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Abstract: The NA condition is one of the pillars supporting the classi-
cal theory of financial mathematics. We revisit this condition for financial
market models where a dynamic risk-measure defined on L0 is fixed to
characterize the family of acceptable wealths that play the role of non
negative financial positions. We provide in this setting a new version of
the fundamental theorem of asset pricing and we deduce a dual charac-
terization of the super-hedging prices of an European option. Moreover
we provide an example where it is possible to obtain a dual representa-
tion of the risk-measure on L0.
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1. Introduction

The NA condition originates from the work of Black and Scholes [5] and Mer-
ton [31]. In these articles, the risky asset is modeled by a geometric Brownian
motion. The NA condition means the absence of arbitrage opportunities, i.e.
a terminal portfolio value starting from the zero initial endowment can not
be acceptable. A financial position in the classical arbitrage theory is accept-
able if it is non negative almost surely. In our work, the new contribution is
that we consider a larger class of acceptable positions which are defined from
a risk-measure.

The NA condition is characterized through the famous Fundamental The-
1



orem of Asset Pricing (FTAP), for a variety of financial models, essentially
as equivalent to the existence of a so-called risk-neutral probability measure,
under which the price process is a martingale. The are several versions of
the FTAP and, in discrete-time, the most popular is certainly the one for-
mulated by Dalang, Morton and Willinger [8], see also [37], [36], [22], [25],
[26]. In continuous time, the formulation of the FTAP theorem is only possi-
ble once continuous-time self-financing portfolios are defined, see the seminal
work of Black and Scholes [5]. This gave rise to an extensive development of
stochastic calculus, e.g. for semi-martingales [20], making possible formula-
tion of several versions of the FTAP theorem as given in [9], [11], [10], [12],
[19].

The main contribution of the FTAP theorems is the link between the con-
cept of arbitrage and the pricing technique which is deduced. It is now very
well known that the super-hedging prices of an European claim are dually
identified through the risk-neutral probability measures characterizing the
NA condition. We may observe that the NA condition has been suitably
chosen in the models of consideration in such a way that the set of all attain-
able claims is closed, see [27, Theorem 2.1.1]. This allows one to apply the
Hahn-Banach separation theorem, see [13], and obtain dual elements that
characterize the super-hedging prices. This is also the case for financial mod-
els with proportional transaction costs, see [27, Section 3] and the references
mentioned therein.

The increasing use of risk-measures in the context of the Basel banking
supervision naturally calls into question the definition of the super-hedging
condition which is commonly accepted in the usual literature. Recall that
a portfolio process (Vt)t∈[0,T ] super-replicates a contingent claim hT at the
horizon date T > 0 means that VT ≥ hT a.s.. In practice, this inequality
remains difficult to achieve and practitioners accept to take a moderate risk,
choosing for example α ∈ (0, 1) so that P (VT −hT ≥ 0) ≥ 1−α is close to 1.
This is the case when considering the Value At Risk measure, see [23], and we
say that VT−hT is acceptable. More generally, VT−hT is said acceptable for a
risk-measure ρ if ρ(VT−hT ) ≤ 0, see [14], [15], [16],[18],[28], [1] for frictionless
markets and [24], [17], [4], [2] for conic models. The acceptable positions play
the role of the almost surely non negative random variables and allows one to
take risk controlled by the risk measure we choose. Moreover, by considering
a larger family of acceptable positions, the hedging prices may be lowered as
shown in [34] for the Black and Scholes models with proportional transaction
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costs, see also the discussion in [33].

Pricing with a coherent risk-measure has been explored and developed by
Cherny in two major papers [6] and [7] for coherent risk-measures defined
on the space of bounded random variables. Cherny supposes that the risk-
measure ρ (or equivalently the utility measure u = −ρ) is defined by a weakly
compact determining set D of equivalent probability measures, i.e. such that
ρ(X) = supQ∈D EQ(−X) for any X ∈ L∞. This representation automatically
holds for coherent risk-measures defined on L∞. This motivates the choice of
Cherny to suppose such a representation for the risk-measures he considers on
L0 as he claims that it is hopeless to axiomatize the notion of a risk measure
on L0 and then to obtain the corresponding representation theorem, see [7].

Actually, the recent paper [30] proposes an axiomatic construction of a
dynamic coherent risk-measure on L0 from the set of all acceptable sets.
We consider such a dynamic risk-measure and we define the discrete-time
portfolio processes as the processes (Vt)t≤T adapted to a filtration (Ft)t≤T
such that Vt + θt∆St+1−Vt+1 is acceptable at time t for some Ft-measurable
strategy θt ∈ L0(Rd,Ft). This is a generalization of the classical definition
where, usually, acceptable means non negative so that Vt + θt∆St+1 ≥ Vt+1

almost surely. We then introduce a no-arbitrage condition we call NA as
in the classical literature and we show that it coincides with the usual NA
condition if the acceptable positions are the non negative random variables.
This NA condition allows one to dually characterize the super-hedging prices,
at least when ρ is time consistent.

Similarly, Cherny proposes in his papers [6] and [7] a no-arbitrage condi-
tion No Good Deal (NGD) which is the key point to define the super-hedging
prices. The approach is a priori slightly different: The NGD condition holds
if there is no bounded claim X attainable from the zero initial capital such
that ρ(X) < 0. In our setting, the NA condition is formulated from the mini-
mal price super-hedging the zero claim, which is required to be non negative.
Clearly, there is a link between the NA and the NGD condition as ρ(X) ap-
pears to be a possible super-hedging price for the zero claim. In particular,
the NA condition implies that ρ(X) ≥ 0 so that NGD holds. Reciprocally,
the NGD condition implies that the NA condition holds by [7, Theorem 3.4]
and the FTAP theorem we formulate in this paper. Indeed, by [7, Theorem
3.4], NGD implies the existence of a risk-neutral probability measure among
the probability measures representing the risk measure. Therefore, the NGD
and the NA conditions are equivalent in the setting of Cherny. Although, in
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our paper we do not need to suppose the existence of a priori given proba-
bility measures representing the risk-measure. This is why the proof of the
FTAP theorem we formulate is more challenging as we cannot directly use
an immediate compactness argument as done in [7] to obtain a risk-neutral
probability measure. We then deduce a dual representation of the super-
hedging prices in the case where the risk-measure is time-consistent. At last,
we propose a discussion about dual representation of a risk-measure defined
on L0. We propose conditions under which a dual representation exists.

2. Model

In discrete-time, we consider a stochastic basis (Ω,F := (Ft)Tt=0,P) where the
complete 1 σ-algebra Ft represents the information of the market available
at time t. For any t ≤ T , L0(Rd,Ft), d ≥ 1, is the space of all Rd-valued
random variables which are Ft-measurable, and endowed with the topology
of convergence in probability. Similarly, Lp(Rd,Ft), p ∈ [1,∞) (resp. p =
∞), is the normed space of all Rd-valued random variables which are Ft-
measurable and admit a moment of order p under the probability measure
P (resp. bounded). In particular, Lp(R+,Ft) = {X ∈ Lp(R,Ft)|X ≥ 0} and
Lp(R−,Ft) = −Lp(R+,Ft) when p = 0 or p ∈ [1,∞]. All equalities and
inequalities between random variables are understood to hold everywhere on
Ω up to a negligible set. If At is a set-valued mapping (i.e. a random set of
Rd), we denote by L0(At,Ft) the set of all Ft-measurable random variables
Xt such that Xt ∈ At a.s.. The topology in L0 is defined from the convergence
in probability. We say that Xt ∈ L0(At,Ft) is a measurable selection of At. In
our paper, a random set At is said Ft-measurable if it is graph-measurable,
see [32], i.e.

GrAt = {(ω, x) ∈ Ω×Rd : x ∈ At(ω)} ∈ Ft × B(Rd).

It is well known that L0(At,Ft) 6= ∅ if and only if At 6= ∅ a.s., see [21,
Th. 4.4]. When referring to this property, we shall say that we use a ”mea-
surable selection argument” as it is usual to say.

We consider a dynamic consistent risk-measure X 7→ (ρt(X))t≤T defined on
the space L0(R,FT ), R = [−∞,∞]. Precisely, we consider the risk-measure

1This means that the σ-algebra contains the negligible sets so that an equality between
two random variables is understood up to a negligible set.
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of [30], where an extension to the whole space L0(R,FT ) is proposed. Recall
that, in this paper, the risk-measure is constructed from its closed acceptance
sets (At)t≤T of acceptable financial positions At at time t ≤ T . We suppose
that At is a closed convex cone. In the following, we use the conventions:

0× (±∞) = 0, (0,∞)× (±∞) = {±∞},
R + (±∞) = ±∞, ∞−∞ = −∞+∞ = +∞.

For X ∈ L0(R,FT ), ρt(X) may be infinite and ρt(X) ∈ R a.s. if and only
if X ∈ DomAt where

DomAt := {X ∈ L0(R,FT ) : AXt 6= ∅},
AXt := {Ct ∈ L0(R,Ft)|X + Ct ∈ At}.

Actually, we have ρt(X) = ess infFt AXt if X ∈ DomAt. Recall that the
following properties hold (see [30]):

Proposition 2.1. The risk-measure ρt satisfies the following properties:

Normalization: ρt(0) = 0;

Monotonicity: ρt(X) ≥ ρt(X
′) whatever X,X ′ ∈ L0(R,FT ) s.t. X ≤ X ′;

Cash invariance: ρt(X +mt) = ρt(X)−mt if mt ∈ L0(R,Ft), and
X ∈ L0(R,FT );

Subadditivity: ρt(X +X ′) ≤ ρt(X) + ρt(X
′) if X,X ′ ∈ L0(R,FT ) ;

Positive homogeneity: ρt(ktX) = ktρt(X) if kt ∈ L0(R+,Ft), X ∈ L0(R,FT ).

Moreover, ρt is lower semi-continuous i.e., if Xn → X a.s., then ρt(X) ≤
lim infn ρt(Xn) a.s., and we have

At = {X ∈ DomAt | ρt(X) ≤ 0}. (2.1)

We generalize the definition of acceptable set At to At,u = At ∩L0(R,Fu)
for dates between t ≤ T and u ∈ [t, T ]. The corresponding acceptable sets
and risk measures can be represented as

At,u = {X ∈ L0(R,Fu) : ρt,u(X) ≤ 0}.
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Let (St)t≤T be a process describing the discounted prices of d risky assets
such that St ∈ L0(Rd

+,Ft) for any t ≥ 0. A contingent claim with maturity
date t+ 1 is defined by a real-valued Ft+1-measurable random variable ht+1.
In the paper [30], the super-hedging problem for the payoff ht+1 is solved
with respect to the dynamic risk-measure (ρt)t≤T . Precisely:

Definition 2.2. A payoff ht+1 ∈ L0(R,FT ) is said to be risk-hedged at time
t if there exists a risk-hedging price Pt ∈ L0(R,Ft) and a strategy θt in
L0(Rd,Ft) such that Pt + θt∆St+1 − ht+1 is acceptable at time t.

Let Pt(ht+1) be the set of all risk-hedging prices Pt ∈ L0(R,Ft) at time t
as in Definition 2.2. In the following, we suppose that ht+1 is non negative
and Pt(ht+1) 6= ∅. This is the case if there exist at, bt ∈ L0(R,Ft) such that
ht+1 ≤ atSt+1 + bt. This inequality trivially holds for European call and put
options.

Definition 2.3. The minimal risk-hedging price of the contingent claim ht+1

at time t is defined as

P ∗t := ess inf
θt∈L0(Rd,Ft)

Pt(ht+1). (2.2)

Note that the minimal risk-hedging price P ∗t of ht+1 is not necessarily
a price, i.e. it is not necessarily an element of Pt(ht+1) if this set is not
closed. The aim of our paper is to study a no-arbitrage condition under
which P ∗t ∈ Pt(ht+1).

Starting from the contingent claim hT at time T , we recursively define

P ∗T := hT , P
∗
t := ess inf

θt∈L0(Rd,Ft)
Pt(P ∗t+1),

where P ∗t+1 may be interpreted as a contingent claim ht+1. The interesting
question is whether P ∗t is actually a price, i.e. an element of Pt(P ∗t+1), or
equivalently whether Pt(P ∗t+1) is closed. In the classical setting, recall that
closedness is obtained under the NA condition.

Definition 2.4. A stochastic process (Vt)t≤T adapted to (Ft)t≤T , starting
from an initial endowment V0 is a portfolio process if, for all t ≤ T −1, there
exists θt ∈ L0(Rd,Ft) such that Vt + θt∆St+1 − Vt+1 is acceptable at time t.
Moreover, we say that it super-hedges the payoff hT ∈ L0([−∞,∞),FT ) if
VT ≥ hT a.s..
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Note that VT−1 +θT−1∆ST−VT is supposed to be acceptable at time T−1.
Therefore, VT ≥ hT implies that VT−1 + θT−1∆ST − hT is acceptable at time
T − 1. In the following, we actually set VT = hT where hT ∈ L0(R,FT )
is a European claim. Notice that, if P ∗T−1 = −∞ on some non null set,
then, the one step pricing procedure of [30] may be applied as the risk-
measure is defined on L0([−∞,∞],FT ). Actually, this is trivial to super
hedges P ∗T−1 = −∞ by P ∗T−2 = −∞. This means that the backward procedure
of [30] may be applied without any no-arbitrage condition. Let us recall this
procedure.

We define P ∗T = hT =: h and let us consider the set Pt(P ∗t+1) of all prices pt
at time t allowing one to start a portfolio strategy θt ∈ L0(Rd,Ft) such that
pt+θt∆St+1 = P ∗t+1 +at,t+1 where at,t+1 ∈ L0(R,Ft) is an acceptable position
at time t. This is a generalization of the classical super-hedging inequality
pt + θt∆St+1 ≥ P ∗t+1. We have

Pt(P ∗t+1) = {θtSt + ρt(θtSt+1 − P ∗t+1) : θt ∈ L0(Rd,Ft)}+ L0(Rd
+,Ft),

and, recursively, we define:

P ∗t = ess inf
θt∈L0(Rd,Ft)

Pt(P ∗t+1).

In [30], a jointly measurable version of the random function gt that appears
above in the characterization of Pt(P ∗t+1), i.e.

ght (ω, x) := xSt + ρt(xSt+1 − P ∗t+1), (2.3)

is constructed in the one-dimensional case. With the same arguments, we may
obtain a jointly measurable version of ght (ω, x) := xSt + ρt(xSt+1 − P ∗t+1) if
x ∈ Rd. Moreover, by similar arguments, we also show that P ∗t = inf

x∈Rd
ght (x).

Let V be a portfolio process with VT = hT = h. By definition, we have
that ρT−1(VT−1 + θT−1∆ST − hT ) ≤ 0. We deduce that VT−1 ≥ P ∗T−1 and,
by induction, we get that Vt ≥ P ∗t for all t ≤ T , since Vt is a risk-hedging
price for Vt+1 ≥ P ∗t+1 at time t + 1. In particular, Vt ∈ Pt(P ∗t+1) 6= ∅ for all
t ∈ T − 1.

2.1. No-arbitrage conditions

An immediate profit is the possibility to super-replicate the zero contingent
claim at a negative price, see [3].
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Definition 2.5. Absence of Immediate Profit (AIP) holds if, for any t ≤ T ,

Pt(0) ∩ L0(R−,Ft) = {0}. (2.4)

It is clear that AIP holds at time T since PT (0) = L0(R+,FT ). We now
formulate characterizations of the AIP condition in the multi-dimensional
setting. We denote by S(0, 1) the set of all z ∈ Rd such that |z| = 1.

Theorem 2.6. The following statements are equivalent:

1. AIP holds between time t− 1 and t.

2. ρt−1(x∆St) ≥ 0, for any x ∈ Rd, a.s..

3. ρt−1(z∆St) ≥ 0, for any z ∈ S(0, 1), a.s..

4. Let xt−1 ∈ L0(Rd,Ft−1). If xt−1∆St is acceptable on some non null set
Ft−1 ∈ Ft−1, then ρt−1(xt−1∆St) = 0 on Ft−1.

Proof. 1 ⇐⇒ 2. Consider ht = 0 under AIP. As P ∗t = inf
x∈Rd

g0
t (x) ≥ 0, we

deduce that, for all x ∈ Rd, g0
t (x) = xSt−1 + ρt−1(xSt) = ρt−1(x∆St) ≥ 0.

The equivalence 2⇐⇒ 3 is clear by homogeneity. Let us show that 2 =⇒ 4.
Suppose that xt−1∆St is acceptable on Ft−1, i.e. ρt−1(xt−1∆St) ≤ 0 on Ft−1.
Then, by 2, we have ρt−1(xt−1∆St) = 0 on Ft−1. Let us show that 4 implies
2. Consider the set Ft−1 = {ρt−1(xt−1∆St) < 0} ∈ Ft−1. Then, xt−1∆St
is acceptable on Ft−1 hence by 4, ρt−1(xt−1∆St) = 0, which implies that
P (Ft−1) = 0. Therefore, ρt−1(xt−1∆St) ≥ 0 a.s..

In the following, we consider a contingent claim ht ∈ L0(Rd,Ft) and a
jointly measurable version (see [30]) of the random function

gt−1(ω, x) := xSt−1 + ρt−1(xSt − ht) (2.5)

which is associated to ht.

Theorem 2.7. Suppose that AIP holds and consider zt−1 ∈ L0(S(0, 1),Ft−1).
Then, on the set Ft−1 = {ρt−1(zt−1∆St) = 0} ∩ {ρt−1(−zt−1∆St) = 0}, the
random function gt−1 given by (2.5) is constant on the line Rzt−1.

Proof. Consider xt−1, yt−1 ∈ L0(Rzt−1,Ft−1) such that xt−1 6= yt−1. Without
loss of generality, we assume that yt−1 = r2zt−1 and x = r1zt−1 with r2 > r1

and r1, r2 ∈ L0(R,Ft−1). We have:

ρt−1(yt−1St − ht) = ρt−1(xt−1St − ht + (yt−1 − xt−1)St),

≤ ρt−1(xt−1St − ht) + ρt−1((yt−1 − xt−1)St).
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We deduce that on the set Ft−1 we have:

gt−1(yt−1) = yt−1St−1 + ρt−1(yt−1St − ht),
≤ yt−1St−1 + ρt−1(xt−1St − ht) + ρt−1((yt−1 − xt−1)St),

= gt−1(xt−1) + (yt−1 − xt−1)St−1 + ρt−1((yt−1 − xt−1)St).

This is equivalent to:

gt−1(yt−1)− gt−1(xt−1) ≤ (yt−1 − xt−1)St−1 + ρt−1((yt−1 − xt−1)St),

≤ (r2 − r1)ρt−1(zt−1∆St) = 0.

By symmetry, we also have:

gt−1(xt−1)− gt−1(yt−1) ≤ (r2 − r1)ρt−1(−zt−1∆St) = 0.

This implies that gt−1 is a constant on the line Rzt−1. Indeed, on the contrary
case, the Ft−1-measurable set Γt−1(ω) = {α ∈ R : gt−1(αzt−1) 6= gt−1(zt−1)}
is non empty on the non null set Gt−1 = {ω ∈ Ω : Γt−1(ω) 6= ∅} ∈ Ft−1.
We then deduce a measurable selection z̃t ∈ L0(Rd,Ft−1) such that z̃t = αtzt
and αt ∈ Γt−1 on the set Gt−1 and we put z̃t = zt on the complimentary set
Ω \ Gt−1. By the first part above, we deduce that gt−1(z̃t) = gt−1(zt) a.s.,
which contradicts the fact that αt ∈ Γt−1 on Ft−1.

Definition 2.8. We say that the symmetric risk neutral condition SRN holds
at time t if, almost surely, for any zt ∈ L0(S(0, 1),Ft), ρt(zt∆St+1) = 0 if
and only if ρt(−zt∆St+1) = 0. We say that SRN holds if it holds at any time.

Observe that the SRN condition means that a zero cost position zt is risk-
neutral if and only if −zt is risk neutral.

Definition 2.9. We say that the no-arbitrage NA condition holds at time t
when both conditions AIP and SRN holds at time t. We say that NA holds if
it holds at any time.

We recall that a function f : Ω × Rd → R is an Ft-normal integrand,
if its epigraph is Ft-measurable and closed. Since the probability space is
complete, we know by [35, Corollary 14.34] that it is equivalent to suppose
that f(ω, x) is Ft ⊗B(Rd)-measurable and lower semi-continuous (lsc) in x.
Moreover, by [35, Theorem 14.37], we have:

Proposition 2.10. If f is an Ft-normal integrand, infy∈Rd f(ω, y) is Ft-
measurable and {(ω, x) ∈ Ω ×Rd : f(ω, x) = infy∈Rd f(ω, y)} ∈ Ft ⊗ B(Rd)
is a measurable closed set.
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As we may choose a jointly measurable version of gt(ω, x) when the payoff
is ht+1 = 0, we consider a jointly measurable version of ρt(ω, x) := ρt(x∆St+1)
i.e. ρt(ω, x) is Ft ⊗ B(Rd)-measurable. Then, ρt is an Ft-normal integrand.
By Proposition 2.10, the set Γt = {z : ρt(z∆St+1) = infy∈S(0,1) ρt(y∆St+1)}
is Ft-measurable. Moreover, each ω-section of Γt is non empty since ρt is lsc
and S(0, 1) is compact. Therefore, by a measurable selection argument, we
may select zt ∈ L0(S(0, 1),Ft) such that ρ(zt∆St+1) = infz∈S(0,1) ρt(z∆St+1)
a.s..

Theorem 2.11. Let ht ∈ L0(R,Ft) be a payoff such that ρt−1 (ht) < ∞
a.s..Consider the random function gt−1 associated to ht given by (2.5). For
any zt−1 ∈ L0(S(0, 1),Ft−1), consider the random set

Ft−1 = {ρt−1(zt−1∆St) > 0} ∩ {ρt−1(−zt−1∆St) > 0}.

We have:

lim
|r|→∞

gt−1(ω, rzt−1) = +∞, ∀ω ∈ Ft−1.

hence gt−1 admits a minimum on the line Rzt−1 when ω ∈ Ft−1.

Proof. Consider rn ∈ L0((0,∞),Ft), for all n ≥ 1, such that rn → ∞ a.s..
We have:

gt−1(rnzt−1) = rnzt−1St−1 + ρt−1(rnzt−1St − ht),

= rn

(
zt−1St−1 + ρt−1

(
zt−1St −

ht
rn

))
,

= rn

(
ρt−1 (zt−1∆St) + ρt−1

(
zt−1St −

ht
rn

)
− ρt−1 (zt−1St)

)
.

Observe that:

ρt−1

(
zt−1St −

ht
rn

)
− ρt−1 (zt−1St) ≥ −

1

rn
ρt−1 (ht) .

As ρt−1 (ht) < ∞ a.s., we deduce that limn→+∞ gt−1(rnzt−1) = +∞ on Ft−1.
Now, let us suppose that there is a non null set Gt−1 of Ft−1 such that
gt−1(ω, rzt−1) does not converge to +∞ if r →∞ when ω ∈ Gt−1. Note that
ω ∈ Gt−1 if and only if there exists m(ω) ∈ R such that, for all n ≥ 1, there
exists rn(ω) ≥ n such that gt−1(ω, rn(ω)) ≤ m(ω). Consider the following set

Γt−1(ω) = {(m, (rn)∞n=1) ∈ R×RN : rn ≥ n and gt(ω, rn) ≤ m, ∀n ≥ 1}.
10



The Borel σ-algebra B(RN) is defined as the smallest topology on RN such
that the projection mappings P n : (rj)

∞
j=1 7→ rn, n ≥ 1, are continuous.

Therefore, we deduce that Γt−1 is Ft−1-measurable. As Γt−1 is non empty
on Gt−1, we deduce a Ft−1-measurable selection (m, (rn)∞n=1) of Γt−1 on Gt−1

that we extend to the whole space Ω by m(ω) = +∞ and rn(ω) = n, if
ω ∈ Ω \ Gt−1. Since the Ft−1-measurable sequence (rn)∞n=1 converges a.s. to
+∞, we deduce that limn→+∞ gt−1(rnzt−1) = +∞ on Gt−1 by the first part
of the proof. This is in contradiction with the property gt(ω, rn(ω)) ≤ m(ω),
for all n ≥ 1, if ω ∈ Gt−1.

Similarly, by symmetry, we may also prove that limr→−∞ gt−1(rzt−1) = +∞
on Ft. As gt−1 is lsc, we finally deduce that gt−1 achieves a minimum on
Rzt−1.

Proposition 2.12. Let ht ∈ L0(R,Ft) be such that ρt−1 (ht) < ∞ and
ρt−1 (−ht) < ∞ a.s.. Consider the function gt−1 associated to ht given by
(2.5). Consider zt−1 ∈ L0(S(0, 1),Ft−1) such that we have ρt−1(zt−1∆St) =
infz∈S(0,1) ρt(z∆St). Then, on the set

Ft−1 = {ρt−1(zt−1∆St) > 0} ∩ {ρt−1(−zt−1∆St) > 0},

the random function gt−1 admits a minimum.

Proof. For any z ∈ S(0, 1), we have ρt−1(z∆St) > 0 and ρt−1(−z∆St) > 0 by
definition of Ft−1 and zt−1. By theorem 2.11, there exists rt−1 ∈ L0(R+,Ft−1)
such that infr∈R gt−1(rzt−1) = gt−1(rt−1zt−1). Notice that, by definition, we
have gt−1(rt−1zt−1) ≤ gt−1(0) = ρt−1(−ht). On the set {rt−1 > 0}, this is
equivalent to

rt−1

(
zt−1St−1 + ρt−1

(
zt−1St −

ht
rt−1

))
≤ ρt−1(−ht),

rt−1

(
zt−1St−1 + ρt−1(zt−1St) + ρt−1

(
zt−1St −

ht
rt−1

)
− ρt−1(zt−1St)

)
≤ ρt−1(−ht).

We observe that:

ρt−1

(
zt−1St −

ht
rt−1

)
− ρt−1(zt−1St) ≥ −

1

rt−1

ρt−1(ht).

Therefore, rt−1(zt−1St−1 + ρt−1(zt−1St)) ≤ ρt−1(−ht) + ρt−1(ht), i.e.

rt−1 ≤
ρt−1(−ht) + ρt−1(ht)

ρt−1(zt−1∆St)
.
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Similarly, on the set {rt−1 < 0}, we deduce that:

−rt−1 ≤
ρt−1(−ht) + ρt−1(ht)

ρt−1(−zt−1∆St)
.

We finally deduce that, in any case, we have:

|rt−1| ≤ max

(
|ρt−1(−ht) + ρt−1(ht)|

ρt−1(zt−1∆St)
,
|ρt−1(−ht) + ρt−1(ht)|

ρt−1(−zt−1∆St)

)
= Mt−1 <∞.

on Ft−1. At last, we deduce that for each ω ∈ Ft−1:

inf
x∈Rd

gt−1(x) = inf
r∈[−Mt−1,Mt−1]

inf
z∈S(0,1)

gt−1(rz) = inf
x∈B̄(0,Mt−1)

gt−1(x),

where B̄(0,Mt−1) is the closed ball of radius Mt−1 and centered at the origin.
Since B̄(0,Mt−1) is compact and gt−1 is lsc, we deduce that gt−1 admits
a minimum on B̄(0,Mt−1). By Proposition 2.10, observe that there exists a
measurable version of an argmin, using a measurable selection argument.

We now prove that, under NA, infimum super-hedging prices are minimal
prices.

Theorem 2.13. Suppose that NA holds at time t ≤ T and consider a payoff
ht+1 ∈ L0(R,Ft) such that |ρt(ht+1)| + |ρt(−ht+1)| < ∞ a.s.. Then, the
minimal risk-hedging price P ∗t for the payoff ht+1 is a price.

Proof. Suppose first that d = 2. Since ρt is lsc, there exists zt ∈ L0(S(0, 1),Ft)
such that infz∈S(0,1) ρt(z∆St+1) = ρt(zt∆St+1). By Proposition 2.12 and under
SRN, gt attains a minimum on R2 when ω ∈ Ft = {ρt(zt∆St+1) > 0} ∈ Ft.

Let us now suppose that ω ∈ F c
t = {ρt(zt∆St+1) = ρt(−zt∆St+1) = 0}.

We consider a line that is parallel to the line Rzt. For any z1, z2 ∈ L0(Rd,Ft)
on that line such that z1 − z2 = rtzt ∈ Rzt, rt ∈ L0(R,Ft), we have:

gt(z1) = ρt((z2 + rtzt)∆St+1 − ht+1)

≤ ρt(z2∆St+1 − ht+1) + ρt(rtzt∆St+1) = gt(z2)

By symmetry, we also have: gt(z2) ≤ gt(z1), hence gt(z1) = gt(z2). Therefore,
gt is constant on any line which is parallel to Rzt. Moreover,

{(ω, z⊥t ) ∈ Ω×R2 : z⊥t zt(ω) = 0} ∈ Ft ⊗ B(R2).

12



By measurable selection argument, we may choose z⊥t ∈ L0(S(0, 1),Ft) such
that the line Rz⊥t is orthogonal to Rzt. Since d = 2, for any x ∈ R2, there
exist λ ∈ R such that x− λz⊥t ∈ Rzt. We then have:

inf
x∈R2

gt(x) = inf
λ∈R

gt(λz
⊥
t ).

On the set {ρt(z⊥t ∆St+1) = 0}, we get that infλ∈R gt(λz
⊥
t ) = gt(0) by

Proposition 2.7. On the other hand, on the set {ρt(z⊥t ∆St+1) > 0}, we get
that lim|λ|→∞ gt(λz

⊥
t ) = +∞ by Proposition 2.11 and SRN, hence gt achieves

a minimum on the line Rz⊥t .

Let us now prove the d-dimensional case by induction. Recall that there
exists zt ∈ L0(S(0, 1),Ft) such that ρt(zt∆St+1) = infz∈S(0,1) ρt(z∆St+1). On
Ft = {ρt(zt∆St+1) > 0}, by Proposition 2.12 and SRN, gt attains a minimum
on Rd. On F c

t = {ρt(zt∆St+1) = 0}, consider an hyperplane Id−1 which is
orthogonal to Rzt and admits an orthonormal basis (z1, z2, ..., zd−1) such
that for each ω ∈ Ω, ẑ = (zt, z1, ..., zd−1) is an orthonormal basis for Rd.
Note that each zi can be chosen in L0(S(0, 1),Ft). Indeed, similarly to the
case d = 2, we first choose z1 ∈ L0(S(0, 1),Ft) orthogonal to zt. Recursively,
for i ∈ {2, ..., d− 1}, we have:

{(ω, zi) ∈ Ω×Rd : zizj(ω) = 0 for all j = 0, ..., i− 1} ∈ Ft ⊗ B(Rd).

By measurable selection argument, we then choose zi ∈ L0(S(0, 1),Ft). We
denote by Mt the matrix such that zi−1 = Mtei, for every i ≥ 1, where
ei = (0, · · · , 1, · · · , 0) ∈ Rd. We recall the change of variable x = Mtx̃
where x and x̃ are the coordinates of an arbitrary vector of Rd in the basis
(ei)i≥1 and (zi)i≥0 respectively. The i column vector of Mt coincides with zi
expressed in the basis (ei)i≥1, hence each entry of Mt belongs to L0(R,Ft)
and so do the components of M−1

t . We then define the adapted processes
S̃u = M−1

t Su = M ′
tSu, for u = t, t+ 1. We have:

gt(x) = ρt(x∆St+1 − ht+1) = ρt(x̃∆S̃t+1 − ht+1).

We observe that S̃u=t,t+1 forms a new market model which also satisfies the
NA condition between t and t+ 1. Indeed, for any z ∈ S(0, 1), we have:

ρt(z∆S̃t+1) = ρt(zM
′
t∆St+1),
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hence ρt(z∆S̃t+1) = 0 implies that ρt(−zM ′
t∆St+1) = 0 by the NA condition

satisfied in the market formed by S which, in turn, implies ρt(−z∆S̃t+1) = 0.

Fix ω and, for any x ∈ Rd, consider the orthogonal projection x̄ of x onto
Id−1. We then have gt(x) = gt(x̄). For x̄ ∈ Id−1, we denote x̂ = M−1

t x̄, we
have:

x̄∆St+1 = x̂∆S̃t+1 :=
d∑
i=1

x̂i∆S̃it+1 =
d∑
i=2

x̂i∆S̃it+1,

since the first coordinate of x̂ equals 0 in the new basis. We deduce that:

inf
x∈Rd

gt(x) = inf
x∈Id−1

ρt(x∆St+1 − ht+1) = inf
x̂∈Rd−1

ρt

(
d∑
i=2

x̂i∆S̃it+1 − ht+1

)
This means that we have reduced the optimization problem to a market with
only d− 1 assets defined by (S̃2, ..., S̃d). As it satisfies the NA condition, we
deduce that infx∈Rd gt(x) is attained by induction.

Observe that the theorem above provides the existence of an optimal hedg-
ing strategy θ∗t ∈ L0(R,Ft) such that

P ∗t = gt(θ
∗
t ) = θ∗tSt + ρt(θ

∗
tSt+1 − ht+1) ∈ Pt(ht+1).

In the following, we say that a payoff ht+1 is not freely attainable at time
t if it satisfies ρt(−ht+1) > 0 a.s. and |ρt(ht+1)|+ |ρt(−ht+1)| <∞ a.s.. Note
that if ρt(−ht+1) > 0, then it is not possible to get the payoff ht+1 from
nothing when writing 0 = ht+1 + (−ht+1) and letting aside (−ht+1) since
the latter is not acceptable. Notice that, in the usual case where ρt(X) =
− ess infFt(X), ρt(−ht+1) > 0 means that ess supFt(ht+1) > 0 and recall
that ht+1 is acceptable if ht+1 ≥ 0 a.s.. The following theorem gives an
interpretation of the NA condition. Precisely, NA means that the price of
any no freely attainable and acceptable payoff is strictly positive. In the
usual case, a no freely attainable and acceptable payoff is a non negative
payoff which does not vanish on a non null Ft-measurable set.

Theorem 2.14. The NA condition holds at time t ≤ T if and only if the
infinimum risk-hedging price P ∗t of any no freely attainable and acceptable
payoff ht+1 at time t is strictly positive. Moreover, under NA, the infimum
risk-hedging price P ∗t of any contingent claim ht+1 satisfies
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ρt(−ht+1) ≥ P ∗t ≥ −ρt(ht+1).

Proof. Suppose that NA holds. By Theorem 2.13, there is zt ∈ L0(S(0, 1),Ft)
and rt ∈ L0(R,Ft) such that P ∗t = ρt(rtzt∆St+1 − ht+1). Suppose that
ρt(zt∆St+1) and ρt(−zt∆St+1) are both equal to 0. Then, the function gt as-
sociated to ht+1, see (2.5), is constant on the line Rzt by Theorem 2.7. There-
fore, P ∗t = gt(0) = ρt(−ht+1) > 0. Otherwise, under NA, ρt(zt∆St+1) > 0
and ρt(−zt∆St+1) > 0. Using triangular inequalities, and the assumption
ρt(ht+1) ≤ 0, we then deduce that:

P ∗t = rtztSt + ρt(rtztSt+1 − ht+1),

= ρt(−ht+1)1rt=0 + rtρt

(
zt∆St+1 −

ht+1

rt

)
1rt>0

−rtρt
(
−zt∆St+1 +

ht+1

rt

)
1rt<0,

≥ ρt(−ht+1)1rt=0 + rtρt (zt∆St+1) 1rt>0 − rtρt (−zt∆St+1) 1rt<0,

> 0.

For the reverse implication, let us prove first that AIP holds. We fix ht+1

such that ρt(−ht+1) > 0 and ρt(ht+1) ≤ 0. So, with the function gt associated
to ht+1, see (2.5), we have P ∗t = P ∗t (ht+1) = inf

x∈R
gt(x) > 0 by assumption

and gt(rz) > 0 for all r ∈ R and z ∈ S(0, 1). Let us show that the set
{zSt + ρt(zSt+1) < 0} is empty for all z ∈ S(0, 1) a.s.. In the contrary case,
by measurable selection, we may construct zt ∈ L0(Rd,Ft) such that we have
P(ztSt + ρt(ztSt+1) < 0) > 0. We then define

rt := − ρt(−ht+1)

ρt(zt∆St+1)
1{ρt(zt∆St+1)<0} ≥ 0.

We have

gt(rtzt) = rtztSt + ρt(rtztSt+1 − ht+1),

≤ rtztSt + ρt(rtztSt+1) + ρt(−ht+1),

≤ rtρt(zt∆St+1) + ρt(−ht+1),

≤ ρt(−ht+1)1{ρt(zt∆St+1)≥0}.

Therefore, P ∗t ≤ 0 on the set {ρt(zt∆St+1) < 0} in contradiction with P ∗t > 0.
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Let us show that ρt(−z∆St+1) = 0 if ρt(z∆St+1) = 0 for any z ∈ S(0, 1).
Otherwise, by measurable selection argument, there exists zt ∈ L0(S(0, 1),Ft)
such that Λt := {ρt(zt∆St+1) = 0}∩ {ρt(−zt∆St+1) > 0} satisfies P(Λt) > 0.
If ht+1 = zt∆St+1, then ρt(−ht+1) = ρt(−zt∆St+1) > 0 on Λt. On the com-
plimentary set, we fix ht+1 = γt > 0, γt ∈ L0((0,∞),Ft). It follows that
ρt(−ht+1) > 0. Moreover, ρt(ht+1) = ρt(zt∆St+1) = 0 on Λt and, otherwise,
ρt(ht+1) = −γt < 0. Therefore, ρt(ht+1) ≤ 0. We deduce that P ∗t (ht+1) > 0,
by assumption. On the other hand, if r ≥ 1, and ω ∈ Λt,

P ∗t (ht+1) ≤ ρt(rzt∆St+1 − zt∆St+1) = (r − 1)ρt(zt∆St+1) = 0.

It follows that P ∗t (ht+1) ≤ 0 on Λt, i.e. a contradiction. We conclude that
ρt(z∆St+1) = 0 if and only if ρt(−z∆St+1) = 0 for any z ∈ S(0, 1).

At last, it is clear that P ∗t (ht+1) ≤ gt(0) = ρt(−ht+1). Moreover, for all
x ∈ Rd, 0 ≤ ρt(x∆St+1) ≤ ρt(x∆St+1−ht+1) + ρt(ht+1). Taking the infimum
in the r.h.s. of this inequality, we get that 0 ≤ P ∗t (ht+1) + ρt(ht+1) and we
may conclude. 2

Proposition 2.15. Suppose that the risk-measure is ρt(X) = − ess infFt X.
Then, the NA condition coincides with the classical NA condition of friction-
less models, i.e. it is equivalent to the existence of a risk-neutral probability
measure.

Proof. We know that the existence of a risk-neutral probability measure
Q ∼ P implies AIP. Moreover, suppose that ρt(z∆St+1) = 0 on Ft ∈ Ft where
z ∈ S(0, 1). Then, by definition of ρt, 1Ftz∆St+1 ≥ 0. As EQ(1Ftz∆St+1) = 0,
we deduce that 1Ftz∆St+1 = 0 hence ρt(−z∆St+1) = 0 on Ft. By symmetry,
we deduce that SRN holds.

Reciprocally, suppose that AIP and SRN conditions hold. Let θt ∈ L0(Rd,Ft)
such that θt∆St+1 ≥ 0 a.s.. Let us write θt = rtzt where rt ∈ L0(R,Ft)
and zt ∈ L0(S(0, 1),Ft). On the set Ft = {rt > 0}, zt∆St+1 ≥ 0 hence
ess infFt(zt∆St+1) ≥ 0. By the AIP condition, ρt(zt∆St+1) ≥ 0. We de-
duce that ess infFt(zt∆St+1) = 0 = ρt(z∆St+1). Under SRN, we deduce that
ρt(−z∆St+1) = 0 hence z∆St+1 ≥ 0 so that zt∆St+1 = 0. By a similar
reasoning on the set Ft = {rt < 0}, we also get that zt∆St+1 = 0 hence
θt∆St+1 = 0. We then conclude by [27, Condition (g), p. 73, Section 2.1.1].
2

16



2.2. No arbitrage and pricing under consistency in time

Definition 2.16. A dynamic risk-measure (ρt)t≤T is said time-consistent
if ρt+1(X) = ρt+1(Y ) implies ρt(X) = ρt(Y ) for X, Y ∈ L0(R,FT ) and
t ≤ T − 1 (see Section 5 in [16]).

The following result is very well known, see [1].

Lemma 2.17. A dynamic risk-measure (ρt)t≤T is time-consistent if and only
if its family of acceptable sets (At)t≤T satisfies

At,T = At,t+1 +At+1,T (2.6)

for any t ≤ T − 1.

Observe that, if (ρt)t≤T is time-consistent, we may show by induction that
ρt(−ρt+s(·)) = ρt(·) for any t ≤ T and s ≥ 0 such that s ≤ T − t. In the
following, we introduce another possible definition for the risk-hedging prices
in the multi-period model, where the risk is only measured at time t.

Definition 2.18. The contingent claim hT ∈ L0(R,FT ) is said directly risk-
hedged at time t ≤ T − 1 if there exists a (direct) price Pt ∈ L0(R,Ft) and
a strategy (θu)

T−1
u=t such that that Pt +

∑
t≤u≤T−1

θu∆Su+1 − hT is acceptable at

time t.

The set of all direct risk-hedging prices at time t is then given by

P̄t(hT ) =

{
ρt

( ∑
t≤u≤T−1

θu∆Su+1 − hT

)
: θu ∈ L0(Rd,Fu)

}
+ L0(R,Ft).

and the infimum direct risk-hedging price is

P̄ ∗t (hT ) := ess inf
(θu)T−1

u=t

P̄t(hT ).

The following result from [30] proves that the direct infimum risk-hedging
prices may coincide with the infimum prices derived from the step by step
backward procedure developed before, i.e. such that

P ∗t (hT ) = ess inf
θt∈L0(R,Ft)

Pt(P ∗t+1(hT )),

where P ∗T (hT ) = hT .
17



Theorem 2.19. Suppose that the dynamic risk-measure (ρt)t≤T is time con-
sistent. Then, P̄ ∗t (hT ) = P ∗t (hT ) for any t ≤ T − 1. Moreover, the direct
infimum risk-hedging prices are direct prices if and only if the infimum prices
of the backward procedure are prices.

Corollary 2.20. Suppose that the dynamic risk-measure (ρt)t≤T is time con-
sistent. Then, P̄t(hT ) = Pt(hT ) for all t ≤ T .

In the following, we consider the set of all attainable claims RT
t between t

and T , when starting from the zero initial endowment, i.e.

Rt,T :=

{
T∑

u=t+1

θu−1∆Su : θu ∈ L0(Rd,Fu), u ≥ t

}
.

We observe that P̄t(0) = (At,T −Rt,T ) ∩ L0(R,Ft). In the following, we
consider the sets Zt,T := Rt,T −At,T and the sets

A0
t,T = {X ∈ L0(R,FT ) : ρt(X) = ρt(−X) = 0}.

Remark 2.21. Note that A0
t,T = At,T ∩ (−At,T ). Indeed, first observe that

A0
t,T ⊆ At,T ∩ (−At,T ). Let xt,T ∈ At,T ∩ (−At,T ). We have:

0 = ρt(xt,T − xt,T ) ≤ ρt(xt,T ) + ρt(−xt,T ) ≤ 0.

This implies ρt(xt,T ) = ρt(−xt,T ) = 0 hence xt,T ∈ A0
t,T .

The set Zt,T is the family of all claims that are attainable up to an accept-
able position at time t since every attainable claim rt,T ∈ RT

t may be written
as rt,T = (rt,T−at,T )+at,T where at,T ∈ At,T is let aside and rt,T−at,T ∈ Zt,T .

Theorem 2.22. Assume that the risk measure is time-consistent. Suppose
that Rt,T ∩At,T = A0

t,T . Then, AIP holds and Zt,T is closed in L0 for every
t ≤ T − 1.

Proof. Consider θt ∈ L0(Rd,Ft). By Theorem 2.6, it suffices to show that
ρt(θt∆St+1) ≥ 0 a.s.. Otherwise, the set Λt = {ρt(θt∆St+1) < 0} admits a
positive probability and θt∆St+11Λt ∈ Rt,T ∩ At,T = A0

t,T . It follows that
ρt(θt∆St+11Λt) = 0 hence a contradiction. Therefore, AIP holds.

Let us show that Zt,T ⊆ Zt,T . In the one step model, let us suppose that
γn = θnT−1∆ST−εnT−1,T ∈ ZT−1,T converges to γ∞ ∈ L0(R,FT ) in probability.
We suppose that εnT−1,T ∈ AT−1,T . We need to show that γ∞ ∈ ZT−1,T .
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On the FT−1-measurable set ΛT−1 := {lim infn |θnT−1| <∞}, by [27, Lemma
2.1.2], we may assume w.l.o.g. that θnT−1 is convergent to some θ∞T−1 hence
εnT−1,T is also convergent hence γ∞1ΛT−1

∈ ZT−1,T .
Otherwise, on Ω \ ΛT−1, we use the normalized sequences,

θ̃nT−1 := θnT−1/(|θnT−1|+ 1), ε̃nT−1,T := εnT−1,T/(|θnT−1|+ 1).

By [27, Lemma 2.1.2], we may assume that a.s. θ̃nT−1 → θ̃∞T−1, ε̃nT−1,T → ε̃∞T−1,T

and θ̃∞T−1∆ST − ε̃∞T−1,T = 0 a.s.. Note that |θ̃∞T−1| = 1 a.s.. As θ̃∞T−1∆ST
is acceptable (ε∞T−1,T ∈ AT−1,T ) then θ̃∞T−1∆ST ∈ A0

t,T by assumption. We

follow the recursive arguments on the dimension of [26]. Since |θ̃∞T−1| = 1,
there exists a partition of Ω \ΛT−1 into d disjoint subsets Gi

T−1 ∈ FT−1 such

that θ̃∞,iT−1 6= 0 on Gi
T−1. Define on Gi

T−1, θ̃nT−1 := θnT−1 − βnT−1θ̃
∞
T−1 where

βnT−1 := θn,iT−1/θ̃
∞,i
T−1. Observe that γn = θ̃nT−1∆ST − ε̃nT−1,T where the position

ε̃nT−1,T = εnT−1,T−βnT−1θ̃
∞
T−1∆ST is acceptable since ±θ̃∞T−1∆ST are acceptable.

As θ̃n,iT−1 = 0 on Gi
T−1, we repeat the entire procedure on each Gi

T−1 with the

new expression γn = θ̃nT−1∆ST − ε̃nT−1,T such that the number of components

of θ̃nT−1 is reduced by one. We then conclude by recursion on the number
of non-zero components since the conclusion is trivial if all the coordinates
vanish.

We now show the result in multi-step models by induction. Fix some s ∈
{t, . . . , T − 1}. We show that ZTs+1 ⊆ ZTs+1 implies the same property for s
instead of s+ 1.

Since AIP holds, we get that ZTs+1∩L0(R+,Fs+1) = {0} hence ZTs+1 ⊆ ZTs+1

implies that ZTs+1 ∩ L1(R+,Fs+1) = {0}. Using the Hahn-Banach separa-

tion theorem in L1, we deduce Q(s+1) � P with dQ(s+1)

dP
∈ L∞ such that

ρs+1 := EP (dQ
(s+1)

dP
|Fs+1) = 1 a.s., (Su)u≥s+1 is a martingale under Q(s+1) and

EQ(as+1,T |Fs+1) ≥ 0 for all as+1,T ∈ As+1,T such that EQ(|as+1,T ||Fs+1) <∞
a.s.. Suppose that

γn =
T∑

u=s+1

θnu−1∆Su − εns,T ∈ Zs,T converges to γ∞ ∈ L0(R,FT ).

We suppose that εns,T ∈ As,T . By Lemma 2.17, εns,T = εns,s+1 + εns+1,T , where
εns,s+1 ∈ As,s+1 and εns+1,T ∈ As+1,T . As before, on the Fs-measurable set
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Λs := {lim infn |θns | < ∞}, we may assume w.l.o.g. that θns converges to θ∞s .
Therefore, on Λs,

T∑
u=s+2

θnu−1∆Su − εns,T = γn − θns∆Ss+1 → γ∞ − θ∞s ∆Ss+1.

On the subset Λ̂s+1 := {lim infn |εns,s+1| = ∞} ∩ Λs ∈ Fs+1, we use the
normalization procedure as previously, i.e. we divide by |εns,s+1|, up to a sub-
sequence, and, by the induction hypothesis, we obtain that

T∑
u=s+2

θ̃nu−1∆Su − ε̃s+1,T = ε̃s,s+1,

where ε̃s+1,T ∈ As+1,T and ε̃s,s+1 ∈ As,s+1 satisfies |ε̃s,s+1| = 1 a.s.. Moreover,
by assumption, we may show that

EQ(s+1)

(
T∑

u=s+2

θ̃nu−1∆Su|Fs+1

)
= 0.

Moreover, still by assumption, EQ(s+1)(ε̃s+1,T |Fs+1) ≥ 0. We deduce that
ε̃s,s+1 = EQ(s+1)(ε̃s,s+1|Fs+1) ≤ 0. Therefore, ε̃s,s+1 = −1 hence ρs(ε̃s,s+1) =
ρs(−1) = 1, which is in contradiction with ρs(ε̃s,s+1) ≤ 0. Therefore, we
may suppose, on Λs, that εns,s+1 converges a.s. to some εs,s+1 ∈ As,s+1. By

the induction hypothesis, we then deduce that
∑T

u=s+2 θ
n
u−1∆Su− εns+1,T also

converges to an element of ZTs+1 and we conclude that γ∞1Λs ∈ ZTs .
On Ω \ Λs, we use the normalisation procedure as before, and deduce the
equality

T∑
u=s+1

θ̃∞u−1∆Su − ε̃∞s,T = 0 a.s.

for some θ̃∞u ∈ L0(R,Fu), u ∈ {s, . . . , T − 1} and ε̃∞s,T ∈ As,T . By Lemma
2.17, we write ε̃∞s,T = ε̃∞s,s+1 + ε̃∞s+1,T where ε̃∞s,s+1 ∈ As,s+1 and ε̃∞s+1,T ∈ As+1,T .

Moreover, |θ̃∞s | = 1 a.s.. We deduce that:

θ̃∞s ∆Ss+1 +
T∑

u=s+2

θ̃∞u−1∆Su − ε̃∞s+1,T = ε̃∞s,s+1 a.s..
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Taking the conditional expectation knowing Fs+1 under Q(t+1), we deduce
that ε̃∞s,s+1 ≤ θ̃∞s ∆Ss+1. It follows that ρs(θ̃

∞
s ∆Ss+1) ≤ ρs(ε̃

∞
s,s+1) ≤ 0 hence

θ̃∞s ∆Ss+1 ∈ A0
s,T by the assumption. Using the one step arguments based on

the elimination of non-zero components of the sequence θns , we may replace
θns by θ̃ns such that θ̃ns converges. We then repeat the same arguments on the
set Λs to conclude that γ∞1Ω\Λs ∈ ZTs . 2

Theorem 2.23. Suppose that the risk-measure is time-consistent. Suppose
that NA holds and At,T ∩L0(R−,FT ) = {0}, for every t ≤ T . Then, we have
Zt,T ∩ L0(R+,FT ) = {0} and Rt,T ∩ At,T = A0

t,T for every t.

Proof. Let us consider Wt,T ∈ Rt,T ∩ At,T Then, Wt,T is of the form:

Wt,T =
T∑

s=t+1

θs−1∆Ss =
T∑

s=t+1

as−1,s,

where θs−1 ∈ L0(R,Fs−1) and as−1,s ∈ As−1,s, for all s = t + 1, · · · , T . It
follows that:

θt∆St+1 − at,t+1 +
T∑

s=t+2

(θs−1∆Ss − as−1,s) = 0. (2.7)

Therefore, pt = θt∆St+1 − at,t+1 is a (direct) price at time s = t + 1 for
the zero claim. Under AIP condition, we get that θt∆St+1 ≥ at,t+1 hence
ρt(θt∆St+1) ≤ 0. As ρt(θt∆St+1) ≥ 0 by AIP, ρt(θt∆St+1) = 0 and, by
RN, we get that ρt(θt∆St+1) = ρt(−θt∆St+1) = 0. We then deduce that
−pt ∈ At,T ∩ L0(R−,FT ) = {0} hence pt = 0 and θt∆St+1 = at,t+1 ∈ A0

t,T .
The equality (2.7) may be rewritten as:

θt+1∆St+2 − at+1,t+2 +
T∑

s=t+3

(θs−1∆Ss − as−1,s) = 0. (2.8)

By induction, we finally deduce that θs∆St+1 = as,s+1 ∈ A0
s,s+1 for all s ≥ t.

By Remark 2.21, we have Wt,T ∈ A0
t,T .

Consider now ε+T ∈ Zt,T ∩L0(R+,FT ). We may write ε+T = rt,T −at,T where
rt,T ∈ Rt,T and at,T ∈ At,T . We get that rt,T = at,T + ε+T ∈ Rt,T ∩At,T = A0

t,T

hence −rt,T ∈ At,T . It follows that −ε+T ∈ At,T ∩ L0(R−,FT ) = {0}. 2
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Theorem 2.24 (FTAP). Suppose that the risk-measure is time-consistent
and At,T ∩L0(R−,FT ) = {0} for every t ≤ T . Then, the following statements
are equivalent:

1) NA

2) Rt,T ∩ At,T = A0
t,T , for every t ≤ T .

3) R0,T ∩ A0,T = A0
0,T .

4) Zt,T ∩ At,T = A0
t,T , for every t ≤ T .

5) Z0,T ∩ A0,T = A0
0,T .

6) Z0,T ∩ A0,T = A0
0,T and Z0,T is closed in L0.

7) For all t ≤ T−1, there exists Q = Qt ∼ P with dQ/dP ∈ L∞((0,∞),FT )
such that (Su)

T
u=t is a Q-martingale and, for all t ≤ T − 1, for all X

such that EQ(X−|Ft) <∞ a.s., ρt(X) ≥ −EQ(X|Ft).

Moreover, for all x ∈ At,T \A0
t,T , there exists such a Q = Qt

x such that
P(EQ(x|Ft) 6= 0) > 0.

Proof. Suppose that 1) holds. By Theorem 2.23, we deduce that 3) holds.
Note that 2) and 3) are equivalent since the risk measure is time consistent.
Suppose that 3) holds. Since −At,T ⊆ Zt,T , it follows that A0

t,T ⊆ Zt,T ∩At,T .
Reciprocally, consider xt,T = Wt,T−at,T ∈ Zt,T ∩At,T , where Wt,T ∈ Rt,T and
at,T ∈ At,T , then Wt,T ∈ At,T hence Wt,T ∈ A0

t,T by 2). It follows that xt,T ∈
(−At,T ) and we conclude that Zt,T ∩ At,T = A0

t,T . Moreover, by Theorem
2.22, Zt,T is closed in probability hence 4) holds. Note that 4) and 5) are
equivalent since the risk measure is time consistent.

Assume that 4) holds. The existence of Q in 7) holds by standard ar-
guments based on the Hahn-Banach separation theorem. In particular, NA
holds under P ′ such that P ′ ∼ P . We suppose w.l.o.g that St is integrable
under P for every t. If x ∈ L1(R,FT ) ∩ (At,T \ A0

t,T ), x /∈ Zt,T ∩ L1(R,FT ).
By the Hahn-Banach separation theorem, we deduce the existence of px ∈
L∞(R,FT ) and c ∈ R such that:

E(pxX) < c < E(xpx), ∀X ∈ Zt,T .

As Zt,T is a cone, we get that E(pxX) ≤ 0 for all X ∈ Zt,T and since
−L0(R+,FT ) ⊆ Zt,T , we deduce that px ≥ 0 a.s.. With X = 0, we get that
E(xpx) > 0 and, as Rt,T is a vector space, E(pxX) = 0 for all X ∈ Rt,T .
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As P (px > 0) > 0, we may renormalize and suppose that ||px||∞ = 1. Let
us consider the family G = (Γx)x∈I where I = L1(R,FT ) ∩ (At,T \ A0

t,T ) and
Γx = {px > 0}. For any Γ ∈ FT such that P (Γ) > 0, x = 1Γ ∈ I since
At,T ∩ L0(R−,FT ) = {0}. Therefore, E(xpx) = E(1Γpx) > 0 implies that
P (Γx∩Γ) > 0. By Lemma 2.1.3 in [27], we deduce a countable family (xi)

∞
i=1 of

I such that Ω =
⋃∞
i=1 Γxi . We define p =

∑∞
i=1 2−ipxi . We have p > 0 a.s and

we renormalize p such that p ∈ L∞(R+,FT ) and EP (p) = 1. We define Q ∼ P
such that dQ/dP = p. We have E(pX) = 0 for all X ∈ Rt,T . Therefore, with
Fu−1 ∈ Fu−1, 1Fu−1∆Su ∈ Rt,T if u ≥ t + 1, so EQ(1Fu−1∆Su) = 0. This
implies that EQ(∆Su|Fu−1) = 0, i.e (Su)

T
u=t is a Q-martingale.

Moreover, by the the construction of Q above, for all x ∈ At,T ∩L1(R,FT ),
we have EQ(x|Ft) ≥ 0. By truncature and homogeneity, we may extend this
property to every x such that E(|x||Ft) < ∞ a.s. since x/(1 + E(|x||Ft))
is integrable. Finally, this also holds if EQ(x−|Ft) < ∞ a.s.. At last, since
ρt(X) + X ∈ At,T , we may conclude that ρt(X) ≥ −EQ(X|Ft), for all X
such that EQ(X−|Ft) < ∞ a.s.. If x ∈ At,T \ A0

t,T , it suffices to consider

the probability measure Qx = 1
2
(Q + Q̃) where Q̃ is defined by its density

dQ̃/dP = px. Indeed, since EQ̃(x) > 0 and EQ(x) ≥ 0, this implies that
EQx(x) > 0 hence P(EQx(x|Ft) 6= 0) > 0.

Assume that 7) holds. For some martingale measure Q ∼ P we have
ρt(θt∆St+1) ≥ −EQ(θt∆St+1|Ft) = 0, hence AIP holds. If ρt(θt∆St+1) = 0 on
some non null set Λt, we have ρt(θt∆St+11Λt) = 0. This implies θt∆St+11Λt

is acceptable. Moreover, if θt∆St+11Λt /∈ A0
t,T , EQx(θt∆St+11Λt|Ft) 6= 0 by

7), which yields contradiction . Therefore, ρt(θt∆St+1) = ρt(−θt∆St+1) = 0
on Λt, i.e. RN holds, and we deduce that 1) holds. Note that 5) and 6) are
equivalent by Theorem 2.22.2

We recall that the No Good Deal condition (NGD) of Cherny [7] may be
rephrased in our setting as follows:

Definition 2.25. The NGD condition holds at any time t ≤ T if there is no
Xt,T ∈ Rt,T such that ρt(Xt,T ) < 0 on a non null set.

In the setting of Cherny, we suppose that

ρt(X) = ess supQt∈Dt EQt(−X), (2.9)

where Dt is a weakly compact subset of L1 with respect to the σ(L1, L∞)
topology and we use the definition EQt(−X) = EQt(X

−) − EQt(X
+) with
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the convention ∞−∞ = +∞. Adapting [7, Theorem 3.4], we immediately
get the following:

Corollary 2.26. Suppose that the risk-measure is given by (2.9). Then, the
NA condition and the NGD condition are equivalent to the existence of a
probability measure Qt ∈ Dt such that the price process (Su)

T
u=t is a Qt-

martingale for all t ≤ T − 1.

The following step is to provide a dual description of the payoffs that can be
super-hedged. To do so, we denote by Qet (and Qe = Qe0) the set of equivalent
martingale measures Q that satisfies ρt(X) ≥ −EQ(X|Ft), for all X such that
EQ(X−|Ft) <∞ a.s.. We have Qet 6= ∅ under NA. We restrict the payoffs to
the class LS(R,FT ) of random variables hT ∈ L0(R,FT ) satisfying:

|hT | ≤ c0 +
d∑
i=1

ciSiT , P − a.s.

for some constants c0, ..., cd that may depend on hT .

Theorem 2.27. Suppose that the risk-measure is time-consistent and we
have At,T ∩ L0(R−,FT ) = {0} for every t ≤ T . Consider the following sets:

Γ0,T := Z0,T ∩ LS(R,FT ),

Θ0,T :=

{
hT ∈ LS(R,FT ), sup

Q∈Qe
EQ(hT ) ≤ 0

}
.

Then, under the NA condition, Γ0,T = Θ0,T and the minimal risk-hedging
price P ∗0 (hT ) of any contingent claim hT ∈ LS(R,FT ) is given by

P ∗0 (hT ) = sup
Q∈Qe

EQ(hT ).

Proof. By Theorems 2.22 and 2.24, we know that Γ0,T is closed in prob-

ability. For any hT ∈ Γ0,T , there exists
∑T

t=0 θt−1∆St ∈ R0,T such that

ρ0

(∑T
t=0 θt−1∆St − hT

)
≤ 0. Since, hT ∈ LS, we suppose w.l.o.g that ST

and hT are integrable under P .
Set γt :=

∑t
t=0 θt−1∆St − hT for every t ≤ T . For any Q ∈ Qe 6= ∅, we

have:

|γT | ≤

∣∣∣∣∣
T−1∑
t=0

θt−1∆St

∣∣∣∣∣+ |θT−1||∆ST |+ |hT |,
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hence:

EQ(|γT ||FT−1) ≤

∣∣∣∣∣
T−1∑
t=0

θt−1∆St

∣∣∣∣∣+ |θT−1|EQ(|∆ST ||FT−1) + EQ(|hT ||FT−1) <∞ a.s..

By Statement 7) of Theorem 2.24 and the martingale property, we deduce
that:

ρT−1(γT ) ≥ −EQ(γT−1|FT−1). (2.10)

At time T − 2, by time-consistency of the risk measure and (2.10), we get
that

ρT−2(γT ) = ρT−2(−ρT−1(γT )) ≥ ρT−2(EQ(γT−1|FT−1)).

Moreover, EQ(|EQ(γT−1|FT−1)||FT−2) ≤ EQ(|γT−1||FT−2) and

EQ(|γT−1||FT−2) ≤

∣∣∣∣∣
T−2∑
t=0

θt−1∆St

∣∣∣∣∣+ |θT−2|EQ(|∆ST−1||FT−2)

+EQ(|hT ||FT−2) <∞ a.s..

We deduce by Statement 7) of Theorem 2.24 that

ρT−2(EQ(γT−1|FT−1)) ≥ −EQ(γT−1|FT−2).

By the martingale property, we finally deduce that ρT−2(γT ) ≥ −EQ(γT−2|FT−2).
Recursively, we finally obtain:

0 ≥ ρ0

(
T∑
t=0

θt−1∆St − hT

)
≥ −EQ(γ1|F0) ≥ −EQ(θ0∆S1 − hT ) ≥ EQ(hT ).

(2.11)

This implies Γ0,T ⊂ Θ0,T .

Reciprocally, assume that there is ĥT ∈ Θ0,T \Γ0,T . Since ĥT ∈ LS(R,FT ),

ĥT is integrable under Q ∈ Qe. Moreover, since Γ0,T is closed in probability,
Γ̃0,T := Γ0,T ∩ L1

Q(R,FT ) is closed in L1. By the Hahn-Banach separation

theorem, as ĥT /∈ Γ̃0,T , we deduce the existence of Y ∈ L∞(R,FT ) such that:

sup
X∈Γ̃0,T

EQ(Y X) < EQ(Y ĥT ).
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Let H be the density Q w.r.t P , i.e. H = dQ/dP . We have:

sup
X∈Γ̃0,T

E(HYX) < E(HY ĥT ).

Since Γ̃0,T is a cone, we deduce that E(HYX) ≤ 0 for all X ∈ Γ̃0,T . Moreover,

E(HY ĥT ) > 0, HY ≥ 0 a.s. and E(HY ) > 0. Therefore, we deduce that
Ĥ := HY/E(HY ) defines the density of a probability measure Q̂ ∈ Qa.

We define Hε := εH + (1 − ε)Ĥ. Since E(ĤĥT ) > 0, we may choose
ε ∈ (0, 1) small enough so that E(HεĥT ) > 0. Since Hε defines the density of
a probability measure Qε ∈ Qe, we should have EQεĥT = E(HεĥT ) ≤ 0, as

ĥT ∈ Θ0,T . This yields a contradiction. We conclude that Γ0,T = Θ0,T .

At last, P0 is a super-hedging price for hT if and only if hT −P0 ∈ Γ0,T . By
the first part, we deduce that P ∗0 ≥ supQ∈Qe EQ(hT ). Suppose there exists
ε > 0 such that P ∗0 − ε ≥ supQ∈Qe EQ(hT ). Then, (hT −P ∗0 + ε) ∈ Θ0,T . Since
Θ0,T = Γ0,T , there exists W0,T ∈ R0,T such that ρ0(W0,T − hT + P ∗0 − ε) ≤ 0.
This implies that P ∗0 − ε ≥ ρ0(W0,T − hT ). Since ρ0(W0,T − hT ) is a super-
hedging price for hT , we also deduce that ρ0(W0,T − hT ) ≥ P ∗0 which yields
a contradiction. We conclude that P ∗0 = supQ∈Qe EQ(hT ).2

3. An example of dual representation for a consistent
risk-measure

As mentioned by Cherny [7, Theorem 2.2] and shown in [15], any consistent
risk-measure ρt restricted to the set of all bounded random variables is char-
acterized by a family Dt of absolutely continuous probability measures such
that ρt(X) = ess supQ∈Dt EQ(−X|Ft). In the following, we consider the risk-
measure ρt on L0 as defined in this paper. For X ∈ L0, we define EQ(−X|Ft)
as EQ(−X|Ft) = EQ(X−|Ft)−EQ(X+|Ft) with the convention∞−∞ =∞.
We say that a random variable X is Ft-bounded from above if X ≤ ct a.s.
for some ct ∈ L0(R+,Ft).

Proposition 3.1. Let (ρt)t=0,··· ,T be the coherent risk-measure as defined in
Section 2. Then, there exists a family Dt of absolutely continuous probability
measures such that, for every Ft-bounded from above random variable X, we
have:

ρt(X) = ess supQ∈Dt EQ(−X|Ft). (3.12)
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Proof. By [1], [15], there exists Dt such that (3.12) holds if X ∈ L∞.
By homogeneity, it is clear that (3.12) still holds if X is Ft-bounded, i.e.
|X| ≤ ct where ct ∈ L0(R+,Ft). Let us show that (3.12) still holds for any
random variable X such that X ≤ ct a.s. for some ct ∈ L0(R+,Ft) and X
is acceptable. Let us define XM = X1X≥−M for any M > 0. Then, XM is
bounded a.s.. As XM = X − X1X<−M and −X1X<−M ≥ 0, then XM is
acceptable i.e. ρt(X

M) ≤ 0. By 3.12, we deduce that EQ(XM |Ft) ≥ 0 for all
Q ∈ Dt. This implies that EQ((XM)+|Ft) ≥ EQ((XM)−|Ft) and, as M →∞,
we get that ct ≥ EQ(X+|Ft) ≥ EQ(X−|Ft) hence ∞ > EQ(X|Ft) ≥ 0. More
generally, for any X such that X ≤ ct for some ct ∈ L0(R+,Ft), ρt(X) +
X is acceptable hence ρt(X) ≥ EQ(−X|Ft) for any Q ∈ Dt. We deduce
that the inequality ρt(X) ≥ ess supQ∈Dt EQ(−X|Ft) holds. Reciprocally, if
ess supQ∈Dt EQ(−X|Ft) = +∞, then we deduce that 3.12 holds. Otherwise,
for any Q ∈ Dt, EQ(X−|Ft) <∞. Moreover, for any ε > 0,

ess supQ∈Dt EQ(−X|Ft) + EQ(XM |Ft) + ε ≥ EQ(−X|Ft) + EQ(XM |Ft) + ε.

As EQ(X+|Ft) ≤ ct, we may apply the dominated convergence theorem as
limM→∞X

M = X a.s. and we deduce that for M ≥ M0(t), the expecta-
tion of γnt = ess supQ∈Dt EQ(−X|Ft) +XM0(t)+n + ε, n ≥ 0, is non negative.
As γnt is Ft-bounded, we get that ρt(γ

n
t ) ≤ 0 by (3.12) hence γnt is ac-

ceptable for any n ≥ 0. Since the set of acceptable positions is closed, we
deduce that ess supQ∈Dt EQ(−X|Ft) +X + ε is acceptable. Finally, as ε→ 0,
ess supQ∈Dt EQ(−X|Ft) + X is acceptable. As ρt(X) = ess infFt AXt , we de-
duce that ρt(X) ≤ ess supQ∈Dt EQ(−X|Ft) so that the equality (3.12) holds
for any random variable that are Ft-bounded form above. 2

Unfortunately, it is unrealistic to expect that (3.12) may be extended in
general from L∞ to L0, as mentioned by Cherny, [7]. The main problem is
about the non negatives random variables as we shall see in the proof of the
next proposition. Before, let us see a trivial example where we may meet
some difficulties for non negative random variables.

We consider Ω = [0, 1] equipped with the Borel σ-algebra and the Lebesgue
measure P . The random variable X(ω) = ω−11(0,1](ω) is non negative hence
acceptable. Suppose that the set of all acceptable positions is the closure in
L0 of the random variables X such that EP (X) = EP (X+) − EP (X−) ≥ 0.
We then define ρ on L0 as in Section 2, see [30]. As EP (X) =∞, we deduce
that Zα := X − α is acceptable for all α > 0 if (3.12) holds. On the other

27



hand, P (Zα < 0) = 1− α−1 tends to 1 as α→∞, which is unrealistic if Zα
is acceptable.

Consider Q ∈ D0 and Z = dQ/dP . Suppose that P (Z > 1) > 0. We
then choose α < 0 and β > 0 such that αP (Z > 1) + βP (Z ≤ 1) = 0.
Then, X = α1Z>1 +β1Z≤1 is acceptable as EP (X) = 0. Therefore, by (3.12),
EQ(X) ≥ 0. Actually,

EQ(X) = EP (XZ) = EP (αZ1Z>1 + βZ1Z≤1) ≤ EP (X) = 0

and EQ(X) = 0 if and only if αZ1Z>1 + βZ1Z≤1 = X. In that case Z = 1
on {Z > 1} hence a contradiction. We deduce that Z ≤ 1 a.s.. At last, since
Z ≤ 1 a.s., we deduce that Z = 1 a.s.. We then deduce that D0 = {P}.

Also, as another example, considerX(ω) = ω−11(0,α)(ω)+(ω−1)−11(α,1)(ω),
ω ∈ Ω. Since EP (X) =∞−∞ =∞, we deduce that X is acceptable. Never-
theless, P (X < 0) = 1− α tends to 1 as α→ 0, which is clearly unrealistic.

In the following, we denote by A∞,+t the set of all acceptable positions at
time t which are Ft-bounded from above.

Proposition 3.2. Suppose that At is the closure of A∞,+t + L0(R+,FT ) in
L0 and assume that, for some fixed ε > 0, A∞,+t contains all the random
variables Z which are Ft-bounded from above and satisfy P (Z < 0) ≤ ε. Let
(ρt)t=0,··· ,T be the coherent risk-measure as defined in Section 2. Then, there
exists a family Dt of absolutely continuous probability measures such that we
have.

ρt(X) = ess supQ∈Dt EQ(−X|Ft), ∀X ∈ L0. (3.13)

Proof. Suppose that Z = X + ε+ where X is Ft-bounded from above and
acceptable and ε+ ≥ 0 a.s.. Then, for all Q ∈ Dt, EQ(Z|Ft) ≥ EQ(X|Ft) ≥ 0
by Proposition 3.1. As ρt(Z) + Z, admits the same form than Z, we de-
duce that ρt(Z) + Z admits non negative conditional expectations under
Q ∈ Dt. Therefore, ρt(Z) ≥ EQ(−Z|Ft) for all Z ∈ Dt hence ρt(Z) ≥
ess supQ∈Dt EQ(−Z|Ft), at least when ρt(Z) > −∞. Otherwise, when ρt(Z) =
−∞, Zα = −α + Z is acceptable for all α > 0, hence EQ(Zα|Ft) ≥ 0, i.e.
EQ(Z|Ft) ≥ α for all α > 0. It follows that EQ(Z−|Ft) − EQ(Z+|Ft) ≤ −α
and finally ρt(Z) = ess supQ∈Dt EQ(−Z|Ft) = −∞ as α→∞.

Consider an acceptable position Z. Then, by assumption, Z = lim supn Z
n

where Zn is of the form Zn = Xn + ε+n with ε+n ≥ 0 a.s. and Xn is Ft-
bounded from above. Note that supn≤kXn is still Ft-bounded from above for
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all k ≥ n. Since supn≥k Zn ≥ supk≤n≤m Zn, for all m ≥ k, we deduce that
supn≥k Zn is of the form Xk + ε+k where Xk is Ft-bounded from above and
acceptable while ε+k ≥ 0 a.s.. It follows that any acceptable position is of
the form Z = lim ↓ Zn where Zn is of the form Zn = Xn + ε+n where Xn

is Ft-bounded from above and acceptable while ε+n ≥ 0 a.s.. As Z ≤ Zn,
we deduce that ρt(Z) ≥ ρt(Zn) ≥ ess supQ∈Dt EQ(−Zn|Ft) by virtue of the
inequality we have shown in the first part. As (−Zn) is non decreasing we
finally deduce that ρt(Z) ≥ EQ(−Z|Ft) for any Q ∈ Dt, when n → ∞. It
follows that ρt(Z) ≥ ess supQ∈Dt EQ(−Z|Ft).

Moreover, suppose that (3.13) holds for any acceptable position Zn of the
form Zn = Xn + ε+n where Xn is Ft-bounded from above and acceptable and
ε+n ≥ 0 a.s.. By lower semi-continuity,

ρt(Z) ≤ lim inf
n

ρt(Zn) = lim inf
n

ess supQ∈Dt EQ(−Zn|Ft).

As Z ≤ Zn, EQ(−Zn|Ft) ≤ EQ(−Z|Ft), and we deduce the inequality
ρt(Z) ≤ ess supQ∈Dt EQ(−Z|Ft). We then conclude that (3.13) holds for ev-
ery acceptable position Z and, finally, for every X ∈ L0 as ρt(X) + X is
acceptable.

It remains to show that (3.13) holds for Z = X+ε+ ∈ A∞,+t +L0(R+,FT ).
To get it, it is sufficient to prove that ρt(Z) ≤ ess supQ∈Dt EQ(−Z|Ft). Let

us define Zn = X + ε+1ε+≤n + αn1ε+>n ∈ A∞,+t where αn > 0 is chosen
large enough in such a way that P (αn < ε+) < ε. Then, (αn − ε+)1ε+>n is
acceptable by hypothesis for P ((αn − ε+)1ε+>n < 0) ≤ P (αn < ε+) < ε.

Since Zn → Z a.s., we deduce that ρt(Z) ≤ lim infn ρt(Z
n). Recall that

ρt(Z
n) = supQ∈Dt EQ(−Zn|Ft) by Proposition 3.1. Hence,

ρt(Z
n) ≤ ess supQ∈Dt EQ(−Z|Ft) + ess supQ∈Dt EQ(Z − Zn|Ft).

Moreover, since Zn − Z is Ft-bounded from below, we have

ess supQ∈Dt EQ(Z − Zn|Ft) = ρt(Z
n − Z) = ρt((αn − ε+)1ε+>n) ≤ 0.

We then deduce that ρt(Z) ≤ ess supQ∈Dt EQ(−Z|Ft) and the conclusion
follows. 2

The proof of the proposition above shows that (3.13) holds as soon as it
holds for any acceptable position which is the sum of an Ft-bounded position
plus a non negative one. By Proposition 3.1, (3.13) holds for any Ft-bounded
position. Therefore, the difficulty in proving (3.13) stems from the non neg-
ative random variables.
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