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Abstract

NoSQL document stores are well-tailored to efficiently load and manage massive collections of heterogeneous documents
without any prior structural validation. However, this flexibility becomes a serious challenge when querying heterogeneous
documents, and hence the user has to build complex queries or reformulate existing queries whenever new schemas
are introduced in a collection. In this paper we propose a novel approach, based on formal foundations, for building
schema-independent queries which are designed to query multi-structured documents. We present a query enrichment
mechanism that consults a pre-constructed dictionary. This dictionary binds each possible path in the documents to all
its corresponding absolute paths in all the documents. We automate the process of query reformulation via a set of rules
that reformulate most document store operators, such as select, project, unnest, aggregate and lookup. We then produce
queries across multi-structured documents which are compatible with the native query engine of the underlying document
store. To evaluate our approach, we conducted experiments on synthetic datasets. Our results show that the induced
overhead can be acceptable when compared to the efforts needed to restructure the data or the time required to execute
several queries corresponding to the different schemas inside the collection.

Keywords: Information Systems, Document Stores, Structural Heterogeneity, Schema-independent Querying

1. Introduction

During the last decade, NoSQL databases and schema-
less data modelling have emerged as mainstream alterna-
tives to relational modelling for addressing the substantive
requirements of current data-intensive applications [1], e.g.,5

IoT, web, social media and logs. Document stores hold data
in collections of documents (most often JSON objects); they
do not require the definition of any formal structure before
loading data, and any data structure can be used when
updating data. The main advantage of this is being able10

to store documents in transparent and efficient ways [2, 3].
Nevertheless, it is possible to store a set of heterogeneous
documents inside the same collection, and for the purposes
of this paper, documents have heterogeneous structures.
This is a major drawback, and issues arise when query-15

ing such data because the underlying heterogeneity has to
somehow be resolved in the query formulation in order to
provide relevant results. Several kinds of heterogeneity are
discussed in the literature: structural heterogeneity refers
to diverse representations of documents, e.g., nested or20

flat structures, nesting levels, etc. as shown in Figure 1;
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syntactic heterogeneity refers to differences in the repre-
sentation of data, and specifically of attribute names, e.g.,
movie title or movieTitle; finally, semantic heterogeneity
may exist when the same field relies on distinct concepts in25

separate documents [4], e.g., country and nation. In this
paper we focus on structural heterogeneity.

Usually, four main types of solution are considered when
dealing with structural heterogeneity: (i) applying schema
matching techniques to merge heterogeneous structures [5],30

(ii) transforming all document schemas to a single common
schema which leads to a homogeneous collection [6], (iii)
using automatic schema discovery from original heteroge-
neous data to support querying, which requires the user to
take heterogeneity into account [7], and (iv) introducing35

a new querying mechanism to give transparency to the
heterogeneity in the data [8].

In this paper we provide an automatic mechanism based
on formal foundations so that multi-structured document
stores can be queried. We support the user query a collec-40

tion based on the knowledge of absolute, i.e., a full path
leading to the attribute of interest starting from the root
of the document, or partial paths, i.e., a sub-path starting
from any intermediary location within the document lead-
ing to the attribute of interest, that exist in some schema.45

Our query reformulation engine generates a new query that
automatically integrates the description of heterogeneous
structures. Therefore, the engine enriches path expression
in the query with all the absolute paths that exist in any

Preprint submitted to Information systems March 15, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0306437918302990
Manuscript_770d857a5d02a2a43cc673f46ec1d55e

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0306437918302990
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0306437918302990


document from the collection and that lead to this path50

expression.
The rest of our paper is structured as follows. In Sec-

tion 2 we examine the main issues addressed in this pa-
per. Section 3 reviews the state-of-the-art research work
which provides support for querying multi-structured docu-55

ments. Section 4 describes our approach in detail. Section 5
presents our first experiments and evaluates our approach.
Finally, we summarize our findings in Section 6.

2. Issues in Querying Multi-Structured Docu-
ments60

In this section we outline the issues that arise when
querying multi-structured documents.

2.1. Structural Heterogeneity

Classically, a collection contains a set of documents that
usually represent the same entity. Nevertheless, because65

of their flexibility, document stores can store documents
inside the same collection regardless of their structure.
Such schema variability appears as applications evolve
and change for many reasons: systems evolution, systems
maintenance, diversity of data sources, data enrichment70

over time, etc. Because of their schemaless nature, querying
document stores requires a knowledge of the underlying
document structure and the use of full paths to access data
in queries. Most document stores adopt this assumption
(e.g., MongoDB, CouchDB, Terrastore [9, 10, 11]). Since it75

is possible to construct a collection where documents are
structurally heterogeneous, users can therefore formulate
queries which affect the quality of the results, i.e., by
excluding relevant documents whose schema is not explicitly
expressed in the query.80

In Figure 1 we present a collection composed of four
documents (a, b, c, d) using the JSON (JavaScript Object
Notation) format for formatting semi-structured data in
human-readable text. Each document contains a set of
attribute-value pairs whose values can be simple (atomic),85

e.g., the value of the attribute title, or complex, e.g., the
value of the attribute ranking in document (a). A special
attribute id in each document identifies the document
inside the collection. In addition, documents form a hier-
archical data structure composed of several nesting levels90

(also called nodes or attributes), e.g., the attribute score in
document (a) is nested under the complex attribute ranking.
The top node for all attributes in the document is called
the root, but has no specific name. Figure 2 illustrates the
hierarchical representation of document (a).95

In collection (C), the documents (b, c, d) share the
same leaf nodes (attributes with atomic/array of atomic
values, e.g., title, genres) as document (a). The struc-
tural heterogeneity lies in the fact that these leaf nodes
exist in different locations in documents (b, c, d), for in-100

stance, the absolute path to reach the attribute title in
document (c) is film.title. However, in documents (a, b),

the path title is enough to reach this information because
it is directly nested under the root node. Nevertheless,
film.title represents a third absolute path in document (c)105

and description.title represents a fourth absolute path in
document (d) for the title information.

2.2. Querying Issues

To retrieve information from a document attribute in
most existing document stores, it is necessary to build110

queries using the absolute path from the document root
down to the attribute of interest. If a user formulates a
projection query using only the absolute path title, any
document store engine ignores the information related to
this attribute in documents (c) and (d), despite the fact115

it is present in those documents. As a result, document
stores return only {“ id”:1, “title”:“Million Dollar Baby”},
{“ id”:2, “title”:“Gran Torino”}. This result is closely
related to the paths expressed in the query. Because the
majority of NoSQL document stores require the use of120

absolute paths, when a user makes a query, native query
engines expect this user to explicitly include all existing
paths from the database to target the relevant data.

It is not a straightforward task to handle structural
heterogeneity manually, especially in continuously evolving125

big data contexts where data variety is quite common,
for instance, to project out all information related to the
attribute year, the user should know about the distinct
absolute paths found in collection (C) (i.e., year, info.year,
film.details.year, description.year) otherwise the resulting130

information could be reduced.
Let us suppose that a user wishes to project out all

information related to movies: title with their related rank-
ing.score. If she formulates a query with the paths (title,
ranking.score) the result is {“ id”:1, “title”:“Million Dollar135

Baby”, {“ranking”:{“score”:8.1}}, {“ id”:2, “title”:“Gran
Torino”}. Despite the presence of the information rank-
ing.score in the four documents, the result does not in-
clude this information since it is located in other paths
in documents (b, c, d). We can also see the same be-140

haviour for the attribute title with documents (c, d). Let
us assume that the user knows the absolute path for rank-
ing.score in document (b) and formulates a second query
with the paths (title, info.ranking.score), in this case the
result is {“ id”:1, “title”:“Million Dollar Baby”}, {“ id”:2,145

“title”:“Gran Torino”, {“info”:{“ranking”:{“score”:8.1}}.
When we compare the results of the two previous queries,
we can observe that information related to ranking.score for
document (a) is only present for the first result. However
the second query just retrieves ranking.score information150

from document (b). Formulating and executing several
queries is a complex and an error prone-task. Data re-
dundancy may occur (case of title information present
in both results). Therefore, if a user wishes to query
multi-structured data and use several queries to target155

different paths, she has to make an effort to merge results,
to learn the underlying data structures, and to remove
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{ "_id":1,

"title":"Million Dollar Baby",

"year":2004,

"link":null,

"awards":["Oscar", "Golden Globe",

"Movies for Grownups Award", "AFI

Award"],

"genres":["Drama", "Sport"],

"country":"USA",

"director":{ "first_name":"Clint",

"last_name":"Eastwood"

},

"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"

},

"actors":["Clint Eastwood",

"Hilary Swank", "Morgan Freeman"],

"ranking":{ "score":8.1

}

}

(a)

{ "_id":2,

"title":"In the Line of Fire",

"info":{

"year":1993,

"country":"USA",

"link":"https://goo.gl/2A253A",

"genres":["Drama", "Action", "Crime"],

"people":{

"director":{ "first_name":"Clint",

"last_name":"Eastwood"

},

"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"

},

"actors":["Clint Eastwood",

"John Malkovich", "Rene Russo Swank"]

},

"ranking":{ "score":7.2

}

}

}

(b)

{ "_id":3,

"film":{

"title":"Gran Torino",

"awards": "AFI Award",

"link":null,

"details":{

"year":2008,

"country":"USA",

"genres":"Drama",

"director":{ "first_name":"Clint",

"last_name":"Eastwood"

},

"personas":{

"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"

},

"actors":["Clint Eastwood",

"Bee Vang", "Christopher Carley"]

}

},

"others":{

"ranking":{ "score":8.1

}

}

}

}

(c)

{ "_id":4,

"description":{

"title":"The Good, the Bad and the Ugly",

"year":1966,

"link":"goo.gl/qEFfUB",

"country":"Italy",

"director":{ "first_name":"Sergio",

"last_name":"Leone"

},

"stars":{

"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"

},

"actors":["Clint Eastwood",

"Eli Wallach", "Lee Van Cleef"]

}

},

"classification":{

"ranking":{"score":7.2

},

"genres":["Western"]

}

}

(d)

Figure 1: Illustrative example of a collection (C) with four documents describing films

possibly redundant information. In this example, a possi-
ble query allowing the user to consider all the data could
take the following form (title, film.title, description.title,160

ranking.score, info.ranking.score, film.others.ranking.score,
classification.ranking.score) which is a long and complex
query for projecting out only two pieces of information, i.e.,
title and ranking.score.

Figure 2: Hierarchical representation of the document (a)

3. Related Work165

Contexts such as data-lake [14], federated database [19],
data integration, schema matching [5], and recently, schema-
less data support in NoSQL systems [20] have highlighted
the importance of building transparent mechanisms that
use the underlying data in a transparent way. In addition170

to large volumes of data, there is a need to overcome the
heterogeneity of the collected data. Different sources gener-
ate data under different structures, versions and languages.
The problem of querying multi-structured data has pushed
the database community to rethink how information is175

accessed with regards to the underlying data structure
heterogeneity [21].

We classify state-of-the-art research work based on
the solutions proposed for querying multi-structured doc-
uments. The first family of work examines methods of180
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Contribution Heterogeneity Querying mechanism Underlying store Solution Data model
Schema evolution
support

Type Level

ARGO[12] structural schema ARGO/SQL MySQL, Postgres physical re-factorization document manual

Sinew[6] structural schema SQL Postgres physical re-factorization key-value manual

[13] semantic schema SQL RDBMS physical re-factorization key-value manual

[14] structural instance Keywords queries + SQL - data annotation document manual

[15] structural schema - Distributed DB schema inference document manual

[16] structural schema - MongoDB schema inference document manual

SQL++[17] structural schema SQL++ RDBMS+NoSQL query language relational + document manual

JSONiq[8] structural schema JSONiq - query language document manual

XQuery[18] structural schema XQuery - query language document manual

EasyQ structural schema Aggregation Framework MongoDB query reformulation document automatic

Table 1: Comparative study of the main contributions to querying heterogeneous semi-structured data

schema matching; the second recommends performing ma-
terialized structural changes to unify heterogeneous forms
of documents; the third recommends operating queries on
a virtual schema derived from the heterogeneous structures
and the last recommends querying techniques to overcome185

the heterogeneity in documents.

Schema integration. The schema integration process is
performed as an intermediary step to facilitate a query
execution process. In their survey paper [5], the authors
presented the state-of-the-art techniques used to automate190

the schema integration process. Matching techniques can
cover schemas [22] or even instances [23]. Traditionally,
lexical matches are used to handle syntactic heterogene-
ity [24]. Furthermore, thesauruses and dictionaries are
used to perform semantic matching [25]. Schema integra-195

tion techniques may present certain issues such as data
duplication, e.g., in the case of physical re-factorization, or
potential original structure loss, e.g., when constituting a
common schema. These two characteristics may make it
impossible or unacceptable to support legacy applications.200

Therefore, changing the data structure necessitates chang-
ing the workload in the application side. Furthermore,
this task is required whenever a new common structure
is integrated into the collection data. It is important to
note that our schema-independent querying manages to205

resolve heterogeneity at the schema level using schema level
matching techniques. We do not consider instances and
values in our approach, only the document structures.

Physical re-factorization. Work has been conducted to
ensure that semi-structured data can be queried without210

any prior schema validation or restriction. Generally, this
work recommends flattening XML or JSON data into a
relational form [12, 6, 13]. SQL queries are formulated
based on relational views built on top of the inferred data

structures. This strategy implies that several physical215

re-factorizations should be performed which will affect
scalability. Hence, this process is time-consuming, and it
requires additional resources, such as an external relational
database and more effort from the user to learn the unified
inferred relational schema. Users of these systems have to220

learn new schemas every time they change the workload or
when new data are inserted (or updated) in the collection,
as this is necessary to regenerate the relational views and
stored columns after every change.

Schema inference. Other research work recommends225

inferring implicit schemas from semi-structured documents.
The idea is to give an overview of the different elements
present in the integrated data [15, 16]. In [7] the authors
suggest that all document schemas should be summarized
in a skeleton framework to discover the existence of fields230

or sub-schemas inside the collection. In [26] the authors
suggest extracting collection structures to help developers
in the process of designing their applications. In [27] a novel
technique is defined to explain the schema variants within a
collection in document stores. Therefore, the heterogeneity235

problem in this research work is detected when the same
attribute is represented differently (different type, different
position inside documents). Schema inference methods
enable the user to have an overview of the data and take
the necessary measures and decisions during the application240

design phase. The limitation with such a logical view is
that it requires a manual process in order to build the
desired queries by including the desired attributes and all
their possible navigational paths. In such approaches, the
user is aware of data structures but is required to manage245

the heterogeneity.

Querying techniques. Other work recommends resolv-
ing the heterogeneity problem by focusing on the query
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side. Query rewriting [28] is a strategy for reformulating
an input query into several derivations to overcome hetero-250

geneity. The majority of research work is designed in the
context of the relational database, where heterogeneity is
usually restricted to the lexical level. When it comes to the
hierarchical nature of semi-structured data (XML, JSON
documents), the problem of identifying similar nodes is255

insufficient to resolve the problem of querying documents
with structural heterogeneity. To this end, keyword query-
ing has been adopted in the context of XML [29]. The
process of answering a keyword query on XML data starts
with the identification of the existence of the keywords260

within the documents without the need to know the un-
derlying schemas. The problem is that the results do not
consider heterogeneity in terms of nodes, but assume that
if the keyword is found, no matter what its containing node
is, the document is adequate and has to be returned to265

the user. Other alternatives for finding different naviga-
tional paths which lead to the same nodes are supported
by [30, 18]. However, structural heterogeneity is only par-
tially addressed. There is always a need to know the
underlying document structures and to learn a complex270

query language. Moreover, these solutions are not built
to run with large-scale data. In addition, we can see the
same limitations with JSONiq [8], the extension to XQuery
designed to deal with large-scale semi-structured data.

In Table 1 we present the state-of-the-art research275

work intended to resolve the problem of querying multi-
structured data. We compare this work according to the
following criteria:

• The type of heterogeneity examined in each type of
work: structural, syntactic or semantic;280

• The level of heterogeneity. For each type of work
we consider whether the contribution is designed to
resolve heterogeneity at schema level or instance level;

• The querying mechanism. We examine if the type of
work recommends a new query language, reuses exist-285

ing systems or does not offer any querying support;

• The underlying store. We indicate if each type of
work is limited to one store or several stores;

• The solution proposed for the heterogeneity problem.
We describe the nature of the solution for each type290

of work, for instance, does it perform physical re-
factorization and change the original schemas, does
it focus only on inferring underlying schemas or does
it offer a new query language?

• The data models. We classify work according to295

the data models it supports: documents, key-value,
relational, etc.;

• Schema evolution support. We indicate how each type
of work handles the arrival of new data structures in
the database (insert/update/delete documents). Do300

they offer transparent and native support to handle
these new structures? Are manual changes needed to
support this change?

Similarly to our work, the majority of the state-of-the-
art research concentrates on managing heterogeneity at305

a structural level. If we take into account schema evolu-
tion support, to the best of our knowledge our work is
the first contribution that manages automatic support to
overcome structural heterogeneity without regenerating re-
lational views or re-executing schema inference techniques.310

Moreover, our contribution is able to automatically extract
existing schemas, build and update a dictionary with all
the details of the attributes and their corresponding paths
in the collection, and offer querying capabilities without
introducing a new querying language or new store. In ad-315

dition, we built our query reformulation mechanism based
on ideas introduced in previous work designed for this pur-
pose. We propose to help the user overcome heterogeneity:
she queries the system with a minimum knowledge of the
data structures and the system reformulates the query to320

overcome the underlying heterogeneity. We ensure that our
query reformulation is able to reformulate queries with the
latest schemas in the collection.

This paper introduces a schema-independent querying
approach that is based on the native engine and operators325

supported by conventional document stores. Furthermore,
we offer greater support for most querying operators, e.g,
project-select-aggregate-unnest-lookup to enhance the ba-
sic querying capabilities of our previous work which only
supports project, select and aggregate operators [21, 31].330

Our approach is an automatic process running on the ini-
tial document structures; there is no need to perform any
transformation to the underlying structures or to use fur-
ther auxiliary systems. Users are not asked to manually
resolve the heterogeneity. For collections of heterogeneous335

documents describing a given entity, we believe that we
can handle the structural heterogeneity of documents by
using a query reformulation mechanism introduced in this
paper.

4. Easy Schema-independent Querying for Hetero-340

geneous Collections in NoSQL Document Stores

In this section we give an in-depth description of the key
component of our approach, EasyQ (Easy Query), with
reference to a series of formal backgrounds, in particular,
the data model and the querying operators.345

Most document-oriented databases do not offer native
mechanisms which enable schema-independent querying.
Schemaless flexibility is ensured during the loading stages.
However, querying multi-structured collections becomes
challenging.350

Let us consider the collection (C) from Figure 1 and
let us suppose that a user wishes to project the attribute
year. There are four distinct locations for the attribute
year in documents: root-based for document (a), but as a
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leaf-node for documents (b, c, d). Hence, the simple and355

classical query (year) can only reach year information in
document (a) since document stores only accept absolute
paths (root-based) in queries.

To overcome the structural heterogeneity we propose
an automatic mechanism that reformulates the initial360

query as a new query where all corresponding locations for
the attribute year are considered. The attribute year is
reachable using the following four distinct absolute paths:
(year, info.year, film.details.year, description.year). Our
mechanism produces a new projection operation that con-365

tains all these absolute paths.
To facilitate the task of path discovery we introduce

a dictionary that contains the set of corresponding ab-
solute paths in all document structures for any partial
path (sub-path included in an existing absolute path), any370

leaf node and any absolute path in the collection. During
the data loading stage, the system parses the underlying
document structures and creates new dictionary entries
or updates existing ones with their corresponding abso-
lute paths. For instance, in the case of collection (C), to375

reformulate the projection operation, our query reformu-
lation engine finds the following entry in the dictionary
(year,[year, info.year, film.details.year, description.year ])
and reformulates the query.

As previously highlighted, most document stores only380

accept queries which have been formulated for absolute
paths. In our proposal we offer the possibility of querying
a collection using partial paths that are not necessarily
root-based and could not end with leaf nodes.

Furthermore, the use of partial paths helps the user to385

disambiguate her query when ambiguous entities appear
in documents. For example, a single leaf node attribute
may refer to various semantics when used for different
objects in the same document, and thus relates to dif-
ferent entities. Let us consider the attribute first name390

in document (a). It is found under director, and in this
case the semantic attribute is related to the director of
the film and under lead actor the semantic attribute is
related to the main actor in the film. When the user
tries to execute the following projection operation (di-395

rector.first name), the native query engine considers an
absolute path and will only return document (a). With
EasyQ, when we search for director.first name in the dic-
tionary we will find the following entry: (director.first -
name: [director.first name, info.people.director.first name,400

film.details.director.first name, description.director.first -
name]). The reformulation hence leads to the projec-
tion (director.first name, info.people.director.first name,
film.details.director.first name, description.director.first -
name) and the result contains information related to di-405

rector.first name for all documents (a, b, c, d). The query
reformulation therefore overcomes heterogeneity, and the
use of partial paths considerably helps the user resolve the
ambiguous entity problems when formulating their queries.

The presence of all existing partial paths and leaf node410

as keys in the dictionary enables users to freely express their

query in order to use the different semantics embedded in
document structures. When a user formulates a query with
leaf nodes, EasyQ returns all the information for each leaf
node, regardless of their semantics. However, when the415

user indicates partial or absolute paths, EasyQ only returns
information related to the explicit semantic expressed by
these paths.

In the next sections we give an in-depth description of
the key components of our approach, EasyQ (Easy Query),420

with reference to a series of formal backgrounds, in partic-
ular, the data model and the querying operators.

4.1. Architecture Overview

Figure 3: EasyQ architecture: data structure extractor and query
reformulation engine.

Figure 3 provides a high-level illustration of the ar-
chitecture of EasyQ with its two main components: the425

query reformulation engine and the dictionary. Moreover,
Figure 3 shows the flow of data during the data loading
stage and the query processing stage.

We introduce the data structure extractor during the
data loading phase. It enriches the dictionary with new430

partial path entries and updates existing ones with cor-
responding absolute paths in documents. From a general
point of view, the dictionary is updated each time a docu-
ment is updated, removed or inserted in the collection.

At the querying stage, EasyQ takes as input the user435

query, denoted by Q, which is formulated using any com-
bination of paths (leaf nodes, partial paths and absolute
paths) and the desired collection. The EasyQ query refor-
mulation engine reads from the dictionary and produces
an enriched query known as Qext, that includes all existing440

absolute paths from all the documents. Finally, the doc-
ument store executes Qext and returns the result to the
user.

In the remainder of this section we describe the formal
model of multi-structured documents, the dictionary and445

the queries across multi-structured documents, and the
reformulation rules for each operator.

4.2. Formal Foundations

In this section we introduce the formal foundations that
cover the basic definition of the document and collection450

concepts.
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Definition (Collection). A collection C is defined as a
set of documents.

C = {d1, . . . , dnc}

where nc = |C| is the collection size.455

Definition (Document). A document di ∈ C, ∀i ∈
[1, nc], is defined as a (key, value) pair

di = (kdi , vdi)

• kdi is a key that identifies the document,

• vdi is the document value.460

We first start by defining a generic value v which can
be atomic or complex (object or array).

An atomic value v can take one of following four forms:

• v = n where n is a numerical value form (integer
or float);465

• v = “s” where “s” is a string formulated in
Unicode A∗;

• v = β where β ∈ B, the set of boolean B =
{True, False};

• v = ⊥ where ⊥ is the null value.470

A complex value v can take one of the following two
forms:

• v = {a1 : v1, . . . , am : vm} is an object value, m =
|v| and ∀j ∈ [1..m], vj are values, and aj are strings
(in Unicode A∗) called attributes. This definition is475

recursive since a value vj is defined as a generic value
v;

• v = [v1, . . . , vm] represents an array of m = |v| val-
ues vj and ∀j ∈ [1..m] vj are values. This definition
is also recursive because a value vj is defined as a480

generic value v.

We use the definition of generic value v to define: (i)
the document value vdi composed of a set of attribute adi,j
value vdi,j pairs, (ii) the attribute value vdi,j , j ∈ [1..|m|].
Therefore, in the event of complex attribute values vdi,j , i.e.,485

object or array, their internal values vdi,j,k, k ∈ [1..|vdi,j |],
can also be complex and they can take the same form
as generic value v (atomic or complex). To cope with
nested documents and navigate through schemas, we adopt
classical navigational path notations [32, 33].490

Definition (Path). A path represents a sequence of dot
concatenated attributes starting from the root of the docu-
ment and leading to a particular attribute in the document
value vdi that could be an atomic value of a leaf node or
a complex value of a document object. In both cases, the495

path from the root to any atomic or complex document
value in vdi is called an absolute path, e.g., the path rank-
ing.score in document (a) represents an absolute path to
reach the information referenced by the attribute score.
Likewise, the path info.people.actors in document (b) is an500

absolute path. Furthermore, a path could be a sub-path
when the sequence of attributes does not start from the
root. In this case, the path is called a partial path, e.g.,
the path lead actor.first name in documents (b, c, d) repre-
sents partial paths which reach the information referenced505

by the attribute first name of the lead actor. Likewise,
people.director in document (b) is a partial path. Finally,
leaf node attributes are considered as paths too since they
respond to the partial path definition.

Definition (Document Schema). The document510

schema Sdi inferred from the document value vdi from
document di, is defined as:

Sdi = {p1, . . . , pNi
}

where, Ni = |Sdi | and ∀j ∈ [1..Ni], pj is an absolute
path leading to an attribute of vdi . For multiple nesting515

levels, the navigational paths are extracted recursively in
order to find the path from the root to any attribute that
can be found in the document hierarchy. The schema Sdi
of a document di is defined from its value vdi = {adi,1 :
vdi,1, . . . , adi,ni

: vdi,ni
} as follows:520

• if vdi,j is atomic, Sdi = Sdi ∪ {adi,j} where adi,j is
a path leading to the value vdi,j ;

• if vdi,j is an object, Sdi = Sdi ∪ {adi,j} ∪
{∪p∈sdi,jadi,j .p} where sdi,j is the schema of vdi,j and
adi,j .p is a path composed of the complex attribute525

adi,j dot concatenated with the path p extracted from
sdi,j leading to the internal values of vdi,j ;

• if vdi,j is an array, Sdi = Sdi ∪ {adi,j} ∪ { ∪
mj

k=1(
{ adi,j .k} ∪ {∪p∈sdi,j,k adi,j .k.p}

)
} where sdi,j,k is

the schema of the kth value in the array vdi,j , adi,j .k.p530

is a path leading to the kth entry from the array
value vdi,j composed of the array attribute adi,j dot
concatenated with the index k and dot concatenated
with the path p extracted from sdi,j,k; we adopt this
notation from [33].535

Example The document schema for the document (b)
is as follows:

Sb =
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{_id,
title,540

info,
info.year,
info.country,
info.link,
info.genres,545

info.genres.1,
info.genres.2,
info.genres.3,
info.people,
info.people.director,550

info.people.director.first_name,
info.people.director.last_name,
info.people.lead_actor,
info.people.lead_actor.first_name,
info.people.lead_actor.last_name,555

info.actors,
info.actors.1,
info.actors.2,
info.actors.3,
info.ranking,560

info.ranking.score}

Definition (Collection Schema). The schema SC in-
ferred from a collection C is the set of all absolute paths
defined in each document schema extracted from each doc-
ument in the collection C:565

SC =
⋃nc

i=1 Sdi

4.3. Dictionary

The architecture of our approach relies on the construc-
tion of a dictionary that enables the query reformulation
process. A dictionary is a repository that binds each ex-570

isting path in the collection (partial or absolute paths,
including leaf nodes) to all the absolute paths from the
collection schema leading to it.

In the following paragraphs we first define partial paths
in documents (called document paths), then partial paths575

in the collection (called collection paths) and we finally
give the formal definition of the dictionary.

Definition (Document Paths). We define Pdi = {pdi}
as the set of all existing paths in a document di: absolute
paths and partial paths. We give a formal and recursive580

definition of Pdi starting from the value vdi of document
di.

For vdi = {adi,1 : vdi,1, . . . , adi,ni : vdi,ni}

• if vdi,j is atomic: Pdi = Pdi ∪ Svdi,j ;

• if vdi,j is an object: Pdi = Pdi ∪Svdi,j ∪Pvdi,j where585

Pvdi,j is the set of existing paths for the value vdi,j
(document paths for vdi,j);

• if vdi,j is an array: Pdi = Pdi ∪Svdi,j ∪ (∪nl

k=1Pvdi,j,k)

where Pvdi,j,k is the set of existing paths of the kth

value of vdi,j (document paths for vdi,j).590

Since sets contain paths, the union of sets must be
interpreted as a union of different paths. For example
{a.b, a.b.c, a.b.d} ∪ {a.b, b.a} = {a.b, a.b.c, a.b.d, b.a}.

Example The document paths Pb for document (b) in
Figure 1 is as follows:595

Pb =

{_id,
title,
info,
info.year,600

year,
info.country,

country,
info.link,
link,605

info.genres,
info.genres.1,
info.genres.2,

info.genres.3,
genres,610

genres.1,
genres.2,
genres.3
info.people,
info.people.director,615

info.people.director.first_name,
info.people.director.last_name,
people
people.director,
people.director.first_name,620

people.director.last_name,
director,
director.first_name,
director.last_name,
first_name,625

last_name,
info.people.lead_actor,
info.people.lead_actor.first_name,
info.people.lead_actor.last_name,

people.lead_actor,630

people.lead_actor.first_name,
people.lead_actor.last_name,
lead_actor,
lead_actor.first_name,
lead_actor.last_name,635

info.people.actors,
info.people.actors.1,
info.people.actors.2,
info.people.actors.3,
people.actors,640

people.actors.1,
people.actors.2,
people.actors.3,
actors.1,
actors.2,645

actors.3,
info.ranking,
info.ranking.score,
ranking.score,
score}650

Definition (Collection Paths). The set of all existing
paths, absolute paths, partial paths and leaf nodes in a
collection is called PC and is defined as:

PC = ∪nc
i=1 Pdi

We notice that SC ⊆ PC (all absolute paths to any leaf655

node are included in PC).

Definition (Dictionary). The dictionary dictC of a col-
lection C is defined as:

dictC = {(pk, 4Cpk)}

where:660

• pk ∈ PC is an existing path in the collection C, k ∈
[1..|PC |];

• 4Cpk = {pk,1, . . . , pk,nk
} ⊆ SC is the set of all

absolute paths of the collection leading to pk, nk =
|4Cpk |.665

Formally, the dictionary value4Cpk is a set of all absolute
paths pk,j ∈ SC , j ∈ [1..nk], of the form pk,j = pl.pk where
pl is a path or pl is empty. Thus, the dictionary value 4Cpk
contains all the absolute paths to pk that exist in at least
one document in the collection. For example, if we build670

the dictionary for a collection composed of document (b),
the dictionary keys will contain title and info.people, but
also info.people.director, people.director, people, director
and so on.

Example. In the following example we present some dictio-675

nary entries from the collection (C) in Figure 1:

• score:
[ranking.score,
others.ranking.score,
info.ranking.score,680

classification.ranking.score]

• director:
[director,
film.details.director,685

info.people.director,

description.director]

• lead_actor.first_name:
[lead_actor.first_name,
film.personas.lead_actor.690

first_name,
info.people.lead_actor.
first_name,
description.stars.lead_actor.
first_name]695
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4.4. Minimum Closed Kernel of Operators

In this section we define a minimum closed kernel for
operators based on the document operators defined in [34].

Definition (Kernel). The kernel K is a minimal closed700

set composed of the following operators:

K = {σ, π, γ, µ, λ}

The select, also called restriction (σ), the project (π),
the aggregate (γ) and the unnest (µ) are unary operators
whereas the lookup (λ) is a binary operator.705

Definition (Query). If we take into consideration the
kernel K for operators, a query Q is formulated by combin-
ing the previously presented unary and binary operators
as follows:

Q = q1 ◦ . . . ◦ qr(C)710

where r = |Q|,∀i ∈ [1, r], qi ∈ K.
We define the kernel as closed because each operator

in the kernel operates across a collection and as a result,
returns a new collection. Furthermore, we can observe that
these operators are neither distributive, commutative nor715

associative; such operator combinations are valid in very
particular cases only. Some algebraic manipulations are
helpful in reducing the query complexity and they will be
the subject of our future research work.

In our preliminary work the kernel was limited to project720

and select operators [21]. In recent work we have extended
it to offer support for aggregate operators [31]. In this
paper we support two additional operators: unnest and
lookup. Moreover, we give new definitions for the previously
supported operators by adding additional features for the725

project and select operators as introduced in [34].
In the next sections, each operator is studied in five

steps. We first give the operator definition, including par-
tial paths. Next we give a query example for the operator
and its evaluation in classical engines. We then explain730

how existing engines classically evaluate the operator. Fi-
nally, we define the operator reformulation rules which are
illustrated with some reformulation examples. Defining
the classical evaluation of operators is necessary in order
to define the reformulation of operators so that these re-735

formulations are evaluated in the same way as classical
operators, particularly when considering missing paths and
null values.

4.4.1. Selection

Definition (Selection). The select operator is defined740

as:

σPCin = Cout

The select operator (σ) is a unary operator that filters the
documents from collection Cin in order to retrieve only
those that match the specified condition P. This can be a745

boolean combination expressed by the logical connectors

{∨,∧,¬} of atomic conditions, also called predicates, or
a path check operation. The documents in Cout have the
same document structures as the documents in collection
Cin. However, the condition P may reduce the number of750

documents in Cout when applied to collection Cin.
The condition P is defined by a boolean combination of

a set of triplets (pk ωk vk) where pk ⊆ PCin is a path, ωk ∈
{=;>;<; 6=;≥;≤} is a comparison operator, and vk is a
value that can be atomic or complex. In the case of an755

atomic value, the triplet represents an atomic condition. In
the case of a complex value, vk is defined in the same way
as a document value as defined in Section 4.2, vk = {ak,1 :
vk,1, . . . , ak,n : vk,n} and ωk is always “ = ”. In this case
the triplet represents a path check operation. We assume760

that each condition P is normalized to a conjunctive normal
form:

P =
∧(∨

pk ωk vk

)
where k ∈ [1..|P |], |P | is the number of triplets in the select
condition765

Example. Let us suppose that we want to execute the
following select operator on collection (C) from Figure 1:

σyear ≥ 2004 ∧ director = {“first name”: “Clint”,

“last name”:“Eastwood”})(C)

Classical selection evaluation. During a selection eval-770

uation, classical query engines return documents di ∈ Cin
based on the evaluation of the predicates pk ωk vk of
P = ∧(∨ pk ωk vk) as follows:

• if pk ∈ Sdi the result of the predicate is True/False
depending on the evaluation of pk ωk vk in di;775

• if pk /∈ Sdi , the evaluation of pk ωk vk is False.

The select operator will select only documents di ∈ Cin
where the evaluation of the normal form of condition P
returns True.

Example. The previous selection operation only selects780

movies produced in 2004, and the movie is directed
by Clint Eastwood when the path director is an object
with the following value {“first name”: “Clint”, “last -
name”:“Eastwood”}. In a classical evaluation, the execu-
tion of this operation returns the following documents:785

• {
"_id":1,
"title":"Million Dollar Baby",
"year":2004,
"genres":["Drama", "Sport"],790

"country":"USA",
"director":{"first_name":"Clint", "last_name":"Eastwood"},
"lead_actor":{"first_name":"Clint", "last_name":"Eastwood"},
"actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"],
"ranking":{"score":8.1}}795

}

Because a classical evaluation only takes absolute paths
into account, the result only contains the document (a)
despite the presence of other documents (document (c))
which seem to satisfy the selection condition.800
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Selection reformulation rules. The reformulation of
the select operator aims to filter documents based on a
set of conditions from a collection of documents regard-
less of their underlying structures. The predicate triplets
of the select condition are built across one path (atomic805

condition or path check). In practical terms, the query
reformulation engine replaces each path used in a condition
by all their corresponding absolute paths extracted from
the dictionary. Therefore, a triplet condition pk ωk vk,
pk ∈ PCin

becomes a boolean “OR” combination of triplet810

conditions based on paths found in the dictionary. If we
take into consideration the classical evaluation as defined
above, the evaluation of this generated boolean “OR” com-
bination in the reformulated select operator ensures that
(i) a document containing at least one path can match the815

triplet condition, and (ii) a document containing no path
evaluates the triplet condition as False.

σPext
(Cin) = Cout

The query reformulation engine reformulates the normal

form of predicates P =
∧(∨

pk ωk vk

)
by transforming820

each triplet (pk ωk vk) into a disjunction of triplets, re-
placing the path pk with the entries 4Cin

pk
while keeping

the same operator ωk and the same value vk as follows :
(
∨
∀pj∈4

Cin
pk

pj ωk vk). The reformulated normal form of

the predicate is defined as:825

Pext =
∧(∨

(
∨
∀pj∈4

Cin
pk

pj ωk vk)

)
Example. Let us suppose that we want to reformulate
the select operator described above:

σ( year ≥ 2004) ∧ (director = {“first name”: “Clint”,

“last name”:“Eastwood”})(C)830

The query reformulation engine reformulates each con-
dition as follows:

• the condition year ≥ 2004 becomes:

year ≥ 2004 ∨ info.year ≥ 2004 ∨ film.details.year ≥ 2004
∨ description.year ≥ 2004835

• the condition director = {“first name”:“Clint”, “last -

name”:“Eastwood”} becomes:

director={“first name”:“Clint”, “last name”:“Eastwood”}
∨ info.people.director = {“first name”:“Clint”,

“last name”:“Eastwood”}840

∨ film.details.director = {“first name”:“Clint”,
“last name”:“Eastwood”}

∨ description.director = “last name”:“Eastwood”}

After applying the reformulation rules, the select operator
becomes:845

σ(year ≥ 2004 ∨ info.year ≥ 2004 ∨ film.details.

year ≥ 2004 ∨ description.year ≥ 2004)
∧

(director =

{“first name”:“Clint”, “last name”:”Eastwood”} ∨ info.people.

director = {“first name”:“Clint”, “last name”:“Eastwood”} ∨

film.details.director = {“first name”:“Clint”, “last name”:850

“Eastwood”} ∨ description.director = {“first name”:“Clint”,

“last name”:“Eastwood”}) (C)

The execution of this latest select operator returns:

• {
"_id":1,855

"title":"Million Dollar Baby",
"genres":["Drama", "Sport"],
"country":"USA",
"director":{

"first_name":"Clint",860

"last_name":"Eastwood"},
"lead_actor":{

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",865

"Hilary Swank", "Morgan
Freeman"],

"ranking":{"score":8.1}}
}

• {870

"_id":3,
"film":{

"title":"Gran Torino",
"details":{

"year":2008,875

"country":"USA",
"genres":"Drama",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},880

"personas":{
"lead_actor":{

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",885

"Bee Vang","Christopher
Carley"]}},

"others":{"ranking":{
"score":8.1}}

}890

}

Executing the select operator after reformulation gives all
the desired results, since it contains all the absolute paths
that lead to the different selection conditions.895

4.4.2. Projection

Definition (Projection). The project operator is de-
fined as:

πE(Cin) = Cout

The project operator (π) is a unary operator that projects900

only a specific portion from each document of a collection,
i.e., only information referring to paths given in the query.
In document stores, this operator is applied to a collection
Cin by possibly projecting existing paths from the input
documents, renaming existing paths or adding new paths905

as defined by the sequence of elements E. This returns
an output collection Cout. The result contains the same
number of documents as the input collection while the
schema of the documents is changed.

The sequence of project elements is defined as E =910

e1, . . . , enE
, nE = |E|, where each element ej is in one of

the following forms:

• (i) pj , a path existing in the input collections; pj ∈
PCin

which enables the projection of existing paths.
As a result, the schema of the collection Cout may915

contain pj ;

• (ii) p′j : pj , where p′j represents an absolute path
(string in Unicode A∗) to be injected into the struc-
ture of the collection Cout and pj is an existing path
in the input collection; pj ∈ PCin and its value is920

assigned to the new absolute path p′j in Cout. This
form renames the path pj to p′j in Cout;
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• (iii) p′j : [p1, . . . , pm], where [p1, . . . , pm] is an array
composed of m paths where ∀l ∈ [1..m] pl ∈ PCin

produces a new absolute path p′j in Cout whose value925

is an array composed of the values obtained through
the paths pl;

• (iv) p′j : β, where β is a boolean expression that
compares the values of two paths in Cin, i.e.,
β = (pa ω pb), pa ∈ PCin

, pb ∈ PCin
and ω ∈930

{=;>;<; 6=;≥;≤}. The evaluation of the boolean
expression is assigned to the new absolute path p′j in
Cout.

Example. Let us suppose that we want to run the follow-
ing project operator on collection (C) from Figure 1:935

πcond:director.first name = lead actor.first name,

desc:[title, genres], production year:year, ranking.score (C)

Classical projection evaluation. During a projection
operation, classical query engines deal with missing paths
or null values in the following documents with regards to940

the four possible forms of the projection element ej :

• (i) pj and (ii) p′j : pj where pj is a path from the
input collection, pj ∈ SCin

:

– If the path pj leads to a value vpj =
null/atomic/object/array in a document di ∈945

Cin, the corresponding document in the output
collection d

′

i ∈ Cout contains: (i) the path pj
with the value vpj from di (pj ∈ Sd′i), (ii) the

path p′j with the value vpj from di

– If the path pj /∈ Sdi , where di ∈ Cin, the cor-950

responding document in the output collection
d

′

i ∈ Cout does not contain: (i) the path pj ,
(pj /∈ Sd′i), and (ii) the path p′j (p′j /∈ Sd′i);

• (ii) p′j : [p1, . . . , pm] where [p1, . . . , pm] is an array
of paths from the input collection and each pl ∈955

SCin
. For a document di ∈ Cin, if the corresponding

document in the output collection d
′

i ∈ Cout contains
the path p′j leading to an array that contains m values

and one value for each pl in [p1, . . . , pm], then the lth

value is as follows:960

– If the path pl leads to a value vpl =
null/atomic/object/array in the document di,
the corresponding value is vpl ,

– If the path pl /∈ Sdi , the corresponding value is
null;965

• (iii) p′j : β. β is the boolean expression β = (pa ω pb)
where pa ∈ SCin and pb ∈ SCin . For a document
di ∈ Cin, then the corresponding document in the
output collection d

′

i ∈ Cout contains the path p′j
leading to a boolean value:970

– If pa ∈ Sdi and pb ∈ Sdi , the value is the boolean
evaluation of β, True/False,

– If pa /∈ Sdi and pb ∈ Sdi , the value is False,

– If pa ∈ Sdi and pb /∈ Sdi , the value is False,

– If pa /∈ Sdi and pb /∈ Sdi , the value is True.975

Example. The previous projection operation returns doc-
uments composed of the following paths:

• cond : the evaluation of a boolean expression which
checks if the value of the path director.first name is
equal to the value of the path lead actor.first name980

or not, i.e., it checks whether both director and lead
actor have the same first name or not;

• desc: an array composed of information from the title
and genre paths;

• production year : information from the path year us-985

ing a new path called production year, i.e., the path
year from the input collection is renamed produc-
tion year ;

• ranking.score: information from the path rank-
ing.score, i.e., the same path as defined in the input990

collection is retained.

In a classical evaluation, the execution of this operation
returns the following documents:

• {
"_id":1,995

"cond":true,
"desc": ["Million Dollar Baby",

"Drama", "Sport"],
"production_year":2004,
"ranking":{"score":8.1}1000

}

• {
"_id":2,
"cond":true,
"desc":["In the line of Fire",1005

null]
}

• {1010

"_id":3,
"cond":true,
"desc":[null,null]

}
1015

• {
"_id":4,
"cond":true,
"desc":[null,null]

}1020

The execution of the project operator gives rise to
misleading results. We can see that only the first results
include all the desired information. In the second result,
only the title information is present for the new array desc.
We can see that in some cases the result which is true is1025

not always real (case of document (d)) due to unreachable
paths in the documents.

Projection reformulation rules. The aim of reformu-
lating the project operator is to extract information from
a collection of documents regardless of their underlying1030

structures. In practical terms, the query reformulation
engine replaces each path in the projection operation by
their corresponding absolute paths extracted from the dic-
tionary. In order to ensure that the reformulated operator
has the same behaviour as the standard execution of the1035
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classical projection operation we introduce two specific
notations, i.e., “|” and “||” to deal with missing paths and
null values.

In the operation πE(Cin) = Cout, the original set of
project elements E is extended as follows:1040

Eext = e1ext , . . . , enext where each ejext is the ex-
tension of the ej ∈ E. The extended project operator is
defined as follows:

πEext(Cin) = Cout

We introduce the notation “|” to exclude path pj from1045

the result when the project element ej is atomic or the
path p′j if ej is complex. In practical terms, an expression
such as pk,1|. . . |pk,nj

is evaluated as follows for a document
di:

• if ∃pk ∈ [pk,1..pj,nk
], where pk ∈ Sdi , then the corre-1050

sponding document in the output collection d
′

i ∈ Cout
contains the path pk with the value vpk (from di);

• if @pk ∈ [pk,1..pk,nk
], where pk ∈ Sdi , i.e., no path

from the list is found in the document di, the corre-
sponding document in the output collection d

′

i ∈ Cout1055

does not contain the path pk.

In the notation “|”, if a first path from the list is found
in the document, the corresponding value is kept for the
output. Otherwise, the desired path is excluded from the
output. Therefore, in the event where multiple paths are1060

found in the document, the notation selects only the first
one.

The notation “||” is very similar to “|” notation when
evaluating an expression such as pk,1||. . . ||pk,nk

but it re-
turns null instead of erasing the path in the output. It1065

returns a null value in the following case:

• if @pk ∈ [pk,1..pk,nk
], where pk ∈ Sdi , i.e., no path

from the list is found in the document di, the operator
returns a null value.

We can now define the following set of rules to extend1070

each element ej ∈ E based on its four possible forms:

• (i) ej is a path pj in the input collection pj ∈ PCin ,

ejext = pj,1 | . . . | pj,nj∀pj,k ∈ 4Cin
pj ;

• (ii) p′j : pj , where pj is a path, pj ∈ PCin
, then ejext

is of the form p′j : pj,1 | . . . | pj,nj
, ∀pj,k ∈ 4Cin

pj ;1075

• (iii) p′j : [p1, . . . , pm], where [p1, . . . , pm] is an array
of paths, then each path pj ∈ [p1, . . . , pm] is replaced
by a “||” combination and ejext is of the form

p′j :
[
p1,1 || . . . || p1,n1

, . . . , pm,1|| . . . || pm,nm

]
∀pj,l ∈ 4Cin

pl
;1080

• (iv) p′j : β, where β is the boolean expres-

sion β, ejext
= (p

′

a ω p
′

b) where p
′

a =

pa,1 | . . . | pa,na
, ∀pa,l ∈ 4Cin

pa and p
′

b =

pb,1 | . . . | pb,nb
, ∀pb,l ∈ 4Cin

pb
.

Example. Let us suppose that we want to reformulate1085

the project operator described above:

πcond:director.first name = lead actor.first name,

desc:[title, genres], production year: year, ranking.score(C)

Below we present the results of applying the reformula-
tion rules to each element of the project operator:1090

• the element cond:director.first name = lead actor.first name

becomes:
cond:p

′
a = p

′
b

where

p
′
a = director.first name | info.people.director.first name |1095

film.details.director.first name | description.director.first name

p
′
b = lead actor.first name | info.people.lead actor.first name |

film.details.personas.lead actor.first name |
description.stars.lead actor.first name

• the element desc:[title, genres] becomes:1100

desc:[p
′
1, p

′
2]

where

p
′
1 =title || film.title || description.title

p
′
2 = genres || info.genres || film.details.genres ||

classification.genres1105

• the element production year:year becomes:

production year: year | info.year | film.details.year |
description.year

• the element ranking.score becomes:

ranking.score | info.ranking.score | film.others.ranking.score |1110

classification.ranking.score

After applying the reformulation rules, and with refer-
ence to previous paragraphs for reformulations, the project
operator becomes:

π
cond:p

′
a = p

′
b, desc:[p

′
1, p

′
2], production year:year |1115

info.year | film.details.year | description.year, ranking.

score | info.ranking.score | film.others.ranking.score |
classification.ranking.score(C)

The execution of this latest project operator returns:

• {1120

"_id":1.0,
"ranking":{"score":8.1},
"cond":true,
"desc":["Million Dollar Baby",

"Clint"],1125

"production_year":2004}
}

• {
"_id":2,
"info":{"ranking":1130

{"score":7.2}},
"cond":true,
"desc":[ "In the Line of Fire",

"Clint"],
"production_year":19931135

}

• {
"_id":3,
"film":{"others":

{"ranking":1140

{"score":8.1}}},
"cond":true,
"desc":[ "Gran Torino",

"Clint"],
"production_year":2008}1145

}
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• {
"_id":4,
"classification":1150

{"ranking":
{"score":7.2}},

"cond":false,

"desc":[ "The Good, the
Bad and the Ugly",1155

"Clint"],
"production_year":1966

}

The reformulated project operator is now able to reach
all the paths from the initial query regardless of their1160

numerous locations inside the collection. In addition, the
comparison of path information now gives reliable results.

4.4.3. Aggregation

Definition (Aggregation). The aggregate operator is
defined as:1165

GγF (Cin) = Cout

The aggregate operator is a unary (γ) operator grouping
documents according to the values from the grouping con-
ditions G. The output is a collection of documents where
each document refers to a group and contains a computed1170

aggregated value as defined by the aggregation function F .

• G represents the grouping conditions, G =
p1, . . . , pg, where ∀k ∈ [1..g], pk ∈ PCin

;

• F is the aggregation function, F = p : f(pf ), where
p represents the new path in Cout for the value com-1175

puted by the aggregation function f for the values
reached by the path pf where pf ∈ PCin ∧ pf /∈
G, f ∈ {Sum,Max,Min,Avg, Count}.

Example. Let us suppose that we want to run the follow-
ing aggregation operation on collection (C) from Figure 1:1180

ranking.scoreγtitles count:Count(title)(C)

Classical aggregation evaluation. During an aggrega-
tion evaluation, classical query engines perform as follows
based on the paths in G = p1, . . . , pg, pi ∈ SCin

and pf
(F = p : f(pf ), pf ∈ SCin

):1185

• In the grouping step, documents are grouped accord-
ing to the presence or non-presence of the paths from
G = p1, . . . , pg in documents. Documents are
grouped when they have the same subset of paths
from G and the same values for these paths. Finally,1190

a group is created for those documents that contain
no paths from G. Formally, a group is a subset of doc-
uments {d} such that: (i) ∃H = h1, . . . , hh,∀i hi ∈
G or H is empty, (ii) ∀d document of the group,
∀hi ∈ H, hi ∈ Sd and every d has the same value1195

∀i hi ∈ H;

• In the computation step, for each group established
in the grouping step, the function f is applied as
follows:

– If ∃ d in the group is such that pf ∈ Sd, then1200

f is computed across all documents di of the
group where pf ∈ Sdi , and documents dk of the
group where pf /∈ Sdk are simply ignored,

– If @ d, a document from the group, is such that
pf ∈ Sd, then f is evaluated as a null value (no1205

matter what f is).

Example. The previous aggregation operation groups
movies by their scores as defined in the path ranking.score
and counts the number of titles (movies) for each group.

The native query engine returns the following results:1210

• {
"_id":null,
"titles_counts":3

}
1215

• {
"_id":8.1,
"titles_counts":1

}

These results place document (a) with a ranking.score1220

of 8.1 in one group and the other documents (b, c, d) in a
second group with a ranking.score of null since this path
is unreachable in the remaining documents.

Aggregation reformulation rules. The aim of reformu-
lating the aggregate operator is to replace each path from1225

the grouping and aggregation function by their correspond-
ing absolute paths extracted from the dictionary. Neverthe-
less, a preliminary project operation is needed to unify the
heterogeneous paths in documents with a set of common
paths for all documents. Then a classical aggregation is1230

applied to the previously projected documents.
In practical terms, the query reformulation engine first

starts by projecting out all values reached by the paths
from both G (grouping conditions) and F (aggregation
function). This project operation renames the distinct1235

absolute paths extracted from the dictionary for paths in
G (G = p1, . . . , pg) and F (path pf ) to the paths initially
expressed in the original query. Then we apply the classical
aggregate operator to the output of the added project
operator.1240

Let Att be the set of all paths expressed in G and F ,
that is Att = G ∪ {pf}. The additional project operator
is defined as:

πEext(Cin)

where Eext = ∪∀pj∈Att{pj : pj,1|. . . |pj,nj},∀pj,k ∈1245

4Cin
pj

The reformulated aggregate operator is formally defined
as:

GγF (πEext
(Cin)) = Cout

Example. Let us suppose that we want to reformulate1250

the aggregate operator as described above:

(ranking.score)γ(titles count: Count(title))

To reformulate the aggregate operator, the query re-
formulation engine must first generate a project operator,
which is defined as follows:1255
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π ranking.score:ranking.score | info.ranking.score

| others.ranking.score | classification.ranking.score,

title:title | film.title | description.title(C)

The aggregate operator after reformulation becomes:

ranking.scoreγtitles count:Count( title) (1260

π ranking.score:ranking.score | info.ranking.score

| others.ranking.score | classification.ranking.score,

title:title | film.title | description.title(C))

Now after executing this query we obtain the following
results:1265

• {
"_id":7.2,
"titles_count":2

}

• {1270

"_id":8.1,
"titles_count":2

}

4.4.4. Unnest

Definition (Unnest). The unnest operator is defined as:1275

µp(Cin) = Cout

The unnest operator (µ) is a unary operator which
flattens an array reached via a path p in Cin. For each
document di ∈ Cin that contains p, the unnest operator
outputs a new document for each element of the array.1280

The structure of the output documents is identical to the
original document di, except that p (initially an array) is
replaced by a path leading to one value of the array in di.

Example. Let us suppose that we want to run the follow-
ing unnest operation on collection (C) from Figure 1:1285

µgenres(C)

Classical unnest evaluation. During an unnest evalu-
ation, classical query engines generate new documents for
the operation µp(Cin) = Cout as follows:

• If p ∈ Sdi , the collection Cout contains new k docu-1290

ments where k = |vp| is the number of entries of the
array referenced by the path p. Each new document
contains the path p. The value of p in each new
document di,j is equal to the jth entry from the array
value vp in di;1295

• If p /∈ Sdi , the collection Cout contains a copy of the
original document di.

Example. The previous unnest operator takes into ac-
count the array referenced by the path genres and returns
a new document for each element in the array. By executing1300

this query, the unnest operator only applies to document
(a) due to the presence of the absolute path genres in this
document. As a result, the array genres from document
(a) is split into two documents as follows:

• {1305

"_id":1,
"title":"Million Dollar

Baby",
"year":2004,
"genres":"Drama",1310

"country":"USA",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{1315

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"Hilary Swank", "Morgan
Freeman"],1320

"ranking":{"score":8.1}
}

• {
"_id":1,
"title":"Million Dollar1325

Baby",
"year":2004,
"genres":"Sport",
"country":"USA",
"director":{1330

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},1335

"actors":["Clint Eastwood",
"Hilary Swank", "Morgan
Freeman"],

"ranking":{"score":8.1}
}1340

Unnest reformulation rules. The aim of reformulating
the unnest operator is to generate documents where on
each occasion the path p contains an element from the
initial array referenced by p in the collection Cin regardless
of the underlying structure of the documents. In practical1345

terms, the query reformulation engine combines a series of
different unnest operators applied to each path pj extracted
from the dictionary entry 4Cin

p that leads to the path p.
We represent the combination of the operators by using
the “ ◦ ” composition symbol. The reformulation of the1350

unnest operator is formally defined as:

◦∀pj ∈ 4Cin
p

µpj (Cin)

Example. Let us suppose that we want to reformulate
the following unnest operation as described above:

µgenres(C)1355

After applying the above-mentioned transformation
rules, the unnest operation becomes:

µgenres ◦ µinfo.genres ◦ µfilm.details.genres ◦ µclassification.genres

(C)

Now, executing this query returns seven documents1360

where the array from document (a) generates two docu-
ments which have the same information as document (a)
and the array becomes a simple attribute whose value is
an entry from the array. We obtain three documents from
document (b) (the array genres contains three entries).1365

Document (c) stays invariant. Finally, document (d) re-
turns one document (the array genres contains only a single
entry):

• {
"_id":1,
"title":"Million Dollar

Baby",
"year":2004,
"genres":"Drama",
"country":"USA",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",

"Hilary Swank",
"Morgan Freeman"],
"ranking":{"score":8.1}

}

• {
"_id":1,1370

"title":"Million Dollar Baby",
"year":2004,
"genres":"Sport",
"country":"USA",
"director":{1375
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"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",1380

"last_name":"Eastwood"},
"actors":["Clint Eastwood",

"Hilary Swank", "Morgan
Freeman"],

"ranking":{"score":8.1}1385

}

• {
"_id":2,
"title":"In the Line of Fire",
"info":{1390

"year":1993,
"country":"USA",
"genres":"Drama",
"people":{
"director":{1395

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},1400

"actors":["Clint Eastwood",
"John Malkovich", "Rene
Russo Swank"]

},
"ranking":{"score":7.2}1405

}
}

• {
"_id":2,
"title":"In the Line of Fire",1410

"info":{
"year":1993,
"country":"USA",
"genres":"Action",
"people":{1415

"director":{
"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",1420

"last_name":"Eastwood"},
"actors":["Clint Eastwood",

"John Malkovich",
"Rene Russo Swank"]

},1425

"ranking":{"score":7.2}
}

}

• {
"_id":2,1430

"title":"In the Line of Fire",
"info":{
"year":1993,
"country":"USA",
"genres":"Crime",1435

"people":{

"director":{
"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{1440

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"John Malkovich",
"Rene Russo Swank"]1445

},
"ranking":{"score":7.2}

}
}

• {1450

"_id":3,
"film":{
"title":"Gran Torino",
"details":{
"year":2008,1455

"country":"USA",
"genres":"Drama",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},1460

"personas":{
"lead_actor":{

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",1465

"Bee Vang", "Christopher
Carley"]

}
},
"others":{1470

"ranking":{"score":8.1}
}

}
}

• {1475

"_id":4,
"description":{
"title":"The Good, the

Bad and the Ugly",
"year":1966,1480

"country":"Italy",
"director":{

"first_name":"Sergio",
"last_name":"Leone"},

"stars":{1485

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",
"Eli Wallach", "Lee Van1490

Cleef"]
}

},
"classification":{
"ranking":{"score":7.2},1495

"genres":"Western"
}

}

4.4.5. Lookup

Definition (Lookup). The lookup operator is defined as:1500

(Cin) λres:pin=pex
(Cex) = Cout

The lookup operator (λ) is a binary operator which en-
riches (embeds or left-joins) documents from the input
collection Cin with documents from the external collection
Cex that satisfy a lookup condition. This condition deter-1505

mines whether the values of paths reached from local paths
pin in Cin match the values reached via external paths pex
in Cex or not. This operator is similar to the left outer
join operator in relational algebra. As a result, the lookup

operator adds an array res to each document from Cin and1510

each element of res is a document from Cex that satisfies
the lookup condition pin = pex. The output collection Cout
is the same size as the input collection Cin. The structure
of the documents in Cout are slightly different from Cin
because each document in Cout includes an additional path1515

res whose value is an array of the nested external docu-
ments. Despite lookup and unnest operators being used
to nest or unnest values, it is important to underline that
lookup and unnest operators are not reverse operators.

Example. Let us suppose that we want to run the follow-1520

ing lookup operation on collection (C) from Figure 1:

(C)λdir actor:director.first name=lead actor.first name(C)

Classical lookup evaluation. During a lookup evalua-
tion, classical query engines deal with misleading paths or
null values in documents based on the evaluation of the1525

condition pin = pex as follows:

• If pin ∈ Sdi , di ∈ Cin, res contains an array with
all documents dj ∈ Cex where pex ∈ Sdj and vpin =
vpex ;

• If pin /∈ Sdi , di ∈ Cin, res contains an array with all1530

documents dj ∈ Cex where pex /∈ Sdj .

Example. The previous lookup operator left joins each
film based on the director’s first name with other films that
have the same first name for the main actor. The execution
of this query returns one entry in the new path dir actor1535

for document (a). This entry contains the information from
document (a) since the lookup operation can only match
the information from document (a). The content of the
new path dir actor for document (a) is as follows:

• "dir_actor":[1540

{
"_id":1,
"title":"Million Dollar Baby",
"year":2004,
"genres":[ "Drama","Sport"],1545

"country":"USA",
"director":{
"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{1550

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"Hilary Swank",
"Morgan Freeman"],1555

"ranking":{"score":8.1}
}

]

Here we explain the classical evaluation process and the
possible incorrect results. The lookup succeeds in matching1560

document (a) with itself, but despite the presence of other
documents that may satisfy the lookup condition we can
see that they are absent from the new path dir actor. We
can see this same result inside the remaining documents
(b, c, d) that give three documents as a result, and each1565

resulting document contains the same value for the new
path dir actor :
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"dir_actor":[{
"_id":2,
"title":"In the Line of Fire",1570

"info":{
"year":1993,
"country":"USA",
"genres":[ "Drama","Action",
"Crime"],1575

"people":{
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{1580

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"John Malkovich",
"Rene Russo Swank"]1585

},
"ranking":{"score":7.2}
}

},
{1590

"_id":3,
"film":{
"title":"Gran Torino",
"details":{

"year":2008,1595

"country":"USA",
"genres":"Drama",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},1600

"personas":{
"lead_actor":{

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",1605

"Bee Vang",
"Christopher Carley"]

}
}, "others":{"ranking":

{"score":8.1}1610

}
}

},
{
"_id":4,1615

"description":{
"title":"The Good, the Bad

and the Ugly",
"year":1966,
"country":"Italy",1620

"director":{
"first_name":"Sergio",
"last_name":"Leone"},

"stars":{"lead_actor":{
"first_name":"Clint",1625

"last_name":"Eastwood"},
"actors":[ "Clint Eastwood",
"Eli Wallach",
"Lee Van Cleef"]

}1630

},
"classification":{
"ranking":{"score":7.2},
"genres":[ "Western"]
}1635

}
]

We can see that this result does not contain the expected
information, for instance, document (d) should not match
any of the other documents since the director.first name1640

is totally different from the lead actor.first name. It is
supposed to return an empty array for the new path dir -
actor. Also, document (a) is excluded from the results.
Therefore, the evaluation of the lookup condition returns
True when both paths from the input collection and the1645

output collection are not found in the documents. In this
case, the operator performs join.

Lookup reformulation rules. The aim of reformulating
the lookup operator is to replace each path from the join
condition by their corresponding absolute paths extracted1650

from the dictionaries. We reuse the previously defined
notation “|” to ensure an identical evaluation for the re-
formulated lookup compared to the classical evaluation
mentioned in the previous paragraph. We observe that
the lookup reformulation requires a dictionary for the in-1655

put collection Cin and for the external collections Cex. In
practical terms, the query reformulation engine includes
a combination of all absolute paths of 4Cin

pin and a com-

bination of all absolute paths of 4Cex
pex . The reformulated

lookup operation is defined as:1660

(Cin)λres: pj,1 | . . . | pj,nj
= pl,1 | . . . | pl,nl

(Cex) = Cout

∀pj,x ∈ 4Cin
pin , ∀pl,y ∈ 4

Cex
pex

Example. Let us suppose that we want to reformulate
the following lookup operation:

(C)λdir actor:director.first name=lead actor.first name(C)1665

Below is the reformulation of the lookup operation:

(C)λdir actor:director.first name | info.people.director.first name

| film.details.director.first name | description.director.first

name=lead actor.first name | info.people.lead actor.

first name | film.details.personas.lead actor.first name |1670

description.stars.lead actor.first name(C)

The execution of this lookup operation gives three doc-
uments, i.e., documents (a, b, c). Each resulting document
contains the same value for the new path dir actor :

• "dir_actor":[1675

{
"_id":1,
"title":"Million Dollar Baby",
"year":2004,
"genres":["Drama", "Sport"],1680

"country":"USA",
"director":{
"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{1685

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"Hilary Swank",
"Morgan Freeman"],1690

"ranking":{"score":8.1}
},
{
"_id":2,
"title":"In the Line of Fire",1695

"info":{
"year":1993,
"country":"USA",
"genres":["Drama", "Action",
"Crime"],1700

"people":{
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{1705

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"John Malkovich",

"Rene Russo Swank"]1710

},
"ranking":{"score":7.2}

}
},
{1715

"_id":3,
"film":{
"title":"Gran Torino",
"details":{
"year":2008,1720

"country":"USA",
"genres":"Drama",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},1725

"personas":{
"lead_actor":{

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",1730

"Bee Vang",
"Christopher Carley"]

}
},
"others":{1735

"ranking":{"score":8.1}
}

}
}
]1740

However, the document (d) does not have the same
information for the paths director.first name and lead -
actor.first name. Therefore, the lookup operation returns
the following result:

• "dir_actor":[]1745

4.5. Algorithm for Automatic Operator Reformulation

In this section we introduce the query extension algo-
rithm that automatically enriches the user query.

If we take into account the definition of a user query
(section 4.4), the goal of the extension Algorithm 1 is to1750

modify the composition of the query in order to replace each
operator by its extension (defined in the previous sections).
The final extended query is then the composition of the
reformulated operators corresponding to q1 ◦ . . . ◦ qr.

Ultimately, the native query engine for document-1755

oriented stores, such as MongoDB, can execute the re-
formulated queries. It is therefore easier for users to find
all the desired information regardless of the structural
heterogeneity inside the collection.
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Algorithm 1: Automatic Query Reformulation Algorithm∗

1 input: Q // original query
2 output: Qext // reformulated query
3 Qext ← id // identity
4 foreach qi ∈ Q // for each operator in Q
5 do
6 switch qi // case of the operator qi
7 do
8 case πE : // qi is a project operator
9 do

10 Eext ← ø // initialising the set of extended elements from E
11 foreach ej ∈ E // for each element ej ∈ E
12 do
13 if ej = pj is a path (pj ∈ PCin

) // ej takes the form of a path

14 then
15 ejext = pj,1 | . . . | pj,nnj

∀pj,l ∈ 4
Cin
pj

// generating pjext using paths from 4Cin
pj

16

17 if ej = p′j : pj , (pj ∈ PCin
) // renaming the path pj to p′j

18 then
19 ejext = p′j : pj,1 | . . . | pj,nj

, ∀pj,l ∈ 4
Cin
pj

// generating ejext while renaming paths from 4Cin
pj

to p′j
20

21 if ej = p′j : [p1, . . . , pmj ], ∀l ∈ [1..mj ], pl ∈ SCin
// new array [p1, . . . , pmj ] composed of paths pl

22 then
23 ejext = p′j : [p1,1|| . . . || p1,n1 , . . . , pm,1|| . . . || pm,nm ] ∀pj,l ∈ 4

Cin
pl

24

25 if ej = p′j : β, β = (pa ω pb) // comparing values of paths pa and pb
26 then
27 ejext = pa,1 | . . . | pa,na ω pb,1 | . . . | pb,nb

, ∀pa,k ∈ 4
Cin
pa , ∀pb,l ∈ 4

Cin
pb

28 Eext = Eext ∪ {ejext} // extending Eext by the new extended element ejext
29 end
30 Qext ← Qext ◦ πEext // adding the extended projection πEext to Qext

31 end

32 case σP : // qi is a select operator and the condition is normalised to P =
∧(∨

pk ωk vk

)
33 do

34 Pext ←
∧(∨

(
∨

∀pj∈4Cin
pk

pj ωk vk)

)
// extending the condition with a disjunction

∨
∀pj∈4Cin

pk

pj ωk vk

35
36 Qext ← Qext ◦ σPext // adding the extended selection σPext to Qext

37 end
38 case GγF :
39 where G = p1, . . . , pg, and F = p : f(pf ) // qi is an aggregate operator
40 do
41 Eext ← ø
42 foreach pj ∈ {G} ∪ {pf} // for each attribute in G and F
43 do
44 Eext = Eext ∪ {pj : pj,1|. . . |pj,nj

}, ∀pj,l ∈ 4
Cin
pj

// generating elements where paths 4Cin
pj

are renamed to pj
45 end
46 Qext ← Qext ◦ (GγF ◦ πEext ) // adding the combined aggregation GγF and the custom projection πEext to Qext

47 end
48 case µp : // qi is an unnest operation
49 do
50 foreach pj ∈ 4

Cin
p // for each attribute pj in 4Cin

p

51 do
52 Qext ← Qext ◦ µpj

// extending Qext with µpj

53 end
54 end
55 case λres:pin=pex : // qi is a lookup operation

56 do
57 Qext ← Qext ◦ λres:pj,1 | ... | pj,nj

= pl,1 | ... | pl,nl
∀pj,x ∈ 4

Cin
pin

, ∀pl,y ∈ 4Cex
pex

58 end
59 end
60 end
61 return Qext

62
∗ For the purpose of this paper, details regarding temporary dictionary maintenance are not presented in this algorithm
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5. Experiments1760

In this section we present a series of experiments
to evaluate EasyQ and validate its ability for en-
abling schema-independent querying for NoSQL document-
oriented databases. We conducted all our experiments on
an Intel I5 i5-4670 processor with a clock speed of 3.4 GHz1765

and 4 cores per socket. The machine had 16GB of RAM
and a 1TB SSD drive. We ran all the experiments in single-
threaded mode. We chose MongoDB as the underlying
document store for our experiments. We focused on the
measurement of the execution time for each executed query.1770

We implemented the Algorithm 1 using the Python
programming language. We used PyMongo, which is a
Python distribution containing tools for working with Mon-
goDB. EasyQ takes as input the collection name, the query
representing a combination of operators and the set of1775

parameters. Using the reformulation algorithm, EasyQ
automatically reformulates the input query and executes it
directly on MongoDB. Results are automatically displayed
to the user in the raw format as the MongoDB query engine
returns them.1780

In addition to EasyQ, we developed a module to build
the dictionary. The dictionary construction module runs a
recursive algorithm that goes through all documents trees
starting from the root down to each leaf node before going
up to collect all the absolute paths, partial paths and leaf1785

nodes. All documents in the collection are involved in this
process.

The purpose of the experiments was to answer the
following questions:

• What are the effects on the execution time of the1790

rewritten queries when the size of the collection is
varied and is this cost acceptable or not?

• Is the time to build the dictionary acceptable, and is
the size of the dictionary affected by the number of
structures in the collection?1795

5.1. Experimental Protocol

In this section we describe the different customized syn-
thetic datasets that we generated to run our experiments,
(all datasets are available online1). Furthermore, we define
the query set that we used to evaluate the EasyQ query1800

reformulation engine.

5.1.1. Datasets

In order to analyse the behaviour of EasyQ on varying
collection sizes and structures, we generated customized
synthetic datasets. First we collected a CSV document1805

with information relating to 5,000 movies. Then we started
generating an initial homogeneous dataset that we called
Baseline where documents within the different collections
are composed of 10 attributes (4 primitive type attributes,

1https://www.irit.fr/recherches/SIG/SDD/EASY-QUERY/

3 array type attributes and 3 complex attributes of an1810

object type in which we nested additional primitive at-
tributes). All documents within the different collections
in the Baseline dataset share the same structure as docu-
ment (a) in Figure 1. We intentionally chose to work with
attributes that may be absent from some documents, e.g.,1815

awards in collection (C) in Figure 1. Moreover, we may
have some attributes with null values, e.g., link. Figure 4a
illustrates a document from the Baseline dataset. We used
the Baseline dataset as baseline for our experiments. It
helped us to compare our schema-independent querying1820

mechanism with the normal execution of queries on col-
lections that have a unique homogeneous structure. The
Baseline dataset was composed of five collections of 1M,
10M, 25M, 50M, 100M and 500M documents for a total
disk space ranging from 500MB to more than 250GB.1825

In addition to the Baseline dataset, we then injected
heterogeneity into the structure of documents from the
Baseline dataset. We opted to introduce structural hetero-
geneity by changing the location of the attributes of the
documents from the Baseline dataset. We introduced new1830

absolute paths with variable lengths. The process of gener-
ating the heterogeneous collection took several parameters
into account: the number of structures, the depth of the
absolute paths and the number of new attributes of an
object type. We randomly nested a subset of attributes,1835

e.g., up to 10 attributes, under these complex attributes
at pre-defined depths. The complex attributes are unique
in each structure, which enables unique absolute paths for
each attribute in each structure.

Figure 4b describes a sample of a generated document1840

along with the parameters used to generate it. Therefore,
for each attribute there are as many absolute paths as the
chosen number of structures.

For the purpose of the experiments we used the above
mentioned strategy to generate the following datasets:1845

• A Heterogeneous dataset to evaluate the execution
time of the reformulated query on varying collection
sizes. This dataset was composed of five collections of
1M, 10M, 25M, 50M, 100M and 500M documents for
a total disk space ranging from 500MB to more than1850

250GB and each collection contained 10 schemas;

• A Schemas dataset to evaluate the time required to
reformulate a query for a varying number of schemas
and to study the consequences on the dictionary
size. This dataset was composed of five collections1855

of 100M documents with 10, 100, 1,000, 3,000 and
5,000 schemas respectively;

• A Structures dataset to evaluate the time required
to execute a query for a varying number of schemas.
This dataset was composed of five collections of 10M1860

documents with 10, 20, 50, 100 and 200 schemas
respectively;

• A Loaded dataset to evaluate the dictionary construc-
tion time on an existing collections. This dataset was
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{ "_id":1,

"title":"Million Dollar Baby",

"year":2004,

"link":null,

"awards":["Oscar", "Golden Globe",

"Movies for Grownups Award", "AFI

Award"],

"genres":["Drama", "Sport"],

"country":"USA",

"director":{ "first_name":"Clint",

"last_name":"Eastwood"

},

"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"

},

"actors":["Clint Eastwood",

"Hilary Swank", "Morgan Freeman"],

"ranking":{ "score":8.1

}

}

(a) Document from the Baseline dataset

{"_id":1

"group_1A":

{"level0":

{"level1":

{"level2":

{"level3":

{"ranking" : {"score": 8.1},

"country" : "USA",

"lead_actor" : {"first_name": "Clint", "last_name": "Eastwood"},

"director" : {"first_name": "Clint", "last_name": "Eastwood"},

"link" : null

}

}

}

}

},

"group_2A":

{"level0":

{"level1":

{"level2":

{"level3":

{"genres" : ["Clint Eastwood", "Hilary Swank", "Morgan Freeman"]}

}

}

}

},

"group_3A":

{"level0":

{"level1":

{"level2":

{"level3":

{"title" : "Million Dollar Baby",

"year" : 2004,

"actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"],

"awards":["Oscar", "Golden Globe", "Movies for Grownups Award",

"AFI Award"]

}

}

}

}

}

}

(b) Document from the Heterogeneous dataset (3 groups, 5
nesting levels)

Figure 4: Examples From the Baseline and the Heterogeneous dataset used in Query Reformulation Evaluation

composed of five collections of 100GB containing 2,1865

4, 6, 8 and 10 schemas respectively;

• An Adhoc dataset to evaluate the dictionary con-
struction time for the loading collections phase. This
dataset was composed of five collections of 1GB con-
taining 2, 4, 6, 8 and 10 schemas respectively.1870

In Table 2 we represent the characteristics of documents
in the Heterogenous dataset.

Setting Value

# of schemas 10
# of grouping objects per schema
(width heterogeneity) {5,6,1,3,4,2,7,2,1,3}
Nesting levels per schema
(depth heterogeneity) {4,2,6,1,5,7,2,8,3,4}
Avg. percentage of schema presence 10%
# of leaf nodes per schema 9 or 10
# of attributes per grouping objects [1..10]

Table 2: Settings of the Heterogeneous Dataset for Query Reformula-
tion Evaluation

In order to have the same results when executing queries
across baseline and heterogeneous collections, we carried
on using the same values for leaf nodes. The same re-1875

sults imply: (i) the same number of documents, and (ii)

the same values for their attributes (leaf nodes). This is
why the evaluation did not target result relevance, as the
same results will be retrieved by all queries: either homo-
geneous documents or heterogeneous documents built from1880

homogeneous documents.

5.1.2. Query Set

We built two workloads composed of a synthetic series
of queries; (i) an operator evaluation to evaluate the execu-
tion time of reformulated selection-projection-aggregation-1885

unnest-lookup operators, and (ii) an operator combination
evaluation to evaluate the execution time of the reformu-
lated query composed of operator combination.

The details of the five queries, Q1, Q2, Q3, Q4, Q5,
from the operator evaluation workload are as follows:1890

• For the projection query we chose to build a query
that covers the different options offered for projection
operations, e.g., a Boolean expression to compare two
paths, project and rename paths, and project paths
into an array and the normal projection operation. In1895

addition, we built our query with absolute paths from
the baseline collection, e.g., year, title, director.first -
name, lead actor.first name paths for a particular
entry in the array, e.g., genres.1 and leaf nodes, e.g.,
score. The following is the projection query that we1900

used in our experiments:
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Q1 : πcond:director.first name = lead actor.first name,

desc:[title, genres.1], production year:year, score (C)

• For the selection operation we chose to build a query
that covers the classical comparison operators, i.e.,1905

{<,>,≤,≥,=, 6=} for numerical values, e.g., (year ≥
2004) as well as classical logical operators, i.e., {and:∧,
or:∨} between query predicates (e.g., ((year ≥ 2004)
∨ (genres.1 = “Drama”))) Also, we combined these
traditional comparisons with a path check condition,1910

e.g., (ranking = {“score”: 6 }). The following is the
selection query that we used in our experiments:

Q2 : σ(year ≥ 2004 ∨ genres.1 = “Drama”)

∧ (ranking = {“score”: 6 } ∨ link 6= null) (C)

• For the aggregation operation we decided to group1915

movies by country and to find the maximum score
for all movies for each country. The following is the
aggregation query that we used in our experiments:

Q3: countryγmaximum score:Max(score)(C)

• We chose to apply the unnest operator to the array1920

awards which contains all the awards for a given film.
The following is the unnest query that we used in our
experiments:

Q4 : µawards(C)

• For the lookup operation we decided to generate1925

a new collection, “actors”, which is composed of
four attributes (actor, birth year, country and genre)
with 3,033 entries, and we built a lookup query that
enriches movie documents with details of the lead
actor in each movie. The following is the lookup1930

query that we used in our experiments:

Q5: (C)λres:actors.1=actor (actors)

This first workload helped us to separately evaluate
each operator. In the second workload operator combi-
nation evaluation we introduced three additional queries,1935

Q6, Q7, Q8, in which we combined two or more opera-
tors. These combinations enabled us to study the effects
of operator combinations on the query reformulation and
its evaluation by the document query engine. We present
these additional queries below:1940

• We combined the unnest operator from the query
“Q4” with the project operator from query “Q1”:

Q6 : πcond:director.first name = lead actor.first name,

desc:[title, genres.1], production year:year, score

(µawards(C))1945

• We combined the select operator form query “Q2”
and the project operator from the query “Q1”:

Q7 : πcond:director.first name = lead actor.first name,

desc:[title, genres.1], production year:year, score)
(σ(year ≥ 2004 ∨ genres.1 = Drama)1950

∧ (ranking = {score: 6 } ∨ (link 6= null) (C))

• We combined the select operator from query “Q2,”
the unnest operator from query “Q4” and the project
operator from query “Q1”:

Q8 : πcond:director.first name = lead actor.first name,1955

desc:[title, genres.1], production year:year, score

(σ(year ≥ 2004 ∨ genres.1 = Drama)

∧ (ranking = {“score”: 6 } ∨ link 6= null) (µawards(C)))

Table 3 highlights the different characteristics of the se-
lected attributes in queries from both workloads and gives1960

details about their depth inside the structurally heteroge-
neous collection.

Path Attribute Type Paths Depths

p1 director.first name String 10 {3,6,5,4,8,9,5,7,2,3}
p2 lead actor.first name String 10 {3,6,5,4,8,9,5,7,2,3}
p3 title String 10 {3,6,5,4,8,9,5,7,2,3}
p4 genres.1 String 10 {3,6,5,4,8,9,5,7,2,3}
p5 year Int 10 {3,6,5,4,8,9,5,7,2,3}
p6 awards Array 10 {3,6,5,4,8,9,5,7,2,3}
p7 ranking Object 10 {3,6,5,4,8,9,5,7,2,3}
p8 link String 10 {3,6,5,4,8,9,5,7,2,3}
p9 country String 10 {3,6,5,4,8,9,5,7,2,3}
p10 score Float 10 {3,6,5,4,8,9,5,7,2,3}
p11 actors.1 String 10 {3,6,5,4,8,9,5,7,2,3}

Table 3: Workloads Query elements

In our queries we employed 11 attributes of different
types (primitive and complex) and different depths ranging
from 2 to 9 intermediary attributes that should be traversed1965

to reach the attributes containing data of interest. Also, we
represented the paths in several ways, e.g., absolute paths,
array entries, relative paths and leaf node. Table 4 gives
the number of documents to be retrieved for each query.

The query reformulation process replaces each element1970

with its 10 corresponding paths. For instance, the query
Q1,ext contains 60 absolute paths for its 6 initial paths, 10
in query Q4,ext etc.

Collection
size in GB

# of
documents

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0.5GB 1M 1M 27K 66 1M 1M 1M 27K 23K
5GB 10M 10M 271K 66 10.4M 10M 10.4M 271K 2.3M
12.5GB 25M 25M 678K 66 26M 25M 26M 678.7K 5.7M
25GB 50M 50M 1.3M 66 52M 50M 52M 1M 11.5M
50GB 100M 100M 2.7M 66 104M 100M 104M 2.7M 23M
250GB 500M 500M 13.5M 66 521.6M 500M 521.6M 13.5M 11.5M

Table 4: The number of extracted documents per the two workloads

We describe three contexts for which we ran the queries
as defined above. For the purpose of this experiment we1975

used the Baseline dataset to study the classical query
engine execution time for both workloads. Furthermore, we
used the Heterogeneous dataset to evaluate the execution
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# of schemas # of absolute paths Reformulation time Dictionary size

10 80 0.0005s 40KB
100 800 0.0025s 74KB
1k 8k 0.139s 2MB
3k 24k 0.6s 7.2MB
5k 40k 1.52s 12MB

Table 5: Number of schema effects on query rewriting (# of paths
in reformulated query and reformulation time) and dictionary size
(query Q6) over Schemas dataset

time of reformulated queries from both workloads. For
each context we measured the average execution duration1980

after executing each query at least five times. The query
execution order was random.

We present the details of the three evaluation contexts
as follows:

• QBase is the name of the query that refers to the1985

initial user query (one of the queries from above):
it was executed across the Baseline dataset. The
purpose of this first context was to study the native
behaviour of the document store. We used this first
context as a baseline for our experimentation;1990

• QExt refers to the query QBase reformulated by our
approach. It was executed across the Heterogeneous
dataset;

• QAccumulated refers to distinct queries where each
query is formulated for a single schema found in1995

the collection. In our case we needed 10 separated
queries as we were dealing with collections with ten
schemas. These queries were built manually without
any additional tools. We did not consider the time
required to merge the results of each query as we were2000

more interested in measuring the time required to
retrieve relevant documents. We executed each of the
QAccumulated across the Heterogeneous dataset. The
result was therefore the accumulated time required
to process the 10 queries.2005

5.1.3. Queries evaluation results

As shown in Figure 5, we can see that our reformu-
lated query, QExt, outperforms the accumulated query,
QAccumulated, for all queries. The difference between the
two execution scenarios comes from the ability of our query2010

to automatically include all corresponding absolute paths
for the different query elements. Hence, the query is ex-
ecuted only once when the accumulated query requires
several passes through the collection (10 passes). This
solution requires more CPU loads and more intensive disk2015

I/O operations. We now examine the efficiency of the refor-
mulated query when compared to the baseline query QBase.
We can see that the overhead of our solution is up to three
times more, e.g., projection, selection and unnest when
compared to the native execution of the baseline query2020

on the Baseline dataset. Moreover, we score an overhead

that does not exceed a multiple of two in the evaluation of
the aggregation operator. We believe that this overhead
is acceptable as we can bypass the costs needed for refac-
toring the underlying data structures, similarly to other2025

state-of-the-art research work. Unlike the baseline, our
Heterogeneous dataset contains different grouping objects
with varying nesting levels. Therefore, the rewritten query
includes several navigational paths which were processed
by the native query engine, MongoDB, to find matches for2030

each visited document among the collection. Finally, we
must emphasize that the execution time for the lookup op-
erators is very similar between QBase and our reformulated
query QExt.

We do not present the QAccumulated evaluation for the2035

query Q5 from the operator evaluation workload and the
operator combination evaluation workload due to the com-
plexity and the considerable number of accessed collections
required to evaluate the QAccumulated context. For exam-
ple, to evaluate the query Q8 from the second workload,2040

we would need to build 30 separate queries. Therefore, we
would need to go through the collection 30 times. Fur-
thermore, it is complicated to combine the results. Thus,
this process is difficult and time-consuming, and combining
partial results may lead to corrupted results.2045

In Figure 6, we compare the time required to execute
QExt with the time required to execute QBase when the
query is a combination of operators. It is notable that the
overhead arising from the evaluation of our reformulated
query is the same as the overhead arising from the execution2050

of the standalone operator (around three times the size
when compared to querying a heterogeneous collection).

This series of workload evaluations shows that the over-
head for the time required to evaluate our reformulated
query is linear with the increasing number of documents.2055

The same behaviour for the native query occurs when study-
ing the effects of the scalability on the query evaluation.
Furthermore, the overhead induced by the evaluation of
our reformulated query is not affected by the number of
documents or the combination of operators.2060

Furthermore, we executed the query Q6 from the oper-
ator combination evaluation workload over the Structures
dataset: we present the time needed to execute the refor-
mulated query in Table 6. This experiment helps us to
study the effect of executing our reformulated query on2065

the varying number of schemas. It is notable that the
time evolves linearly rather than exponentially as more
heterogeneity is added. This is due also to the important
number of comparison required waiting for the one query.
For instance, the execution of the query Q6 over the col-2070

lection having 200 schemas requires 200 possible paths for
each attribute.

5.2. Query Reformulation Evaluation

For this experiment we only executed the query Q6

from the operator combination evaluation workload over2075

the Schemas dataset: we present the time needed to build
the reformulated query in Table 5. It is notable that the
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Figure 5: Query reformulation evaluation

Figure 6: Query combination evaluation

# of Schemas 10 20 50 100 200
Time in (s) 200 380 690 1,140 2,560

Table 6: Evaluating Q6 on varying number of schemas, Structures
dataset

time to generate the reformulated query is less than two
seconds, which is very low. Also, it is possible to construct
a dictionary that covers a collection of heterogeneous docu-2080

ments. Here our dictionary can support up to 5,000 distinct
schemas, which is the limit for the number of schemas we de-
cided on for the purpose of this experiment. The resulting
size of the materialized dictionary is very promising because
it does not require significant storage space. Furthermore,2085

we also believe that the time required to reformulate the
query is of great interest and represents another advan-

tage of our solution. In this series of experiments we have
tried to find distinct navigational paths for eight predicates.
Each rewritten query is composed of numerous disjunctive2090

forms for each predicate. Table 5 shows 80 disjunctive
forms for datasets containing 10 schemas, 800 disjunctive
forms for 100 schemas, 8,000 for 1,000 schemas, 24,000
for 3,000 schemas and 40,000 for 5,000 schemas. We be-
lieve that the dictionary and the query rewriting engine2095

scale effectively when handling heterogeneous collections
which contain a high number of schemas. We succeeded in
executing all the reformulated queries on MongoDB. We
noticed a limitation in terms of performance: the execution
time can be 50 times more than the execution of similar2100

queries on the Baseline dataset. This limitation is due to
the considerable number of comparisons per document. In
the worst case scenario we would need to perform 40,000
comparisons per document when dealing with a collection
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containing 5,000 distinct schemas.2105

5.3. Dictionary Construction Time

In this part we focus on the dictionary construction
process. EasyQ offers the possibility of building the dictio-
nary from existing collections or during the data loading
phase. We studied both configurations. First we evaluated2110

the time required to build the dictionary for collections
from the Loaded dataset.

# of schema 2 4 6 8 10
Required time (minutes) 96 108 127 143 156
Size of the resulting
dictionary (KB) 4,154 9,458 13,587 17,478 22,997

Table 7: Time to build the dictionary for collections from the Loaded
dataset

We can see from the results in Table 7 that the time
taken to build the dictionary increases when we start to
deal with collections which have more heterogeneity. When2115

a collection has 10 structures, the time does not exceed
40% when we compare it to a collection with 2 structures.
In Table 7 we can again see the negligible size of the
generated dictionaries when compared to the 100GB of the
collection. Afterwards we wanted to evaluate the overhead2120

that causes the generation of the dictionary at loading time
using the Adhoc dataset. We present two measurements
in Table 7. First, we measured the time to classically load
each collection (without the dictionary building). Second,
we measured the overall time to build the dictionary while2125

loading the collection.

#of schemas Load (s) Load and dict. (s) Overhead
2 201s 269s 33%
4 205s 277s 35%
6 207s 285s 37%
8 208s 300s 44%
10 210s 309s 47%

Table 8: Study of the overhead added during load time

In this experiment we found that the overhead measure
does not exceed 50% of the time required to only load data.
The time evolves linearly rather than exponentially as more
heterogeneity is added, which is encouraging. Many factors2130

may affect the dictionary construction phase. The number
of attributes and the nesting levels may increase or decrease
the overhead. The advantage of our solution is that once
the data is loaded and the dictionary is built or updated,
the rewritten query automatically takes all the changes2135

into account.

6. Conclusion

NoSQL document stores are often called schemaless
because they may contain variable schemas among stored
data. Nowadays, this variability is becoming a common fea-2140

ture of many applications, such as web applications, social

media applications and the internet of things. Nevertheless,
the existence of structural heterogeneity makes it very hard
for users to formulate queries that achieve relevant and
coherent results.2145

In this paper we have presented EasyQ, an automatic
mechanism which enables schema-independent querying
for multi-structured document stores. To the best of our
knowledge, EasyQ is the first mechanism of its kind to
offer schema-independent querying without the need to2150

learn new querying languages and new structures, or to
perform heavy transformation on the underlying document
structures.

Our contribution is based on a constructed dictionary
which matches each possible partial path, leaf node and2155

absolute path with its corresponding absolute paths among
the different document structures inside the collection. Us-
ing this dictionary, we can apply reformulation rules to
rewrite the user query and find relevant results. The query
reformulation can be applied to most document store oper-2160

ators based on formal foundations that are stated in the
paper.

In our experiments we compared the execution time
cost of basic MongoDB queries and rewritten queries pro-
posed by our approach. We conducted a set of tests by2165

changing the size of the dataset and the structural hetero-
geneity inside a collection (number of grouping levels and
nesting levels). Results show that the cost of executing the
rewritten queries proposed in this paper is higher when
compared to the execution of basic user queries, but al-2170

ways less than a multiple of three. Nevertheless, this time
overhead is acceptable when compared to the execution of
separated (manually built) queries for each schema while
heterogeneity issues are automatically managed.

Our approach is a syntactic manipulation of queries, so2175

it is based on an important assumption: the collection de-
scribes homogeneous entities, i.e., a field may have the same
meaning in all document schemas. In case of ambiguity,
the user should specify a sub-path (partial path) in order
to overcome this ambiguity. If this assumption is not guar-2180

anteed, users may obtain irrelevant results. Nevertheless,
this assumption may be acceptable in many applications,
such as legacy collections, web applications and IoT data.

One novel aspect of our proposal is that we have pro-
vided a generic reformulation mechanism based on a dic-2185

tionary. For the scope of this paper, the dictionary is built
and updated automatically. Nevertheless, the dictionary
content may be defined specifically for a given application
in order to target specific heterogeneity. The reformulation
mechanism remains generic for all applications whereas2190

dictionaries can be tailored to specific needs.
This paper contrasts with classical documents stores in

that we offer users the ability to query documents using
partial paths and thus EasyQ manages to find all informa-
tion regardless of the document structures. Furthermore,2195

by using specific dictionaries we extend the native query-
ing capabilities of document stores, even when querying
homogeneous documents.
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Another original aspect is that any query will always
return relevant and complete data whatever the state of2200

the collection. Indeed, the query is reformulated each time
it is evaluated. If new heterogeneous documents have been
added to the collection, their schemas are integrated into
the dictionary and the reformulated query will cover these
new structures too.2205

Future research work will cover the different aspects
presented in this paper. Initial research will focus on
testing EasyQ on more complex queries and ever larger
datasets. We also plan to employ our mechanism on real
data-intensive applications. For the query reformulation2210

process we will enable support for more document opera-
tions. This will cover all “C.R.U.D.” operations such as
“update” and “delete” to overcome structural heterogene-
ity in document stores. Moreover, we will work on the
interaction between the user and our systems so that the2215

user has the possibility of selecting certain absolute paths
or removing unnecessary absolute paths, e.g., because a
multi-entity has collapsed in the reformulated query, which
will assist our mechanism while reformulating the initial
user query. A long-term aim will be to cover most classes2220

of heterogeneity, e.g., syntactic and semantic classes, and
thus provide different dictionary building processes.
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