N
N

N

HAL

open science

Principles of user-centered online reinforcement learning
for the emergence of service compositions

Walid Younes, Sylvie Trouilhet, Francoise Adreit, Jean-Paul Arcangeli

» To cite this version:

Walid Younes, Sylvie Trouilhet, Francoise Adreit, Jean-Paul Arcangeli. Principles of user-centered
online reinforcement learning for the emergence of service compositions. [Research Report] IRIT/RR~

2019-05-FR, IRIT: Institut de Recherche Informatique de Toulouse. 2019. hal-02976638

HAL Id: hal-02976638
https://hal.science/hal-02976638
Submitted on 23 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02976638
https://hal.archives-ouvertes.fr

UNIVERSITE
Ien:tlirt\l;:zrdn?aﬁgﬁgec:g}iulouse TO U LO U S E I I I

PAuL SABATIER

Principles of user-centered online
reinforcement learning for the emergence
of service compositions

IRIT/RR-2019-05-FR

Mai 2019

Walid YOUNES,
Sylvie TROUILHET,
Francoise ADREIT,
Jean-Paul ARCANGELI

Institut de Recherche en Informatique de Toulouse (IRIT)



Abstract

Cyber-physical and ambient systems surround the human user with services at her/his disposal.
These services, which are more or less complex, must be as tailored as possible to her/his preferences
and the current situation. We propose to build them automatically and on the fly by composition of
more elementary services present at the time in the environment, without prior expression of the
user’s needs nor specification of a process or a composition model. In a context of high dynamic
variability of both the ambient environment and the needs, the user must be involved at the min-
imum. In order to produce the knowledge necessary for automatic composition in the absence of
an initial guideline, we have developed a generic solution based on online reinforcement learning.
It is decentralized within a multi-agent system in charge of the administration and composition of
the services, which learns incrementally from and for the user. Thus, our architecture puts the user
in the loop. It relies on an interaction protocol between agents that supports service discovery and
selection in an open and unstable environment.

Keywords

Online learning, reinforcement learning, user feedback, service discovery, selection and composi-
tion, multi-agent system, ambient intelligence



Chapter 1

Introduction

Cyber-physical and ambient systems consist of fix or mobile devices connected by one or several
communication networks. These devices host software components that provide services and may
require other services to operate. These components are software building blocks that can be as-
sembled by connecting required services to provided ones to compose more complex applications
[Sommerville, 2016]]. For example, the assembly of a non-dedicated interaction component present
in a smartphone (e.g. a slider, a button or a speech recognition component), a software adapter and a
connected lamp can realize an application allowing a user to control the ambient lighting.

Hardware and software components are generally multi-tenant and independently managed: they
are developed, installed and activated independently of each other. Due to the mobility of devices
and users, they may appear or disappear with unpredictable dynamics, giving to cyber-physical and
ambient systems an open and unstable nature. In addition, the possibly large number of components
may cause scalability problems. In such a context, component assemblies are difficult to design,
maintain and adapt.

Inside these systems, the human user can use the services at her/his disposal. Ambient intelligence
[Weiser, 1991} Sadri, 2011]] aims to offer a personalized environment adapted to the situation, i.e. to
provide the right service at the right time, by anticipating user’s needs, which may change. For this
purpose, the user can be involved but at an acceptable level [Bach and Scapin, 2003].

Our project aims to design and build a system that automatically and dynamically assembles soft-
ware components in order to build “composite” applications adapted to the ambient environment
and the user, i.e. operational, useful and usable. Our approach breaks with the classic top-down mode
for application development: the realization of an assembly is not driven by explicit user’s needs or
goals, nor by a specified process or model; on the contrary, composite applications are built on the
fly in bottom-up mode from the services available at the time in the ambient environment. Thus,
applications emerge from the environment, taking advantage of opportunities. In this context, the
user does not request for a service or an application: on the contrary, emerging applications are

provided in push modd]

Our solution is based on a middleware, called opportunistic composition engine (OCE), that pe-
riodically detects the components and their services present in the ambient environment, designs
assemblies of components by connecting services in an opportunistic way and proposes them to the
user. In the absence of prior explicit guidelines, OCE automatically learns the user’s preferences
according to the situation in order to later maximize her/his satisfaction. Learning is achieved on-
line by reinforcement. It is decentralized within a multi-agent system (MAS) where agents interact
within a protocol that supports dynamic service discovery and selection. To learn from the user and
for the user, the latter is put in the loop.

1A use case example is developed in [Koussaifi et al., 2018].



The objective of this paper is to present the decentralized architecture of the MAS-based solution
as well as the motivations and the principles of learning and their realization. Opportunistic com-
position raises several other questions (for instance, related to heterogeneity, security, reliability,
resource limitation...) that are out of the scope of this paper.

The paper is organized as follows. The architecture including the user and the composition engine
with the protocol for service discovery and selection is presented in Section |2 Agents’ behavior
and cooperation in the decentralized architecture are described in Section [3| Section 4] focuses on
learning: motivations, objectives and data for learning are analyzed, the online reinforcement learn-
ing solution is explained, then it is examined and discussed. Section [5|analyzes the related work on
learning for automatic software composition and positions our solution. In conclusion, Section [6]
summarizes the contribution and discusses the open issues and the continuation of this work.



Chapter 2

Architecture of the composition system

In order to meet the automation requirements of opportunistic composition, we have defined a
software architecture of the system. This section presents the main features of this architecture for

which we give a simplified view in Fig.
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Figure 2.1: Simplified architectural view

2.1 Overall architecture

At the heart of the system, OCE (Opportunistic Composition Engine) is responsible for designing ap-
plications for the user by assembling available business and interaction components. To do this, OCE
senses the components and their services that are present in the ambient environment, then man-
ages the connections and disconnections between required and provided services without relying
on prior explicit guidelines, thereby generating on the fly composite applications.

As unknown and surprising applications may emerge, the user must be informed. Thus, the ap-
plications must be presented to her/him in an understandable way. In addition, since there is no
guideline, we consider that the deployment of emergent applications should remain under user con-
trol whatever the engine’s choices are. This point is particularly important in the field of human-
machine interaction, for which the control by the user of her/his interaction environment is of the
highest importance [Bach and Scapin, 2003]]. As a consequence, the user must be put “in the loop”
[Evers et al., 2014].

Therefore, OCE proposes the emergent applications to the user and she/he decides at the end on
their deployment: she/he can accept or reject a proposed application, but also modify it through an
editor [Koussaifi et al., 2018]]. After acceptance, the emergent application is automatically deployed
and so usable. The issues related to the description of applications and their intelligibility in relation
to the user’s skills are out of the scope of this paper (more details are given in [Koussaifi et al., 2019]]).
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Nevertheless, even if the user shares the responsibilities with the engine, she/he should be in-
volved as little as possible [Bach and Scapin, 2003]]. The composition system must therefore be as
autonomous as possible. Our solution complies with the principles of autonomic computing and
the MAPE-K model (Monitor, Analyze, Plan, Execute - Knowledge) [Kephart and Chess, 2003]]: in a
cyclic way, OCE observes the surrounding environment, analyzes it and plans assemblies based on
its knowledge. In the MAPE-K model, the execution phase is responsible for carrying out what has
been previously planned. Here, the execution consists in presenting the built application to the user.
Monitoring consists in sensing not only the environment but also the user’s reaction to the applica-
tion presented (acceptance, rejection, modification). This reaction is then translated into feedback
data to support the OCE future decisions on service compositions.

2.2 MAS-based decentralization

The ambient environment is fully distributed, open and dynamic. Thus, we have designed OCE
as a multi-agent system (MAS) since the MAS architectural style is known to meet the main chal-
lenges raised by our problem: decentralization, distribution, scalability, dynamics and adaptiveness.
Agents are autonomous entities that cooperate to achieve a common goal [Ferber, 1999]]. Here, each
provided or required service is independently managed by a dedicated service agent, that is aimed
at connecting (or disconnecting) the service in a useful way.

Decentralizing OCE architecture as a MAS leads to a new requirement concerning inter-agent coop-
eration: to find an adequate connection, a service agent has to communicate by message with other
agents to reach an agreement] Thus, we designed a 4-step advertisement-based interaction proto-
col, called ARSA, which supports cooperation between agents and personalized service composition
[Sheng et al., 2014]] in a context of dynamics and openness. The four steps are:

1. Advertize: A service agent which is trying to connect sends an asynchronous (non-blocking)
advertisement message to the community. This acts as a declaration that the service is avail-
able for binding (this is close to publication of provided services, but it concerns the required
services in the same way).

2. Reply: A service agent that receives an advertisement analyzes it and answers positively if it
decides so (see Section [3) by sending a non-blocking reply message to the sender; otherwise,
the advertisement is ignored. This way, the advertizer agent may receive none, one or several
replies.

3. Select: When receiving a reply message, an advertizer agent analyzes it and may drop, mem-
orize or select it (the agent may also select a previously memorized reply). After selection, the
agent sends a select message to the replier and passes in a pending state for a finite period of
time.

4. Agree: Atlast, a service agent which receives a select message may agree. If so, the connection
can be effectively made.

A service agent may receive zero or many messages of the 4 different types. If it receives several
messages, it must choose one and behave accordingly; it takes its decision using its own knowledge.
In any case, an agent is not permanently blocked while waiting for a message, and cooperation

!In this paper, we disregard service description and matchmaking issues, as well as efficient routing of advertisement
messages.



with other agents goes on even if messages are lost or services disappear with their respective man-
ager agents. In addition, agents associated to appearing services are automatically integrated to the
system through advertizing or receiving advertisements from other agents.

Enhanced by decision-making mechanisms (see the next sections), the Adverstize and Reply steps
carry out distributed service discovery but without registry, while the Select and Agree steps carry
out service selection, in both cases in a decentralized and cooperative manner. Finally, decentralized
cooperation between agents leads to choreography of the services.



Chapter 3

Agent’s behavior and cooperation

The OCE engine is a MAS within each agent manages a service of a component. Agents have a life
cycle in which they perceive the received messages, make a decision and act according to the ARSA
protocol. OCE has its own life cycle too: it senses the environment, designs service composition
and presents it to the user. This involves a number of interactions between agents, which implies
that several agent cycles are performed in one OCE cycle. At the end of an OCE cycle, after the
presentation step, OCE receives and exploits feedback to learn about user’s preferences and habits.
Then, a new OCE cycle begins.

To decide on an action, an agent first builds a representation of the current situation (feature ex-
traction) in the perception step. Then, in the decision step, it compares the current situation with
situations already encountered, then scores the current situation from similar ones. Lastly, it chooses
the action to be performed (that is to say, the agent to answer to) in the action step.

3.1 Construction of the current situation

The current situation S} of an agent A’ in the OCE cycle “¢” lists the service agents sensed by A’
(the ones from which A’ has received an ARSA message) which services are compatibl with
the one of A’. It is extracted from the message exchanges within the MAS. It is a set of pairs
(A7, Message_Type) where A’ identifies a sender of a message to A" and Message_Type is Ad-
vertize, Reply, Select or Agree. S; is empty at the beginning of the OCE cycle, and incrementally
updated?| at each agent cycle according to Algorithmli}

Algorithm 1 Perception step of the agent A’
1: for each received Message do
2 AJ < sender_of(Message);
3:  if service(A) and service(A’) are compatible then

4: S« SiU{(A type_of(Message))}; /* update the current situation */
5. end if
6: end for

'"Two services are compatible if one of them is provided, Sp, and the other is required, Sg, and if Sp includes Sg. If
so, Sk and Sp may be connected.

2When updating the current situation with A7, if A7 already exists in the current situation with a different message
type, the most recent one is retained.



3.2 Comparison with the reference situations

Over time, depending on the hardware and software components in the varying ambient environ-
ment, an agent may encounter various situations. A reference situation R is a situation, numbered
k, that an agent A’ has encountered in the past (in a previous OCE cycle). Close to the current
situation, it is composed of a set of service agents sensed by A’ in the environment at a given time
and which services are compatible with the one of Al R}'C is a set of pairs (A7, S coreé-), where A7 is
the identifier of a message sender, and .S core} is a numerical value that represents the interest for
A’ to connect its service with the one of A7 (Section [4.2| explains how this knowledge is built and
maintained through learning).

A’ memorizes a set of reference situations that constitutes its knowledge base, noted Ref’. The
main purpose of the comparison step for A’ is to select from Ref* the reference situations similar
or identical to Si. The idea is to repeat a decision made in the past in the same situation or to
approximate it when the current situation is similar to a reference ones.

Comparison between the current situation S; and a reference situation is based on the identifiers of
the agents present in the situations, regardless of message types and scores. The Compute_Similarity
function returns a set of reference situations with a numerical value for each of them: this value
measures the degree of similarity d; with S!, and must be greater than a threshold This set
may be empty, when none of the reference situations in Ref’ has a degree of similarity beyond
the threshold ¢. It is a singleton if the current situation S! already exists in Ref* (the other similar
situations are overlooked).

Let Sit" be the set of all possible current situations, Ref* the knowledge base of A?, and ¢ the
threshold. Compute_Similarity is defined as follows:

Compute_Similarity : Sit" — P(Ref* x R)

i i . (3.1)
St = { (R dk)}kgmem with d > &

3.3 Scoring the current situation

The function Score_Situation assigns a numerical value to each agent A’ of S, in order to choose one
of them later. If S} has been recognized as a reference situation, the scores are replicated identically.
Otherwise, the score Score: of A7 is calculated from the scores of A7 in the reference situations
selected by comparisorf’} If one agent of the current situation S; does not appear in the reference
situations (this is the case when a new service appears in the ambient environment), an arbitrary
value is assigned to it. The choice of this value defines how the agent takes into account novelty
(a new appearing service with which the agent has not yet cooperate): for example, A* fosters the
consideration of novelty by choosing a value greater than the scores of the other agents in the
current situation S;. This choice belongs to A’. It may do it according to what it has learned about
the user’s preferences regarding novelty. Last, if none reference situation similar to S has been
found, the scores are initialized with an arbitrary value. As before, the choice of these value belongs

to A%

31n a first version, dy, is calculated from the proportion of agents in common. The calculus of dj, and of the value of
& will be fine-tuned with experimentation, possibly through learning too.

*In a first version, S coreé is the average score of A7 weighted by the degrees of similarity. As the similarity, it should
be fine-tuned with experimentation and learning.



3.4 Choosing the agent to connect to

At this point, A’ selects an agent A7 in the scored current situation through the function Choose_Agent.
To do this, several strategies are possible depending on the scores, on the message types, or on a
combination of bot (Section comes back to this point). When the decision is made, A’ sends a
message to the chosen agent A’ according to ARSA. Once two agents agree to connect, they block
waiting for feedback on their agreement.

Algorithm [2| synthesizes the agent’s behavior at decision step.

Algorithm 2 Decision step of the agent A’

Require: S!: the current situation
1: Similar} < Compute_Similarity(S});
2: Scored_Situation! < Score_Situation(S!, Similar});
3: A’ + Choose_Agent(Scored_Situationl);

Inter-agent cooperation and connection agreements contribute to the consistency of OCE global
decision and the emergence of cohesive composite applications. Section [4.3|points out the comple-
mentary contribution of the user to this issue through her/his feedback.

°In a first version, the function Choose Agent gives priority to the message types, in the following order: Agree,
Select, Reply, Advertize.



Chapter 4

OCE learning principles

The function of OCE is to design compositions of software components in order to generate relevant
emergent applications, then to propose them to the user, at last to deploy them depending on user
feedback. To do this, OCE must make decisions on service connections, that are constrained by
several factors:

« the dynamics and unpredictability of the surrounding environment,

the number of services in the ambient space, that may be significant,
« the dynamics and variability of the user’s needs,

« the user participation which must be limited.

To make relevant decisions, OCE needs knowledge that must be learned automatically. This sec-
tion first analyzes the learning requirements, then describes the learning solution which consists in
building knowledge at the agent level from user feedback at the end of each OCE cycle, last examines
and discusses it.

4.1 Why, what, from what, and how learning?

4.1.1 Why the engine has to learn?

Because of the dynamics and unpredictability of the surrounding environment, the combinatory
generated by the number of components, as well as the dynamics and variability of her/his own
needs, the user is not able to explicit a priori and exhaustively her/his needs and preferences, nor
to translate them into assembly plans or abstract processes in the various situations she/he may
encounter. Therefore, OCE cannot base its decision on guidelines specified in advance. Thus, it has
to learn and this, from experience.

4.1.2 What does the engine has to learn?

OCE has to build the required knowledge to be able to propose relevant applications to the user. It has
to learn what the user prefers when some components are present in the surrounding environment.
For instance, OCE may learn that the user prefers to control the ambient lighting with the slider
embedded on her/his smartphone instead of the connected wall switch. These preferences at a given
moment are intended to be exploited in the future to take decisions in same or similar situations.
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4.1.3 What does the engine need to learn from?

The engine cannot initially have a set of learning data. However, data can be observed throughout
the use of the system. There are several possible sources of data:

1. As the user is present in the control loop, her/his feedback on the proposed emergent applica-
tion (acceptance, modification or rejection) can be observed and exploited without overloading
her/him. For instance, if the user changes the control of the ambient lighting, OCE can evolve
its preferences about connection between services (e.g. the slider instead of the switch).

2. The user has an editor which allows to handle the components and their connections and to
modify the presented assembly [Koussaifi et al., 2018]. By instrumenting the editor, it would
be possible to observe user’s actions (like pushing a component outside the edition window)
and extract additional feedback.

3. With an additional effort, the user could explicitly provide a richer feedback for the proposed
application, before its deployment or after its use.

4. After deployment, the application could also be observed when running (use of the partici-
pating components, of the services or the connections...) in order to automatically extract a
qualitative assessment of its use.

5. At the MAS level, it is also possible to extract information from the interactions between the
agents (for example, in case of substantial exchanges between two agents, connection between
their services could be promoted).

At this stage of our work, we have chosen to use the first source that reflects the user’s preferences
according to the components that are in the surrounding environment, that is the situation. This
way, the engine learns from the interactions with the user without overloading her/him. We assume
that even if the user can not explicit her/his needs a priori, she/he is able to react to a propose
application built automatically. It is then possible to capture this reaction as feedback and to extract
from it knowledge useful for future decision-making.

4.1.4 How to learn?

The lack of initial data and solutions known in advance makes supervised and unsupervised learning
impossible. In addition, the dynamics of the environment, with services that appear and disappear in
an unpredictable way, makes very difficult or even impossible to build a static model of prediction or
classification. Hence, our learning approach is online: OCE iteratively learns by progressive adapta-
tion of the agents’ knowledge; agents increment and update their knowledge as the experience goes
along, according to the interactions with the user and the feedback she/he provides.

According to the online learning model, OCE makes a “prediction” (the assembly) and the envi-
ronment (here the user) provides an answer about its correction depending on its preferences and
actual needs. However, the feedback given in our case by the user does not have the accuracy of the
answer given by the environment in the standard online learning model: in particular, it can evolve
over time as the situations and the user’s needs or preferences change. For this reason, we hybridize
the principles of online learning with those of reinforcement learning [Sutton and Barto, 2018]]. Re-
inforcement learning aims at learning what to do (mapping situations to actions) so as to maximize
a numerical reward. It allows a learning system to adapt over the long term by interacting with its
environment. Here, the user’s response helps to reinforce the agents’ knowledge, which decisions
at the iteration ¢ rely on the knowledge that has been accumulated up to the iteration ¢ — 1.
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When deciding of an action, reinforcement learning usually supposes a balance between exploitation
of learned data and some exploration in order to build new data. Thus, along the ARSA exchanges,
(see Section [3.4), the chosen agent may be the “best” with a probability (1 - €), € being a real number
close to 0, or another agent with a probability €. In the first case, the agent exploits its knowledge
and chooses the “greedy” action; in the second case, it explores an alternative solution. Setting ¢
value determines the balance between exploitation and exploration.

Finally, considering the dynamics of both the surrounding environment and the user’s needs, learn-
ing must also be endless, which does not exclude phases of knowledge stabilization.

In addition, note that this approach does not exclude the use of a priori known knowledge (for exam-
ple, general rules or patterns for assembling business components, ergonomic rules for assembling
interaction components), that could be provided initially and thus accelerate knowledge acquisition.

4.2 Agent learning based on user feedback

The agent’s knowledge is created and updated off the agent’s cycle, at the end of the OCE cycle,
after presentation and interaction with the user. At that point, a user feedback, which covers the
entire assembly, is sent back to OCE and propagated to every agent involved in the assembly. Then,
each involved agent A’ constructs a new reference situation from its own scored current situation:
for each agent A¥ of the situation, A° calculates a reinforcement value noted rilk from the feedback.
The calculation of 7, uses a variable 3 > 0, chosen by A’. There are three possibilities:

1. The user has entirely accepted the presented assembly. Each agent A® of the assembly must be
rewarded,; if its decision was to connect to A7:

quj =p
re =0,VAF € Si, with k # j.

2. The user has entirely rejected the presented assembly. Each agent A° of the assembly must be
penalized; if its decision was to connect to A’:

Tip' =—p
i = 0,VA* € Si, with k # j.
3. The user has modified the presented assembly. For A’, if the user replaces a connection to the

service of A7 (decided by A?) by a connection to the service of A", the initial connection must
be penalized and the new one rewarded:

rly =B
' = (Scorel — Score},) + 3

rie =0,YA" € S}, withk # hetk # j.

Besides, the connections kept by the user are treated as an acceptance, and the ones removed
as a rejection.

To score any agent A* of the current situation S! of A, A’ uses the formula (4.1), derived from the

update rule of the “bandit algorithm” [Sutton and Barto, 2018]], where S core}; is the score of A* and
« is the learning factor (0 < a < 1):

Score}, = Score}, + a(r'y, — Score},) (4.1)

12



In the formula (4.1), (1 — «)Scorel, is the part of the information that the agent keeps from its past
experience and « 7, the part that it learns in the current OCE cycle. Note that the score of the
agents not retained in the assembly systematically decreases (since r*,;, = 0, Score;j, is multiplied by
(1 — «)). For the selected agent A7, depending on the value of /3, the score may also decrease, but
to a lesser extent; the position of A’ is therefore reinforced compared to the agents not selected.

When scoring is achieved, a new reference situation is built and A’ stores it in its base of knowledge
Ref". If this situation is already in Ref* (the situation has already been encountered), A* simply
updates the scores with the ones computed in the current OCE cycle.

4.3 Discussion

OCE learns in order to make decisions that maximize user satisfaction (regarding utility and usabil-
ity) and personalize the services. In our solution, satisfaction criteria do not have to be formally
defined: OCE relies on user feedback (acceptance, rejection, modification) and not on an evaluation
of predefined quality criteria. This gives OCE a generic (regardless of the user) and evolutive (the
user’s preferences may change as well as her/his satisfaction criteria) nature.

Our method is close to case-based reasoning, which relies on reuse of solutions that have previously
led to solve similar problems [Aamodt and Plaza, 1994]. The learning process builds and continu-
ously adapts the agent’s knowledge, i.e. data from the experience that drive the future choices of the
“best” service. Thus, as data may change, OCE decisions may change over time for a same situation.

We have highlighted the bottom-up feature of opportunistic composition where global assemblies
emerge from local agents’ decisions. As learning is distributed in a MAS, it benefits from MAS
properties such as openness, resilience, dynamic adaptation and scalability. In addition, learning is
less complex to design: it is easier to manage and decide on local connections rather than to observe
and compare complete assemblies at the global level.

The learning method is a kind of concurrent learning. The learners are the agents, which inde-
pendently adjust their own knowledge by adding new reference situations, or modifying some of
them, or even forgetting old ones. However, having only a local view might not be enough for effi-
cient learning and consistent decision making. Here, the user “in the loop” has a major role in term
of decision consistency: she/he evaluates and controls OCE decisions, and provides a global feed-
back which is dispatched to the agents and transformed into knowledge. Driven by this common
knowledge, the aggregation of the agents’ local decisions makes sense from a global perspective.
In addition, our solution should evolve towards multi-agent learning [Albrecht and Stone, 2018]] by
knowledge sharing and increased coordination (for example, between the service agents of the same
component).

13



Chapter 5

Related work

Sheng et al. [Sheng et al., 2014] survey standards, research prototypes and platforms for Web ser-
vice composition. They identifiy automation of service selection, composition adaptability, scalabil-
ity, and personalization as major requirements, and claim that adaptable and autonomous services
composition as well as pervasive service composition present open issues that need extensive re-
search efforts. The specific features of service composition in pervasive systems are analyzed in
[Bregnsted et al., 2010]].

The automatic composition problem takes two different forms depending on whether a model of
the composition (i.e. a description of a workflow or an assembly plan) is known in advance or not
[Morh, 2016]]. In the first case, the aim is to find the different services that make possible the instanti-
ation of the given model while adapting it to the context. For example, MUSIC [Rouvoy et al., 2009]
supports plan selection at runtime and their adaptation to the context to maximize application util-
ity. In [Karchoud et al., 2017], a rule-based engine builds applications at runtime and pushes them
to the user when particular contextual situations are detected. In the second case, services are de-
signed at runtime to satisfy specified goals or pre- and/or post-conditions. For example, MUSA
[Cossentino et al., 2015]] supports service composition and adaptation in dynamic and unpredictable
environments based on user goals, which may change dynamically. In [Mayer et al., 2016}, the sur-
rounding environment is automatically and dynamically configured based on goals and the services
present at the time. Solutions for service composition in ambient intelligence systems are exam-
ined in [Stavropoulos et al., 2011]]: here again, composition relies on goals that may be expressed in
different ways. Thus, in any case, unlike our bottom-up approach, service composition is made up
top-down from a specification given by the designer or the user. To a certain extent, in our solution,
the specification of what should be composed to satisfy the user is built dynamically and iteratively
by OCE.

The autonomy of the composition system and the sharing of responsibilities between the system and
the user are key issues. Ambient intelligence systems aim at minimizing user involvement: beyond
expression of goals, some systems consider the user’s stated preferences or profile, others demand
a more significant contribution, e.g. choose from several possible compositions, score or rank them,
even participate in service selection [Stavropoulos et al., 2011]]. In [Coutaz and Crowley, 2016], as an
alternative to artificial intelligence, authors propose end-user development so that users can config-
ure their smart home themselves. Users may also be put in the loop, since composition systems may
behave in unexpected ways, to help in conflict resolution or improve solutions [Gil et al., 2016]. In
[Evers et al., 2014], the user can select, accept, reject, or adjust applications, change her/his prefer-
ence, even put off automatic adaptation; in addition, for acceptability and to avoid user trouble, some
of the components (called “user focus” components) are kept out of adaptation. In [Karami et al., 2016]],
the emphasis is put on feedback. Authors argue that user preferences and profile can be learned (by
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semi-supervised reinforcement learning), and associated to activity recognition. In any case, man-
aging user attention and disturbance is a major requirement.

Service selection mainly aims at meeting quality of service (QoS) requirements [Sheng et al., 2014]].
A composition algorithm based on the clustering of services in relation to QoS is proposed in
[Khanouche et al., 2019]]. In order to continuously adapt component-based software systems and
build “emergent software”, authors of [Rodrigues Filho and Porter, 2017] propose a learning system
that experiments at runtime a set of known possible configuration for a given goal, and choose the
one that maximize extrafunctional criteria. The configurations are equipped with sensors that gen-
erate feedback data (similar to those mentioned in point 4 of Section that feed learning by
reinforcement, and this without explicit user involvement. Here, the configuration emerge, not the
functionality. In [Wang et al., 2010], self-adaptive composition of Web services in dynamic environ-
ments maximizes the global QoS of the composition: service composition is modeled as a Markovian
decision process with several alternative processes, the best one being chosen using a Q-learning
algorithm (a sort of reinforcement learning algorithm). Our solution doesn’t rely on specified QoS
attributes nor precisely optimize a particular QoS criterion: in a way, the quality of a proposed as-
sembly is defined and evaluated by the user depending on her/his preferences, then provided to the
engine as feedback data that drive OCE future decisions.

A cooperative approach based on reinforcement learning is proposed in [Li et al., 2014] to adapt
compositions of Web services and maintain a required level of QoS: for that, a learning automaton
is associated to each service and automata collaborate to replace a deficient service. Wang et al.
propose a distributed algorithm to optimize dynamically of Web service compositions in a vary-
ing environment: within a MAS, agents learn by reinforcement using a Q-learning algorithm and
share their experience to improve efficiency and speed up the learning rate [Wang et al., 2016]. In
[Charif and Sabouret, 2013]], a coordination protocol between agents supports choreography of ser-
vices, based on dialog and the history of conversations. These cooperative approaches are promising
and meet the perspectives of our work discussed in Section

15



Chapter 6

Conclusion

This paper presents the principles of a new solution for user-oriented automated service composi-
tion in ambient spaces that makes new functionalities emerge from the environment in bottom-up
mode, without prior expression of composition models or goals. It relies on online reinforcement
learning based on user feedback, and on a protocol for service distributed discovery and selection,
that tolerates the disappearance of services and allows the arrival of new ones. A composition en-
gine, OCE, implemented as a cooperative multi-agent system, manages the services and decides of
their connections in a decentralized way. For that, each agent observes partially the environment
through the messages it receives, which avoids having to predefine then recognize global situations;
then, it makes individual decisions locally. In complement, the global consistency of the decentral-
ized decisions is evaluated and controled by the user.

OCE learns from the user and makes decisions to maximize her/his satisfaction, while limiting
her/his involvement. In addition, by not embedding any predefined QoS criteria and being based on
user-specific and implicit QoS criteria (her/his individual preferences), our learning-based solution
is generic and evolutive.

Opportunistic service composition without prior specification is a new and disruptive approach
which is challenging to validate. So far, we have implemented and validated the functional archi-
tecture of the system with the ARSA cooperation protocol in several simple cases: OCE effectively
senses the components and their services and builds composite applications. In addition, basic ver-
sions of the different learning functions (similarity computation, situation scoring, agent selection)
have been defined. Besides, a prototype editor for user interaction and feedback extraction has been
developed [Koussaifi et al., 2018]. A major experimentation and validation campaign is underway,
in particular in the field of smart city. It will allow to refine the definitions of the functions and to
adjust the learning parameters. The objective is also to measure the results in terms of convergence
speed of the learning process, relevance of the decisions, consideration of novelty, user contribu-
tion, all this depending on both dynamics and scale. According to the results attained, a number
of possible improvements are possible, such as introducing initial knowledge to accelerate learning
time, using different sources of feedback to consolidate knowledge, and coordinating learning for
better collective decision-making. Anyway, a balance should be achieved between, on the one hand,
the quality and quantity of knowledge and, on the other hand, the nature and intensity of the user’s
involvement in the process.
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