribution is [7]:

h0(t) =
sΓ(N)b−N/s

πNΓ(N/s)
exp

(
− t

s

b

)
, t ∈ R+ (58)

and, according to the value of the shape parameter s > 0, it can
model a distribution with both heavier tails (0 < s < 1) and
lighter tails (s > 1) compared to the Gaussian distribution (s =
1). The versatility of the GG distribution is useful to assess
the distributional robustness of the proposed R-estimator since
its properties can be checked in Gaussian, super-Gaussian and
sub-Gaussian scenarios. The setting used in our simulation is
as follows:
• Σ0 is a Toeplitz Hermitian matrix whose first column is

given by [1, ρ, . . . , ρN−1]>; ρ = 0.8ej2π/5 and N = 8.
• The “small perturbation” matrix H0

C is chosen to be a
symmetric random matrix s.t. H0

C = (GC+GH
C)/2 where

[GC]i,j ∼ CN (0, υ2), [GC]1,1 = 0 and υ = 0.01. Note
that υ has to be small enough to guarantee that V̂?

1 +
L−1/2H0

C ∈ MC
N . A more exhaustive discussion on the

choice of υ will be given in Sec. V-C.
As previously discussed, the R-estimator in Eq. (54) de-

pends on two “user-defined” quantities: 1) the preliminary
estimator V̂?

1 and 2) the score function Kh. In order to assess
the impact of their choice on the performance of the R-
estimator, we perform our simulations by using the Tyler’s and
the Huber’s estimators as preliminary estimators. Moreover,
for the Huber’s estimator, three different values of the tuning
parameter q (i.e. q = 0.9, 0.5, 0.1) have been adopted [7, Sec.
V.C]. Note that the Sample Covariance Matrix (SCM) and
Tyler’s estimators can be obtained from the Huber’s one when
q → 1 and q → 0, respectively. As score functions, we exploit
the van der Waerden one given in Eq. (50) and the tν-score
in Eq. (51) for three different values of ν (ν = 0.1, 1, 5).

A. Semiparametric efficiency

In Figs. 1 and 2, MSE indices of the R-estimator in Eq. (54)
are plotted as function of the number L of observations and
then compared with the CSCRB for a shape parameter of the
GG distribution equal to 0.5, i.e. for a heavy-tailed scenario.
Specifically, in Fig. 1 the asymptotic efficiency of the R-
estimator, exploiting a van der Waerden score, is investigated
for the two considered preliminary estimators, i.e. Tyler’s and
Huber’s one. As we can see, the impact of the choice of the
preliminary estimator on the asymptotic efficiency of the R-
estimator is negligible. Similar consideration can be done for
the choice of the particular score function. As shown in Fig.
2 in fact, the MSE curves of the R-estimator are very similar
to each other and close to the CSCRB as L → ∞. These
simulations confirm the nearly semiparametric efficiency of
the proposed R-estimator. We said “nearly” because, as an-
ticipated in Sec. III-D, the choice of the score function does
have an impact on the finite-sample performance and on the
robustness to outliers. To see this, in Fig. 3, we report the
MSE indices obtained for the van der Waerden and tν- scores

as function of the shape parameter s in a non-asymptotic
regime, i.e. for L = 5N . The results in Fig. 3 seems to
suggest that the van der Waerden score provide the lowest
MSE index for 0.3 < s < 2 while it presents small loss in
highly heavy-tailed scenarios (0.1 < s < 0.3). Note that van
der Waerden score is perfectly specified for s = 1, i.e. when
the data are Gaussian distributed. As anticipated in Sec. III-D,
this surprisingly good performance of the van der Waerden
score is related to the so-called “Chernoff-Savage” result for
rank-based statistics [35,39].

The tν-scores are more flexible since the additional pa-
rameter ν can be used to tune the desired trade-off between
semiparametric efficiency and robustness to outliers, as we
will see ahead. In particular, tν-scores characterized by a small
value of ν improves the robustness of the resulting R-estimator
at the price of a loss of efficiency. On the other hand, larger
values of ν will provide a better efficiency, in particular in
sub-Gaussian scenario, sacrificing the robustness as addressed
in the next section. However, it is important to stress here
that the MSE index of the resulting R-estimator is lower that
the one of Tyler’s estimator for all the (non-degenerating)
score functions. Moreover, due to the semiparametric nature
of the R-estimator this conclusion holds true regardless the
actual density generator characterizing the data distribution.
While the choice of the score function has an impact of the
properties of the resulting R-estimator, simulation results have
highlighted that the impact of the preliminary estimator is
negligible, as long as it is

√
L-consistent and robust (see also

[46] for additional discussions). For this reason and for the
sake of brevity, in the following we will only report the results
obtained by adopting the preliminary Tyler’s estimator.

B. Robustness to outliers

Along with the semiparametric efficiency and distributional
robustness, another fundamental property of a shape matrix
estimator is the robustness to outliers. In the present context,
an outlier is defined as an observation vector that does not
share the same statistical behavior of the main data set, i.e.
it is not CES distributed or/and it hasn’t the same shape
matrix or location parameter. The two main tools used to
quantify the robustness to outliers of an estimator are the
breakdown point (BP) and the influence function (IF) [24, Ch.
11 and 12]. Roughly speaking, the BP indicates the percentage
of “arbitrarily large” outliers that an estimator can tolerate
before providing unreliable “arbitrarily large” estimates. On
the other hand, the IF gives us a measure of the impact
that an infinitesimal perturbation (at a given point) of the
samples distribution may have on the estimation performance.
Unfortunately, the evaluation of the BP and IF may be in-
volved and difficult to obtain in closed form. Anyway, their
“finite-sample” counterparts, called finite-sample BP [47] and
empirical IF (EIF) [48], or sensitivity curve, can be easily
evaluated through numerical simulations.

To evaluate the finite-sample BP for the proposed R-
estimator, we follow the approach discussed in [49]. Let us
start by indicating with Z = {zl}Ll=1 ∼ CES(0,V1, h0) the
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“pure” GG data set whose h0 is given in Eq. (58) and with
Zε = {zl}Ll=1 ∼ fZε the ε-contaminated data set s.t.:

fZε(z|V1, h0, %) = (1− ε)CES(0,V1, h0) + εqZ(%), (59)

where ε ∈ [0, 1/2] is a contamination parameter. The function
qZ(%) represents the pdf of an outlier z̃ that we arbitrarily
choose to be as z̃ = τ−1u where, as before, u ∼ U(SCN )
while τ ∼ Gam(%, 1/%) and Gam indicates the Gamma
distribution. Consequently, z̃|τ is uniformly distributed on the
N sphere of ray τ−1, i.e. SτCN , {z̃ ∈ CN |||z̃|| = τ−1}.
This implies that we can obtain “arbitrarily large” outlier by
generating arbitrarily small values of τ ∼ Gam(%, 1/%). This
can be achieved by choosing arbitrarily small values of the
shape parameter % > 0 in the Gamma distribution. Let V̂ϕ

γ (Z)

and V̂ϕ
γ (Zε) be two shape matrix estimators evaluated from

the pure and the ε-contaminated data sets, respectively. Then
the finite-sample BP curves can be evaluated as [49]:

BPϕγ (ε) , max
{
λϕγ,1(ε), 1/λϕγ,N (ε)

}
, (60)

where λϕγ,i(ε) is the i-th ordered eigenvalue of the matrix
[V̂ϕ

γ (Z)]−1V̂ϕ
γ (Zε), s.t. λϕγ,1(ε) ≥ · · · ≥ λϕγ,N (ε). Clearly,

when there is no contamination (ε = 0), we have that
BPϕγ (0) = 1. Any robust estimator should then have a BP
value close to 1 for every value of ε, while it may be arbitrarily
large for a non-robust estimator. Fig. 4 shows the BP curves
of the proposed R-estimator exploiting the van der Waerden
and three tν- scores (ν = 0.1, 1, 5). Since BPϕγ (ε) depends
on Z and Zε, we plot its averaged value over 104 realizations
of these data sets. For the sake of comparison, we report also
the BP value of Tyler’s estimator. All the BP curves, related
to the resulting R-estimator, remain close to the Tyler’s one
for every value of ε. On the other hand, the BP of the non-
robust Sample Covariance Matrix (SCM) estimator explodes
to 1017 as soon as ε 6= 0, so we do not include it in the plot.
A visual inspection of Fig. 4 confirms us what already said
in Sec. V-A: tν-scores with a small value of ν lead to more
robust estimators. In particular, it can be noted that the BP
curves of the R-estimator with t0.1- and t1-score functions
coincide with the one of Tyler’s estimator.

Let us now focus on the EIF [48]. For the shape matrix
estimation at hand, it can be defined as:

EIFϕγ , (L+ 1)||V̂ϕ
γ (Z)− V̂ϕ

γ (Z, z̃)||F , (61)

where z̃ is an outlier distributed according to the pdf qZ(%)
defined in Eq. (59). As Eq. (61) suggests, the EIFϕγ gives
us a measure of the impact that a single outlier z̃ has on the
shape matrix estimator V̂ϕ

γ when it is added to the “pure” data
set Z. Moreover, if L is sufficiently large, the expression in
Eq. (61) is a good approximation of the theoretical IF [48].
For this reason, in our simulation we use L = 1000. Since
EIFϕγ depends on Z and z̃, we plot its averaged value over
104 realizations of the data set and the outlier. As for the IF,
the most important property that the EIF of a robust estimator
should have is the boundedness. In fact, this indicates that
the impact of a single outlier on the estimation performance
is limited. In Fig. 5, we report the EIF of the proposed R-
estimator exploiting the van der Waerden and three tν- scores

(ν = 0.1, 1, 5). As benchmark, the EIF of the Tyler’s estimator
is adopted since it is known that the relevant IF is continuous
and bounded [7]. On the other hand, the EIF of the non-
robust SCM grows rapidly to 104 as the norm of the outlier
z̃ increases (i.e. when %→ 0), so we do not include it in the
plot. As we can see from Fig. 5, the EIFs of the proposed R-
estimator remain bounded and close to the one of the Tyler’s
estimator for arbitrarily large values of ||z̃|| (%→ 0).

C. Algorithmic considerations

This last subsection collects some observations on the
algorithmic implementation of the proposed R-estimator. As
can be seen from the pseudo-code in Sec. IV, the R-
estimator is obtained by applying a linear “one-step” correc-
tion L−1/2[α̂CLV̂?

1
LH

V̂?
1

]−1∆̃C
V̂?

1

to a preliminary estimator V̂?
1

(see step 10 in Algo. 1). In particular, unlike M -estimators that
are obtained as implicit solution of a fixed point equation, it
does not require any iterative implementation. Consequently,
leaving aside the computation of V̂?

1 , the computational
load of the proposed R-estimator is roughly given by the
amount of calculation needed to i) obtain the L ranks r?l
and vectors û?l (see steps 2 and 3 in Algo. 1) and ii) deal
with the (N2 − 1) × (N2 − 1) matrices LV1

, [LV1
LH

V1
]

and [LV1
LH

V1
]−1. Clearly, this represents a problem as the

dimension N of the observations increases. A possible way
out would be to exploit the structure of LV̂?

1
, given in Eq.

(43), to reduce the global computational load but this point
falls outside the scope of the present paper.

The second algorithmic consideration is related the choice
of the “small perturbation” matrix H0

C. The theory does not
provide us with any hint about the optimal selection of this
hyper-parameter, so we decided to define it as a random matrix
H0

C = (GC + GH
C)/2 where [GC]i,j ∼ CN (0, υ2), [GC]1,1 =

0. The problem then is reduced to the simpler choice of the
scalar perturbation parameter υ. Fortunately, simulation results
seem to suggest that the R-estimator is quite robust w.r.t. the
choice of υ for various density generators and various levels of
non-Gaussianity. On the other hand, the choice of υ is sensitive
to the data dimension N and to the number of observations L.
As an example, Fig. 6 shows the MSE index of the V̂Ty

R,vdW as
function of υ for different data dimension N . As we can see,
the MSE index remains stable for a sufficiently large range of
values for υ allowing us for its safe selection.

VI. CONCLUSIONS

In this paper, a distributionally robust and nearly semipara-
metric efficient R-estimator of the shape matrix in Real and
Complex ES distributions has been discussed and analyzed.
This estimator has been firstly proposed by Hallin, Oja and
Paindaveine in their seminal paper [10] where the Le Cam’s
theory of one-step efficient estimators and the properties of
rank-based statistics have been exploited as basic building
blocks for its derivation. In the first part of this paper, a
survey of the main statistical concepts underlying such R-
estimator has been provided for the case of RES-distributed
data. Then, its extension to CES distributions has been derived
by means of the Wirtinger calculus. Finally, the finite-sample
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performance of the R-estimator has been investigated in dif-
ferent scenarios in terms of MSE and robustness to outliers.
However, a number of fundamental issues still remain to be
fully addressed. In our opinion, the most important one is
related to the estimation of αC,0 in Eq. (46) (or, for the real-
valued case, α0 in Eq. (23)). The estimator in Eq. (53) in
fact is consistent under any possible density generator h ∈ GC
but it does not satisfy any optimality property. Moreover, it
depends on an hyper-parameter, i.e. the “small perturbation”
matrix H0

C (or H0 in the real-valued case), that has to be
defined by the user in an heuristic way and, currently, without
any theoretical guidelines. A possible improvement w.r.t. the
estimator in Eq. (53) is discussed in [10, Sec. 4.2] and it will
be the subject of future works. Other important open questions
are related to the evaluation of the theoretical BP point and
IF. Closed form expressions of these two quantities will help
to fully understand the robustness properties of the proposed
R-estimator with respect to classical M -estimators.
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Fig. 1: MSE indices vs preliminary Tyler’s and Huber’s
estimators as function of L (s = 0.5).
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Fig. 2: MSE indices vs different score functions Kh as
function of L (s = 0.5).
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Fig. 3: MSE indices vs different score functions Kh as
function of s (L = 5N ).
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