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Abstract: Light states evolution versus their fractional orbital angular momentum (OAM) 

has been analyzed in the conical diffraction process occurring through biaxial crystals. 

Experimental results are provided by a non-degenerate cascade of KGd(WO2)4 and 

Bi2ZnOB2O6 biaxial crystals. The continuous 012 increasing of the fractional OAM in 

passing through integer values was operated with the help of the spin-orbit coupling in the 

Bi2ZnOB2O6 crystal. The phase of the state light and its vortices were visualized by 

interference patterns with a reference beam. The evolution of the fractional OAM value is 

accompanied by a continuous evolution of pairs of vortices with opposite signs and linked 

by a -/+ discontinuous phase line.  The phase pattern evolution around half-integer OAM 

is observed to be continuous. In other cases, the evolution can be interrupted by the breaking 

of a -/+ discontinuous phase line and a new pair of vortices with opposite charges is born.  

 

1. Introduction 

A beam going through a material is refracted and even generally doubly-refracted if the material 

is birefringent. This very common behaviour does not occur in the singular case of propagation 

along the optical axis of a biaxial crystal: W. Hamilton predicted in the nineteenth century that 

the refraction should be conical and a hollow cylinder should emerge [1, 2]. However, the whole 

optical phenomenon is quite complex and cannot be reduced to a simple propagation of rays. A 
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more brilliant theoretical description was obtained from plane waves decomposition [3] of the 

incident beam. Their recombination behind the crystal reconstitutes the conical diffraction (CD) 

[4] of the output beam and the richness of its structure: internal and external conical refraction 

both included, light dual-cone, Raman spikes and Poggendorff rings [5, 6]. Cascading several 

biaxial crystals leads to multiple rings and useful mode conversion. The theory for one crystal 

was generalised to N cascaded crystals [7]. The intensity patterns of multiple rings obtained 

with up to three identical crystals were experimentally exhibited [8]. In Ref. [9] an elliptical 

beam was launched into two cascaded crystals, reducing the intensity pattern of each circle in 

two lobes. Much more complex intensity patterns can be obtained inserting optical elements 

between the crystals. This was shown experimentally and theoretically in Ref. [10] with a /4 

or a /2 plate or a linear polarizer inserted between two or more crystals. With the help of 

polarizers, LG0
1, LG1

1 and LG0
2 Laguerre-Gauss were exhibited in Ref. [11] with two cascaded 

crystals.  

Interestingly, Berry et al. [12] showed that the beam emerges also with a modified orbital 

angular momentum (OAM). Let us recall that the OAM results of the beam linear momentum 

acting off-axis with respect to its centre [13]. For example, Laguerre-Gauss modes have such 

𝑙 ℏ/photon OAM related to their exp (𝑖𝑙𝜑) transverse phase variation. For an input field with a 

circular polarization, the output field after CD is a superposition of a B0 component with a nil 

OAM (charge 0 component) and a B1 component with 1 ℏ/photon OAM (charge 1 component).  

These predictions were experimentally verified in the case of the centrosymmetric KGd(WO2)4 

(KGW) crystal [14] and the non-centrosymmetric (Pasteur medium) Bi2ZnOB2O6 (BZBO) oxy-

borate crystal [15].  

The coherent superposition of several light states with integer OAM leads to fields with average 

fractional OAM. This situation is mainly documented with beams emerging from spiral phase 

plates with fractional step height, a spatial light modulator [16-18] and superposition of 

appropriate LG modes with different Gouy phases [19]. The case of cascaded biaxial crystals 

is mainly documented for integer OAM [20-21].  

The present work is devoted to the evolution of light states versus their fractional OAM, 

generated by cascading two different biaxial crystals optical axis oriented: KGW and BZBO 

(non-degenerate cascade). The phase and intensity of the coherent superposition of modes, their 

visualization by interference fringes and CCD camera, and their theoretical calculations by a 

full numerical model are presented versus the fractional OAM, including around half-integer 

values.  
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2. Experimental methods 

 

Fig. 1 Experimental set-up allowing the OAM study in the far field. The CD-field in position 

1 is replicated in position 2 with -1 magnification by the L2-L3 afocal telescope. Focal length 

of lenses: L0=7.5 cm, L1=3 cm, L2=L3=10 cm, L5=25 cm. 

A KGW (6 X 6X 3 mm3) and a BZBO (8 X6 X 6 mm3) crystals were used, both oriented along 

their optical axis. Their x-z principal plane was kept horizontal.  

The linear polarized beam from a 1064 nm YAG:Nd laser was first made left circular (LC) 

polarized with a quarter-wave plate at the entrance of the set-up (Fig. 1).  It was focused through 

the KGW into a 40 µm waist spot a few mm behind the sample with a doublet lens L1. In the 

focal plane labelled “position 1” in Fig. 1, we can observe the ring of the CD located between 

two axial spikes. In order to have enough space to locate several optical elements, the CD 

phenomenon in “position 1” was replicated without magnification but reversed 40 cm further 

in “position 2” with an afocal telescope. It was constituted from two f=10 cm focal length 

doublets L2 and L3, separated by twice (20 cm) their focal length. Anticipating the notations 

of subsection 3.1, we have the following relation between the Fourier transforms of the fields: 

�̂�(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛2, 𝑘𝑥, 𝑘𝑦) = −�̂�(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛1, −𝑘𝑥, −𝑘𝑦), where the difference of the two positions is 

4f and a phase factor omitted. In other words, the first lens performs a Fourier transform and 

that the second one performs the inverse Fourier transform [22]. So we obtained an exact replica 

of the CD phenomenon and this result is quite different of the deformation observed with a 

single lens in Ref. [23].  

KGW
position1

QW2

L2L1
Pol2 

CCD

L4PBS

BS

QW3

20 cm 25 cm

L0

afocal 
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The BZBO biaxial sample was located in the position 2 and it modified the CD phenomenon. 

The far field resulting from the cascaded CD and propagating further position 2 was visualized 

through a Fourier lens L4 on the screen of a Beamage Gentec CCD camera located in the L4 

focal plane. In order to visualise the phase of the near field, a reference beam was taken from 

the input beam with a 50/50 beam splitter and redirected with mirrors towards the CCD screen 

by a polarizing beam splitter near “position 2” and through the Fourier lens. The whole 

reference set-up is similar to a Mach-Zehnder interferometer. On the output face of the beam-

splitter the two beams were a few mm separated in order to create a controlled wedge fringe 

pattern with the desired spatial resolution. The polarizing beam splitter reflects the vertically 

polarized reference beam and transmits the horizontal component of the beam under study, so 

their interference on the CCD is obtained through a supplementary rotated linear polarizer not 

shown in Fig. 1. 

In Fig. 1 we can see several optical elements inserted inside the beam path: linear polarizers 

and quarter-wave plates, used for selecting the light states as it is detailed further.  

3. Theoretical background 

3.1 Beam propagation through a biaxial crystal in the Fourier space and in a 

circular basis 

The electric field 𝐄 of a monochromatic beam at the input of the crystal can be decomposed in 

plane waves. Each of them wave inside the crystal has components on the two eigen-modes (±) 

of the refracted propagation direction and it propagates as exp [𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧±𝑧)], with: 

𝑘𝑧± = √𝑘±
2 − (𝑘𝑥

2 + 𝑘𝑦
2)           (1) 

𝑘𝑥, 𝑘𝑦 being the transverse components of the wave-vector and 𝑘± being the two eigen-values. 

At the exit of the crystal with thickness L the emerging field [�̂�(𝐿, 𝑘𝑥 , 𝑘𝑦)]
𝑥𝑦

 is obtained from 

a linear operator Û acting on [�̂�(0, 𝑘𝑥, 𝑘𝑦)]
𝑥𝑦

: 

Û = 𝑒𝑥𝑝 {𝑖𝑧𝑃 [
𝑘𝑧+ 0

0 𝑘𝑧−
] 𝑃−1}        (2) 

where P is the transfer matrix from the xy-frame towards the eigen-modes frame. The parabolic 

approximation leads to smart results for the eigen-values, the eigen-modes and the operator Û 

[3, 4]. In the present work we operated a full numerical calculation (with the Matlab package) 

of the Û operator and of any fields such as �̂� and ℜ̂ hereafter, with the exact refractive indices 

and eigenmodes as it is detailed in Ref. [15] and including birefringence and bi-anisotropy. 
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Moreover, for any path of length ∆𝑧 in free space after the exit face of one crystal, it is necessary 

to multiply the field by exp (𝑖√𝑘0
2 − (𝑘𝑥

2 + 𝑘𝑦
2)∆𝑧) , 𝑘0 being the free-space wave-vector. Of 

course the field in a given plane of the real space (near field, exhibited for example in Ref. [15]) 

is provided by the inverse Fourier transform, but in the present work we do not use this route, 

we work in the Fourier space (far field detected in the focal plane of the L4 Fourier lens). As it 

was recognized many years ago [12] waves with circular polarizations (CP) have a special role. 

Launching such a wave with no OAM inside a birefringent KGW crystal leads to two 

superimposed emerging waves 𝔏 (LCP) and ℜ (RCP) after CD in a birefringent biaxial crystal, 

the one with the opposite CP having its OAM modified as ±1, the one with the same CP having 

no OAM (throughout the text the OAM is expressed in ℏ/photon). The corresponding far fields 

�̂� and ℜ̂ are constituted of concentric rings, they are well studied generally from reasonable 

approximations applied to the refractive indices and propagation eigenmodes. So, they are 

known to be pure states of the z-component of the OAM operator:   

�̂�𝑧 = −𝑖ℏ(𝑘𝑥
𝜕

𝜕𝑘𝑦
− 𝑘𝑦

𝜕

𝜕𝑘𝑥
)    (3) 

(Darwin result [24] restricted to the 2D monochromatic case).  

Expressing the Û operator  (Eq. (2)) in a circular basis we can calculate the far field output (two 

LCP and RCP components) resulting from a LCP input plane wave as: 

[
�̂�𝑖

(0)

ℜ̂𝑖
(1)

] = Û [
1
0

]            (4) 

and the field resulting from a RCP input plane wave as: 

[
�̂�𝑖

(−1)

ℜ̂𝑖
(0)

] = Û [
0
1

]            (5) 

where the superscripts are the OAM (�̂�𝑧 eigenvalue) of the CP wave. 

Then the CD through the KGW crystal labelled i=1 is obtained with the operator: 

Û𝑖(𝐿, 𝑘𝑥, 𝑘𝑦) = [
�̂�𝑖

(0)
�̂�𝑖

(−1)

ℜ̂𝑖
(1)

ℜ̂𝑖
(0)

]   (6) 

Let us add that our numerical calculations lead to 0.997 instead of 1, meaning that our numerical 

error is about 0.3 %.  

The case of the BZBO crystal, labelled i=2, needs a supplementary explanation. This is because 

this crystal is orthorhombic and acentric with point group mm2 (C2v).  It exhibits a natural 

optical activity, described by a tensor 𝝌𝑎, and responsible for the rotation of a linear polarization 
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launched along the optical axis [15]. At 1064 nm, we measured the specific rotatory power 𝜌 

to be 0.867 rad/cm. Strictly speaking, the far fields such ℜ̂2
(𝑐)

 are no more pure �̂�𝑧 eigenstates 

with integer OAM. Evaluating the c-charge of a [�̂�
ℜ̂

] general field in the Fourier space with the 

Darwin formula: 

𝑙𝑧 =
ℛ𝑒 ∬[�̂�∗(�̂�𝑧�̂�)+ℜ̂∗(�̂�𝑧ℜ̂)]𝑑𝑘𝑥𝑑𝑘𝑦

∬[|�̂�|
2

+|ℜ̂|
2

]𝑑𝑘𝑥𝑑𝑘𝑦

         (7) 

where ℛ𝑒 means “real part”, we found c=0.995. This is very slightly smaller than 1, in 

agreement with Berry prediction about the influence of chirality on CD. But taking into account 

the numerical uncertainty and the closeness of c to 1, we will neglect at this step the OAM 

mixture and we will used operator (4) with i=2. 

Finally, in the following sections we will calculate the spin of the field according to Darwin: 

𝑠𝑧 =
∬[|�̂�|

2
−|ℜ̂|

2
]𝑑𝑘𝑥𝑑𝑘𝑦

∬[|�̂�|
2

+|ℜ̂|
2

]𝑑𝑘𝑥𝑑𝑘𝑦

          (8) 

 

3.2 Beam with fractional orbital angular momentum 

In a previous work [21] the states with increasing integer OAM (0, 1, 2) after the BC2 crystal 

were studied in the real space (intensity and phase). At the opposite in the present work we 

focus on the states with fractional OAM in the Fourier space. Their evolution is studied from 

the  𝜃 angle continuously varied in the [-45°, +45°] interval. 

The optical elements located after one crystal number i modify the wave polarization according 

to their Jones matrix in the circular basis (obtained with the help of the transfer matrix: 

1

√2
(

1 −𝑖
1 𝑖

)). 

We can see in Fig. 1 two composite elements constituted by a quarter-wave plate with its slow 

axis making a 𝛼 = ±45° angle with the x-horizontal axis, followed by a horizontal linear 

polarizer. They are shown inside two boxes (QW2-Pol2 and QW4-Pol3 with a polarizing beam 

splitter as pol3) because they are used as a whole. The Jones matrix of the box is: 

𝐽ℜ =
1

√2
[
0 1
0 1

]         (9) 
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if  𝛼 = +45° and:  

𝐽𝔏 =
1

√2
[
1 0
1 0

]         (10) 

if  𝛼 = −45° (𝛼is respectively 𝛼2 or 𝛼4 for QW2-Pol2 box and QW4-Pol3 box).  

The role of 𝐽ℜ and 𝐽𝔏 in the experimental set-up is straightforward: 𝐽ℜ projects a light state 

[ �̂�(𝑐𝐿)

ℜ̂(𝑐𝑅)
] onto a state with the charge cR of the right CP, while  𝐽𝔏 projects onto a state with the 

charge cL of the left CP. More, the two obtained states are horizontally polarized. In other 

words, the role of  𝐽ℜ and 𝐽𝔏 is to select a wanted charge (the highest if the purpose is scaling 

the OAM). 

In the following the QW2-pol2 box will always be used as a 𝐽ℜ operator. The polarization of 

the state after this box is further modified with an additional quarter-wave plate QW3. This 

latter modification does not change the charge of the light state but generally, an elliptical state 

is obtained from an angle 𝜃 between the QW3 slow axis and the x-horizontal axis. The resulting 

change of the beam spin will have drastic influence on the final OAM after BC2 as it is shown 

in the following. 

We use as input field a Gaussian beam: [Ĝ = Ĝ(0)exp (−
𝑤0

2(𝑘𝑥
2+𝑘𝑦

2)

4
)]

𝑥𝑦
. With the help of Eq. 

(6) for BC1 (KGW), the field state obtained after the 𝐽ℜ projector and QW3 can be summarized 

as: 

[
1
0

] Ĝ BC1 [
�̂�1

(0)

ℜ̂1
(1)

] Ĝ 𝐽ℜ 
ℜ̂1

(1)

√2
 [

1
1

] Ĝ QW3(𝜃) 
ℜ̂1

(1)

√2
[ 1 + 𝑖𝑒2𝑖𝜃

1 + 𝑖𝑒−2𝑖𝜃
] Ĝ        (11) 

This is a charge 1 state whatever the 𝜃 angle. The 𝜃 angle determines the field spin which is the 

sum (from EQ. (8)) of a LC component 𝑆𝐿(𝜃) and a RC one 𝑆𝑅(𝜃): 

𝑆𝐿(𝜃) =
1+sin (2𝜃)

2
         (12) 

𝑆𝑅(𝜃) = −
1−sin (2𝜃)

2
    (13) 

Applying Eq. (4) again the field after the BZBO=BC2 crystal was calculated with the following 

step: 
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BC2
1

2
[
(1 + 𝑖𝑒−2𝑖𝜃)�̂�2

(0)
ℜ̂1

(1)
+ (1 + 𝑖𝑒2𝑖𝜃)�̂�2

(−1)
ℜ̂1

(1)

(1 + 𝑖𝑒−2𝑖𝜃)ℜ̂2

(1)
ℜ̂1

(1)
+ (1 + 𝑖𝑒2𝑖𝜃)ℜ̂2

(0)
ℜ̂1

(1)
] Ĝ         (14) 

To take into account the influence of the afocal optics, we replaced in Eq. (14) ℜ̂1
(1)

(𝑘𝑥, 𝑘𝑦) by 

−ℜ̂1
(1)

(−𝑘𝑥, −𝑘𝑦) in agreement with the comments in section 2. As we can see, at the exit of 

the BC2 crystal, the light state is a coherent superposition of several �̂�𝑧 eigenstates with integer 

OAM. We have selected some of them playing with the optical elements located after BC2. 

The state obtained from the QW4-Pol3 box used as a  𝐽ℜ operator is: 

|𝐽_𝑅 >=
1

2√2
{(1 + 𝑖𝑒−2𝑖𝜃)ℜ̂2

(1)
ℜ̂1

(1)
+ (1 + 𝑖𝑒2𝑖𝜃)ℜ̂2

(0)
ℜ̂1

(1)
}Ĝ [

1
1

]          (15) 

while from the box used as a 𝐽𝔏 operator it is: 

|𝐽_𝐿 >=
1

2√2
{(1 + 𝑖𝑒−2𝑖𝜃)�̂�2

(0)
ℜ̂1

(1)
+ (1 + 𝑖𝑒2𝑖𝜃)�̂�2

(−1)
ℜ̂1

(1)
}Ĝ [

1
1

]            (16) 

The state obtained by fixing 𝜃 = 0° and 𝛼4 continuously varying is: 

|𝛼4 >=
1+𝑖

4√2
ℜ̂1

(1)
{(1 + 𝑖𝑒2𝑖𝛼4)(�̂�2

(0)
+ �̂�2

(−1)
) + (1 + 𝑖𝑒−2𝑖𝛼4)(ℜ̂2

(0)
+ ℜ̂2

(1)
)} Ĝ [

1
1

]          (17) 

 

4. Results 

The light states versus their OAM described by Eq. (15), (16) and (17) are studied in the 

following three subsections. Efforts were made to study the field inside the dark regions of the 

field intensity where the phase vortices are located. The light intensities and specially the dark 

region locations, measured by the CCD camera and calculated theoretically, are represented in 

Fig. 2. This figure will be commented simultaneously with Fig. 3, 4 and 5 in the 4.1, 4.2 and 

4.3 Subsections. In particular we will explain why the two panels (d-d’) and (g-g’) are different 

despite their OAM is 1. The contrast of the interference fringes in the dark regions in Fig. 3, 4 

and 5 was improved sometimes to the detriment of the bright regions. 
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Fig. 2 Intensity patterns in the far field for various OAM (ℏ/photon). For each OAM 

the left picture is experimental, the right one id theoretical. The intensity scale is in 

arbitrary units. 

 

4.1 Fractional OAM in the |1, 2] interval 

Eq. (15) shows that after the 𝐽ℜ operator, the light state |𝐽_𝑅 > is a coherent superposition of 

the two integer OAM states: 

|1𝑎 >=ℜ̂2
(0)

ℜ̂1
(1)

 Ĝ [
1
1

] 

|2 >=ℜ̂2
(1)

ℜ̂1
(1)

Ĝ [
1
1

] 

whose charge is respectively 1 and 2. So the superposition has generally a fractional OAM in 

the |1, 2] interval, given by the following formula obtained from inserting Eq. (15) into Eq. (7): 

𝑙𝑧 =
2(1+sin(2𝜃))<2|2>+(1−sin(2𝜃))<1𝑎|1𝑎>

(1+sin(2𝜃))<2|2>+(1−sin(2𝜃))<1𝑎|1𝑎>
          (18) 

1

0.53

2

0.641

0.84 0.113

1.161,47

a a’ b b’ c c’

d d’ e e’ f f’

g g’ h h’ i i’
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with the numerical values < 1𝑎|1𝑎 >= 2.83 10−3 𝑎. 𝑢., < 2|2 >= 2.49 10−3𝑎. 𝑢., where we 

have benefited from the states orthogonality calculated to be < 2|1𝑎 >≅  10−10𝑎. 𝑢. (which is 

much weaker than < 2|2 >  and < 1𝑎|1𝑎 > ). 

Combining now Eq. (18) and (12) we can exhibit the spin-orbit coupling with the LC 

component of the incident state in the BC2 crystal responsible for the 𝑙𝑧 increasing from 1: 

𝑙𝑧(𝜃) = 1 +
2<2|2>

(1+sin(2𝜃))<2|2>+(1−sin(2𝜃))<1𝑎|1𝑎>
𝑆𝐿(𝜃)   (19) 

where the coefficient of 𝑆𝐿(𝜃) is a fraction found numerically close to 1 (it should be exactly 1 

if the eigenstates had the same modules or if 𝜃 = 45°). 

In the extreme case 𝜃 = 45° (intensity in Fig. 2 (a) and (a’)), the light state is the pure OAM 

state  |2 > with its OAM=2. The interference pattern with the reference beam exhibits at its 

centre a vortex characterized by two supplementary bright fringes located in the lower part of 

a circle centred on the vortex (red arrow inside Fig. 3 (a)). This corresponds to 4𝜋 rad phase 

variation along a path around it as the theoretical Fig. 3 (a’) shows. The two -/+ discontinuous 

phase lines near the centre in Fig. 3 (a’) reveal the fact that the phase-front is helicoidal. As 

soon as the 𝜃 angle decreases towards 0, the light state becomes a mixing, the charge-2 vortex 

splits into two charge +1 vortices and 𝑙𝑧 becomes fractional. This is shown in the case 𝜃 = 0 

(intensity in Fig. 2 (b) and (b’), red arrows near the middle of Fig. 3 (b) and middle of Fig. 3 

(b’)). The 𝑙𝑧 value is 1.47, that is to say very close to the 1.5 half-integer value. Simultaneously 

a new other charge -1 vortex appears (upper red arrow in Fig. (3b)) which is linked by a bright 

fringe to one previous charge +1 vortex (this link is underlined by the two linked red arrows). 

The theoretical Fig. 3 (b’) shows also the link between these two opposite signs vortices. 

Simultaneously another charge +1 vortex appears (bottom red arrow in Fig. 3 (b) and Fig. 3 

(b’)). All these vortices and their links evolve continuously up to a value of the 𝜃 angle slightly 

negative. Then a rearrangement occurs, shown in Fig. (3c) and (3c’) for 𝜃 = −20°  (𝑙𝑧 = 1.16) 

and a new link, pointed out by the two linked red arrows, appears between two opposite charge 

vortices (corresponding intensity shown in Fig. 2 (c) and (c’)). These two latter vortices and 

their link disappear in a continuous evolution (not shown in Fig. 3) when the 𝜃 angle decreases 

towards 𝜃 = −45° (𝑙𝑧 = 1). 
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Fig. 3 Interferogram and phase pattern of the |𝐽_𝑅 > state with various OAM. The red arrows 

point out the singularities (vortices) of the wave phase, they are paired when two vortices of 

opposite charges are linked by a -/+ discontinuous phase lines. 

4.2 Fractional OAM in the |0, 1] interval 

Eq. (16) shows that after the 𝐽𝔏 operator, the light state |𝐽_𝐿 > is a coherent superposition of the 

two integer OAM states: 

|0 >=�̂�2

(−1)
ℜ̂1

(1)
 Ĝ [

1
1

] 

|1𝑏 >=�̂�2

(0)
ℜ̂1

(1)
 Ĝ [

1
1

] 

 

whose charge is respectively 0 and 1. The resulting fractional OAM in the |0, 1] interval, given 

by the following formula:  

𝑙𝑧 =
(1+sin(2𝜃))<1𝑏|1𝑏>

(1+sin(2𝜃))<1𝑏|1𝑏>+(1−sin(2𝜃))<0|0>
   (20) 

with the numerical values < 1𝑏|1𝑏 >= 2.83 10−3 𝑎. 𝑢., < 0|0 >= 2.49 10−3𝑎. 𝑢., and where 

we have benefited from the states orthogonality calculated to be < 0|1𝑏 >≅  10−10𝑎. 𝑢. . 

q3=45° ; a4=45° ; lz=2 q3=-20° ; a4=45° ; lz=1.16q3=0° ; a4=45° ; lz=1.47

b

b’

a

a’

c

c’
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Combining now Eq. (20) and (13) we can exhibit the spin-orbit coupling in the BC2 crystal 

with the RC component of the incident state responsible for the 𝑙𝑧 decreasing from 1: 

𝑙𝑧(𝜃) = 1 +
2<0|0>

(1+sin(2𝜃))<1𝑏|1𝑏>+(1−sin(2𝜃))<0|0>
𝑆𝑅(𝜃)   (21) 

where the coefficient of 𝑆𝑅(𝜃) is a fraction found numerically close to 1 

In the case 𝜃 = 45° (intensity in Fig. 2 (d) and (d’)), the light state is a pure |1𝑏 > OAM=1 

state and the interference pattern with the reference beam exhibits at its centre a vortex 

characterized by one supplementary bright fringe located in the lower part of a circle centred 

on the vortex (red arrow inside Fig. 4 (a)). This corresponds to 2𝜋 rad phase variation along a 

path around it as the theoretical Fig. 4 (a’) shows. The -/+ discontinuous phase line near the 

centre in Fig. 4 (a’) reveal the fact that the phase-front is helicoidal. As soon as the 𝜃 angle 

decreases towards 0, this -/+ discontinuous phase line breaks and two new vortices with 

opposite charges are born near the centre. This is shown in Fig. 4 (b) and (b’) (red arrows) 

corresponding to 𝜃 = +20°  (𝑙𝑧 = 0.84, intensity shown in Fig. 2 (e) and (e’)). The new -1 

charge vortex is linked with + 1 charge original vortex (pointed out by the two linked red 

arrows). Then a continuous evolution of this structure is observed when 𝜃 and 𝑙𝑧 decrease. This 

is shown in Fig. 5 (c) and (c’) for 𝜃 = 0  and 𝑙𝑧 = 0.53 (intensity represented in Fig. 2 (i) and 

(i’)). The values 𝜃 = −20°  and 𝑙𝑧 = 0.113 lead to Fig. 4 (c) and (c’) (here the experimental 

resolution is not sufficient to distinguish the two opposite charge vortices in the centre), the 

intensity being shown in Fig. 2 (f) and (f’)); all the vortices disappear for 𝜃 = −45°  and 𝑙𝑧 = 0 

(this case is not shown). 
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Fig. 4 Interferogram and phase pattern of the |𝐽_𝐿 > state with various OAM. The red arrows 

point out the singularities (vortices) of the wave phase, they are paired when two vortices of 

opposite charges are linked by a -/+ discontinuous phase lines. 

 

4.3 Composite states with total OAM around 1 ℏ/photon 

Eq. (17)   shows that the |𝛼4 > state is a superposition of the|0 >, |1𝑎 >, |1𝑏 > and |2 > states. 

The resulting fractional OAM is given by the following formula:  

𝑙𝑧 =

=
2(1 + sin(2𝛼4)) < 2|2 > +(1 + sin(2𝛼4)) < 1𝑎|1𝑎 > +(1 − sin(2𝛼4)) < 1𝑏|1𝑏 >

(1 + sin(2𝛼4)) < 2|2 > +(1 + sin(2𝛼4)) < 1𝑎|1𝑎 > +(1 − sin(2𝛼4)) < 1𝑏|1𝑏 > +(1 − sin(2𝛼4)) < 0|0 >
 

 (22) 

where we have used < 1𝑎|1𝑏 >≅ 10−5𝑎. 𝑢., < 2|1𝑏 >≅ 10−10𝑎. 𝑢., < 0|1𝑎 >≅ 10−11, < 0|2 >
≅ 10−11𝑎. 𝑢. 

 

q3=45° ; a4=-45° ; lz=1 q3=20° ; a4=-45° ; lz=0.84 q3=-20° ; a4=-45° ; lz=0.198

b

b’

a

a’

c

c’
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Fig. 5 Interferogram and phase pattern of the |𝛼4 >state with various OAM. The red arrows 

point out the singularities (vortices) of the wave phase, they are paired when two vortices of 

opposite charges are linked by a -/+ discontinuous phase lines. 

 

Let us start with the state |𝛼4 = 0 > obtained with the 𝛼4 = 0° angle. We have 𝑙𝑧 = 1 but despite 

that this value is integer it is an average over four pure states, the state intensity (Fig. 2 (g) and 

g’)) has not a circular symmetry unlike the |1𝑏 > eigen-state (Fig. 2 (d) and d’)). This is of 

course because this |𝛼4 = 0 > state is not a pure state of OAM but is a coherent superposition 

of four eigen-modes. This intensity vanishes in three points where we expect vortices. This is 

what we found in Fig 5 (a) and (a’). Two opposite charge vortices are linked by a -/+ 

discontinuous phase line (linked red arrows). When decreasing the 𝛼4 angle, the intensity, 

interference pattern and phase evolves continuously. This is shown for the state |𝛼4 = −25° > 

(𝑙𝑧 = 0.64, Fig 2 (h) and (h’), Fig 5 (b) and (b’)), and for the state |𝛼4 = −45° > (𝑙𝑧 = 0.53, Fig 

2 (i) and (i’), Fig 5 (c) and (c’)). 

 

4.4 Discussion of the results 

We have shown that a pair of vortices of integer charge of the same sign (+1) is born when 

lowering from 𝑙𝑧 = 2 the OAM of the light state. We have shown that the continuous evolution 

of the phase pattern going with the 𝑙𝑧 evolution is sometimes interrupted by the breaking of a -

q3=0° ; a4=-45° ; lz=0.53q3=0° ; a4=-25° ; lz=0.64q3=0° ; a4=0° ; lz=1

b

b’

a

a’

c

c’
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/+ discontinuous phase line linking two existing opposite charge vortices. In this case a new 

pair of vortices with opposite charges is born. If we inspect the case of the phase pattern 

evolution around half-integer OAM, that is to say around 1.5 (Fig. 3 (b) and (b’)) and 0.5 (Fig. 

5 (c) and (c’)), we observe a continuous evolution and not a specific pattern or a sudden 

transition. This is in contrast with the change of vortex topology reported in previous works 

concerning the phase pattern of fields created by spiral phase plates with fractional step height 

or spatial light modulator. In these cases, for half-integer phase steps, a chain of additional 

vortices with alternating charge is observed experimentally and theoretically in the region of 

low intensity [16-18]. 

 

5. Conclusions 

The mechanisms leading to the evolution of light sates versus their fractional OAM from a CP 

Gaussian beam with no OAM have been pointed out in the cascaded CD process. Experimental 

results are provided by a non-degenerate cascade of two different KGW and BZBO biaxial 

crystals. The 012 increasing of the OAM  in passing through fractional values was operated 

with the help of the spin-orbit coupling in the BZBO crystal. The phase of the state light and its 

vortices were visualized by interference patterns with a reference beam. The evolution of the 

fractional OAM value is accompanied by a continuous evolution of pairs of vortices with 

opposite signs and linked by a -/+ discontinuous phase line.  The phase pattern evolution 

around half-integer OAM, that is to say around 1.5 and 0.5, is observed to be continuous and 

not with a specific or a sudden behaviour. In other cases, the evolution can be interrupted by 

the breaking of a -/+ discontinuous phase line and a new pair of vortices with opposite 

charges is born. All the experimental patterns (intensity, phase, OAM) are quite well described 

by a full numerical mode exhibited in the Fourier space.   

Our study is devoted to fractional OAM generated by the peculiar mechanism of CD, but other 

devices have proved their efficiency in this field, such as spiral phase plates of spatial light 

modulators. Fractional OAM can correspond to a superposition of a lot of eigenstates instead 

of only two for polarization. So applications in quantum communications and entanglements of 

photons are conceivable [25]. 
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Figure captions 

1. Experimental set-up allowing the OAM study in the far field. The CD-field in position 1 is 

replicated in position 2 with -1 magnification by the L2-L3 afocal telescope.  
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2. Intensity patterns in the far field for various OAM. For each OAM the left picture is 

experimental, the right one id theoretical. The intensity scale is in arbitrary units. 

3. Interferogram and phase pattern of the |𝐽_𝑅 > state with various OAM. The red arrows point 

out the singularities (vortices) of the wave phase, they are paired when two vortices of opposite 

charges are linked by a -/+ discontinuous phase lines. 

4. Interferogram and phase pattern of the |𝐽_𝐿 > state with various OAM. The red arrows point 

out the singularities (vortices) of the wave phase, they are paired when two vortices of opposite 

charges are linked by a -/+ discontinuous phase lines. 

5. Interferogram and phase pattern of the |𝛼4 >state with various OAM. The red arrows point out 

the singularities (vortices) of the wave phase, they are paired when two vortices of opposite 

charges are linked by a -/+ discontinuous phase lines. 

 


