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Abstract

We study a setting in which a learner faces a sequence of decision tasks and is required to make good
decisions as quickly as possible. Each task n is associated with a pair (Xn, µn), where Xn is a random
variable and µn is its (unknown and potentially negative) expectation. The learner can draw arbitrarily
many i.i.d. samples of Xn but its expectation µn is never revealed. After some sampling is done, the
learner can decide to stop and either accept the task, gaining µn as a reward, or reject it, getting zero
reward instead. A distinguishing feature of our model is that the learner’s performance is measured
as the expected cumulative reward divided by the expected cumulative number of drawn samples. The
learner’s goal is to converge to the per-sample reward of the optimal policy within a fixed class. We design
an online algorithm with data-dependent theoretical guarantees for finite sets of policies, and analyze
its extension to infinite classes of policies. A key technical aspect of this setting, which sets it aside
from stochastic bandits, is the impossibility of obtaining unbiased estimates of the policy’s performance
objective.

1 Introduction

Repeated decision problems are pervasive in many applications domains due to their great modeling potential.
In this paper, we introduce a novel setting in which the learner faces a sequence of binary decision tasks and
is required to accumulate as much value as possible in the shortest amount of time.

Our setting. We view each task as the assessment of some innovation proposed to the learner. Each task
n is associated with a pair (Xn, µn), where Xn is a random variable with expectation µn and µn represents
the true value of the n-th innovation. As such, µn can be either positive or negative, depending on the
quality of the innovation, but neither its absolute value nor its sign can be observed directly. Instead, the
learner can draw i.i.d. samples from Xn in order to estimate µn, and use this estimate to decide whether the
innovation is worth accepting. In other words, samples drawn from Xn represent noisy observations of the
true value of the n-th innovation. Drawing more samples thus improves the estimate of µn, but also makes
the assessment process run longer. This becomes an issue when many decisions have to be made sequentially,
and drawing samples is costly. For this reason, the learner’s performance is measured as the total amount
of value accumulated by accepting innovations divided by the total amount of requested samples over the
sequence of tasks. The setting is made rigorous in Section 3. The choice of the performance measure is
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discussed in depth in Appendix A.

A concrete application. Consider an online advertising company that keeps on testing out innovations
in order to increase its revenue. Before deploying them, the company wants to figure out whether the
innovations are actually more profitable than the technologies that are currently in place. As long as a
reasonable metric is available (e.g., time spent on a page, click-through rates, conversion rates, etc.), the
company can perform randomized tests and make statistically sound decisions. In real-life applications
companies are often interested in spending as little time as possible to make these decisions because of
budget constraints, and want to reject innovations that do not prove their worth in a reasonable amount of
time. Indeed, running experiments is expensive and slows down the regular work flow. Therefore, discarding
innovations that have a small positive margin could be significantly better in the long run than investing a
large amount of resources into testing and implementing them.

I.I.D. assumption. We assume that the pair (Xn, µn) associated with the value of the n-th innovation is
drawn i.i.d. from an unknown but fixed distribution. This assumption is meaningful if past decisions do not
influence future innovations whose quality remains stable over time. Also, it applies whenever innovation can
progress along many orthogonal directions, each yielding a similar added value. If this is the case, it would
only make practical sense to invest resources in different directions in order to maximize one’s progressive
improvements, which is precisely what is captured by our setting. It is also possible that both the state of the
learner’s system and that of the environment evolve over time, but the ratio of good versus bad innovations
remains essentially the same. In other words, it is not necessarily the absolute quality of innovations that
remain stationary, but their relative added value given the current state of the system. In practice, this case
is fairly frequent, especially when a system is close to its technological limit. Last but not least, algorithms
designed under stochastic assumptions often performs surprisingly well in practice, even if i.i.d. assumptions
are not fully satisfied or simply hard to check.

A baseline strategy and policy classes. A natural, yet suboptimal, approach for deciding if an innovation
is worth accepting is to gather samples sequentially, stopping as soon as the absolute value of their running
average surpasses a threshold, and then accepting the innovation if and only if the average is positive. The
major drawback of this approach is that the value µn of an innovation n could be arbitrarily close to zero.
In this case, the number of samples needed to reliably determine its sign (which is of order 1/µ2

n) becomes
arbitrarily large. A very long time would then be invested to assess an innovation whose return is negligible
at best. In hindsight, it would have been better to reject the innovation early and move on to the next one.
For this reason, testing processes in practice need hard termination rules of the form: if after drawing a
certain number of samples no confident decision can be taken, then terminate the testing process and the
reject the innovation. Denote by τ this capped early stopping rule and by accept the accept/reject decision
rule that comes with it. We say that the pair π = (τ, accept) is a policy. Policies defined by capped early
stopping rules (see (4) for a formal definition) are of great practical importance [10, 11]. However, policies
can be defined more generally by any reasonable pair of duration and decision functions (formally defined
in Section 3). Given a (possibly infinite) set of such policies, and assuming that (X1, µ1), (X2, µ2), . . . are
drawn i.i.d. from some unknown but fixed distribution, the goal is to learn efficiently, at the smallest cost,
the best policy π⋆ in the set with respect to a sensible metric. Competing against fixed policy classes is
a common modeling choice that allows to express the intrinsic constraints that are imposed by the nature
of the decision-making problem. For example, even if some policies outside of the class could theoretically
yield a better performance, they might not be implementable because of time, budget, fairness, or technology
constraints.

Challenges. One of the biggest challenges arising from our setting is that running a decision-making policy
generates a collection of samples that —in general— cannot be used to form an unbiased estimate of the
policy reward (see the impossibility result in Appendix D). The presence of this bias is a significant departure
from settings like multiarmed and firing bandits [1, 8], in which an unbiased sample of the target quantity
is revealed at the end of each round (see the next section for additional details). Moreover, contrary to
standard online learning problems, the performance measure that we use is neither additive in the number of
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innovations nor in the number of samples per innovation. Therefore, algorithms have to be analyzed globally,
and bandit-like techniques —in which the regret is additive over rounds— cannot be directly applied. We
argue that these technical difficulties should not be ignored when defining a plausible setting, applicable to
real-life scenarios.

Main contributions. For finite policy sets, we present an algorithm called Capped Policy Elimination
(Algorithm 1, CAPE). The algorithm maintains a set of potentially optimal policies and keeps refining it
until a single policy is left, or a certain number of innovations have been tested. After that, it uses the best
policy in the set to test out all remaining innovations. The need for a cap on the number of policy elimination
steps arise from the fact that, in order to gather usable estimates for the performance of our policies, we draw
(and pay) extra samples. This use of limited oversampling is a key aspect of our algorithm. We prove high-
probability distribution-dependent and distribution-free bounds (Theorem 1) for the performance of CAPE
against finite classes of policies. We then show that, if an appropriate preprocessing step (Algorithm 2,
ESC), is run before CAPE, the resulting algorithm ESC-CAPE is competitive against infinite sets of policies
(Theorem 2).

2 Related work

While to the best of our knowledge our setting is novel, it share some similarities with stochastic bandits
and repeated A/B testing. In this section, we review the relevant literature regarding these two settings and
stress the differences with ours.

Differences with bandits. If the set of all policies (defined rigorously in Section 3) used by the decision-
maker to determine weather or not to accept an innovation are thought of as arms, our setting becomes
somewhat reminiscent of multiarmed bandits [17, 3, 15]. However, the two problems are significantly different.
At the end of each round of a stochastic bandit problem, the learner gets to see an unbiased estimate of the
expected reward of the arm they played. As this does not happen in our setting (see impossibility result
in Appendix D), we cannot just run a bandit algorithm to solve our problem. In addition to that, bandit
algorithms are typically analyzed under an additive notion of regret, whereas the regret which makes most
sense for us —see definition (2)— is not additive. Thus, it is unclear how formal guarantees for bandit
algorithms would translate to our setting.

Firing bandits [8] can also be seen as a variant of our framework, where µn belongs to [0, 1], samples Xn

are Bernoulli random variables with parameter µn, and policies have a very specific form that allows to
easily define unbiased estimates of their rewards (which, we remind again, it is not possible in our setting).
Furthermore, in firing bandits one is allowed to go back and forth sampling from any of the past Xn or
draw any number of new (Xm, µm). This is a reasonable assumption for them, as each one of their µn is
thought of as the value of a project in a crowdfunding platform, and drawing samples from Xn corresponds
to displaying projects on web pages. However, in our setting each µn represents the theoretical increment
(or decrement) of a company’s profit by means of an innovation. With this in mind, it is very unlikely that
a company would show new interest in investing into a technology that has been tested before and did not
prove to be useful. Hence, when the sampling of a Xn stops, an irrevocable decision has to be taken. After
that, no more samples of Xn can be drawn in the future and the learner moves on from the current pair
(Xn, µn). Finally, as in multiarmed bandits, the different form of the regret makes it so that even if a firing
bandit algorithm could be adapted to our setting, its regret guarantees would not probably hold.

Differences with repeated A/B testing. Our setting can also be viewed as a framework for repeated A/B
testing, in which assessing the value of an innovation corresponds to performing an A/B test. Performing
repeated randomized trials for comparing statistical hypotheses dates back to the 1950’s [18]. With the
advent of internet companies, decision-making algorithms adhering to this paradigm witnessed a new wave
of interest, and several variants of this problem have been introduced in recent years [6, 5, 7, 9, 2, 12, 16]. The
use of such data-driven sequential decisions processes has been successfully used by companies like Amazon,
Bing, Criteo, Facebook, Google, and Uber [2].
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A popular metric to optimize sequential A/B-tests is the so-called false discovery rate (FDR) —see [13, 20]
and references therein. Roughly speaking, the FDR is the ratio of accepted µn that are negative over the
total number of accepted µn. This unfortunately disregards the relative values of tests µn. Our approach
departs from online FDR [4, 14] by taking into account that the effect of many slightly negative accepted
tests could be overcome by a few largely positive ones. For instance, assume that the samples Xn belong to
{−1, 1}, and their expected value µn is uniformly distributed on {−ε, ε}. To control the FDR, one would
have to run each A/B test for approximately 1/ε2 times, yielding a ratio of the average value of an accepted
test to the number of samples of order ε3. A better strategy, using just one sample from each A/B test, is
simply to accept µn if and only if the first sample is positive. A direct computation shows that this policy,
which fits our setting, achieves a significantly better performance of order ε.

Some other A/B testing settings are more closely related to ours. However, in the existing literature, more
assumptions or preliminary knowledge is needed in order to obtain theoretical guarantees. For example, in
[2], smoothness assumptions are made on the distributions of both Xn and µn. In [16], the authors assume
that the distribution of µn is known, and the distribution of its samples belongs to a single parameter
exponential family, also known beforehand.

3 Preliminaries and definitions

In this section, we formally introduce the repeated decision-making protocol for a learner that is facing
a sequence of decision tasks to be solved back to back as quickly as possible. The goal in each of them
is to determine whether an innovation is worth accepting. To achieve this, during each task the learner
sequentially observes samples1 xi ∈ [−1, 1] representing realizations of stochastic observations of the current
innovation value. A map τ : [−1, 1]N → N is a duration (of a decision task) if for all x ∈ [−1, 1]N, its value
d = τ(x) ∈ N at x depends only on the first d components x1, x2, . . . , xd of x = (x1, x2, . . .). This definition
reflects the fact that the components x1, x2, . . . of the sequence x = (x1, x2, . . .) are generated sequentially,
and the decision to stop testing an innovation depends only on what occurred so far. A concrete example
of a duration function is the one, mentioned in the introduction and formalized in (4), that keeps drawing
samples until the empirical average of the observed values xi surpasses/falls below a certain threshold, or a
maximum number of samples have been drawn.

When a task is concluded, the learner has to make a decision: either accepting or rejecting the current
innovation. Formally, we say that a function accept: N × [−1, 1]N → {0, 1} is a decision (to accept) if for
all k ∈ N and x ∈ [−1, 1]N, its value accept(k, x) ∈ {0, 1} at (k, x) depends only on the first k components
x1, . . . , xk of x = (x1, x2, . . .). Again, this definition reflects the fact that the decision accept(k, x) to either
accept (accept(k, x) = 1) or reject (accept(k, x) = 0) the current innovation after observing the first k
values x1, . . . , xk of x = (x1, x2, . . .) is oblivious to all future observations xk+1, xk+2, . . .. Following up on
the concrete example above, the decision function is accepting the current innovation if and only if the the
empirical average of the observed values xi surpasses a certain threshold.2

Thus, the only two choices that a learner can make in a decision task are when to stop drawing new samples,
and whether or not to accept the current innovation. In other words, the behavior of the learner during each
task is fully characterized by the choice of a pair π = (τ, accept) that we call a policy, where τ is a duration
and accept is a decision.

An instance of such a repeated-decision problem is therefore determined by a set of policies Π = {πk}k∈K

=
{

(τk, accept)
}

k∈K
(with K either finite or countable) and a distribution3 µ on [−1, 1]. Naturally, the

former is known beforehand but the latter is unknown and must be learned.

1We assume that samples are supported in [−1, 1] for the sake of simplicity. Our setting as well as all of our results can be
extended in a straightforward manner if samples come from (shifted) subgaussian distributions.

2Note that, even for decision functions that only look at the mean of the first k values, our definition is significantly more
general than simple threshold functions of the form I{mean ≥ εk}, as it also includes all decisions of the form I{mean ∈ Ak},
for all measurable Ak ⊂ R.

3Once again, we assume that µ is supported in [−1, 1] for the sake of simplicity. Our setting as well as all of our results can
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For a fixed choice of such Π and µ, the protocol is described below.

For each decision task n = 1, 2, . . .

1. A sample µn (unknown to the learner), that we call value,4 is drawn i.i.d. according to µ
2. Let Xn be a [−1, 1]-valued r.v. with E[Xn | µn] = µn, independent of past tasks
3. The learner picks a kn ∈ K or, equivalently, a policy πkn

= (τkn
, accept) ∈ Π

4. The learner draws the first dn = τkn
(Xn) samples5 of the i.i.d. (given µn) sequence of random variables

Xn = (Xn,1, Xn,2, . . .), where Xn,i has the same distribution as Xn

5. The learner makes the decision accept
(
dn, Xn

)

For short, we say that the learner runs a policy πkn
= (τkn

, accept) (on a value µn) when steps 3–5 occur.
We also say that they accept (resp., rejects) µn if their decision at step 5 is equal to 1 (resp., 0). Moreover,
we say that the reward obtained and the cost payed by running a policy πk = (τk, accept) on a value µn are,
respectively,

reward(πk, µn) = µn accept
(
τk(Xn), Xn

)
and cost(πk, µn) = τk(Xn) (1)

The objective of the learner is to minimize the regret RN after N consecutive tasks, defined as

RN = sup
k0∈K

E
[
reward(πk0 , µ0)

]

E
[
cost(πk0 , µ0)

] −
∑N

n=1 E
[
reward(πkn

, µn)
]

∑N
m=1 E

[
cost(πkm

, µm)
] (2)

where µ0 is drawn i.i.d. according to the distribution µ, the random quantities X0, reward(πk0 , µ0), and
cost(πk0 , µn) are defined as in bullet points 2, 4, and equation (1) respectively (with n = 0 and k = k0), and
the expectations are taken with respect to µn, Xn, and (possibly) the random choices of kn (for n ≥ 0).

To further lighten notations, we denote the expected rewards and costs of policies π by

reward(π) = E
[
reward(π, µ0)

]
and cost(π) = E

[
cost(π, µ0)

]
(3)

respectively and we say that πk⋆ is an optimal policy if k⋆ ∈ arg maxk∈K

(
reward(πk)/cost(πk)

)
.

For each policy (τ, accept) ∈ Π and all tasks n, we let the learner reject any value regardless of the outcome
of the sampling. Formally, the learner can always run the policy (τ, 0), where the second component of the
pair is the decision identically equal to zero.

We also let the learner draw arbitrarily many extra samples in addition to the number τ(Xn) that they
would otherwise draw when running a policy (τ, accept) ∈ Π on a value µn, provided that these additional
samples are not taken into account in their decision to either accept or reject µn. Formally, the learner can
always draw τ(Xn)+k many samples (for any k ∈ N) before making the decision accept

(
τ(Xn), Xn

)
, where

we stress that the first argument of the decision function accept is τ(Xn) and not τ(Xn) + k.

Note that invoking the power to reject a value µn after observing τ(Xn) samples increases the cost of sampling
in the denominator of (2) by E

[
τ(Xn)

]
while adding no reward to the numerator. Similarly, drawing k extra

samples without using them to make the decision has no effect on the numerator but increases the cost in
the denominator by k. For these reasons, doing any of these might seem utterly counterproductive. It will
become apparent later that rejecting some of the values is indeed mostly a theoretical tool that makes the
analysis cleaner. However, we will show that a carefully designed use of oversampling is crucial for building
unbiased estimates of the rewards of our policies, a task which is impossible without oversampling (for more
details, see Appendix D).

be extended in a straightforward manner if µ is any (shifted) subgaussian distribution.
4Since it represents of the value of the current innovation being tested.
5Note that given µn, the random variable dn is a stopping time with respect to the natural filtration associated to the

stochastic process Xn (by definition of duration).
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4 Competing against the best policy (CAPE)

As described in the introduction, the duration of a decision task is usually defined by a capped early-stopping
rule —e.g., drawing samples until 0 falls outside of a confidence interval around the empirical average, or a
maximum number of draws has been reached. More precisely, if N tasks have to be performed, one could
consider the natural policy class

{
(τk, accept)

}
k∈{1,...,K}

given by

τk(x) = min


k, inf



n ∈ N : |xn| ≥ c

√
ln KN

δ

n






 , accept(n, x) = I



xn ≥ c

√
ln KN

δ

n



 (4)

for some c > 0 and δ ∈ (0, 1), where xn = (1/n)
∑n

i=1 xi is the average of the first n elements of the sequence
x = (x1, x2, . . .).

In this section we generalize this notion and we present an algorithm with provable regret guarantees against
finite families of policies. Formally, we focus on set of policies Π = {πk}k∈{1,...,K} =

{
(τk, accept)

}
k∈{1,...,K}

where accept is an arbitrary decision and τ1, . . . , τK is any sequence of durations which, for the sake of
convenience, we assume to be sorted by index (τk ≤ τh if k ≤ h) and bounded (τk ≤ Dk for all k, with
Dk ≤ Dh if k ≤ h). We now present a simple and efficient algorithm (Algorithm 1, CAPE) that achieves
vanishing regret (with high probability) against finite families of policies. We will later discuss how to extend
the analysis even further, including countable families of polices.

Our algorithm performs policy elimination (lines 1–5) for a certain number of tasks (line 1) or until a single
policy is left (line 6). After that, it runs the best policy left in the set (line 7) for all remaining tasks. During
each policy elimination step, the algorithm oversamples (line 2) by drawing twice as many samples as it
would suffice to take its decision accept

(
τmax(Cn)(Xn), Xn

)
(at line 3). These extra samples are used to

compute rough estimates of rewards and costs of all potentially optimal policies and more specifically to
build unbiased estimates of these rewards (which, we recall, we would not otherwise have access to). The
test at line 4 has the only purpose of ensuring that the denominators ĉ −

n (k) at line 5 are bounded away from
zero, so that all quantities are well-defined.

As usual in online learning, the gap in performances between optimal and sub-optimal policies serves as

a complexity parameter. We define it as ∆ = mink 6=k⋆
reward(πk⋆ )

cost(πk⋆ ) −
reward(πk)

cost(πk) where we recall that k⋆ ∈

arg maxk

(
reward(πk)/cost(πk)

)
is the index of an optimal policy. Conventionally, we set 1/∆ =∞ if ∆ = 0.

Theorem 1. If Π is finite and durations are uniformly bounded by some D ∈ N, then Algorithm 1, run with
Nex =

⌈
N2/3

⌉
and δ ∈ (0, 1) has a regret satisfying, with probability at least 1− δ,

RN = Õ

(
min

(
D3

∆2 N
,

D

N1/3

))
(8)

as soon as N ≥ D3 (where the Õ notation hides only logarithmic terms, including a log(1/δ) term).

Note that the smaller the D, the smaller the regret bound. This is not surprising. Indeed, a small D
limits the effective number of policies, which in turn worsens the benchmark in the definition of regret (2).
In the extreme case D = 1, all policies become optimal, because they all collapse into a unique policy
π1 = (1, accept), that collects exactly one sample and accepts accordingly. We now sketch the analysis of
CAPE (for a complete proof, see Appendix B).

Proof sketch. The proof of this theorem relies on four technical lemmas (Lemmas 2-5) proven in Appendix B.1.
Note that durations are uniformly bounded by DK , and DK is the smallest uniform bound on all these
durations. Thus, without loss of generality, we prove the result for D = DK .
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Algorithm 1: Capped Policy Elimination (CAPE)

Input: finite policy set Π, number of tasks N , confidence δ, exploration cap Nex

Initialization: let C1 ← {1, . . . , K} be the set of indices of all currently optimal candidates
1 for task n = 1, . . . , Nex do
2 draw the first 2Dmax(Cn) samples Xn,1, . . . , Xn,2Dmax(Cn)

of Xn

3 make the decision accept
(
τmax(Cn)(Xn), Xn

)

4 if n ≥ 2D2
K ln(4KNex/δ) then

5 let Cn+1 ← Cn \ C′
n, where

C
′
n =

{
k ∈ Cn :

(
r̂

+
n (k) ≥ 0 and

r̂ +
n (k)

ĉ −
n (k)

<
r̂ −

n (j)

ĉ +
n (j)

, for some j ∈ Cn

)

or

(
r̂

+
n (k) < 0 and

r̂ +
n (k)

ĉ +
n (k)

<
r̂ −

n (j)

ĉ −
n (j)

, for some j ∈ Cn

)}

r̂
±
n (k) =

1

n

n∑

m=1

Dmax(Cm)∑

i=1

Xm,Dmax(Cm)+i

Dmax(Cm)

accept
(
τk(Xm), Xm

)
±

√
2

n
ln

4KNex

δ
(5)

ĉ
±
n (k) =

1

n

n∑

m=1

τk(Xm) ± (Dk − 1)

√
1

2n
ln

4KNex

δ
(6)

6 if |Cn+1| = 1 then let r̂ ±
Nex

(k)← r̂ ±
n (k), ĉ ±

Nex
(k)← ĉ ±

n (k), CNex+1 ← Cn+1, break

7 run policy πk′ for all remaining tasks, where

k′ ∈





arg max
k∈CNex+1

(
r̂ +

Nex
(k)/ĉ −

Nex
(k)
)

if r̂ +
Nex

(k) ≥ 0 for some k ∈ CNex+1

arg max
k∈CNex+1

(
r̂ +

Nex
(k)/ĉ +

Nex
(k)
)

if r̂ +
Nex

(k) < 0 for all k ∈ CNex+1

(7)
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With a concentration argument (Lemma 2), we leverage the definitions of r̂ ±
n (k), ĉ ±

n (k) and the i.i.d. assump-
tions on the samples Xn,i to show that, with probability at least 1− δ, the event

r̂ −
n (k) ≤ reward(πk) ≤ r̂ +

n (k) and ĉ −
n (k) ≤ cost(πk) ≤ ĉ +

n (k) (9)

occurs simultaneously for all n ≤ Nex and all k ≤ max(Cn). In order to avoid repetitions, from here on out
we assume that all subsequent statements hold over the common high-probability event (9),

If ∆ > 0 (i.e., if there is a unique optimal policy), we then obtain (Lemma 3) that suboptimal policies are
eliminated after at most N ′

ex tasks, where N ′
ex ≤ 288 D2

K ln(4KNex/δ)/∆2 + 1. To prove it we upper bound
the length of the confidence interval for reward(πk)/cost(πk):

[
r̂ −

n (k)

ĉ +
n (k)

I
{

r̂ +
n (k) ≥ 0

}
+

r̂ −
n (k)

ĉ −
n (k)

I
{

r̂ +
n (k) < 0

}
,

r̂ +
n (k)

ĉ −
n (k)

I
{

r̂ +
n (k) ≥ 0

}
+

r̂ +
n (k)

ĉ +
n (k)

I
{

r̂ +
n (k) < 0

}]

and we compute an N ′
ex such that this upped bound is smaller than ∆/2.

Afterwards, we analyze separately the case in which the test at line 6 is true for some task N ′
ex ≤ Nex and

its complement (i.e., when the test is always false).

In the first case, by (9) there exists a unique optimal policy, i.e., we have that ∆ > 0. We can therefore apply
the bound above on N ′

ex, obtaining a deterministic upper bound N ′′
ex on the number N ′

ex of tasks needed
to identify the optimal policy. Using this upper bound, writing the definition of regret, and further upper
bounding (Lemma 4) yields

RN ≤ min

(
(2DK + 1)Nex

N
,

(2DK + 1)
(
288 (DK/∆)2 ln(4KNex/δ) + 1

)

N

)
(10)

Finally, we consider the case in which the test at line 6 is false for all tasks n ≤ Nex, and line 7 is executed
with CNex+1 containing two or more policies. The key idea here is to use the definition of k′ in Equation (7)
to lower-bound reward(πk′ ) in terms of reward(πk⋆ )/cost(πk⋆ ). This, together with some additional technical
estimations (Lemma 5) leads to the result.

5 Extension to countable sets of policies (ESC-CAPE)

In this section we show how a countable set of policies can be reduced to a finite one containing all optimal
policies with high probability (Algorithm 2, ESC). After this is done, one can run Algorithm 1 (CAPE) on
the smaller policy set, obtaining theoretical guarantees for the resulting algorithm.

More precisely, we will focus on sets of policies Π = {πk}k∈N =
{

(τk, accept)
}

k∈N
where accept is an

arbitrary decision and τ1, τ2, . . . is any sequence of durations which again, are assumed to be sorted by index
and bounded by D1 ≤ D2 ≤ . . . (note that now durations are no longer uniformly bounded).

Let us first introduce three handy notations. Firstly, in the case where 2Dk samples are drawn during each
of n2 consecutive tasks n1 + 1, n1 + 2, . . . , n1 + n2, we define, for all ε > 0, the following lower confidence
bound on reward(πk) (similarly to (5))

r̂ −
k (n1, n2, ε) =

1

n2

n1+n2∑

n=n1+1

Dk∑

i=1

Xn,Dk+i

Dk
accept

(
τk(Xn), Xn

)
− 2ε (11)

Secondly, whenever the policy (τk, 0) is run for m0 consecutive tasks n0 + 1, n0 + 2, . . . , n0 + m0, we denote
the empirical average of its duration (similarly to (21)) by

ck(n0, m0) =
(
τk(Xn0+1) + . . . + τk(Xn0+m0)

)
/m0 (12)
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Algorithm 2: Extension to Countable (ESC)

Input: countable policy set Π, number of tasks N , confidence δ, accuracy levels ε1, ε2, . . . > 0
Initialization: for all j ∈ N, let mj ← mj(εj , δ) (see (13))

1 for j = 1, 2, . . . do
2 run policy

(
2D2j , 0

)
for mj tasks and compute r̂ −

2j ← r̂ −
2j (Mj−1, mj , εj) (see (11))

3 if r̂ −
2j > 0 then

4 let j0 ← j and k0 ← 2j0

5 for l = j0 + 1, j0 + 2, . . . do
6 run policy

(
τ2l , 0

)
for ml tasks and compute c2l ← c2l(Ml−1, ml) (see (12))

7 if c2l > D2l εl + Dk0 /r̂ −
k0

then let j1 ← l and return K ← 2j1

Lastly, let M0 = 0 and for all ε, δ > 0 and all j ∈ N, we let

mj(ε, δ) =
⌈
ln
(
j(j + 1)/δ

)
/2ε2

⌉
and Mj = m1 + . . . + mj (13)

The key idea behind Algorithm 2 (ESC) is simple. Since all optimal policies πk⋆ have to satisfy the
relationships reward(πk)/cost(πk) ≤ reward(πk⋆ )/cost(πk⋆ ) ≤ 1/cost(πk⋆ ), then, for all policies πk with
reward(πk) > 0, the cost of any optimal policy πk⋆ must satisfy the relationship cost(πk⋆ ) ≤ cost(πk)/reward(πk).
In other words, optimal policies cannot draw too many samples and their cost can be controlled by estimating
the reward and cost of any policy with positive reward.

Thus, Algorithm 2 (ESC) first finds a policy πk0 with reward(πk0 ) > 0 (lines 1–4), memorizing an upper
estimate Dk0 /r̂ −

k0
of the ratio cost(πk0 )/reward(πk0 ). By the argument above, this estimate upper bounds

the expected number of samples cost(πk⋆ ) drawn by all optimal policies πk⋆ . Then ESC simply proceeds to
finding the smallest (up to a factor of 2) K such that cost(πK) ≥ Dk0 /r̂ −

k0
(lines 5–7). Being Dk0 /r̂ −

k0
≥

cost(πk0 )/reward(πk0 ) ≥ cost(πk⋆ ) by construction, the index K determined this way upper bounds k⋆ for
all optimal policies πk⋆ . (All the previous statements are intended to hold with high probability.) This is
formalized in the following key lemma.

Lemma 1. Let Π be countable. If ESC is run with δ ∈ (0, 1), ε1, ε2, . . . > 0, and halts returning K, then
k⋆ ≤ K for all optimal policies πk⋆ with probability at least 1− δ.

We sketch a proof for this result. For all missing details, see Appendix C.

Proof sketch. Note fist that r̂ −
2j + 2εj (line 2) is an empirical average of mj i.i.d. unbiased estimators of

reward(π2j ). Thus, Hoeffding’s inequality implies that P
(
r̂ −

2j > reward(π2j )
)
≤ δ

j(j+1) for all j ≤ j0. Simi-

larly, for all l > j0, P
(
c2l − cost(π2l ) > D2l εl

)
≤ δ

l(l+1) . Hence, the event

{
r̂ −

2j ≤ reward(π2j )
}
∧
{

c2l ≤ cost(π2l )) + D2l εl

}
∀j ≤ j0, ∀l > j0 (14)

occurs with probability at least 1 −
∑j0

j=1
δ

j(j+1) −
∑j1

l=j0+1
δ

l(l+1) ≥ 1 − δ. Now, as we pointed out above,

all optimal policies πk⋆ have to satisfy cost(πk⋆ ) ≤ Dk/reward(πk) for all policies πk with reward(πk) > 0.
However, no policy πk with k > K satisfies this condition (with high probability), since being durations
sorted by index, we have, for all k > K

cost(πk) ≥ cost(πK)
(14)

≥ cK −DK εlog2 K

line 7
>

Dk0

r̂ −
k0

(14)

≥
Dk0

reward(k0)

with probability at least 1− δ, where reward(k0) ≥ r̂ −
k0

> 0 by (26) and line (3). Therefore, with probability
at least 1− δ, all optimal policies πk⋆ satisfy k⋆ ≤ K.

9



We can now join together our two algorithms obtaining a new one, that we call ESC-CAPE, which takes
as input a countable policy set Π, the number of tasks N , a confidence parameter δ, some accuracy levels
ε1, ε2, . . ., and an exploration cap Nex. The joint algorithm runs ESC first with parameters Π, N, δ, ε1, ε2, . . ..

Then, if ESC halts returning K, it runs CAPE with parameters
{

(τk, accept)
}K

k=1
, N, δ, Nex.

We conclude this section by stating the theoretical guarantees of our final algorithm ESC-CAPE against
infinite policy classes. For additional details, see Appendix C.

Theorem 2. If Π is countable, then ESC-CAPE run with constant accuracy levels εj = N−1/3, δ ∈ (0, 1),

and Nex =
⌈
N2/3

⌉
has a regret satisfying RN = Õ

(
DK/N1/3

)
with probability at least 1 − 2δ, where the Õ

notation hides only logarithmic terms, including a log(1/δ) term.
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A Choice of Performance Measure

In this section we discuss our choice of measuring the performance of our policies π with the ratio of
expectations reward(π)/cost(π). We compare several different benchmarks and investigate how things differ
if the learner has a budget of samples and a variable number tasks, rather than the other way around. We
will show that all “natural” choices go essentially in the same direction, except for one (perhaps the most
natural) which is surprisingly poorly suited to model our problem.

At a high level, a learner constrained by a budget would like to maximize its reward per “time step” (inter-
preting the draw of each sample as a time step gone by). This can be done in several different ways. If the
constraint is on the number N of tasks, then the learner might want to maximize (over π = (τ, accept) ∈ Π)
the objective g1(π, N) defined by

g1(π, N) = E

[∑N
n=1 reward(π, µn)
∑N

m=1 cost(π, µm)

]

This is equivalent to our choice of maximizing

reward(π)

cost(π)
=

E
[
reward(π, µ0)

]

E
[
cost(π, µ0)

]
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in the sense that, multiplying both the numerator and the denominator in g1(π, N) by 1/N and applying
Hoeffding’s inequality we get g1(π, N) = Θ

(
reward(π)/cost(π)

)
. Furthermore, by the law of large numbers

and Lebesgue’s dominated convergence theorem, g1(π, N)→ reward(π)/cost(π) when N →∞ for any π ∈ Π.

Assume now that the constraint is on the total number of samples instead. We say that the learner has
a budget of samples T if as soon as the total number of samples reaches T during task N (which is now
a random variable), the learner has to interrupt the run of the current policy, reject the current value µN ,
and end the process. Formally, the random variable N that counts the total number of tasks performed by
repeatedly running a policy π = (τ, accept) is defined by

N = min

{
m ∈ N

∣∣∣∣
m∑

n=1

τ(Xn) ≥ T

}

In this case, the learner might want to maximize the objective

g2(π, T ) = E

[∑N−1
n=1 reward(π, µn)

T

]

where the sum is 0 if N = 1 and it stops at N − 1 because the the last task is interrupted and no reward
is gained. As before, assume that τ ≤ D, for some D ∈ N. Note first that by the independence of µn and
Xn from past tasks, for all deterministic functions f and all n ∈ N, the two random variables f(µn, Xn)

and I{N ≥ n} are independent, because I{N ≥ n} = I
{∑n−1

i=1 τ(X i) < T
}

depends only on the random
variables τ(X1), . . . , τ(Xn−1). Hence

E

[
reward(π, µn) I{N ≥ n}

]
= reward(π)P(N ≥ n)

E
[
cost(π, µn) I{N ≥ n}

]
= cost(π)P(N ≥ n)

Moreover, note that during each task at least one sample is drawn, hence N ≤ T and

∞∑

n=1

E

[∣∣reward(π, µn)
∣∣ I{N ≥ n}

]
≤

T∑

n=1

E

[∣∣reward(π, µn)
∣∣
]
≤ T <∞

∞∑

n=1

E
[
cost(π, µn) I{N ≥ n}

]
≤

T∑

n=1

E
[
cost(π, µn)

]
= T cost(π) ≤ T D <∞

We can therefore apply Wald’s identity [19] to deduce

E

[
N∑

n=1

reward(π, µn)

]
= E[N ] reward(π) and E

[
N∑

n=1

cost(π, µn)

]
= E[N ] cost(π)

which, together with

E

[
N∑

n=1

cost(π, µn)

]
≥ T ≥ E

[
N∑

n=1

cost(π, µn)

]
−D

and

E

[
N∑

n=1

reward(π, µn)

]
− 1 ≤ E

[
N−1∑

n=1

reward(π, µn)

]
≤ E

[
N∑

n=1

reward(π, µn)

]
+ 1

yields
E[N ] reward(π)− 1

E[N ] cost(π)
≤ g2(π, T ) ≤

E[N ] reward(π) + 1

E[N ] cost(π)−D
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if the denominator on the right hand side is positive, which happens as soon as T > D2 by ND ≥∑N
n=1 τ(Xn) ≥ T and cost(π) ≥ 1. I.e., g2(π, T ) = Θ

(
reward(π)/cost(π)

)
and noting that E[N ] ≥ T/D→∞

if T →∞, we have once more that g2(π, T )→ reward(π)/cost(π) when T →∞ for any π ∈ Π.

This proves that having a budget of tasks, samples, or using any of the three natural objectives introduced
so far is essentially the same.

Before concluding the section, we go back to our original setting and discuss a very natural definition of
objective which should be avoided because, albeit easier to maximize, it is not well-suited to model our
problem. Consider as objective the average payoff of accepted values per amount of time used to make the
decision, i.e.,

g3(π) = E

[
reward(π, µ0)

cost(π, µ0)

]

We give some intuition on the differences between the ratio of expectations and the expectation of the ratio
g3 using the concrete example (4) and we make a case for the former being better than the latter.

More precisely, if N decision tasks have to be performed by the learner, consider the natural policy class
{πk}k∈{1,...,K} =

{
(τk, accept)

}
k∈{1,...,K}

given by

τk(x) = min


k, inf



n ∈ N : |xn| ≥ c

√
ln KN

δ

n






 , accept(n, x) = I



xn ≥ c

√
ln KN

δ

n





for some c > 0 and δ ∈ (0, 1), where xn = (1/n)
∑n

i=1 xi is the average of the first n elements of the sequence
x = (x1, x2, . . .).

If K ≫ 1, there are numerous policies in the class with a large cap. For concreteness, consider the last one
(τK , accept) and let k =

⌈
c2 ln(KN/δ)

⌉
. If µ0 is uniformly distributed on {−1, 0, 1}, then

(
τK(X0), accept

(
τK(X0), X0

))
=





(k, 1) if µ1 = 1

(k, 0) if µ1 = −1

(K, 0) if µ1 = 0

i.e., the learner understands quickly (drawing only k samples) that µ0 = ±1, accepting it or rejecting it
accordingly, but takes exponentially longer (K ≫ k samples) to figure out that the mutation is nonpositive
when µ0 = 0. The fact that for a constant fraction of tasks (1/3 of the total) π invests a long time (K
samples) to earn no reward makes it a very poor choice of policy. This is not reflected in the definition of
g3(πK) but it is so in the definition of reward(πK)/cost(πK). Indeed, in this instance

E

[
reward(πK , µ0)

cost(πK , µ0)

]
= Θ

(
1

k

)
≫ Θ

(
1

K

)
=

reward(πK)

cost(πK)

This is due to the fact that the expectation of the ratio “ignores” outcomes with null (or very small) rewards,
even if a large number of samples is needed to learn them. On the other hand, the ratio of expectations
weighs the total number of requested samples and it is highly influenced by it, a property we are interested
to capture within our model.

B Proof of Theorem 1

In this section, we give a detailed proof of Theorem 1, that we restate for ease of reading.

Theorem (Theorem 1, restated). If Π is finite and Algorithm 1 is run with confidence δ ∈ (0, 1), exploration
cap Nex ∈ {1, . . . , N − 1}, and Nex ≥ 8(DK − 1)2 ln(4KN/δ), then, with probability at least 1 − δ, its regret
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satisfies

RN = O


DK

Nex

N
+ DK

√
log(KNex/δ)

Nex


 (15)

if the test at line 6 is false for all tasks n ≤ Nex and

RN = O

(
min

(
DK

Nex

N
,

D3
K log(KNex/δ)

∆2 N

))
(16)

otherwise, where we set 1/∆ =∞ when ∆ = 0 (i.e., when there are at least two optimal policies).

In particular, if under the same assumptions we pick Nex =
⌈
N2/3

⌉
, then

RN = Õ

(
min

(
D3

K

∆2 N
,

DK

N1/3

))

with probability at least 1− δ, where the Õ notation hides only logarithmic terms.

Proof. The proof of this theorem relies on four technical lemmas, whose proofs we defer to the next section.

By Lemma 2, the event

r̂ −
n (k) ≤ reward(πk) ≤ r̂ +

n (k) and ĉ −
n (k) ≤ cost(πk) ≤ ĉ +

n (k) (17)

occurs simultaneously for all n = 1, . . . , Nex and all k = 1, . . . , max(Cn) with probability at least 1− δ. In
order to avoid repetitions, from here on out we assume that (17) holds, i.e., all subsequent statements are
assumed to hold over the common high-probability event (17).

By Lemma 3, if ∆ > 0 (i.e., if there is a unique optimal policy), then all suboptimal policies are eliminated
after at most N ′

ex tasks, where

N ′
ex ≤

288 D2
K ln(4KNex/δ)

∆2
+ 1 (18)

We now analyze separately the case in which the test at line 6 is true for some task N ′
ex ≤ Nex, and the case

in which the same test is always false.

Assume first that the test at line 6 is true for some task N ′
ex ≤ Nex. Then, by Lemma 4,

RN ≤ min

(
(2DK + 1)Nex

N
,

(2DK + 1)
(
288 (DK/∆)2 ln(4KNex/δ) + 1

)

N

)
(19)

This proves (16).

Now, we upper bound the regret in the case in which the test at line 6 is false for all tasks n ≤ Nex, and
line 7 is executed with CNex+1 containing two or more policies. In this case, Lemma 5 yields

RT ≤ (DK + 1)

√
8 ln(4KNex/δ)

Nex
+

(2DK + 1)Nex

N

This, together with (16), gives (15). Finally, we let Nex =
⌈
N2/3

⌉
and prove that up to logarithmic terms

RN ≤ min

(
D3

K

∆2 N
,

DK

N1/3

)
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Assume first that ∆ ≤ 24
(
DK/N1/3

)√
ln(4KNex/δ). Then the general regret bound (15) gives, up to

logarithmic terms,

RN ≤
DK

N1/3
= min

(
D3

K

∆2 N
,

DK

N1/3

)

Assume now that ∆ > 24
(
DK/N1/3

)√
ln(4KNex/δ). Then all suboptimal policies are eliminated after at

most N ′
ex ≤ Nex tasks by (18). We can therefore apply our distribution-dependent bound (19) obtaining, up

to logarithmic terms,

RN ≤
D3

K

∆2N
= min

(
D3

K

∆2N
,

DK

N1/3

)

This gives (8) and concludes the proof of the theorem.

B.1 Technical lemmas

In this section, we give formal proofs of all results needed to prove Theorem 1.

Lemma 2. Under the assumptions of Theorem 1, the event

r̂ −
n (k) ≤ reward(πk) ≤ r̂ +

n (k) and ĉ −
n (k) ≤ cost(πk) ≤ ĉ +

n (k) (20)

occurs simultaneously for all n = 1, . . . , Nex and all k = 1, . . . , max(Cn) with probability at least 1− δ.

Proof. Let, for all n, k,

εn =

√
ln(4KNex/δ)

2n
, rn(k) = r̂ +

n (k)− 2εn, cn(k) = ĉ +
n (k)− (Dk − 1)εn (21)

Note that cn(k) is the empirical average of n i.i.d. samples of cost(πk) for all n, k by definitions (21), (6),
(1), (3), and point 4 in the formal definition of our protocol (Section 3). We show now that rn(k) is
the empirical average of n i.i.d. samples of reward(πk) for all n, k; then claim (17) follows by Hoeffding’s
inequality. Indeed, by the conditional independence of the samples and being accept(k, x) independent of
the variables (xk+1, xk+2, . . .) by definition, for all tasks n, all policies k ∈ Cn, and all i > Dmax(Cn) (≥ Dk

by monotonicity of k 7→ Dk),

E

[
Xn,i accept

(
τk(Xn), Xn

) ∣∣∣µn

]
= E [Xn,i | µn]E

[
accept

(
τk(Xn), Xn

) ∣∣∣µn

]

= µn E

[
accept

(
τk(Xn), Xn

) ∣∣∣µn

]

= E

[
µn accept

(
τk(Xn), Xn

) ∣∣∣µn

]

Taking expectations with respect to µn on both sides of the above, and recalling definitions (21), (5), (1),
(3), (4) proves the claim. Thus, Hoeffding’s inequality implies, for all fixed n, k,

P
(
r̂ −

n (k) ≤ reward(πk) ≤ r̂ +
n (k)

)
= P

(∣∣rn(k)− reward(πk)
∣∣ ≤ 2εn

)
≥ 1−

δ

2KNex

P
(
ĉ −

n (k) ≤ cost(πk) ≤ ĉ +
n (k)

)
= P

(∣∣cn(k)− cost(πk)
∣∣ ≤ (DK − 1)εn

)
≥ 1−

δ

2KNex

Applying a union bound shows that event (17) occurs simultaneously for all n ∈ {1, . . . , Nex} and k ∈
{1, . . . , max(Cn)} with probability at least 1− δ.

Lemma 3. Under the assumptions of Theorem 1, if the event (20) occurs simultaneously for all n =
1, . . . , Nex and all k = 1, . . . , max(Cn), and ∆ > 0, (i.e., if there is a unique optimal policy), then all
suboptimal policies are eliminated after at most N ′

ex tasks, where

N ′
ex ≤

288 D2
K ln(4KNex/δ)

∆2
+ 1 (22)

15



Proof. Note first that (20) implies, for all n ≥ 2D2
K ln(4KNex/δ) (guaranteed by line 5) and all k ∈ Cn

r̂ −
n (k)

ĉ +
n (k)

≤
reward(πk)

cost(πk)
≤

r̂ +
n (k)

ĉ −
n (k)

if r̂ +
n (k) ≥ 0

r̂ −
n (k)

ĉ −
n (k)

≤
reward(πk)

cost(πk)
≤

r̂ +
n (k)

ĉ +
n (k)

if r̂ +
n (k) < 0

In other words, the interval

[
r̂ −

n (k)

ĉ +
n (k)

I
{

r̂ +
n (k) ≥ 0

}
+

r̂ −
n (k)

ĉ −
n (k)

I
{

r̂ +
n (k) < 0

}
,

r̂ +
n (k)

ĉ −
n (k)

I
{

r̂ +
n (k) ≥ 0

}
+

r̂ +
n (k)

ĉ +
n (k)

I
{

r̂ +
n (k) < 0

}]

is a confidence interval for the value reward(πk)/cost(πk) that measures the performance of πk. Let, for all
n, k,

εn =

√
ln(4KNex/δ)

2n
, rn(k) = r̂ +

n (k)− 2εn, cn(k) = ĉ +
n (k)− (Dk − 1)εn (23)

If r̂ +
n (k) ≥ 0, by the definitions in (23), the length of this confidence interval is

rn(k) + 2εn

cn(k)− (Dk − 1)εn
−

rn(k)− 2εn

cn(k) + (Dk − 1)εn
=

2εn

(
2 cn(k) + (Dk − 1) rn(k)

)

cn(k)2 − (Dk − 1)2 ε2
n

≤ 12 DKεn

where for the numerator we used the fact that cn(k) (resp., rn(k)) is an average of random variables all upper
bounded by Dk (resp., 1) and the denominator is lower bounded by 1/2 because cn(k)2 ≥ 1, (D2

k−1) ε2
n ≤ 1/2

by n ≥ 2D2
K ln(4KNex/δ) (line 4), and Dk/DK ≤ 1 (by monotonicity of k 7→ Dk). Similarly, if r̂ +

n (k) < 0,
the length of the confidence interval is

rn(k) + 2εn

cn(k) + (Dk − 1)εn
−

rn(k)− 2εn

cn(k)− (Dk − 1)εn
=

2εn

(
2 cn(k)− (Dk − 1) rn(k)

)

cn(k)2 − (Dk − 1)2 ε2
n

≤ 12 DKεn

where, in addition to the considerations above, we used 0 < −r̂ +
n (k) < −rn(k) ≤ 1. Hence, as soon as the

upper bound 12 DKεn on the length of each of the confidence interval above falls below ∆/2, all such intervals
are guaranteed to be disjoint and by definition of Cn (line 5) all suboptimal policies are guaranteed to have
left Cn+1. In formulas, this happens at the latest during task n, where n ≥ 2D2

K ln(4KNex/δ) satisfies

12 DKεn <
∆

2
⇐⇒ n > 288 (DK/∆)2 ln(4KNex/δ)

This proves the result.

Lemma 4. Under the assumptions of Theorem 1, if the event (20) occurs simultaneously for all n =
1, . . . , Nex and all k = 1, . . . , max(Cn), and the test at line 6 is true for some N ′

ex ≤ Nex, then

RN ≤ min

(
(2DK + 1)Nex

N
,

(2DK + 1)
(
288 (DK/∆)2 ln(4KNex/δ) + 1

)

N

)
(24)

Proof. Note that if the test at line 6 is true, than by (20) there exists a unique optimal policy, i.e., we have
∆ > 0. We can therefore apply Lemma 3, obtaining a deterministic upper bound N ′′

ex on the number N ′
ex of

tasks needed to identify the optimal policy, where

N ′′
ex = min

(
Nex,

128 D2
K ln(4KNex/δ)

∆2
+ 1

)
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The total expected reward of Algorithm 1 divided by its total expected cost is lower bounded by

ξ =
E

[
−N ′

ex +
∑N

n=N ′

ex+1 reward(πk⋆ , µn)
]

E

[
2
∑N ′

ex
m=1 Dmax(Cm) +

∑N
n=N ′

ex+1 cost(πk⋆ , µn)
]

If ξ < 0, we can further lower bound it by

(N −N ′′
ex) reward(πk⋆ )−N ′′

ex

(N −N ′′
ex) cost(πk⋆ ) + 2N ′′

ex

≥
reward(πk⋆ )

cost(πk⋆ )
−

3N ′′
ex

N

where the inequality follows by (a − b)/(c + d) ≥ a/c− (d + b)/(c + d) for all a, b, c, d ∈ R with 0 6= c > −d
and a/c ≤ 1, and then using c+d ≥ N which holds because cost(πk⋆ ) ≥ 1. Similarly, if ξ ≥ 0, we can further
lower bound it by

(N −N ′′
ex) reward(πk⋆ )−N ′′

ex

(N −N ′′
ex) cost(πk⋆ ) + 2DKN ′′

ex

≥
reward(πk⋆ )

cost(πk⋆ )
−

(2DK + 1)N ′′
ex

N

Thus, the result follows by DK ≥ 1 and the definition of N ′′
ex.

Lemma 5. Under the assumptions of Theorem 1, if the event (20) occurs simultaneously for all n =
1, . . . , Nex and all k = 1, . . . , max(Cn), and the test at line 6 is false for all tasks n ≤ Nex (i.e., if line 7 is
executed with CNex+1 containing two or more policies), then

RT ≤ (DK + 1)

√
8 ln(4KNex/δ)

Nex
+

(2DK + 1)Nex

N

Proof. Note first that by (20) and the definition of Cn (line 5), all optimal policies belong to CNex+1. Let,
for all n, k,

εn =

√
ln(4KNex/δ)

2n
, rn(k) = r̂ +

n (k)− 2εn, cn(k) = ĉ +
n (k)− (Dk − 1)εn (25)

By (20) and the definitions of k′, r̂ ±
n (k), and εn (line 7, (5), (5), and (25) respectively), for all optimal

policies πk⋆ , if r̂ +
Nex

(k⋆) ≥ 0, then also r̂ +
Nex

(k′) ≥ 06 and

reward(πk⋆ )

cost(πk⋆ )
≤

r̂ +
Nex

(k⋆)

ĉ −
Nex

(k⋆)
≤

r̂ +
Nex

(k′)

ĉ −
Nex

(k′)
≤

reward(πk′ ) + 4εn

cost(πk′ )− 2(Dk′ − 1)εn

≤
reward(πk′ )

cost(πk′ )
+

2(Dk′ + 1)εn

cost(πk′ )− 2(Dk′ − 1)εn

where all the denominators are positive because Nex ≥ 8(DK − 1)2 ln(4KNex/δ) and the last inequality
follows by (a + b)/(c− d) ≤ a/c + (d + b)/(c− d) for all a ≤ 1, b ∈ R, c ≥ 1, and d < c; next, if r̂ +

Nex
(k⋆) < 0

but r̂ +
Nex

(k′) ≥ 0 the exact same chain of inequalities hold; finally, if both r̂ +
Nex

(k⋆) < 0 and r̂ +
Nex

(k′) < 0,

then r̂ +
Nex

(k) < 0 for all k ∈ CNex+1
7, hence, by definition of k′ and the same arguments used above

reward(πk⋆ )

cost(πk⋆ )
≤

r̂ +
Nex

(k⋆)

ĉ +
Nex

(k⋆)
≤

r̂ +
Nex

(k′)

ĉ +
Nex

(k′)
≤

reward(πk′ ) + 4εn

cost(πk′ ) + 2(Dk′ − 1)εn

≤
reward(πk′ )

cost(πk′ )
+

2(Dk′ + 1)εn

cost(πk′ ) + 2(Dk′ − 1)εn
≤

reward(πk′ )

cost(πk′ )
+

2(Dk′ + 1)εn

cost(πk′ )− 2(Dk′ − 1)εn

6Indeed, k′ ∈ arg maxk∈CNex+1

(
r̂ +

Nex
(k)/ĉ −

Nex
(k)
)

in this case, and r̂ +
Nex

(k′) ≥ 0 follows by the two inequalities

r̂ +
Nex

(k′)/ĉ −

Nex
(k′) ≥ r̂ +

Nex
(k⋆)/ĉ −

Nex
(k⋆) ≥ 0.

7Otherwise k′ would belong to the set arg maxk∈CNex+1

(
r̂ +

Nex
(k)/ĉ −

Nex
(k)
)

which in turn would be included in the set{
k ∈ CNex+1 : r̂ +

Nex
(k) ≥ 0

}
and this would contradict the fact that r̂ +

Nex
(k′) < 0.
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That is, for all optimal policies πk⋆ , the policy πk′ run at line 7 satisfies

reward(πk′ ) ≥ cost(πk′ )

(
reward(πk⋆ )

cost(πk⋆ )
−

2(Dk′ + 1)εn

cost(πk′ )− 2(Dk′ − 1)εn

)

≥ cost(πk′ )

(
reward(πk⋆ )

cost(πk⋆ )
− 4(DK + 1)εn

)

where in the last inequality we lower bounded the denominator by 1/2 using cost(πk′ ) ≥ 1 and εn ≤ εNex ≤
1/2 which follows by n ≥ Nex ≥ 8D2

K ln(4KNex/δ) and the monotonicity of k 7→ Dk. Therefore, for all
optimal policies πk⋆ , the total expected reward of Algorithm 1 divided by its total expected cost (i.e., the
negative addend in the regret (2)) is at least

E
[
−Nex + (N −Nex) reward(πk′)

]

E
[
2
∑Nex

n=1 Dmax(Cn) + (N −Nex) cost(πk′ )
]

≥
−Nex

2
∑Nex

n=1 E
[
Dmax(Cn)

]
+ (N −Nex)E

[
cost(πk′ )

]

+
(N −Nex)E

[
cost(πk′ )

]

2
∑Nex

n=1 E
[
Dmax(Cn)

]
+ (N −Nex)E

[
cost(πk′ )

]
(

reward(πk⋆ )

cost(πk⋆ )
− 4(DK + 1)εn

)

≥
reward(πk⋆ )

cost(πk⋆ )
− 4(DK + 1)εn −

Nex + 2
∑Nex

n=1 E
[
Dmax(Cn)

]

2
∑Nex

n=1 E
[
Dmax(Cn)

]
+ (N −Nex)E

[
cost(πk′ )

]

≥
reward(πk⋆ )

cost(πk⋆ )
− 4(DK + 1)εn −

(2DK + 1)Nex

N

where we used a
b+a (x− y) ≥ x− y − b

b+a for all a, b, y > 0 and all x ≤ 1 to lower bound the third line, then

the monotonicity of k 7→ Dk and 2E
[
Dmax(Cn)

]
≥ E

[
cost(πk′ )

]
≥ 1 for the last inequality. Rearranging the

terms of the first and last hand side in the previous display, using the monotonicity of k 7→ Dk, and plugging
in the value of εn, gives

RT ≤ 4(DK + 1)εn +
(2DK + 1)Nex

N
= (DK + 1)

√
8 ln(4KNex/δ)

Nex
+

(2DK + 1)Nex

N

C Countable sets of policies

In this section, we present all missing results from Section 5. We begin by giving a full proof of Lemma 1,
whose statement we recall here.

Lemma (Lemma 1, restated). Let Π be countable. If ESC is run with δ ∈ (0, 1), ε1, ε2, . . . > 0, and halts
returning K, then k⋆ ≤ K for all optimal policies πk⋆ with probability at least 1− δ.

Proof. Note fist that r̂ −
2j +2εj (line 2) is an empirical average of mj i.i.d. unbiased estimators of reward(π2j ).

Indeed, being accept(k, x) independent of the variables (xk+1, xk+2, . . .) by definition of duration and the
conditional independence of the samples (recall the properties of samples in step 4 of our online protocol,
Section 3), for all tasks n performed at line 2 during iteration j and all i > D2j ,

E

[
Xn,i accept

(
τ2j (Xn), Xn

) ∣∣∣µn

]
= E [Xn,i | µn]E

[
accept

(
τ2j (Xn), Xn

) ∣∣∣µn

]

= µn E

[
accept

(
τ2j (Xn), Xn

) ∣∣∣µn

]
= E

[
µn accept

(
τ2j (Xn), Xn

) ∣∣∣µn

]
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Taking expectations to both sides proves the claim. Thus, Hoeffding’s inequality implies

P

(
r̂ −

2j > reward(π2j )
)

= P

((
r̂ −

2j + 2εj

)
− reward(π2j ) > 2εj

)
≤

δ

j(j + 1)

for all j ≤ j0. Similarly, for all l > j0, P
(
c2l − cost(π2l ) > D2l εl

)
≤ δ

l(l+1) . Hence, the event

{
r̂ −

2j ≤ reward(π2j )
}
∧
{

c2l ≤ cost(π2l )) + D2l εl

}
∀j ≤ j0, ∀l > j0 (26)

occurs with probability at least

1−

j0∑

j=1

δ

j(j + 1)
−

j1∑

l=j0+1

δ

l(l + 1)
≥ 1− δ

∑

j∈N

1

j(j + 1)
= 1− δ

Note now that for each policy πk with reward(πk) ≥ 0 and each optimal policy πk⋆ ,

reward(πk)

Dk
≤

reward(πk)

cost(πk)
≤

reward(πk⋆ )

cost(πk⋆ )
≤

1

cost(πk⋆ )
(27)

Hence, all optimal policies πk⋆ satisfy cost(πk⋆ ) ≤ Dk/reward(πk) for all policies πk with reward(πk) > 0.
Being durations sorted by index, for all k ≤ h

cost(πk) = E
[
cost(πk, µ0)

]
≤ E

[
cost(πh, µ0)

]
= cost(πh) (28)

Thus, with probability at least 1− δ, for all k > K

cost(πk)
(28)

≥ cost(πK)
(26)

≥ cK −DK εlog2 K

line 7
>

Dk0

r̂ −
k0

≥
Dk0

reward(k0)

where reward(k0) ≥ r̂ −
k0

> 0 by (26) and line (3); i.e., πk do not satisfy (27). Therefore, with probability at
least 1− δ, all optimal policies πk⋆ satisfy k⋆ ≤ K.

We now state a lemma upper bounding the expected cost of Algorithm 2.

Lemma 6. Let Π be countable. If ESC is run with δ ∈ (0, 1), ε1, ε2, . . . > 0, and halts returning K, then

the total number of samples it draws before stopping (i.e., its cost) is upper bounded by Õ ((DK/ε2) log(1/δ))
where ε = min{ε1, ε2, . . . , εlog2 K}.

Proof. Recall the definition of mj(ε, δ) (13) and mj (initialization of Algorithm 2). Note that, by definition,
ε = min{ε1, ε2, . . . , εj1} > 0. Algorithm 2 (ESC) draw samples only when lines 2 or 6 are executed. Whenever
line 2 is executed (j = 1, . . . , j0) the algorithm performs mj tasks drawing 2D2j samples each time. Similarly,
whenever line 6 is executed (l = j0 + 1, . . . , j1) the algorithm draws at most D2l samples during each of the
ml tasks. Therefore, recalling that j1 = log2 K, the total number of samples drawn by ESC before stopping
is upper bounded by

j0∑

j=1

2D2j mj +

j1∑

l=j0+1

D2lml ≤ 2

j1∑

j=1

D2j mj ≤ 2j1D2j1 mj1 (ε, δ) ≤ 4 log2(K)DK

ln
( log2 K

δ

)

ε2

Consider any algorithm A requiring the knowledge of an upper bound on k⋆, for some optimal policy πk⋆ ,
such as Algorithm 1 (CAPE). We can spend a portion of the N tasks to run Algorithm 2 (ESC) as a pre-
processing step, then run A with the upper bound K determined by ESC. Since all mutations are rejected
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during the run of ESC, the sum of the rewards accumulated during the preprocessing step is zero. The only
effect on the regret (2) is then an increment on the total cost in the denominator of the second term, which
can be controlled by minimizing its upper bound in Lemma 6. This is not a simple matter of taking all εj

as large as possible. Indeed, if all εj are large, the if clause at line 3 might never be verified. In other words,
the returned index K depends on ε and grows unbounded in general as ε approaches 1/2.

Thus, there is a trade-off between having a small K (for which small εj are required in general) and a
small 1/ε2 (for which large εj are needed). A direct computation shows that combining Algorithm 2 and
Algorithm 1 (ESC-CAPE) with a constant accuracy level εj = N−1/3 achieves the best of both worlds and
immediately gives Theorem 2.

Note that contrary to vanilla CAPE, we do not get the 1/N rate for ESC-CAPE when ∆ ≫ 0 (recall
bound (8)). Indeed, the optimal choice of εj = N−1/3 still makes the regret rate degrade to order N−1/3 by
Lemma 6.

D An impossibility result

In this section we show that given µn it is impossible to define an unbiased estimator of the reward of all
policies using only the samples drawn by the policies themselves, unless µn is known beforehand.

Take a policy π1 = (1, accept) that draws exactly one sample. Note that such a policy is included in all sets
of policies defined as capped versions of a base policy (4). More generally, π1 is included in all sets of policies
with durations τk bounded by Dk, if Dk = 1 for some k, so this is by no means a pathological example. For
the sake of simplicity, assume that samples take values in {0, 1} and consider any decision function accept
such that accept(1, x) = x1 for all x = (x1, x2, . . .). In words, policy π1 looks at one single sample x1 ∈ {0, 1}
and accepts if and only if x1 = 1. As discussed in Section 2 (second paragraph of the A/B testing part),
there are settings in which this policy performs near-optimally. Moreover, in Appendix A we show that π1

is optimal if µ is concentrated around [−1, 0] ∪ {1}.

The following lemma shows that in the simple, yet meaningful case of the policy π1 described above, it is
impossible to define an unbiased estimator of its reward

µn E[accept(1, Xn) | µn] = E[Xn,1 | µn]E[Xn,1 | µn] = E[Xn,1 | µn]2

given µn, using only Xn,1, unless µn is known beforehand.

Lemma 7. Let X be a Bernoulli random variable with parameter µ, for some real number µ ∈ [0, 1]. If
f : {0, 1} → R satisfies E

[
f(X)

]
= E[X ]2, then f also satisfies





f(0) = µ if µ = 0

f(1) = µ− f(0)
1− µ

µ
if µ 6= 0

Proof. Let f : {0, 1} → R be any function satisfying E
[
f(X)

]
= E[X ]2. The law of the unconscious statisti-

cian and the definition of expectation imply

f(1)µ + f(0)(1− µ) = E
[
f(X)

]
= E[X ]2 = µ2

Thus, if µ = 0, we have f(0) = 0 = µ. If µ 6= 0, solving by f(1) gives the result.
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