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Abstract. This paper presents the approaches proposed by the IRIS team of the IRIT
laboratory for the TREC Incident Streams and Complex Answer Retrieval tracks. The
Incident Streams (IS) track aims to categorize and prioritize tweets in disaster situation
to assist emergency service operators. In our participation, we applied supervised learning
techniques based on features extracted from tweets.
Then, the 2019 edition of the Complex Answer Retrieval (CAR) track aims to answer com-
plex questions expressed as outlines using paragraphs from Wikipedia. In our participation,
we used the Terrier retrieval system to rank paragraphs for each section of the outline and
keep the most relevant according to three different strategies.

1 Introduction

In 2019, we participated in both the Incident Streams and Complex Answer Retrieval tracks. As
these tracks are completely independent, we separately present our approaches for the two tracks
in section 2 and 3.

2 Incident Streams

This year, the track was organized in two different parts, both having the same objective. Part
A ran in June and Part B in September. The training test of Part B included the test set of Part
A.

2.1 Overview of the TREC IS task

Today, social media is full of information, including people trying to contact emergency services
in crisis situations [1].

The purpose of the TREC Incident Streams track is to use this social information to help
emergency services, as shown in Figure 1 [2]. Tweets have to be classified according to predefined
categories called Information types, as for instance “Information wanted” or “Request for Search
and Rescue”. The task also consists in giving a priority score to the tweets in order to return alerts
if necessary. An alert is raised when the priority score is greater than 0.7. Particular attention
is paid to information types named “Requests for Goods/Services”, “Requests for Search and
Rescue”, “Calls to Action for Moving People”, “Reports of Emerging Threats”, “Reports of
Significant Event Changes” and “Reports of Services” that are considered actionable, which
means that they should lead to actions from emergency services.
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Fig. 1. Incident Streams task, as shown on the task’s website (http://dcs.gla.ac.uk/~richardm/TREC_
IS/)

2.2 Part A

As aforementioned, the Part A of the task ran in June 2019. The number of learning tweets was
about 18,000 and the number of test tweets was about 7,000. In this section we present our system
framework, the results, and the corresponding failure analysis.

2.2.1 System framework

Features extraction

In order to identify the different categories and priorities, we extracted some features related to
tweets, which we categorized as follows. Community features show the impact of a given tweet
in the Twitter community. Morphologic features aim at distinguishing between different non-
verbal ways of conveying a message. Microblogging specific features consider the specific content
of tweets such as emoticons or hashtags. Grammatical features convey the grammatical quality of
a tweet. Entities features are used to find persons, organizations, and locations. Finally, the goal
of sentiment features is to represent possible sentiments expressed in the tweet. These features
are described in details below:

– Community features : number of retweets of the tweet and, for the tweet’s author, number of
friends, number of followers, number of statuses;

– Morphologic features: number of upper case characters and upper case words, number of
stopwords, number of exclamation and question marks, maximum number of consecutive
exclamation and question marks, length of the tweet content (number of words), average
word length of tweet content (number of characters);

– Microblogging specific features : presence and number of emoticons, presence and number of
hashtags, presence and number of URLs, number of phone numbers;



– Grammatical features: number of nouns, verbs, gerund verbs, adverbs, pronouns, WH question
words in the content of the tweet;

– Entities features : number of locations, persons and organizations;
– Sentiment features : presence of positive, negative and compassion sentiment.

Emojis, emoticons, URLs, hashtags, phone numbers, upper case, exclamation, and question
marks features are extracted before any text cleaning. For the other features, we applied a lower-
case transformation, punctuation removal, and stopword removal using the nltk library [3]. The
length of tweet content and number of stopwords features are extracted before stopwords removal.

For the sentiment features, we used pre-trained weights of DeepMoji [4], as used in the ar-
chitecture presented in [5] for the 2018 Incident Streams task. More precisely, we retrieved the 5
emojis that DeepMoji predicted for each tweet. We manually associated to each emoji one or sev-
eral sentiment polarities among positive, negative, and compassion. If the majority of the emojis
convey positive, negative or compassion sentiments, the tweet is labelled with the corresponding
feeling.

For entities and grammatical features, we respectively used Stanford Named Entity Recog-
nizer [6] and Stanford Part-Of-Speech Tagger [7]. Finally, the other features are extracted using
regular expressions.

Information Type prediction

From the extracted features, we predicted the information types in the tweets using supervised
learning algorithms. Inspired by the work in [5], we combined two models of supervised learn-
ing. The combination that gave us the best results in the validation phase was Random Forest
Classifier [8] and Gradient Tree Boosting Classifier [9].

In the task, a tweet can be associated with one or more information types. To tackle this
multi-label problem, we proposed three different strategies : (i) Binary Relevance1, (ii) a fixed
number of information types to return, (iii) a class membership threshold.

Priority score evaluation

Each tweet in the training set was associated with an importance label among Low, Medium,
High, and Critical. These labels are respectively associated to priority scores of 0.25, 0.5, 0.75,
and 1.

To predict the priority scores in the test set, we performed a linear regression using the
previously described features.

2.2.2 Runs

Our runs for Part A were named IRIT run rf gb, IRIT run rf gb binary for the official submis-
sions, IRIT run rf gb threshold and are respectively renamed A Fixed, A Binary Relevance

and A Threshold in this notebook to be more expressive. The associated configurations are de-
tailed in Tables 3 and 4.

1 http://scikit.ml/api/skmultilearn.problem_transform.br.html, last access on October 22, 2019.



For run A Binary Relevance, we discretized the continuous features in order to improve our
predictions, as done in [10] and [11]. Regarding the multi-label problem and as explained before,
runs A Binary Relevance, A Fixed, A Threshold respectively implement the following strategies:
(i) Binary Relevance, (ii) a fixed number (experimentally fixed to 5 according to preliminary
experiments) of information types to return, (iii) a class membership threshold (experimentally
fixed to 0.06).

2.2.3 Results

The results for Part A are presented in Table 1. For Alerting metrics, the scores are between -1
and 1, 1 being the best score and -1 being the worst. Regarding now Information feed metrics,
The higher the score is, the better it is. On the contrary, for priorization scores, the closer the
score is to 0, the better it is.

We can notice that we were ranked first regarding Priorization metrics.

Run

Alerting Information Feed Priorization

Accumulated
Alert Worth

Info. Type
Positive F1

Info. Type
Accuracy

Priority
MSE

High Priority All Actionable All All Actionable All

A Fixed -0.9867 -0.4935 0.0000 0.1735 0.8209 0.1170 0.0558
A Binary Relevance -0.9942 -0.4971 0.0387 0.1716 0.8780 0.0751 0.0694
A Threshold -0.9867 -0.4935 0.0117 0.1774 0.7840 0.1170 0.0558

Median Scores -0.9680 -0.4869 0.0536 0.1622 0.8581 0.1615 0.0756
Best Scores -0.1213 -0.1839 0.1969 0.2512 0.8829 0.0751 0.0558

Table 1. TREC IS 2019 Part A Results. Runs A Fixed, A Binary Relevance and A Threshold respec-
tively correspond to the official runs IRIT run rf gb, IRIT run rf gb binary, IRIT run rf gb threshold.

2.2.4 Failure Analysis

Regarding the results, it can be seen that the prediction of the actionable information types is
worse than the mean prediction for all information types (0.0387 for the best run vs 0.1716 for
the worst run).

A detailed analysis led us to see that the information types that have fewer observations in
the learning sample get lower F1 scores in the test set. We therefore hypothesized that to improve
our predictions we need more data on these information types.

We can also see from the results that the priority scores of our runs are close to the best scores,
while the alerting scores are close to the worst. Our failure analysis also revealed that very few
alerts were returned by our model (a maximum of 14 out of 345 in the ground truth). We recall
that an alert is raised when the priority score is greater than 0.7. An hypothesis is that using a
linear regression to evaluate the priority scores does not effectively discriminate between alerting
tweets and others.



2.3 Part B

For this edition 2019-B run in September, the number of learning and test tweets was respectively
about 25,000 and 14,000.

Our runs for Part B were named IRITrun1, IRITrun2, IRITrun3, IRITrun4 fot hte official
submissions and are respectively renamed B R Resampled, B Binary Relevance, B T Resampled

and B Threshold in this notebook to be more expressive. Tables 3 and 4 sum up the methods
used for the different runs to classify the different information types as well as to predict priority
scores.

The differences in our runs between Part A and Part B are the following:

– We used the POS-Tagger and NER from nltk2 which are faster than Stanford’s ones.

– As proposed by the University College Dublin team in Part A of the task, we used SMOTE [12]
to deal with the imbalanced types of information in the training set. SMOTE is a technique
for adding observations to under-represented classes in a dataset.

– To evaluate priority scores, unlike linear regression where we considered the variable to be
explained quantitatively, we considered the variable to be explained qualitatively among the
values Low, Medium, High, and Critical. For this purpose, we used Random Forest that gave
us the best results in the validation phase.

The best run results for each metric as well as our scores for Part B are presented in Table 2.

We tried resampling (SMOTE) for the imbalanced types of information and especially for
actionable types of information without improving results. Random Forest gives us better results
than linear regression to detect high priority tweets.

Run
Alerting Information Feed Priorization

Accumulated
Alert Worth

Info. Type
Positive F1

Info. Type
Accuracy

Priority
MSE

High Priority All Actionable All All Actionable All

Median Scores -0.9197 -0.4609 0.0386 0.1055 0.8583 0.1767 0.1028

Informedia-nb -0.9197 -0.4609 0.1321 0.0995 0.8605 0.0788 0.0544

Informedia-rf3 -0.0898 -0.1837 0.0592 0.0568 0.8434 0.1660 0.2063
B Threshold -0.9744 -0.4872 0.0000 0.1583 0.7576 0.1461 0.0775
B T Resampled -0.8482 -0.4351 0.0000 0.1388 0.8565 0.1771 0.1028
B Binary Relevance -0.9794 -0.4897 0.0248 0.1734 0.8534 0.1175 0.0659
B B R Resampled -0.5649 -0.3332 0.0151 0.1863 0.8418 0.1316 0.0911
nyu.fast.multi -0.9287 -0.4679 0.0854 0.1253 0.8808 0.2153 0.1185
UCDbaseline -0.7856 -0.4131 0.1355 0.1343 0.7495 0.0859 0.0668

Table 2. TREC IS 2019 Part B Results. Runs B B R Resampled, B Binary Relevance, B T Resampled

and B Threshold respectively correspond to the official runs IRITrun1, IRITrun2, IRITrun3, IRITrun4.

2 https://www.nltk.org/book/ch07.html, last access on October 22, 2019.



Run Part A Part B Threshold Fixed B.R. Discrete SMOTE

A Threshold
√ √

A Fixed
√ √

A Binary Relevance
√ √ √

B Threshold
√ √

B Threshold Resampled
√ √ √

B Binary Relevance
√ √ √

B Binary Relevance Resampled
√ √ √ √

Table 3. Runs Incident Streams Overview Incident Type Classification, B.R. is for Binary Relevance
and Discrete for discretized features.

Run Part A Part B Linear Regression Random Forest

A Threshold
√ √

A Fixed
√ √

A Binary Relevance
√ √

B Threshold
√ √

B Threshold Resampled
√ √

B Binary Relevance
√ √

B Binary Relevance Resampled
√ √

Table 4. Runs Incident Streams Overview Priority Score Prediction.

3 Complex Answer Retrieval

3.1 Overview of the TREC CAR track

Current retrieval systems provide good solutions towards phrase-level retrieval for simple fact and
entity-centric needs. The Complex Answer Retrieval track aims to return complex information in
a structured form, i.e., to answer open questions requiring several pieces of information.

The problem of the CAR 2019 task is to fill outlines structured in sections and given as queries
with ordered paragraphs. For each outline, a maximum of 20 paragraphs should be returned, each
related to one of the sections of the outline. The provided data are thus the outlines and the corpus
of possible paragraphs to be returned:

– The outlines are based on the Textbook Question Answering dataset3. The Textbook Question
Answering dataset includes college-level lessons in the life, earth and physics sciences [13].
There are 132 outlines, 726 sections of outlines, i.e., an average of 5.5 sections per outline.

– The paragraphs to be returned are provided from Wikipedia, the collection has 29,794,697
paragraphs.

3.2 System framework

Figure 2 sums up our approach. We first indexed the corpus of paragraphs provided to answer the
outlines. We then defined a query for each section of the outlines. For each query, we retrieved
and ranked the relevant paragraphs using different IR models. Finally, we filled the outlines using
these relevant paragraphs according to three different strategies.

3 http://data.allenai.org/tqa/, last access on October 22, 2019.
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Fig. 2. General approach used by the IRIS team for the TREC CAR track

3.2.1 Indexing

The TREC CAR 2019 track provided about 30 million paragraphs from Wikipedia. We indexed
these paragraphs using the Terrier retrieval system [14]. We used the default Terrier indexing
settings.

3.2.2 Retrieving relevant paragraphs

For each outline, the different sections to be answered are provided by the organizers. We built
our queries from the outline and its different sections. For each section, we concatenated its title
with the title of the corresponding outline in order to obtain the queries.

At this point, we thus have the index of the corpus of paragraphs and our different queries
for which we want to retrieve the most relevant paragraphs.

In order to retrieve the most relevant paragraphs, we used the models already implemented in
Terrier : BB2, BM25, DFR BM25, DLH, DLH13, DPH, DFRee, Hiemstra LM, IFB2, In expB2,
In expC2, InL2, LemurTF IDF, LGD, PL2, and TF IDF. Each of these models returned a ranking
of relevant paragraphs to each query. We then used the CombMNZ function to keep only one
ranking from all models. The CombMNZ function returns a ranking by combining the rankings
from the different models [15]:



ScoreCombMNZs(p) = (
n∑

m=1

Scorems(p)) · Counts(p) (1)

where n is the number of weighting models, s is the concerned section, Scorems(p) is the score
calculated by the model m for the paragraph p for the section s, and Counts(p) is the number of
models that have retrieved the paragraph p for the section s.

As a result, we obtained a ranking of paragraphs for each query, i.e., for each section of an
outline.

3.2.3 Answer to the outline

Following the guidelines, we answered each outline using a maximum of 20 paragraphs. To choose
these 20 paragraphs from the different rankings computed for all the sections, we applied three
different strategies:

– The first strategy uses a classic Round-Robin algorithm. The best paragraph of each section is
selected in an iterative way until the maximum of 20 paragraphs is reached with the constraint
that one paragraph can only appear once in the outline. Figure 3 is an exemplification of this
strategy. For the outline “Word climates”, the different sections of the outline are depicted.
For each section, the ranking is presented with the rank, the paragraph ID, and the CombMNZ
score of the paragraph for the query corresponding to the section. Highlighted lines represent
the paragraphs kept to answer the outline. This strategy has some limits, notably regarding
the ranking across sections: one paragraph may have a higher score for section A than another
one for section B but as it is less well ranked it will not be kept for filling the outline. To
illustrate this limit, in Figure 3, the paragraph Para 4 of the “Tropical climates” section has
a relevance score of 550 and is kept in the final result while the paragraph Para 18 of the
“Continental climates” section has a relevance score of 950 and is not kept.

– To overcome this problem, we took into account in strategies 2 and 3 the ranking but also
the CombMNZ score of the paragraphs and the number of paragraphs of the section already
recovered to answer the outline. For each section, a candidate paragraph is chosen (the one
among the highest unrecovered paragraphs in the ranking for the section). For all the can-
didates (one per section), a function is applied, and the one that maximizes the score of the
function is selected. This operation is repeated until the limit of 20 paragraphs is reached.

For our second strategy, we used the following formula:

Function(candidates) = ses(candidates)− ces(candidates)− nbs (2)

with candidates the candidate paragraph for section s, ses the CombMNZ score of the paragraph
for the section scaled between 0 and 1, ces the ranking of the paragraph for the section scaled
between 0 and 1, and nbs the number of already retrieved paragraphs for the section, scaled
between 0 and 1.

To scale between 0 and 1, the MinMaxScaler function from sklearn4 was applied for all the
selected candidates:

scale(x) =
x−min(X)

max(X)−min(X)
(3)

4 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.

html, last access on October 22, 2019.
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Fig. 3. Illustration of the algorithm used to return paragraphs according to the outline and sections.

with X a vector, x a value of X, min(X) the minimum value of X and max(X) the maximum
value of X.

At last, for our third strategy, we used the following formula:

Function(candidates) = ln(ScoreCombMNZs(candidates))− cs(candidates)− nbs (4)

with ScoreCombMNZs the paragraph score for section s, cs the ranking of the paragraph for
section s and nbrs the number of paragraphs in section s already retrieved.

3.3 Runs

We submitted three runs:

– Our run using the Round-Robin strategy is named IRIT run1.
– Our run that uses strategy 2 is named IRIT run2.
– Finally, our run that uses strategy 3 is named IRIT run3.

Figure 4 shows the results of the track for 2019. These results do not consider the passage
ordering task but the section-level ranking performance. This explains the similar scores for the
three runs. In other words, only the approaches described up to section 3.2.3 are evaluated in the
task.

4 Conclusion

In this paper we presented our approach for the TREC IS 2019 task, which aims at categorizing
tweets from streams in order to help emergency services in case of incidents.



Fig. 4. Section-level ranking performance in NDCG, TREC CAR 2019

We also presented our approach for the TREC CAR 2019 task, which aims to answer complex
questions.
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