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A Decidable and Expressive Fragment of
Many-Sorted First-Order Linear Temporal Logic

Quentin Peyras, Julien Brunel, David Chemouil∗

DTIS, ONERA & Université fédérale de Toulouse, F-31055 Toulouse

Abstract

First-Order Linear Temporal Logic (FOLTL) and its Many-Sorted variant (MSFOLTL) are well-suited to specify
infinite-state systems. However, the satisfiability of (MS)FOLTL is not even semi-decidable, thus preventing auto-
mated verification. In this paper, we exhibit various fragments of increasing scope that provide a pertinent basis for
the abstract specification of infinite-state systems. We show that these fragments enjoy the Bounded Domain Property
(any satisfiable (MS)FOLTL formula has a model with a finite, bounded FO domains), which provides a basis for
complete, automated verification by reduction to LTL satisfiability. Finally, we present a simple case study illustrating
the applicability and limitations of our results.

Keywords: First-Order Linear Temporal Logic, Many-Sorted Logic, Bounded Domain Property, Finite Domain
Property, Decidability.
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1. Introduction

First-Order Logic (FO), even more so in its Many-Sorted variant, has proven to be useful to reason about the
structure of a system, i.e., the objects of the domain (which may be infinite), their relations and the properties they
satisfy. Temporal logics, on the other hand, provide a natural way to specify the evolution of a system. (Many-Sorted)
First-Order Temporal Logics combine both dimensions and offer a flexible way of specifying systems with a rich
structure, dynamic aspects and a possibly infinite number of states. First-Order Linear Temporal Logic (FOLTL) [1, 2]
is the most studied among those.

However, formally verifying properties of such specifications is challenging as (MS)FOLTL is not even semi-
decidable. To overcome this situation, a solution is to restrict the expressive power of the temporal dimension of the
logic by focusing on the verification of safety properties. It is then possible to rely on decidable (MS)FO fragments [3]
to develop a verification procedure. This approach is for instance followed in Ivy [4]. When it comes to verifying
liveness properties, an extension of Ivy relies on a liveness-to-safety transformation [5, 6]. These techniques are
promising but they lead to an incomplete verification procedure and are not entirely automated.

Another approach, previously followed by the present authors, limits analyses to a bounded FO domain. The
verification procedure is then entirely automated and has shown to be easily applicable for the quick validation of rich
system specifications [7–9]. However, since only a bounded FO domain is explored, the verification procedure is also
incomplete.

In this paper, we aim at verifying abstract specifications of infinite-state systems, expressed in (MS)FOLTL,
automatically. So we follow yet another track: we exhibit fragments of (MS)FOLTL which we claim expressive
enough to specify a large class of systems and which enjoy an automated and complete verification method. In
practice, we prove that the fragments enjoy the Bounded Domain Property (BDP):
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1. finite domain property (FDP): any satisfiable formula in these fragments has a model with finite FO domains,
2. we effectively exhibit a bound on the FO domains (depending on the size of the formula and often exact).

We stress that the bound does not apply to the temporal dimension of models.
Remark that this work builds upon previous work of some of the present authors [10], where various simple

fragments of FOLTL were studied. None of those fragments allows to express a typical system specification. In
particular, only one fragment including all LTL connectives, an extension of the classic Ramsey FO fragment (cf.
Ex. 1), is shown to enjoy the FDP. This fragment is strictly included in the most general fragment presented in this
paper, for which we establish the BDP.

Owing to our purpose, the syntactic shape of our fragments is inspired by formal system specification approaches
such as Lamport’s TLA+ [11] or the present authors’ Electrum [7, 8] (both these languages having a strong relation
with MSFOLTL). In Electrum for instance, an abstract system specification spec typically has the following shape (ig-
noring additional features of the language):

spec = init ∧G trans ∧ fair → prop

where: init is an MSFO formula that expresses initial conditions of the system; trans is an MSFOLTL formula that
describes the system transitions and that only includes the LTL connective X (next) and first-order quantifiers; fair is
an MSFOLTL formula, which expresses fairness conditions and thus includes nested LTL connectives G (always) and
F (eventually); prop is an MSFOLTL formula that expresses a property expected of the system under specification. It
may in principle be arbitrarily complex but, in practice, for a large class of systems, it often remains in a relatively
simple fragment of MSFOLTL.

Now, checking the validity of spec (|= spec) can be reduced to verifying that ¬spec is unsatisfiable, i.e. that we
have UNSATMSFOLTL(¬spec), with ¬spec = init ∧G trans ∧ fair ∧ ¬prop. Typically, however, ¬spec does not belong
to any formerly known decidable fragment of MSFOLTL.

Our main contribution is precisely to devise some novel decidable fragments of (MS)FOLTL encompassing for-
mulas following the ¬spec template, by showing that these fragments enjoy the BDP.

Thus, provided ¬spec belongs to one of these fragments, there is for every sort S a bound kS such that the

problem UNSATMSFOLTL(¬spec) can be reduced to UNSAT

∧
S∈S
|S |6kS

MSFOLTL(¬spec), where this notation means unsatisfiability
in interpretation structures where, for every sort S , the corresponding FO domain is of size at most kS .

Finally, using these bounds, the MSFOLTL formula spec can be expanded into a plain LTL formula spec′, by

unfolding quantifiers over the bounded domains. This way, the UNSAT

∧
S∈S
|S |6kS

MSFOLTL(¬spec) problem is itself reduced
to the problem UNSATLTL(¬spec′). As LTL satisfiability is decidable, this ultimately yields a complete, automated
decision procedure for the original problem.

Additionally, we make the following two remarks:

• for several of our fragments, the bound is linear in the size of formulas and exponential in certain formula-
related criteria that are usually small in practice;

• for several fragments, the bound is effectively reached, in the sense that UNSATMSFOLTL(¬spec) can even be

reduced to UNSAT

∧
S∈S
|S |=kS

MSFOLTL(¬spec), which can in practice be leveraged to produce a smaller LTL formula to
check for unsatisfiability.

Comparison with [12]. This article extends work presented at TIME’19. Compared with the former work, the present
article details many proofs in Sect. 4 and introduces a whole new many-sorted extension of former results in Sect. 5.
In this section, we present a novel fragment of MSFOLTL enjoying the BDP. Remark that this fragment generalizes
both the Geneva fragment of Sect. 4 and the last fragment presented in [10]. Additionally, in this version of the article,
the example presented in Sect. 6 has been updated to take into account the many-sorted setting.

The remainder of the article is organized as follows. In Sect. 2, we provide preliminary definitions about FOLTL.
We also exhibit axioms of infinity, i.e. formulas that do not enjoy the FDP, in order to later guide the search for
logical fragments enjoying the BDP. Then we state some lemmas useful for subsequent proofs. In Sect. 3, we devise
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a notion of partial interpretation structures that is helpful in building interpretation structures step-by-step rather than
in one stroke. In Sect. 4, we define in several steps a fragment of FOLTL that is relevant in the context of system
specification. We show that it enjoys the BDP and exhibit a bound on the FO domain. In Sect. 5 we define an
extension of the previous fragment in many-sorted logic and prove that this fragment enjoys the BDP. We also provide
an algorithm computing the corresponding bound. Then, in Sect 6, we illustrate the interest and limitations of our
many-sorted fragment on a toy example. Finally, we draw a comparison with related work in Sect. 7.

2. Syntax and Semantics of FOLTL

2.1. FOLTL

The basic vocabulary of FOLTL is defined out of a signature Σ = (F ,R) where F = (Fi)i∈N (resp. R = (Ri)i∈N) is
a family of sets of function (resp. predicate) symbols), with Fi (resp. Ri) the set of function (resp. predicate) symbols
of arity i. We write Const for the set F0 of constant symbols. Given a setV of variables, the set TΣ,V of terms over Σ

andV is defined in the usual way. Terms in TΣ,∅ are called closed terms.

Definition 1 (Formulas). Given a signature Σ = (F ,R) and a set of variablesV, FOLTL formulas over Σ andV are
defined inductively by the following grammar (with x ∈ V, r ∈ Rn and every ti in TΣ,V):

ψ ::= r(t1, . . . , tn) | ¬ψ | ψ ∨ ψ | Xψ | ψ U ψ | ∀x · ψ | ∃x · ψ

X and U stand for the “next” and “until” connectives. We also extend the set of temporal connectives by defining
“eventually” as Fψ = > U ψ, “always” as Gψ = ¬F(¬ψ) and “releases” as ψ1 Rψ2 = ¬((¬ψ1) U (¬ψ2)). Similarly,
classical propositional connectives ∧,⇒ and⇔ are defined in the natural way.

Additionally,

• we write ψ[x] for a formula ψ having x as a free variable.

• We write FV(φ) for the set of free variables of a formula, defined in the obvious way. Also, a formula φ is said
to be closed if FV(φ) = ∅.

• Given a formula ψ, we write Tψ for the set of terms, including sub-terms, appearing in ψ.

• Classically, a formula is in negation normal form (NNF) if negations only appear in front of predicate symbols.

• We denote by LTLΣ,V the set of FOLTL formulas, built over Σ with variables in V, that do not contain any
first-order quantifier. We write LTLΣ,V(X) (resp. LTLΣ,V(X,F)) for the set of formulas from LTLΣ,V that are in
NNF and that contain no other temporal connective than X (resp. X and F).

• A formula l is called literal if l = r(t1, . . . , tn) or l = ¬r(t1, . . . , tn) where x ∈ V, r ∈ Rn and every ti in TΣ,V).

We now introduce the semantics of FOLTL. In the interpretation structures defined below, the interpretation of
predicates varies over time while that of function symbols does not. Notice we rely on the Kleene star in the definition.

Definition 2 ((Interpretation) Structure). Given a signature Σ = (F ,R), an (interpretation) structureM (over Σ) is a
triple (D, σ, ρ) where:

• D, called the domain, is a non-empty set.

• σ is a map s.t. for any c ∈ F0, σ(c) ∈ D, and for any f ∈ Fn, σ( f ) : Dn → D.

• ρ : N × D? → P(R) is a map s.t. for any instant i ∈ N and any ~a = (a1 . . . , an) ∈ D?, ρi(~a) ⊆ Rn.

M is said to be domain-finite if D is finite. We also define the domain size (simply called size in the remainder of this
paper) ofM as |D|.
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Remark 1 (Type of ρ). Usually, FOLTL structures would be defined with ρ a function N × R → P(D?) mapping at
any instant a predicate to the set of tuples (of the domain) satisfying it. We turn this definition upside down, which is
trivially equivalent to the classical one, to simplify the presentation of forthcoming definitions (in particular, partial
structures introduced in Def. 6) and proofs.

Definition 3 (Assignment). An assignment C in a domain D for variables inV is a mapV → D. We write C[x 7→ d]
the assignment defined as C[x 7→ d](x) = d and C[x 7→ d](y) = C(y) if y , x. The extension of C to terms, also written
C, is defined in the obvious way.

Definition 4 (Satisfaction). Given a structure M = (D, σ, ρ) and an assignment C, the satisfaction relation � is
defined by induction on formulas, for any i ∈ N, as follows:

• M, i,C � r(t1, . . . , tn) iff r ∈ ρi(C(t1), . . . ,C(tn));

• M, i,C � ¬φ iffM, i,C 2 φ;

• M, i,C � φ1 ∨ φ2 iffM, i,C � φ1 orM, i,C � φ2;

• M, i,C � X φ iffM, i + 1,C � φ;

• M, i,C � φ1 U φ2 iff there exists k ∈ N s.t.M, i + k,C � φ2 and for every 0 ≤ j < k, we haveM, i + j,C � φ1;

• M, i,C � ∃y · φ iff there exists d ∈ D s.t.M, i,C[y 7→ d] � φ;

• M, i,C � ∀x · φ iff for every d ∈ D, we haveM, i,C[x 7→ d] � φ.

Given a closed formula φ, we writeM, k � φ ifM, k, [] � φ, where [] is the empty assignment. A structureM is a
model of φ ifM, 0 � φ. A formula that has at least one model is said to be satisfiable.

Let φ, φ′ be two FOLTL formulas. If for any structureM and an assignment C, we haveM, 0,C � φ iffM, 0,C �
φ′ then we say that φ and φ′ are logically equivalent, written φ ≡ φ′.

Definition 5 (Finite Domain Property, Bounded Domain Property). A closed formula φ of FOLTL enjoys the finite
domain property (FDP) if φ is not satisfiable, or there is a domain-finite structureM s.t.M, 0 � φ. Additionally, if the
bound is computable, the formula is said to enjoy the Bounded Domain Property (BDP). A fragment of a logic enjoys
the FDP (resp. BDP) if every formula in this fragment does.

Remark 2 (BDP and decidability). For pure FO, if a fragment enjoys the FDP (usually called the Finite Model
Property), then it is decidable. As FOLTL is not recursively enumerable (contrary to FO), the FDP does not suffice to
show decidability of a given fragment, while the BDP does.

Remark 3 (BDP and complexity). If a fragment enjoys the BDP, then from the expression of the bound on the domain,
we can easily deduce an upper bound of the complexity of satisfiability for this fragment, using the results from [10].
Indeed, in [10], the complexity of the satisfiability problem on bounded models is studied for full FOLTL.

Example 1. The following fragments of FO enjoy the FDP (following the book and notations of Börger et al. [3]):

• [∃?∀?, all]=(Ramsey 1930) the class of formulas with quantifier prefix ∃?∀?, without function symbols, with
arbitrary predicate symbols, with equality.

• [∃?, all, all]=(Gurevich 1976) the class of formulas with quantifier prefix ∃?, with arbitrary predicate and func-
tion symbols, with equality.
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2.2. Axioms of Infinity

There are various ways not to enjoy the FDP. We call axiom of infinity an FOLTL formula that does not satisfy the
FDP. Finding such axioms is easy, even with strong constraints on first-order quantifiers.

Inspired by results from [10], we start our study with formulas featuring existential quantifiers. For instance, the
following axiom of infinity involves only one existential quantifier: G(∃y · P(y) ∧ X G¬P(y)). Indeed, to satisfy this
formula, we need to find some element in the domain satisfying P at each instant of time; however this element will
never satisfy P again so an infinite domain is needed to pick a different element at every instant.

Thus, existential quantification under a G connective can be problematic. However, this only happens when
several nested G connectives appear in a formula, which is rarely necessary in practical system specifications.

Therefore, we now focus on cases where we have a formula of the form G(∃y ·ψ[y]) where ψ does not contain any
G or first-order quantifier.

First, what about universal quantification? Unfortunately, even with a prefix within the Ramsey fragment, axioms
of infinity can be found, such as the following: G(∃y∀x · ¬P(y) ∧ X P(y) ∧ (P(x) ⇒ X P(x))). Here, the universal
quantifier allows us to specify, by induction, that any element in the domain used for the existential quantifier satisfies
G P(y). This situation is actually similar to the first axiom. In order to avoid this behaviour, an additional restriction
is needed: one possibility is to forbid the use of temporal connectives in the scope of a universal quantifier.

Another issue lies in the use of constant predicates (predicates whose value does not change along time). Assume
we are given a constant order < (axiomatized by a universally quantified formula without temporal connectives). Then
the following formula defines an axiom of infinity: G(∃y·P(y)∧X(∀x·P(x)⇒ y < x)). Indeed, it forces at each instant
the existence of an element in the domain which is greater than all already-used elements. Satisfying the formula then
requires to have an infinite domain.

In conclusion, to obtain a fragment enjoying the BDP, one should at least:

• forbid nested G connectives;

• forbid temporal connectives in the scope of a universal quantifier;

• and forbid constant predicates if universal quantifiers are allowed.

3. Partial Structures

In the previous section, we defined the notion of structures for FOLTL. However, proving the BDP requires to
define a model in several steps. Indeed, we will need to define interpretations of predicates for a finite numbers
of instants, and to define the truth values of predicates for the remaining time later on. This is clumsy to do with
structures since we would need to redefine the entire structure at each step. For this reason, in Sect. 3.1, we introduce
a notion of partial structures, which is easier to handle. Then, in Sect. 3.2, we provide some technical lemmas relying
on partial structures, which will be useful to establish the BDP of the fragments studied in Sect. 4.

3.1. Definitions

Definition 6 (Partial (interpretation) structures). A partial (interpretation) structure M (over Σ) is a triple (D, σ, ρ)
satisfying the same conditions as in Def. 2 except that ρ is a partial function. We denote by ρi(~x) = ⊥ the fact that ρ is
not defined on the pair (i, ~x).

Structures are then the maximal elements of the set of partial structures for the following partial order.

Definition 7 (Extension ordering of partial structures). Given two partial structures M = (D, σ, ρ) and M′ =

(D′, σ′, ρ′), we define the partial order 4 over partial structures as follows: M′ extends M, written M 4 M′,
iff D = D′, σ = σ′, and ρi(~a) , ⊥ implies ρ′i(~a) = ρi(~a).

This allows a natural generalization of satisfaction to partial structures: a partial structure satisfies a formula if all
its extensions that are structures satisfy it.
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Definition 8 (Semantics over partial structures I). Given a partial structure M, we say that M, i,C �p φ iff for all
structureM′ s.t.M 4M′, we haveM′, i,C � φ. Similarly to Def 4, Given a closed formula φ, we writeM, k �p φ if
M, k, [] �p φ, where [] is the empty assignment. We also say thatM is a partial model of φ ifM, 0 �p φ.

There is another, natural way to define the semantics over partial structures, which will be required in forthcoming
proofs. This semantics can be defined by induction on formulas in NNF. Such a restriction is necessary because we
cannot evaluate the truth value of ¬φ out of that of φ. Indeed, if a partial structure can be extended to either satisfy φ
or satisfy ¬φ, then this partial structure satisfies neither of these formulas.

Definition 9 (Semantics over partial structures II). Given a partial structure M = (D, σ, ρ) and an assignment C,
the satisfaction relation  is defined by induction on formulas in negation normal form (NNF), for all non-negative
integers i as follows:

• M, i,C  r(t1, . . . , tn) iff r ∈ ρi(C(t1), . . . ,C(tn)).

• M, i,C  ¬r(t1, . . . , tn) iff ρi(C(t1), . . . ,C(tn)) , ⊥ and
r < ρi(C(t1), . . . ,C(tn)).

• M, i,C  φ1 ∧ φ2 if and only ifM, i,C  φ1 andM, i,C  φ2.

• M, i,C  φ1 ∨ φ2 if and only ifM, i,C  φ1 orM, i,C  φ2.

• M, i,C  X φ iffM, i + 1,C  φ.

• M, i,C  φ1 U φ2 iff there exists k ∈ N s.t. M, i + k,C �p φ2 and for every integer 0 ≤ j < k, we have
M, i + j,C  φ1.

• M, i,C  φ1 R φ2 iff for each k ∈ NM, i + k,C  φ2 or there exists an integer j s.t.M, i + j,C  φ1 and for
every integer 0 ≤ k ≤ j,M, i + k,C  φ2.

• M, i,C  ∃y · φ(y) if and only if there exists d ∈ D s.t.M, i,C[y 7→ d]  φ(y).

• M, i,C  ∀x · φ(x) if and only if for every d ∈ D, we haveM, i,C[x 7→ d]  φ(x).

Lemma 1 (Equivalence of semantics). Given a partial structureM, a formula φ in NNF, k ∈ N and an assignment C,
we haveM, k,C �p φ iffM, k,C  φ.

Proof. By induction over formulas:
Consider a literal l = r(t1, . . . tn), a partial structure M = (D, σ, ρ), an assignment C and an integer i, such that

M, i,C  r(t1, . . . , tn). Given an arbitrary structure M′ = (D, σ, ρ′) extending M, we have r ∈ ρ′i(C(t1), . . . ,C(tn))
since ρi(C(t1), . . . ,C(tn)) is defined and since r ∈ ρi(C(t1), . . . ,C(tn)). ThereforeM′, i,C �p r(t1, . . . , tn) and then, by
definition of �p for partial structures,M, i,C �p r(t1, . . . , tn).

In the other direction, assume that M, i,C �p r(t1, . . . , tn). Suppose that M, i,C 1 r(t1, . . . , tn). Then either
ρi(C(t1), . . . ,C(tn)) is undefined, or r < ρi(C(t1), . . . ,C(tn)): in both cases, we can consider a structureM′ = (D, σ, ρ′)
such that r is not in ρ′i(C(t1), . . . ,C(tn)). Therefore M, i,C 2 r(t1, . . . , tn). Contradiction. Therefore M, i,C 
r(t1, . . . , tn).

Consider now the case l = ¬r(t1, . . . tn). The proof is similar to the previous case. Assume that M, i,C 
r(t1, . . . , tn). Considering an arbitrary extension of M, we conclude that M, i,C �p ¬r(t1, . . . , tn). Suppose now
that M, i,C 2 r(t1, . . . , tn). Then, by the same argument, the fact that M, i,C 2 ¬r(t1, . . . , tn) implies that there
exists a structure M′ = (D, σ, ρ′) extending M and s.t. r ∈ ρ′i(C(t1), . . . ,C(tn)). Which is impossible. Therefore
M, i,C �p r(t1, . . . , tn).

The rest of the proof trivially follows from a simple application of the definition of the semantics for each connec-
tive or quantifier.

As we focus on the BDP, we aim at building a domain-finite model of a formula out of any structure satisfying
it (an illustration is developed in Example 2). To do so, we will follow an iterative procedure, enriching a partial
structure. This enrichment is defined as follows.
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Definition 10 (Enrichment of a structure). Given a partial structure M = (D, σ, ρ) s.t. ρi(~d) = ⊥, we define the
enrichment ofM at instant i on tuple ~d for A ∈ P(R), writtenM[(i, ~d) 7→ A], as the triple (D, σ, ρ′) where: ρ′i(~d) = A
and for any j ∈ N and any tuple ~d′, ρ′j(~d

′) = ρ j(~d′) if ( j, ~d′) , (i, ~d). Notice thatM[(i, ~d) 7→ A] is an extension ofM.

After applying the iterative procedure which enriches a partial structure, we get an increasing sequence of partial
structures. Intuitively, such a sequence somehow converges to a partial structure on which all steps of extension have
been performed. The following definition formalizes this notion.

Definition 11 (Limit structure). Let (Mk)k∈N be a 4-increasing sequence of partial structures, withMk = (D, σ, ρk).
Then we define the (partial) limit structureM∞ = (D, σ, ρ∞) s.t., for any i ∈ N and vector ~d ∈ D?: (1) if there exists
k s.t. ρk

i (~d) , ⊥, then ρ∞i (~d) = ρk
i (~d); (2) if for every k ∈ N we have ρk

i (~d) = ⊥, then ρ∞i (~d) = ⊥.

However, to ensure that we have a general method working for a fragment that is as expressive as possible, we
need to make this domain-finite model as similar as possible to the original one. For this reason, we define the
following notion of shifting embedding. Informally, this embedding between two partial structures expresses that
any element of the domain of the former has, for each instant, a corresponding element in the domain of the latter,
meaning they satisfy the same predicates. In the case of n-ary predicates, two tuples with one-to-one corresponding
elements are considered corresponding tuples, so they satisfy the same predicates. Also remark that this embedding
allows for a constant time shift between the two structures, represented by the integer m. Similar to the case of partial
structures, the shifting embedding must be partial both over the domain and over time. Indeed, the proofs require to
build structures step by step, by defining values of predicates over part of the time and part of the domain. Since the
shifting embedding must be defined alongside a partial structure, it is also necessary to define it step by step.

Definition 12 (Shifting embedding). Let M0 = (D0, σ0, ρ
0), M1 = (D1, σ1, ρ

1) be two partial structures and f :

N × D0 9 D1 be a partial function. We say that f is a (shifting) embedding fromM0 toM1, denotedM0
f
↪→M1, if

there exists m ∈ N s.t.:

• for each c ∈ Const, each i ∈ N, we have fi(σ0(c)) = σ1(c);

• for each g ∈ Fn (n > 0), ~d ∈ Dn
0, and each i ∈ N s.t. fi(~d) , ⊥1, fi(σ0(g)(~d)) = σ1(g)( fi(~d)); and

• for each ~d ∈ D?
0 and each i ∈ N, if fi+m(~d) , ⊥ then ρ0

i (~d) = ρ1
i ( fi+m(~d)), otherwise ρ0

i (~d) = ⊥.

Remark 4. Remark that, providedM1, m and f are given, then the value of ρ0 directly follows from the third bullet
of the previous definition. This property is useful as it allows us to define a partial structureM0 only by giving the
integer m and the shifting embedding f into a given structureM1. In practice, it allows to define a finite partial model
of a formula by defining a shifting embedding from a finite domain into a given arbitrary model of this formula.

3.2. Preliminary Lemmas

We introduce some technical lemmas about elementary fragments of FOLTL, which will be useful to establish the
BDP of the fragments studied in Sect. 4.

The following lemma allows us to consider a formula with a well-suited syntactic form for the upcoming proofs
(without impact on computed bounds). Indeed, we will need to define interpretations of predicates such that a formula
is true at every instant. However, in case of a disjunction, there may be various ways to satisfy a formula. For example,
consider φ = (a⇒ X b)∧ (a⇒ F c); in this case, at every instant, φ may be satisfied by having ¬a or X b∧F c. So we
rather study the disjunctive normal form of φ, allowing us to differentiate and pick in which way it can be satisfied. In
the case of φ, we obtain (¬a) ∨ (X b ∧ F c). Within each disjunct, we distinguish between the sub-formulas under an
F connective (which need to be satisfied at an unspecified instant) and the other ones (which need to be satisfied at a
specified number of instants, depending on the number of nested X connectives).

1 fi(d1, . . . , dn) is defined as ( fi(d1), . . . , fi(dn)) if fi is defined over {di | 1 ≤ i ≤ n}, otherwise fi(d1, . . . , dn) = ⊥. Thus fi(~d) , ⊥ denotes the
fact that fi(~d) is defined.
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Lemma 2 (Disjunctive normal form (DNF)). Given a formula φ in LTLΣ,V(X,F) there exists ψ ≡ φ s.t.: (1) ψ is
a disjunction of the form ψ1 ∨ . . . ∨ ψn (notice that each ψi is in NNF); (2) Each ψi is a conjunction of the form
αi ∧ F βi,1 ∧ . . . ∧ F βi, j, with αi = Xni,1 `i,1 ∧ . . . ∧ Xni,ki `i,ki (writing Xn for a sequence of n X connectives) and where
each `i,k is a literal and each βi,k is in LTLΣ,V(X,F).

Remark 5 (Inocuity of the DNF). In this paper, the DNF is only used to prove the BDP for the considered fragments.
On the other hand:

• the computed bounds are not affected by the DNF;

• and a given formula does not have to be in DNF to check whether it belongs to any of our fragments.

Therefore, the exponential blow-up associated to DNF transformation does not affect the decision procedure discussed
in Sect. 1.

The size of the finite model resulting from the construction presented in this paper depends on the depth of nested
X connectives. For example, there is a structure of size 1 satisfying G(∃y · P(y)). However any structure satisfying
G(∃y · P(y) ∧ X(¬P(y)) ∧ X X(¬P(y)) is at least of size 3. This depends on the number of instants it refers to using X
connectives:

Definition 13 (Stride of a formula). Given a formula φ in DNF, we define its stride Kφ as the maximal depth of
nested X connectives not under an F, that is Kφ = max

i=1..n
max
j=1..ki

ni, j (with ni, j following the notations of Lemma 2).

The following lemma applies to formulas containing only X and F connectives, as well as featuring only existential
quantification over a single variable. Given such a formula, a model of this formula, and a partial structure where
constant symbols are interpreted as in the model of the formula, the lemma states that we can extend this partial
structure into a partial model of the formula by providing an interpretation for the predicates (1) for a finite set of
instants only and (2) over a single element in the domain.

Lemma 3. Consider a formula ψ in LTLΣ,{y}(X,F) and a structureM = (DM, σ, ρ) s.t.M, k �p ∃y · ψ[y] for some

k ∈ N. Consider also a partial structureM0 = (D, σ0, ρ
0) s.t.M0

f 0

↪→M and s.t. there exists some a inD s.t. for each
integer j ≥ k we have f 0

j (a) = ⊥. Then, there exists an integer k′ > k (where k′ = k + Kψ + 1 if ψ ∈ LTLΣ,{y}(X)) and a
structureM1 = (D, σ1, ρ

1) satisfying:

• M1
f 1

↪→M for some f 1,

• for any i ∈ N and any x ∈ D, f 0
i (x) , f 1

i (x) iff x = a and k ≤ i < k′

• M0 4M1,

• M1, k, [y 7→ a] �p ψ[y].

Proof. Consider a structureM and a partial structureM0 satisfying the conditions of Lemma 3.
First, notice that the truth value of a formula in LTLΣ,{y}(X,F) can be determined by only “looking at” a finite set

of instants I ([10]), in the sense that changing the interpretation of predicates outside I does not change the truth value
of the formula. This can be shown by induction on the number of nested F connectives.

Now, let ψ be a formula in LTLΣ,{y}(X,F) s.t. M, k |= ∃y · ψ[y]. Let k′ be the greatest instant in the set I as
introduced above. Let d be an element in the domain such thatM, k, [y 7→ d] |= ψ[y]. Then, we can extendM0 into
M1 in such a way that f 1

i (a) = d (implying ρ1
i (a) = ρi(d)) for i ∈ [k, k′ − 1] (outside of this set ρ1 and f 1 coincide

respectively with ρ0 and f 0).

The next lemma focuses on formulas containing X connectives only. It establishes that formulas of the form
G(∃y ·ψ), where the only temporal connective in ψ is X, enjoy the BDP. However, this lemma is formulated in a more
suitable way for the proof of Theorem 1. In particular, we limit the result to a finite temporal window [k1, k2].
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0 1 2 3 . . .

a0 P ¬P ? ? . . .

a1 ? P ¬P ? . . .

a2 ? ? P ¬P . . .

. . . . . . . . . . . . . . .

−−→

0 1 2 3 . . .

a0 = a2 P ¬P P ¬P . . .

a1 ? P ¬P ? . . .

. . . . . . . . . . . . . . .

Figure 1: First step of the partial structure construction.

Lemma 4. Assume that there exists k1, k2 ∈ N s.t. for any integer i ∈ [k1, k2] we have M, i �p ∃y · α[y], where

α ∈ LTLΣ,{y}(X). LetM0 be a partial structure s.t.M0 f 0

↪→M for some f 0. Suppose there exists A = {a0, . . . , aKα
} s.t.

for each integer j ∈ [k1, k2 + Kα] and all a ∈ A, we have f 0
j (a) = ⊥. Then there existsM1 s.t.:

• M1 f1
↪→M for some f 1;

• M0 4M1;

• f 1
j (x) , f 0

j (x) implies that j ∈ [k1, k2 + Kα] and x ∈ A;

• For any i ∈ [k1, k2], there exists m ≤ Kα s.t.M1, i, [y 7→ am] �p α[y].

Proof. Let α be a formula in LTLΣ,{y}(X). We prove the theorem by induction over k2.
If k1 = k2 then the result is reduced to Lemma 3.
Induction step: we assume that the statement of the lemma holds for [k1, k2]. Now suppose that the premises of

the lemma hold for [k1, k2 +1]. From the induction hypothesis, there existsM1 satisfying the conclusion of the lemma
for i ∈ [k1, k2]. We can then extendM1 by applying Lemma 3 using instant k2 + 1 and one element in A. Then the
resulting structure satisfies the conclusion of the lemma for the set [k1, k2 + 1].

Example 2. The main ideas of the proof of Lemma 4 are illustrated through an example. Consider the formula
ψ[y] = P(y) ∧ X¬P(y). For the sake of simplicity, instead of considering a finite temporal window [k1, k2] among
which ∃y · ψ[y] is satisfied, we consider a structure M s.t. for any k ∈ N, M, k |= ∃y · ψ[y], which is equivalent to
M, 0 |= G(∃y · ψ[y]).

We now build a finite partial model of this formula. Following the semantics of FOLTL, for any k ∈ N, there is
some ak in the domain ofM s.t.M, k, [y 7→ ak] |= P(y) ∧ X¬P(y). So, for any k ∈ N, P ∈ ρk(ak) and P < ρk+1(ak).
Consider the constraints a0, a1 and a2 must satisfy: a0 has constraints only at instants 0 (to satisfy P) and 1 (not to
satisfy P); a1 only has some constraints at instants 1 and 2; and a2 only has some constraints at instants 2 and 3.
Thus, we can reuse a0 to play the role of a2 at instants 2 and 3, as shown in Fig. 1.

Thus, ψ can be satisfied for the first three instants with only two elements in the domain. By the same argument,
we can reuse a1 instead of using a3. This can be generalized to reuse a0 (resp. a1) instead of every ak, where k is
an even (resp. odd) number. We then see that we can satisfy our formula with a structure of size 2. Call d0 and d1
the corresponding elements of the domain. Let us define a first structure M0 = (D, σ, ρ0), where D = {d0, d1}, σ
is an empty map (since there is no function symbols in ψ) and ρ0 is defined as the partial function that is undefined
over all entries. Now let us define Mi+1 from Mi. If i is even then m = 0, else m = 1 then Lemma 3 gives us
Mk+1 =Mk[(k, dm) 7→ {P}][(k + 1, dm) 7→ ∅]. Then we haveMk+1, k, [y 7→ dm] �p ψ[y].

We get a 4-increasing sequence (Mi)i∈N, the limit structure of which (M∞) is illustrated in Fig. 2. Since for any
integer k,Mk+1, k, [y 7→ d0] �p ψ[y] orMk+1, k, [y 7→ d1] �p ψ[y], we haveM∞, k �p G(∃y · ψ[y]).

The reasoning that we had for this particular example can be easily generalized for any formula of the form
G(∃y · ψ[y]) where ψ ∈ LT LΣ,{y}(X). We then get a partial model of the formula with a domain of size Kψ + 1.

Now, we want to extend the fragment to allow for the temporal connective F in ψ. Suppose that there is a model
M of φ = G(∃y · ψ[y]) and that ψ = ψ1 ∨ . . . ∨ ψn is in DNF, as in Lemma 2. Also suppose that several ψi have the
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0 1 2 3 . . .

d0 P ¬P P ¬P . . .

d1 ? P ¬P P . . .

P(d0) ∧ X(¬P(d0)) P(d1) ∧ X(¬P(d1)) P(d0) ∧ X(¬P(d0)) . . .

Figure 2: Trace ofM∞.

form Fψ′i . Then, some of these Fψ′i can be true at a finite number of instants inM, which makes it complicated to
build a finite partial model of φ. The following lemma states that we can get rid of such Fψ′i .

Lemma 5. Let M be a partial structure satisfying M, 0 �p G(ψ1 ∨ ψ2) ∧ ¬G F(ψ2). Then there exists M′ s.t.

M′, 0 �p G(ψ1) andM′
Id
↪→M, with Id defined as Id(i, d) = d for all instant i and domain element d.

Proof sketch. To getM′ fromM, we simply make a translation in time, starting from the first instant k s.t. for any
k′ > k,M, k′ �p ¬ψ2.

4. Bounded Domain Property

We now present our main results. We start in Sect. 4.1 with the BDP of our core fragment, limited to a single
existential quantifier and without functions. In Sect. 4.2, we establish the BDP for larger fragments including functions
and first-order quantifiers used in a restricted way. In Sect. 4.4, we study how these fragments can be extended with
equality.

4.1. Core Theorem

Theorem 1 says that given a formula φ (1) in NNF, (2) with only one existential quantifier, (3) containing no other
temporal connectives than X and F, (4) without function symbols other than constants, (5) with only unary predicates,
then G φ enjoys the BDP. Most of these restrictions are unnecessary for the BDP but, while keeping the main ideas of
the proof, they make it simpler to understand. Releasing them will lead to Theorem 2.

Definition 14. We say that φ ∈ Gur−(X,F) (for “Gurevich”) if there exists a signature Σ = (F ,R) s.t. (1) for any
n > 0, Fn = ∅, (2) for any n > 1, Rn = ∅ and (3) there exists ψ ∈ LTLΣ,{y}(X,F) s.t. φ = ∃y · ψ.

Theorem 1. If φ is a formula in Gur−(X,F), then G φ enjoys the FDP. Moreover, if G φ is satisfiable, it has a model
of size |Const| + 2 × (Kψ + 1).

Proof. Consider a formula ψ′ ∈ LTLΣ,{y}(X,F). By Lemma 2, we suppose w.l.o.g. that ψ′ is in DNF, i.e. ψ′ =

ψ1 ∨ . . .∨ ψm. Given a modelM of G(∃y · ψ′[y]), some ψi are satisfied at an infinite number of instants. Suppose that
ψ1, . . . , ψn are satisfied at an infinite number of instants and ψn+1, . . . , ψm are satisfied at a finite number of instants,
for some n. Then by Lemma 5, there is a structureM s.t.M, 0 �p G(∃y · ψ1[y] ∨ . . . ∨ ψn[y]).

We write ψ = ψ1 ∨ . . .∨ψn. Notice that each ψi is in NNF and each ψi is of the form αi ∧F βi,1 ∧ . . .∧F βi, ji where
αi = Xni,1 `i,1 ∧ . . . ∧ Xni,ki `i,ki .

We define α =
n∨̀
=1
α` and β =

n∧̀
=1

j∧̀
p=1

F β`,p. Remark that α and β are defined so that the satisfaction of α∧β implies

the satisfaction of ψ. (This is the reason why β is not defined as
n∨̀
=1

j∧̀
p=1

F β`,p. If it was the case, it would be possible

to satisfy αi (thus satisfying α) and
j∧̀

p=1
F β`,p (thus satisfying β) but with i , l, so no ψk would be satisfied.)

The main step of the proof consists in defining a sequence (Mi, f i, ki)i∈N where, for each i ∈ N:

• Mi is a partial structure,Mi f i

↪→M andMi 4Mi+1,

• up to instant ki − 1,Mi+1 coincides withMi,
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• Mi+1 is built as an extension ofMi s.t. for each k < ki M
i+1, k |= ∃y · ψ[y],

• the limitM∞ satisfies G(∃y · ψ[y]) at instant 0.

The domain D of the different structures consists of the union of the two disjoints sets DX = {d0, . . . , dKψ
} and

DF = {e0, . . . eKψ
}, and of the set Const of constants. That is,D = DX ∪DF ∪ Const.

For i = 0, k0 = 0,M0 and the partial function f 0 are defined by: (1) for any k ∈ N and a ∈ DX ∪ DF, f 0
k (a) = ⊥;

and (2)M0 f 0

↪→M.
For any i > 0, we defineMi, ki and f i. Mi = (D, σi, ρi) is defined as an extension ofMi−1 in the following way.

By Lemma 3, it is possible to extendMi−1 up to an instant ki and satisfy β for one value of the domain. Within the
time interval [ki−1, ki[, if i is an odd (resp. even) number, thenMi is s.t. β is satisfied at instant ki−1 for any a ∈ DF
(resp. any a ∈ DX): Mi, ki−1, [y 7→ a] |= β[y]. If i is an odd (resp. even) number, this defines howMi extendsMi−1

for elements inDF (resp. DX).
Now, by Lemma 4, if i is an odd (resp. even) number, we can extendMi−1 s.t. for any k in [ki−1, ki[, there is some

a ∈ DX (resp. a ∈ DF) s.t.Mi, k, [y 7→ a] |= α[y]. If i is an odd (resp. even) number, this defines howMi extends
Mi−1 for elements inDX (resp. DF). Following this definition, for any i ∈ N and any k < ki,Mi, k |= ∃y · ψ[y].

The limit structure M∞ of (Mi)i∈N is then a partial model of G(∃y · ψ[y]), and its domain D is finite, of size
|Const|+ 2× (Kψ + 1). Then any structure extendingM∞ is a model of G(∃y ·ψ[y]) of size |Const|+ 2× (Kψ + 1).

4.2. Relaxing the Use of Quantifiers

Our next result, Theorem 2, generalizes the previous result to formulas:

• over n-ary predicates,

• with function symbols,

• and containing any number of existential quantifiers.

The goal of this section is to prove Theorem 2. It can be proved by reduction to Theorem 1. However this requires
some preliminary definitions given in the following section.

4.2.1. Definitions
Definition 15. We say that a formula φ is in Gur(X,F) if there exists a signature Σ and a formula ψ ∈ LTLΣ,{y1,...yn}(X,F)
such that φ = ∃y1 . . . yn · ψ.

Let ~y = (y1, . . . , yn) be a tuple of distinct variables and ~a = (a1, . . . , an) a tuple of terms: we denote by t[~y 7→ ~a]
the parallel substitution of each yi by each ai.

Definition 16. Let V = {y1, . . . , yn} and ψ ∈ LTLΣ,V. Let ~a = (a1, . . . an) be a tuple of constant symbols. Then we
define Tψ(~a) =

{
t[~y 7→ ~a] | t ∈ Tψ \ TΣ,∅

}
.

Reducing the result of Theorem 2 to Theorem 1 requires us to encode any formula of Gur(X,F) in Gur−(X,F).
The following definition formalizes such an encoding.

Definition 17. Consider a tuple of variables ~y = (y1, . . . , yn). Given an FOLTL formula ψ[~y] in LTLΣ,{y1,...,yn}(X,F),
we define ψ~y inductively as follows :

• P(t1, . . . , tn)~y = Pt1,...,tn (y) where Pt1,...,tn is a fresh predicate symbol not occuring in ψ;

• (Oψ)~y = O(ψ~y) where O ∈ {¬,X,F}.

• (ψOφ)~y = ψ~yOφ~y where O ∈ {∨,∧}.

To apply Theorem 1 it is necessary to give a way to build a model of the encoded formula G(∃y · ψ~y[y]) from a
model of the original formula G(∃~y · ψ[~y]). This construction is given below.
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Definition 18. Given a tuple ~y = (y1, . . . , yn), a formula ψ[~y] and a structure M, we define M~y = (D~y, σ~y, ρ~y) as
follows :

• D~y = Dn;

• σ~y is the empty function since there is no function symbol to interpret in ψ~y;

• Pt1,...,tn ∈ ρ
~y
i (a1, . . . , an)⇔ P ∈ ρi(σ(t1[~y 7→ ~a]), . . . , σ(tn[~y 7→ ~a])).

ThenM, k, [~y 7→ ~ak] �p P(t1, . . . , tn) iffM~y, k, [y 7→ ak] �p Pt1,...,tn (y).

From Definition 12, if a partial structure is already defined, and once D0 is defined, the definition of a new
embedded partial structure follows from a given partial embedding function almost immediately. Defining a partial
embedding function is simpler than defining an entire partial structure, therefore the previous property allows us to
simplify some proofs by defining partial embedding functions instead of some structures. The following lemmas
formalize this notion and ensure that it is only necessary to define a domain and a partial embedding function to define
a partial structure.

Lemma 6. LetM = (D, σ, ρ) be a partial structure, D0 be a set and f : N × D0 9 D be a partial function. Then

there existsM0 = (D0, σ0, ρ
0) s.t.M0

f
↪→M.

Lemma 7. LetM,M0 = (D0, σ0, ρ
0) andM1 = (D0, σ1, ρ

1) be partial structures and f : N × D0 9 D be a partial

function. Then if M0
f
↪→ M and M1

f
↪→ M, we have ρ0 = ρ1 and, for each g ∈ Fn, ~d ∈ Dn

0, and each i ∈ N, if
fi(~d) , ⊥ then σ0(g)(~d) = σ1(g)(~d).

4.2.2. Result
Theorem 2. Given a formula φ in Gur(X,F), G φ enjoys the FDP. Denoting Tφ the set of terms appearing in φ, then,
if G(φ) is satisfiable, it has a model of size |Tφ ∩ TΣ,∅| + 2 × (Kφ + 1) × |Tφ ∩ TΣ,V |.

Proof. Consider a formula φ = ∃~y · ψ[~y] of Gur(X,F) andM a model of G(φ). Building a finite model of G(φ) can
be done by using Theorem 1. In order to apply this theorem, it is necessary to encode φ in a formula of Gur−(X,F).
The previously-defined encoding can be used, which yields the formula ∃y · ψ~y[y]. Then M~y defines a model of
G(∃y ·ψ~y[y]). It is now possible to apply Theorem 1 toM~y and G(∃y ·ψ~y[y]). The result of this operation is a structure
M~y,0 which is a finite model of G(∃y · ψ~y[y]). Then a finite model of G(∃~y · ψ[~y]) can be built fromM~y,0. This can be
done by somehow reversing the transformation made in Definition 18. First, notice that the partial embedding defined
by Theorem 1, denoted as f ~y, maps, at each instant, some x ∈ D~y,0 to a tuple (y1, . . . , yn) ∈ Dn. So we want to define
a domain D′ containing at least n copies of D~y,0 so that it is possible to define a partial embedding mapping each xi

to the corresponding yi, where x was mapped to (y1, . . . , yn). However it is necessary to interpret terms appearing in ψ

in the domain, soD′ is defined asD′ = (Tψ ∩ TΣ,∅) ∪
⋃

x∈D~y,0
Tψ(~x), where ~x is the tuple of

n⊎
i=1
D~y,0 s.t. ~x = (x1, . . . , xn)

where xi denotes the i-th copy of x. Now that the domain and the partial embedding function, called f ′, are defined,
Lemmas 6 and 7 give a partial structureM′. The ambiguity for the interpretation of terms is solved as we naturally
interpret terms as themselves in the domain. It can be seen from the definition ofM′ that:

• M′
f ′
↪→M

• for each i ∈ N and any x ∈ D~y,0, f ′i (x1, . . . xn) = f ~yi (x).

So we conclude that:
M′, i, [~y 7→ ~a] �p P(t1, . . . , tn) iffM~y,0, i, [y 7→ a] �p Pt1,...,tn (y)

Then sinceM~y,0 is a model of G(∃y · ψ~y[y]),M′ is a model of G(∃~y · ψ[~y]).
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4.3. The Geneva Fragment
The fragment used in Theorem 2 forbids formulas outside the scope of G. This prevents the specification of initial

conditions. Proving the BDP for a fragment allowing such conditions requires to handle clauses in the DNF that are
satisfied only a finite number of times, contrary to what we dealt with until now, using in particular Lemma 5. Theo-
rem 3 states that we can actually extend the fragment used in Theorem 2 by adding a conjunct ψ to G(φ) which refers
to the initial state (and more generally to a finite set of states). However, the bound of the domain gets significantly
larger.

Definition 19. Given a formula φ in the form given in Lemma 2. Then we write βφ = |{β | ∃i ·ψi = αi∧ . . .∧F β∧ . . .}|.

Definition 20 (Gex fragment). We call Gex fragment the set of FOLTL formulas of shape ψ∧G(φ) s.t. φ is a formula
of class Gur(X,F) and ψ = ∃y1 . . . y2 · θ[y1, . . . , yn] with θ ∈ LTLΣ,{y1,...,yn}.

Theorem 3. The Gex fragment enjoys the FDP. If ψ∧G(φ) is a satisfiable formula in this fragment, it has a model of
size |(Tψ ∪ Tφ) ∩ TΣ,∅| + (1 + 2βφ ) × (Kφ + 1) × |Tφ ∩ TΣ,V |.

Proof sketch. We now briefly present a sketch of the proof to extend Theorem 1. Adapting the proof to Theorem 2
would not cause any additional difficulty. Let us consider a formula φ of class Gur(X,F), ψ = ∃y1, . . . , yn ·θ[y1, . . . , yn],
with θ ∈ LTLΣ,{y1,...,yn}, andM a model of ψ ∧G(φ). First, notice that it is possible, up to a Skolemization, to consider
that ψ is an LTL formula. In the proof of Theorem 1 the use of Lemma 5 prevents the satisfaction of ψ. Indeed, by
using Lemma 5 we “chop” the first instants of the model. To prove this theorem it is necessary to build a structure
where the set of instants ofM′ corresponds one to one to instants ofM.

The first step is to extend the domain, in Theorem 1 we haveD = Const∪DX∪DF. Without any loss of generality,
let us assume that φ = ∃y · δ where δ is in DNF as described in Lemma 2. In that case, δ = ψ1 ∨ . . . ∨ ψn and:

• each ψi is of the form αi ∧ F βi,1 ∧ . . . ∧ F βi, ji where αi = Xni,1 `i,1 ∧ . . . ∧ Xni,ki `i,ki ;

• each ψi is in NNF.

So we define D′ = D ] (
n⊎

i=1
DX). Let Di denote the i-th copy of DX. The following steps define the rest of the

structure:

• There is an instant s.t. each clause that is satisfied is infinitely often satisfied, after this point we can use the
construction of Theorem 1.

• Before this point, for any ψi s.t. ∃y · ψi[y] is not infinitely often satisfied, there exists some integer last(i) which
corresponds to the greatest integer k s.t.M, k �p (∃y · ψi[y]).

• Before reaching last(i), Lemma 2 can be used as in the proof of Theorem 1 to define the partial embedding over
Di. This ensures that, ifM, k �p ∃y · ψi[y], there is always some d ∈ Di s.t.M, k, [y 7→ d] �p αi[y].

• Once last(i) is reached (more formally if k ≥ last(i) − Kφ) then the partial embedding function is defined so
it is "frozen" for the rest of the time. More formally, for each d ∈ Di, if kd denotes the last instant before
last(i) s.t. M′, kd, [y 7→ d] �p αi[y], we define for each m ≥ kd, f ′m(d) = f ′kd

(d). By construction, we had
M, k, [y 7→ f ′kd

(d)] �p ψi[y]. So we ensure thatM′, k, [y 7→ d] �p (βi,1 ∧ . . . ∧ βi, j)[y].

After these operations, we have M′, 0 �p G(∃y · φ[y]). There is a one-to-one correspondence between instants
ofM′ and instants ofM. Moreover, the interpretation of predicates over closed terms is the same in both structures.
Therefore, for any δ ∈ LTLΣ,∅, we haveM, 0 �p δ iffM′, 0 �p δ.

Let FO(∀) denote the fragment of purely universal FO formulas containing no other function symbols than con-
stants. The next theorem extends Theorem 3 by allowing formulas of FO(∀) as leaves of the formula instead of basic
predicates. However non-constant function symbols cannot be used under the scope of a universal quantifier, since
even the FO fragment of universally quantified formulas with non-restricted function symbols does not enjoy the FDP.

Definition 21. An FOLTL formula ψ is in FOLTL(∃↑,∀↓) if ψ = ∃y1 . . . y2 · θ[y1, . . . , yn], where θ has the following
syntax: θ ::= ` | α | θ ∨ θ | θ ∧ θ | X θ | θ U θ | θR θ, where α ∈ FO(∀) and ` is a literal.
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Remark 6. Notice in particular that a formula in FOLTL(∃↑,∀↓) satisfies the following two conditions: (1) no
existential quantifier is in the scope of a temporal operator, (2) no temporal operator is in the scope of a universal
quantifier. This is the case, for example, of the following formula: ∃x, y·(∀z·¬P1(z))U(P1(y))∧(∀z·¬P2(x, z)⇒ P1(z)).

Definition 22. FOLTL(X,F,∀↓) is defined by the following grammar: φ ::= ` | α | φ ∨ φ | φ ∧ φ | X φ | F φ | ∃y · φ,
with α ∈ FO(∀), ` a literal and y ∈ V.

Definition 23 (Geneva fragment). We call Geneva fragment the set of FOLTL formulas of shape ψ ∧ G(φ) s.t. φ is a
closed formula of FOLTL(X,F,∀↓) and ψ is a closed formula of FOLTL(∃↑,∀↓).

Theorem 4. The Geneva fragment enjoys the FDP. If ψ∧G(φ) is a satisfiable formula in this fragment, it has a model
of size |(Tψ ∪ Tφ) ∩ TΣ,∅| + (1 + 2βφ ) × (Kφ + 1) × |Tφ ∩ TΣ,V |.

Proof. Given φ a formula of FOLTL(X,F,∀↓), ψ a formula of FOLTL(∃↑,∀↓) and M a model of ψ ∧ G(φ), it is
possible to build φ′ (resp. ψ′) from φ (resp. ψ) by replacing any subformula δ[y1, . . . , yn] ∈ FO(∀) with a predicate
Pδ(y1, . . . , yn). Notice that φ′ is a formula of Gur(X,F) and ψ′ = ∃y1, . . . , yn · θ

′[y1, . . . , yn], where θ′ ∈ LTLΣ,{y1,...,yn}.
Then it is possible to build a modelM0 of ψ′∧G(φ′) by definingM0 fromM, where the new predicate Pδ(y1, . . . , yn)
holds true iff δ[y1, . . . , yn] does. Then Theorem 3 can be applied, giving us a finite model M′ of ψ′ ∧ G(φ′) s.t.

M′
f
↪→ M. Then the partial embedding allows to deduce that ifM, k, fk ◦ C �p δ, we haveM′, k,C �p δ. Then an

induction over the structure of the formulas leads to the conclusion thatM′ is a model of ψ ∧G(φ).

4.4. Extension with Equality

We now address the problem of adding the equality predicate to the previous fragments. The interpretation of
equality is constant over time. As mentioned in Sect. 2.2, this could be a source of infinity axioms if universal
quantification is allowed. We show that we can add equality to the ∀-free fragments of our previous theorems 1, 2,
and 3 and still enjoy the BDP. However, the bound on the domain becomes much larger and not exact anymore.

Definition 24. Given an FOLTL formula φ, we write Eq(φ) the set of equality tests of φ, i.e. the set of predicates of
the form t1 = t2 in φ.

In the following, Gur=(X,F) (resp. LTL=
Σ,V) denotes Gur(X,F) (resp. LTLΣ,V) augmented with equality. Theo-

rem 5 (resp. 6) generalizes Theorem 2 (resp. 3).

Theorem 5. If φ is a formula of class Gur=(X,F) then G(φ) enjoys the FDP. Writing Tφ for the set of terms appearing
in φ, then if G(φ) is satisfiable, it has a model of size at most |Tφ ∩ TΣ,∅| + 2 × (Kφ + 1) × |Tφ ∩ TΣ,V | × 2|Eq(φ)|.

Proof. Consider a model M of G(φ) (with φ = ∃~y · ψ). Theorem 2 can be applied to this formula after replacing
equality tests by >. This operation yields a partial structure, which we callM0. Now we want to useM0 to build a
model of G(φ). Building such a model requires that, at each instant i, it is possible to find a tuple of elements in the
domain that:

• satisfies the same relations as the tuple used to satisfy existential quantifiers at instant i inM0;

• satisfies the same equality relations as the tuple used to satisfy existential quantifiers at instant i inM.

This can be done by making 2|Eq(φ)| copies of the domain ofM0. Remark that this domain is a union of the tuples used
to satisfy the existential quantifiers at different instants. Then, for each copy of each tuple, it is possible to define an
equivalence relation between terms formed from this tuple. It requires to define these equivalence relations in order
to cover all possibilities of interpretation for the equality relations appearing in φ (the number of possibilities being
2|Eq(φ)|).

Once this is done, quotienting each part of the domain by this relation gives a structure where there are tuples:

• satisfying the same relations as any of the tuple ofM0;

• satisfying any possible subset of Eq(φ).
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So at any instant it is only needed to look in the original model what equality tests of the formula were satisfied
and to take the tuple in the appropriate copy of the domain.

Theorem 6. If φ is a formula of class Gur=(X,F) and ψ = ∃y1, . . . , yn · θ[y1, . . . , yn], where θ ∈ LTL=
Σ,{y1,...,yn}

, then
ψ ∧ G(φ) enjoys the FDP. If ψ ∧ G(φ) is satisfiable, it has a model of size at most |(Tψ ∪ Tφ) ∩ TΣ,∅| + (1 + 2βφ ) ×
2|Eq(φ)| × (Kφ + 1) × |Tφ ∩ TΣ,V |.

Proof. The proof of Theorem 5 can easily be adapted to Theorem 6.

Notice that if we extend the fragment of Theorem 4 with equality, it becomes possible to use equality predicates
in the scope of a universal quantifier. In that case, our approach does not stand anymore. Therefore, the question of
generalizing Theorem 4 by adding equality remains open.

5. Many-Sorted FOLTL

In this section, we study the BDP for Many-Sorted FOLTL and ultimately present a Many-Sorted extension of the
Geneva fragment that enjoys the BDP.

5.1. Many-sorted logic
The definition of Many-Sorted FOLTL requires to define a Many-Sorted signature. Such a signature is defined out

of a set S of sorts.

Definition 25 (Many-sorted signature). A Many-Sorted signature Σ is a tuple (S,R,F ) where S is a set of sorts and:

• R is a family of relation symbols such that if A = A1 . . . An ∈ S
? then RA is the set of relation symbols r over

A1 × . . . × An.

• F is a family of function symbols such that if A = A1 . . . An ∈ S
? and B ∈ S then FA,B is the set of function

symbols f : A1 × . . . × An → B.

The definitions of structures and satisfaction relation for mono-sorted logic can be easily extended to Many-
Sorted logic. Many-Sorted structures have a set of disjoint non-empty domains, one for each sort. Additionally, the
interpretation of relation and function symbols is consistent with their types.

5.2. Stratified fragment of FO
A well-known fragment of FO enjoying the bounded domain property is the Ramsey fragment and its many-sorted

extension [13]. In this section we present this fragment that we call the “stratified FO” fragment.

5.2.1. Sort graph
The definition of the stratified fragment requires the definition of the sort graph of a formula. In this graph, an edge

from A to B means that adding a constant symbol of sort A increases the size of the Herbrand domain corresponding
to B. It is then necessary to limit the creation of terms to ensure that this set is finite. The acyclicity of the sort graph
is a necessary and sufficient condition for this.

Given a formula ψ, this graph is defined over the set of sorts as follows: there is an edge from A to B iff there is
a function symbol f : A1 × ... × A × ... × An → B ∈ F or there is an existential quantifier of type B in the scope of a
universal quantifier of type A in ψ.

Definition 26 (Sort graph). Given a formula ψ in NNF, we define Gφ = (S, E(φ)) as follows. For any sorts A, B of S,
(A, B) ∈ E(φ) if at least one of the following conditions holds:

• there exists ~A = A1 . . . A . . . An ∈ S
? and f ∈ Σ~A,B s.t. f ∈ sub(φ).

• there exists ψ1, ψ2 s.t.:

– ∀x : A · ψ1 ∈ sub(φ)
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– ∃y : B · ψ2 ∈ sub(ψ1)

Example 3. In the following examples, we label edges to indicate why they are present (nested quantifiers or function
symbol).

• Let f : A→ B be a function symbol and φ = ∃x : B · ∀y : A · ∃z : C · P(x, y, z, f (y)) be a formula. Then the sort
graph of φ is the following:

B

A

C

∀∃f

• Let f : C × A→ B be a function symbol and φ = ∀x : B · ∀y : A · ∃z : C · P(x, y, f (z, y)) be a formula. Then the
sort graph of φ is the following:

B

A

C

∀∃

∀∃

f
f

Lemma 8 (Invariance by Skolemization). The sort graph of a formula is invariant by Skolemization, in other words
we have Gφ = Gφsk .

Definition 27 (Stratified formula). A formula φ ∈ FO is said to be stratified if Gφ is acyclic.

Theorem 7 (Stratified fragment). The set of statified FO formulas enjoys the BDP [13].

5.3. More axioms of infinity
5.3.1. Axiom of infinity with equality relation

Contrary to the unsorted case, adding equality to the naive multi-sorted extension of Theorem 6 leads to axioms of
infinity. We now present such an axiom. The main idea is to axiomatize natural numbers indirectly by using equality
and a function symbol to specify a successor relation which remains constant through time.

Consider two function symbols i, s : S1 → S2. Then we define succ(x, y) := s(x) = i(y). Now the rest of the
formula will only make intervene the sort S1, so we will implicitly quantify over this sort for the rest of the example.
Besides we assume that we have a constant symbol 0 in the vocabulary of the formula. We start with our first axiom:

∀x, y, z · succ(x, z) ∧ succ(y, z)⇒ x = y (φin j)

This axiom allows us to show by a simple induction that if we have a formula such that succ(0, x1)∧ ...∧ succ(x j−1, x j),
where there is some non-negative integer i < j such that xi = x j, then we have x j−i = 0. This implies that
succ(x j−i−1, 0) holds. Then we add the following axiom to ensure that all xi are distinct:

∀x · ¬succ(x, 0) (φ¬loop)

Now to ensure that the axiom implies the existence of an infinite sequence of distinct elements it is sufficient for
succ(0, x1) ∧ ... ∧ succ(x j−1, x j) to holds for any finite prefix of an infinite sequence (xn)n≥1. It can be done with the
following axiom:

G(∃y1, y2P(y1) ∧ succ(y1, y2) ∧ X(P(y2) ∧ ∀x · P(x)⇒ x = y2)) (φ∞)
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At each instant the element assigned to y1 needs to satisfy P and has a successor x2 assigned to y2. Then at the next
instant x2 will be the only element to satisfy P, meaning that to satisfy the formula at the next instant it is necessary
that x2 is assigned to y1, forcing the existence of its successor x3 to be assigned to y2. Then this successor will itself
have to be assigned to y1 for the same reasons. This forces the existence of an infinite chain of successors. If this
sequence start from 0 then loops are avoided and it ensures an infinite domain. For this purpose the following axiom
is added:

P(0) ∧ (∀x · P(x)⇒ x = 0) (φ0)

This shows that φin j ∧ φ¬loop ∧ φ∞ ∧ φ0 is an axiom of infinity.
This example allows us to conclude that using equality in this many-sorted fragment leads to axioms of infinity.

For this reason, we prohibit equality in the following section.

5.3.2. Another example of axiom of infinity
As seen in section 2.2, in the unsorted case the stratification condition is not sufficient to ensure the BDP.
A stronger condition is required. For example, we could forbid existential and universal quantifications over the

same sort. However, assuming that there is a function symbol f : A → B, the following axiom of infinity can still be
exhibited, without quantifying over the same sort:

G(∃y : A · ¬P( f (y)) ∧ X P( f (y)) ∧ ∀x : B · P(x)⇒ X P(x))

5.4. The many-sorted Geneva fragment
Section 5.3.2 shows that the FO stratification condition is not sufficient to ensure the BDP for FOLTL.
Therefore we define an augmented sort graph to strengthen the stratification condition. This new sort graph is

composed of all the edges of the standard one, as well as new edges depending on the conditions of the following
definition.

First, similar to the notation introduced in Sect. 2.1, we let FOLTL(X,F,G) denote the set of FOLTL formulas in
NNF where the set of temporal operators used in the formula is restricted to {X,F,G}.

Definition 28 (Sort graph). Given a formula φ ∈ FOLTL(X,F,G), we define the labeled sort graph of φ, Gφ =

(S, E(φ)), as follows. For any sorts A, B of S, if at least one of the following conditions holds, then (A, `, B) ∈ E(φ):

1. There exists ~A = A1 . . . A . . . An ∈ S
? and f ∈ Σ~A,B s.t. f ∈ sub(φ).

And then the label is defined as ` = f .
2. A = B and there exists ψ1, ψ2, ψ3 s.t.:

• Gψ1 ∈ sub(φ)

• ∃y : A · ψ2 ∈ sub(ψ1)

• Gψ3 ∈ sub(ψ2)

And then the label is defined as ` = G∃G.
3. There exists ψ1, ψ2, ψ3 s.t.:

• Gψ1 ∈ sub(φ)

• ∀x : A · ψ3 ∈ sub(φ) and ψ3 contains a temporal connective

• ∃y : B · ψ2 ∈ sub(ψ1) ∩ sub(ψ3)

And then the label is defined as ` = ∀G∃.
4. The conditions of (2) are not fulfilled and there exists ψ1, ψ2 s.t.:

• ∀x : A · ψ1 ∈ sub(φ)

• ∃y : B · ψ2 ∈ sub(ψ1)

And then the label is defined as ` = ∀∃.
5. There exists ψ1, ψ2, ψ3 s.t.:

• Gψ1 ∈ sub(φ)
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• ∃y : B · ψ2 ∈ sub(ψ1)

• ∀x : A · ψ3 ∈ sub(φ) and ψ3 contains a temporal connective

And then the label is defined as ` = G∃∀.

Remark 7. In Def. 28, the definition of labels is unnecessary to determine if a formula enjoys the BDP but is needed
to compute the corresponding bound.

Example 4. Here are some examples of formulas illustrating the definition of the sort graph.

• The first example is one of the axioms of infinity presented in 2.2.

φ = G(∃y : A · ¬P(y) ∧ X P(y) ∧ ∀x : A · P(x)⇒ X P(x))

Then the sort graph of φ is the following:

A

G∃∀

• The following axiom of infinity was introduced in Sect. 5.3.2. Given a function symbol f : A→ B:

φ = G(∃y : A · ¬P( f (y)) ∧ X P( f (y)) ∧ ∀x : B · P(x)⇒ X P(x))

Then the sort graph of φ is the following:

A B

f

G∃∀

• Let f : A→ B be a function symbol. Given the formula:

φ = G
[
∃y : A · ¬P( f (y)) ∧ X P( f (y))∧

∀x : C · ∃z : B · Q(x, z)⇒ X(∀w : A · P(w))
]

the sort graph of φ is the following:

A

C

B
f

G∃∀ ∀G∃

Definition 29 (Temporal stratification). A formula φ ∈ FOLTL(X,F,G) is called temporally stratified iffGφ is acyclic.
The fragment of temporally stratified formula of FOLTL(X,F,G) is called MS-Geneva

Theorem 8. Any formula φ ∈ MS-Geneva enjoys the BDP. The computation of the corresponding bound is given by
Algorithm 1.
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Algorithm 1 Computation of the bound for φ
Require: φ ∈ FOLTL(X,F,G) ∧ φ Skolemized ∧(S, E) = Gφ ∧ Gφ acyclic
Ensure: ∀S ∈ S,NS is the bound for the domain corresponding to the sort S

1: for S ∈ S do
2: NS := |ConstS | + (1 + 2βφ ) × (Kφ + 1) × |VS |

3: while E , ∅ do
4: for S ∈ S do
5: if ∀S ′ ∈ S, S ′ → S < E then
6: for f ∈ F ∧ ∃S ′ ∈ S · {S

f
−→ S ′} ∈ E do

7: A := 1
8: for S ′ ∈ S ∧ S

f
−→ S ′ ∈ E do

9: E := E \ {S
f
−→ S ′}

10: A := A × NS ′

11: NS ′ := NS ′ + A

12: for S ′ ∈ S ∧ S
∀G∃
−−−−→ S ′ ∈ E do

13: E := E \ {S
∀G∃
−−−−→ S ′}

14: NS ′ := NS ′ × NS

15: for S ′ ∈ S ∧ S
G∃∀
−−−→ S ′ ∈ E do

16: E := E \ {S
G∃∀
−−−→ S ′}

Proof. In a first step, we show that w.l.o.g., we can consider a temporally stratified formula φ such that any existential
quantifier appears in the scope of a a G operator. Indeed, a trivial generalization to FOLTL of Lemma 8 implies that
the sort graph is invariant by Skolemization. Therefore, it is possible to transform any temporally stratified formula in
Skolemized form. Such a form exactly satisfies the condition above.

Then we consider φ ∈ FOLTLΣ(X,F,G) such that:

• φ is satisfiable

• If ∃y : B · ψ ∈ sub(φ) then there is some formula ψ′ s.t. ∃y : B · ψ ∈ sub(Gψ′) and Gψ′ ∈ sub(φ).

The only feature that prevents φ from belonging to the Geneva fragment is the possible presence of universal
quantifiers over non temporal formulas. In the following, we show that, since the formula is temporally stratified, it
is possible to unfold each of these universal quantifiers into a finite conjunction over the set of closed terms of the
corresponding sort. This unfolding operation, written _∃, is defined as follows:

• if ψ ∈ FO then ψ∃ = ψ.

• (∀x : A · ψ(x))∃ =
∧

t∈TΣ,A

ψ(t)∃.

• If O ∈ {∨,∧} then (ψ1Oψ2)∃ = (ψ∃1 )O(ψ∃2 ), if O ∈ {X,F,G} then (Oψ)∃ = O(ψ∃) and if A ∈ S then (∃y : A ·ψ)∃ =

∃y : A · (ψ∃).

Consider now a structureM such that the domain of each sort is equal to the set of closed terms of this sort. Then
it is easy to show thatM �p φ iffM �p φ

∃. We must therefore exhibit such a finite model for φ∃, which will yield a
finite model for φ.

However some additional transformations are required in order to apply Theorem 4 to φ∃. Indeed, Theorem 4
requires the formula to be of the shape α ∧G β with the following conditions:

• α is an existentially quantified LTL combination of universally quantified propositional formulas (see Def. 21);

• β is an existentially quantified formula formed by combining universally quantified propositional formulas with
X,F,∧,∨ connectives (see Def. 22);
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So, we now a formula of the form α ∧ G β as defined above that is equisatisfiable with φ∃2. First, we define α as the
result of α(φ∃), where α(−) is a transformation defined by induction over subformulas of φ∃ in the following way:

• if γ = ` is a literal then α(γ) = `

• if γ = ∃y : B · γ1 then :

– if there exists γ2 ∈ FOLTL s.t. G γ2 ∈ sub(φ∃) and γ ∈ sub(γ2)3 then α(γ) = Pγ (where Pγ denotes a fresh
predicate)

– otherwise, α(γ) = ∃y : B · α(γ1)

• if γ = Oγ1, where O ∈ {X,F,G}, then α(γ) = Oα(γ1).

• if γ = γ1Oγ2, where O ∈ {∧,∨}, then α(γ) = α(γ1)Oα(γ2).

Thus, α(φ∃) fits into the left term of the Geneva fragment.
Second, writing Γ for the set of all formulas of the shape ∃y : B · γ1 that have been replaced by a fresh predicate

while applying α(−)), we define β =
∧
α∈Γ

Pγ ⇒ γ.

Ultimately, α(φ∃) ∧G(β) enjoys the following properties:

• it fits into the Geneva fragment;

• it is equisatisfiable with φ∃;

• all its models are models of φ∃ (α ∧G β � φ∃);

• it is satisfiable because φ is assumed to be satisfiable.

For these reasons, we can consider a finite modelM∃ of φ∃ obtained by Theorem 4 applied to α(φ∃) ∧G(β). We
remark that the only "sources for elements" of the domain ofM∃ are:

• closed terms,

• terms built over elements added to satisfy existential quantifiers nested under G operators.

Therefore, if DM∃,B , σM∃ (TΣ,B), there is a path from some sort A to B where A is existentially quantified under a G
operator. However, by definition of the sort graph, there is a G∃∀ edge from A to B in the sort graph, implying a cycle
in the sort graph and contradicting the fact that φ is temporally stratified. Then we conclude that DM∃,B = σM∃ (TΣ,B).

This leads to the fact thatM∃, 0 �p φ
∃ iffM∃, 0 �p φ. SinceM∃ is a domain-finite model of φ∃, it is a domain-

finite model of φ. So φ enjoys the BDP.

We now prove that Algorithm 1 computes a correct bound for the considered formula. We proceed by induction
over the number of existential quantifiers in the scope of a universal quantifier.

• If there is no existential quantifier in the scope of a universal quantifier then unfolding universal quantifiers does
not create any additional element in the bounded domain used for Theorem 4. Then the bound given by the
algorithm corresponds to the bounds from Theorem 4.

• If there is an existential quantifier over sort A in the scope of a universal quantifier over sort B but not under a
G operator, then it is possible to Skolemize this quantifier in the classical way. This operation implies to add
the bound of the domain of B to the bound for A. The bound for B is necessarily computable by acyclicity of
the sort graph.

• If there is an existential quantifier over sort A in the scope of a universal quantifier over sort B and under a
G operator, then it is necessary to unfold the universal quantifier. This operation imposes to duplicate the
existential quantifier over A as many times as the number of elements in the domain of B. In the worst case, it
may multiply the bound of the sort B by the bound of the sort A.

2In practice, this proof not only shows the equisatisfiability of the two formulas, but also that α ∧G β � φ∃.
3The set of all formulas γ = ∃y : B · γ1 ∈ sub(φ∃) satisfying this condition is called Γ
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6. MS-Geneva at work

In this section, we present an illustrative example in the form of a simple distributed protocol. The properties
verified in this example are not designed to be hard to check using classical tools. Rather, they were chosen to
demonstrate some advantages and limitations appearing when trying to apply our results to real distributed protocols.
We also show that it is possible to abstract the specification of the system to overcome these difficulties. Notice en
passant that the said abstractions are designed to enjoy automation, which will be the topic of a future article

The example we present is a notification system in a ring-shaped network4. This protocol features a sort N for
nodes, a sort M for messages, a predicate succ relating a node to its successor and a predicate rcvd representing the
fact that a given node have received a message.

A formula Ring (unshown here to save space) specifies that succ forms a finite ring. As exemplified in Padon
et al. [4], a finite ring can be axiomatized in pure FO. It can then be used to describe a static ring in FOLTL (such a
description does not fit in MS-Geneva, but more on that later).

The rest of the specification says that any node that has received some message may send it to its successor, while
other nodes do not change during this operation.

Same(z,m) := rcvd(z,m)⇔ X rcvd(z,m)
Send(x,m) := rcvd(x,m) ∧ ∃y : N

[
succ(x, y) ∧ X rcvd(y,m)

∧(∀z : N,m′ : M · (z , y ∨ m , m′)⇒ Same(z,m′))
]

Trans := G(∃p : N,m : M · Send(p,m))

6.1. Safety Property
Now consider the safety property “if a node is notified of a message, it remains notified of this message”, described

by the following formula: Safety := G(∀x : N,m : M · rcvd(x,m)⇒ X rcvd(x,m)). Proving that our protocol ensures
this property (Ring ∧ Trans |= Safety) amounts to proving that Ring ∧ Trans ∧ ¬Safety is unsatisfiable.

Note that ¬Safety ≡ ∃x : N,m : M · F(rcvd(x,m) ∧ X¬rcvd(x,m)), therefore an equi-satisfiable formula can be
obtained by Skolemization:

SkNegSafety := F(rcvd(c, d) ∧ X¬rcvd(c, d))

However ϕ := Ring ∧ Trans ∧ SkNegSafety is not in any of our fragments because of the universal quantification
over Same(z,m′), which is a temporal formula, and because of the use of equality.

We now devise a more abstract specification of the protocol which is a semantic consequence of ϕ that fits into the
fragment of Theorem 4.

First, we get rid of equality: we use an equivalence predicate ≈ instead, which can be axiomatized (using a formula
Eq) in our fragment (notice that the semantics of ≈ may vary over time).

Second, we get rid of the universal quantifier over z. To do this, we instantiate the variable z with the values x and
c, and the variable m′ with the values m and d, which yields:

Send(x,m) := rcvd(x,m)
∧ ∃y : N · (succ(x, y) ∧ X rcvd(y,m)

∧ (c ≈ y ∨ m ≈ d ∨ Same(z,m′)) ∧ (c ≈ y⇔ X c ≈ y))

Notice that it is necessary to add c ≈ y ⇔ X c ≈ y in the previous formula. Indeed, ≈ is not necessarily constant
so it would be possible to have c ≈ y and ¬X c ≈ y. In this case, no constraint would apply to the truth value of
X notified(c).

Thus, it is possible to define an abstraction by the following formulas: Trans := G(∃p : N,m : M · Send(p,m)) and
AbsSatS := Eq∧Trans∧SkNegSafety. Remark that Ring does not intervene in AbsSatS so even if the specification
of a static ring does not fit into MS-Geneva, it does not cause harm here.

It is easy to show that Ring∧Trans∧¬Safety |= AbsSatS and that AbsSatS belongs to the fragment of Theorem 8.
Applying this theorem, we compute a size of 5 for nodes and a size of 3 for messages. Using the Electrum tool,
AbsSatS can be shown to be unsatisfiable for these bounds, which ultimately proves the original property.

4We provide a corresponding Electrum specification, available at https://gitlab.com/grayswandyr/notificationspec/-/tree/
master/IC2020. The Electrum tool can be obtained at http://haslab.github.io/Electrum.
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6.2. Liveness Property

An interesting liveness property for the considered system is that “all nodes eventually become notified”, which
is formalized as: Liveness := ∀x : N,m : M · F(rcvd(x,m)). This property can be shown under the assumption that all
notified nodes eventually perform the send transition: Progress := G(∀x : N,m : M · rcvd(x,m)⇒ F Send(x,m)).

The complete abstraction that allows us to prove this liveness property is available with the full example speci-
fication. We basically need to Skolemize the negation of the liveness property and to instantiate, using the Skolem
constant, the universal quantifiers that are out of our fragment.

This time, an axiom abstracting the ring topology must be added in order to prove the liveness property. This
axiom states that if all messages in the ring at some instant are eventually transferred along the succ relation, then
any message in the ring in the initial state will eventually propagate to any node of the ring. Formally, the FOLTL
formula describing this axiom is:

∀n : M ·
[(

(∃x : N · rcvd(x, n)) ∧G Transfer
)
⇒ ∀x : N · F rcvd(x, n)

]
with the following transfer formula:

Transfer := ∀x : N,m : M · rcvd(x,m)⇒
[
∃y : N · F(succ(x, y) ∧ rcvd(y,m))

]
.

Remark that this abstraction fits within a more general framework than presented in this paper which will be the
subject of future work.

In the end, the obtained formula fits into the fragment of Theorem 8, which provides a size of 6 for the domain
corresponding to nodes and a size of 3 for the domain corresponding to messages. The formula can be shown in
Electrum to be unsatisfiable for a bound of 6, which proves the property.

7. Related Work

In [10], Kuperberg and the last two authors of the present article show that the FDP for some FO fragments can be
lifted to some FOLTL fragments. However, they only allow to add X and F connectives, which is not enough for real
specifications. An extension of the Ramsey fragment is also proposed, allowing the use of all temporal connectives,
but preventing existential quantifiers under a G. Notice this fragment is strictly included in MS-Geneva.

The decidable monodic fragment studied by Hodkinson et al. [14, 15] does not enjoy the FDP. Indeed, G(∃y·P(y)∧
G(¬P(y))) belongs to the monodic extension of the Gurevich fragment (first-order formulas containing existential
quantifiers only) but it is an axiom of infinity: the monodic fragment helps preserve decidability but says nothing
about the FDP. Additionally, on the practical side, the monodic fragment limits the use of free variables in temporal
formulas to only one, which does not really fit with real specifications of systems. Indeed, any transition system
implying relations between different components (list of messages, topology of a network, etc) requires to be specified
by using at least binary relations in the temporal transitions, thus breaking the monodicity condition.

Padon et al. [4] propose yet another approach: they reduce specific temporal problems to FO and even, in many
cases, to a decidable fragment of it. This method was improved in [5, 6] to address the verification of liveness proper-
ties. It was implemented in the Ivy tool and gives good results in practice. However, it is not complete and it requires
the user to understand rather deeply both the specified system and the verification technique itself. Additionally, the
user must devise an inductive invariant manually.

8. Conclusion

In the introduction, we drew as an inspiration for our work the following classical shape for specifications of
systems and of their properties: spec = init ∧ G trans ∧ fair → prop (with trans using only the X connective).
Checking the validity of spec amounts to assessing the satisfiability of ¬spec = init ∧ G trans ∧ fair ∧ ¬prop. Our
results then say that this satisfiability can be decided provided ¬spec respects the conditions of Theorems 3, 4, 6 or 8.

In the spririt of [4, 13, 16, 17], we devised a many-sorted version of the Geneva fragment presented in [12], which
extends its expressiveness and fits the data structuring features of Electrum [7]. Also and contrary to [12] there is no
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need to split and “dispatch” fair and prop anymore. Theorem 8 allows for more flexibility in the use of existential and
universal quantifiers.

Now, if the specification falls into one of our fragments, then the bound on the domain is known (and even exact,
without equality). To be sure, this bound grows exponentially but only in the number of F connectives under a G. This
ultimately yields a decision procedure for the validity of spec. Notice that existing tools, such as our own Electrum [7],
can readily be used to support it, as was shown in Sect. 6.

A limitation lies in the possible uses of (constant) equality: in our first experiments, we were often able to abstract
it into a dynamic equivalence relation, as we did in Sect. 6. However the stratification condition prevents for any sort
A, to existentially quantify over A under a G connective and universally quantify over A over a temporal formula.
Depending on the problem at hand, this can be restrictive.

In the future, we will address some current limitations of our fragments. Indeed, some statements like fairness
assumptions or frame conditions (which specify what does not change when a transition happens) cannot always be
expressed naturally in our fragments. The main approach we will investigate is the study of different mechanisms of
abstraction that could be used to transform a protocol described in MSFOLTL into an abstract protocol that fits into
MS-Geneva. We will also assess our approach on more realistic case studies.

On a more theoretical side, we will also study the computational complexity of our fragments. We can already
build from our previous work [10]. Indeed, we studied in that article the complexity of the satisfiability problem of
(full) FOLTL for bounded-domain models (taking the domain bound as an input). Then, for our fragments, which
enjoy the BDP, we could easily deduce an upper bound of the complexity of the satisfiability problem from the
expression of the bound on the domain.
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