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A B S T R A C T

Magnesium-cobalt molybdate composites (Mg1–xCoxMoO4: x = 0, 0.3, 0.4, 0.6, 0.8 and 1) were successfully 
synthesized through a facile sol-gel synthesis at low temperature, and characterized by thermogravimetric and 
differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), 
Raman spectroscopy, scanning electron microscopy (SEM), UV-Vis spectroscopy and colorimetric measurements 
using the CIE L*a*b* colour system. The surface specific area was calculated using the Brunauer–Emmett–Teller 
analysis in the adsorption/desorption isotherm. The examination of the X-ray diffractograms of the unground 
milled solid solutions of Mg1–xCoxMoO4 (0 ≤ x ≤ 1) presented a single continuous system related to monoclinic 
β-MgMoO4. The absorbance spectra of the Mg1–xCoxMoO4 pigments confirmed the insertion of cobalt in the β- 
MgMoO4 matrix. The CIE-L*a*b* colour coordinates indicated that the intense purple colour was obtained for 
x = 0.6.   

1. Introduction

Nanomaterials have been widely studied in recent years. Their
properties vary according to their chemical compositions, sizes, and 
specific surface areas. These materials of the future have the potential 
to save energy while protecting the environment; however, achieving 
these objectives requires excellent mastery of nanomaterial production 
processes, which must be low cost from an energy point of view [1,2]. 
Molybdates, which also have interesting physical properties [3], are 
widely used in various industrial sectors. Metal molybdates of mono
clinic structures have many potential applications involving, for ex
ample, photoluminescence, semiconductor lasers, magnets, lithium-ion 
batteries, microwaves, catalysts, and photoelectric devices [4–10]. 

Magnesium-Cobalt Molybdate (Mg1-xCoxMoO4) is an important 
technological material used as a catalyst in many chemical and petro
chemical processes such as cracking, dehydrogenation, hydrogenation 
and hydrodesulfurization (HDS). These molybdates also exhibit inter
esting optical, catalytic and dielectric properties. They have been used 
as pigments for decades and in particular as an analytical dosing agent. 

The solid-solid method is often used for the synthesis of 
Mg1−xCoxMoO4 molybdates. This process requires heat treatment at 
high temperatures, and typically results in powders of poor chemical 

and morphological homogeneity [11]. The objective of this work is to 
develop Mg1−xCoxMoO4 (0 ≤ x ≤ 1) molybdates of nanometric size at 
low temperatures by pyrolysis of citrate precursors. Extremely pure 
multi-component oxides of submicron grain size and high chemical 
homogeneity can be obtained rapidly and easily by producing poly
merizable complexes [12]. Typically, for molybdates of the formula 
A2+MoO4 (A2+= Mg2+, Co2+…) and of the monoclinic type in the 
space group C2/m in the polymorph α, all the cations are in octahedral 
coordination. In the β phase, the divalent cation remains in the octa
hedral site, while the coordination of Mo evolves toward a tetrahedral 
site [13,14]. The products thus obtained adopt the α or β type mo
lybdates of divalent 3d element monoclinics depending only on whe
ther they are cooled to ambient temperature with or without grinding. 
Mg2+ ions have a strong preference for regular octahedral environ
ments in the β phase rather than the α phase [15,16]. When Mg is 
substituted for Co, the likelihood of affecting the second neighboring 
Mo atoms increases rapidly, as one Mg atom is surrounded by six Mo 
atoms [17]. 

2. Methods and materials

The following reagents were used to develop the precursors of the
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Mg1−xCoxMoO4 molybdates: 0.2M magnesium nitrate (Mg(NO3)2•6H2O) 
(Aldrich, 98%), 0.2M cobalt nitrate (Co(NO3)2•6H2O) (Aldrich, 
98%),0.2M ammonium heptamolybdate ((NH4)6Mo7O24•4H2O) (Acros, 
99%), and citric acid (Acros, 98%). The citric acid makes it possible to 
complex the metals along the polymer chains. These reagents were mixed 
in stoichiometric proportions. After evaporation, the precursors obtained 
were pre-burned at 300°C for 12 hours under air. The resulting black 
powders were crushed and then maintained at 700°C for 2 hours. 

Depending on the rate of cobalt added, powders of different colours were 
obtained after grinding. The resulting powders were characterized using 
an x-ray diffractometer (Bruker D8 Advance equipped with a LynxEye 
detector. The X-ray generator (40 kV, 40 mA) is a copper anticathode tube 
that uses the CuKα line. A graphite monochromator eliminates the Kβ 
lines. The wavelength of the Kα1 / Kα2 lines of copper is 0.15406 / 
0.15443 nm. The phases obtained are analyzed using Eva PLUS software 
by comparing the positions and intensities of the different diffraction lines 
observed with those available in the PDF-4-2010 Database established by 
the ICDD (International Center for Diffraction Data). The infrared spectra 
were taken using a Fourier-transform infrared spectrometer (IR Affinity- 
1S Shimadzu). The Raman spectra were recorded with a LabRAM HR 800 
(Horiba Jobin-Yvon) spectrometer. The morphologies of the powders 
were examined using scanning electronic microscopy (JEOL JSM 6400), 
and the specific surface areas were determined using the 
Brunauer–Emmett–Teller (BET) method (Micrometrics Flowsorb II 2300). 
The colour parameters (L*a*b*) were measured using the CIE Lab system 
colorimeter (CR-400/410, KONICA MINOLTA). 

3. Results and discussion

3.1. Thermal decomposition (TG-DTA)

The decomposition of the organic part of the xerogels is an essential 
parameter to be defined in order to optimize the future heat treatments 
necessary for the preparation of the powders. The thermogravimetric 
analysis curve of the magnesium-based Mg0.7Co0.3MoO4 (x=0.3) 

Fig. 1. TG–DTA curves of the Mg0.7Co0.3MoO4 precursor obtained by pyrolysis 
of citrate precursors. 

Fig. 2. XRD patterns of Mg1-xCoxMoO4(0 ≤ x ≤ 1) compounds prepared by sol gel route without grinding  
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precursor in air shows that thermal decomposition occurs in several 
stages. As shown in Fig. 1, this decomposition starts at approximately 
20°C and ends before 700°C. The total weight loss is about 60%. The 
first weight loss of the molybdate (about 8%) is observed at approxi
mately 98°C; it corresponds to the elimination of water adsorbed on the 

surfaces of the powders. The second series of successive weight losses 
observed between 350 and 550°C corresponds to a loss of 24%, and can 
be attributed to the combustion of the precursor. A final weight loss of 
28% is associated with three exothermic peaks located at 581, 630 and 
692 °C. This process most likely corresponds to the oxidation of the 
carbon produced during the combustion of the precursor. No phe
nomenon is observed above 700°C. This temperature was thus used for 
the rest of our syntheses. 

3.2. X-ray diffraction (XRD) 

In order to check the purity of the phases, X-ray diffraction analyses 
were carried out. The examination of the X-ray diffractograms of the 
solid solutions of Mg1–xCoxMoO4 (0≤x≤1) present a single continuous 
system for the compositions corresponding to 0≤x≤1 without grinding 
and have a single-phase domain related to monoclinic β-MgMoO4 

(JCPDS card No. 072-2153) (Fig. 2). For cobalt contents x ≥ 0.6 in the 
case of ground powders, the only phase observed is α-CoMoO4 (JCPDS 
card No. 073-1331) (Fig. 3). 

A simple grinding of the powder (0.6 ≤ x ≤ 1), which is purple in 
color and which corresponds to the allotropic variety β-CoMoO4, leads 
to powders of green color isotype of the allotropic variety α-CoMoO4 

pure. The change in color under the effect of grinding or pressure in 
general is called the phenomenon of piezochromism. The molybdates 
isotype of βCoMoO4 are known as piezosensitive (sensitive to grinding) 
compounds. The grinding of the powders obtained (Mg1-xCoxMoO4 (0 
≤ x ≤ 1)) was carried out manually with an agate mortar for 5 to 10 

Fig. 3. XRD patterns of Mg1−xCoxMoO4 (0≤x≤ 1) compounds prepared by sol gel route with grinding.  

Fig. 4. FT-IR spectra of Mg1-xCoxMoO4 (x=0.3 and x=0.6) powders obtained 
at 700°C. 

H. Lakhlifi, et al.



min (Fig. 3):  

• For the compositions 0 ≤ x ≤ 0.4, an iso-type monoclinic phase of
β-MgMoO4 is observed.

• For cobalt contents 0.6 ≤ x ≤ 1, the only phase observed is α-
CoMoO4 with a green color, it is a transition phenomenon of β —–>
α.

These results are in good agreement to those obtained by solid-state

reaction [18]. 

3.3. Infrared spectroscopy (FT-IR) 

Spectroscopy analyses (FTIR) were carried out on the 
Mg1−xCoxMoO4 (x=0.3 and x=0.6) powders prepared by sol gel route 

and treated at 700°C (Fig. 4). Infrared spectra show the presence of the 
Mo-O-Mo stretching vibration bands observed at 950 and 911 cm−1 

[19,20].The band located at 856 cm−1 is associated with the vibration 
mode of the Mo-O band [21]. Thus, the bands observed at 744 and 710 
cm−1 are associated with the vibration of the Mg-O band [22], the band 
at 495 cm−1 is specific to the vibrations of the Co-O-Mo band [23]. 
While the peak located at 436 cm−1 is due to the bending mode of 
Mo–O [24]. 

3.4. Raman spectroscopy 

In order to confirm the results obtained previously, analyses using 
Raman spectroscopy were carried out on the Mg1-xCoxMoO4 powders 
(x = 0.3 and x = 0.6) produced by sol–gel route (Fig. 5). Generally, 
Raman bands corresponding to the symmetrical stretching (ʋ1) and 
asymmetrical stretching (ʋ3) modes were observed in the 700-1000 
cm−1 region, whereas those corresponding to the symmetrical modes 
(ʋ2) and asymmetrical modes (ʋ4) were observed in the 50-520 cm−1 

region [25]. With regards to the solid solutions of Mg1-xCoxMoO4 

(x = 0.3 and x = 0.6) prepared through the sol–gel route, the most 
intense vibration observed at 934 cm−1 is assigned to the mode d 
symmetric stretch ʋ1(Ag) of the MoO4

2−tetrahedron [26] of the 
C2h point group. Those located at 892 and 834 cm−1 correspond to the 
anti-symmetric stretching ʋ3 (Bg/D2h) and ʋ3 (Eg) vibration modes of 
the Mo–O–Mo of German entartet (e.g.), respectively [21]; the band 
observed at 711 cm−1 corresponds to the antisymmetric stretching 
modes of oxygen in the O-Mo-O band [27]; The peaks at 360 and 330 
cm–1 correspond to the anti-symmetric ʋ4(Bg/D2h) and ʋ2(Ag/C2h) 
bending modes, respectively [28–31]. Thus, the free rotation mode was 
observed at 276 cm−1 [32]. These results were consistent with those 
obtained by diffraction analysis techniques X-rays and infrared spec
troscopy (FTIR). The Raman bands of the compositions x = 0.3 and 
x = 0.6 are summarised in Table 1. 

3.5. Specific surface area measurements (BET) 

Specific surface area measurements were carried out on the 

Fig. 5. Raman spectra of the Mg1−xCoxMoO4 (x = 0.3, 0.6) powders obtained at 700°C.  

Table 1 
Raman bands, modes and attributions of the Mg1-xCoxMoO4 (x=0.3 and 
x=0.6).    

Frequencies (cm-1) Mode and Attribution  

934 ʋ1(Ag/C2h) MoO4: Symmetrical stretch 
892-834 ʋ3 (Ag/C2h and Eg/(e.g)) Mo–O–Mo: Ant-isymmetric 

stretch 
711 ʋ4 (Bg/D2h) O-Mo-O: Anti-symmetric oxygen stretching 

vibration 
360 ʋ4 (Bg/D2h): anti-symmetric vibration 
330 ʋ2(Ag/C2h): Bending modes 
276 Free rotation mode 

Table 2 
Elementary grain size solid solutions Mg1-xCoxMoO4 (x = 0.3 and x = 0.6).      

Synthesis route The Co2+ amount 
incorporated (x) 

Specific surface 
area BET (m2/g) 

Average particle 
size BET (nm)  

Sol- gel (700°C) 0.3 0.41 3622  
0.6 0.77 1824 
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Mg1-xCoxMoO4 (x = 0.3, 0.6) powdered samples. Table 2 presents these 
measurements and the average sizes of the particles which were cal
culated, taking into consideration that the particles are spherical and 
individualised. It should be noted that the powders obtained via the 
sol–gel route have low specific surfaces that vary from 0.4 to 0.8 m2/g 
which depending on the rate of incorporation of the cobalt. 

3.6. Scanning electron microscopy (SEM) 

The SEM micrographs for Mg1−xCoxMoO4 (x = 0.3 and x = 0.6) 
prepared at 700°C via sol-gel route show a powders formed by compact 
porous agglomerates forming cages (Fig. 6a and b).The porosity comes 
from the rapid dissipation of the gaseous products (NO2, CO2 and H2O) 
formed during the combustion. The particles forming the agglomerates 
range in size from 1 to 5 μm). These images show advanced sintering, 
which confirms the low values of the specific BET surfaces obtained. 

3.7. Colorimetric measurements (CIE L*a*b*) 

The colorimetric parameters (L* a* b*) of the Mg1−xCoxMoO4 

powders for the compositions 0≤x≤1 obtained at 700°C through the 

Fig. 6. SEM micrographs of Mg1-xCoxMoO4 powders (a): x = 0.3 and (b): x = 0.6 prepared by sol-gel route.  

Fig. 7. Evolution of the colour parameters of Mg1−xCoxMoO4 (0 ≤x≤ 1) 
powders obtained by sol-gel route. 
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Fig. 8. Shades of colours of Mg1-xCoxMoO4 (x=0, 0.3, 0.6, 1) powders obtained at 700°C without grinding.  



sol–gel method were measured in the CIE L*a*b* system (Fig. 7). We 
noted a maximum value for the composition x = 0.6 with purple 
colour. Fig. 8 shows the different shades of purple obtained essentially 
depend on the content of cobalt x, such that 0 ≤ x ≤ 1. 

4. Conclusion

Cobalt-substituted MgMoO4 compounds were prepared through the
sol-gel route. The X-ray diffraction result shows the formation of con
tinuous systems of the solid solution Mg1−xCoxMoO4 (0 ≤ x ≤ 1) and 
the grinding of these powders seems to have an influence on the phase 
obtained. In fact, for the compositions 0 ≤ x ≤ 1:  

• Without grinding, they present a single-phase domain of monoclinic
symmetry isotype at β-MgMoO4.

• With grinding, the fractions x ≥ 0.6 show, a single-phase isotype
with α-CoMoO4.

The ceramic pigments obtained have an advanced pre-sintering
state, which explains the low values of specific surface area between 
0.41 and 0.77 m2/g. The measurements of the L*a*b* colorimetric 
coordinates show that the component (–b*), which is characterised by 
purple colour, has a maximum value in the case of Mg0.4Co0.6MoO4. 
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