Hamdi Ben Hamadou
email: hamdi.ben-hamadou@irit.fr

Faiza Ghozzi
email: faiza.ghozzi@isims.usf.tn

André Péninou
email: andre.peninou@irit.fr

Olivier Teste
email: olivier.teste@irit.fr

Schema-independent Querying for Heterogeneous Collections in NoSQL Document Stores

Keywords: Information Systems, Document Stores, Structural Heterogeneity, Schema-independent Querying

NoSQL document stores are well-tailored to efficiently load and manage massive collections of heterogeneous documents without any prior structural validation. However, this flexibility becomes a serious challenge when querying heterogeneous documents, and hence the user has to build complex queries or reformulate existing queries whenever new schemas are introduced in a collection. In this paper we propose a novel approach, based on formal foundations, for building schema-independent queries which are designed to query multi-structured documents. We present a query enrichment mechanism that consults a pre-constructed dictionary. This dictionary binds each possible path in the documents to all its corresponding absolute paths in all the documents. We automate the process of query reformulation via a set of rules that reformulate most document store operators, such as select, project, unnest, aggregate and lookup. We then produce queries across multi-structured documents which are compatible with the native query engine of the underlying document store. To evaluate our approach, we conducted experiments on synthetic datasets. Our results show that the induced overhead can be acceptable when compared to the efforts needed to restructure the data or the time required to execute several queries corresponding to the different schemas inside the collection.

Introduction

During the last decade, NoSQL databases and schemaless data modelling have emerged as mainstream alternatives to relational modelling for addressing the substantive requirements of current data-intensive applications [START_REF] Hecht | Nosql evaluation: A use case oriented survey[END_REF], e.g., [START_REF] Rahm | A survey of approaches to automatic schema matching[END_REF] IoT, web, social media and logs. Document stores hold data in collections of documents (most often JSON objects); they do not require the definition of any formal structure before loading data, and any data structure can be used when updating data. The main advantage of this is being able 10 to store documents in transparent and efficient ways [START_REF] Floratou | Can the elephants handle the nosql onslaught?[END_REF][START_REF] Stonebraker | New opportunities for new sql[END_REF]. Nevertheless, it is possible to store a set of heterogeneous documents inside the same collection, and for the purposes of this paper, documents have heterogeneous structures. This is a major drawback, and issues arise when querying such data because the underlying heterogeneity has to somehow be resolved in the query formulation in order to provide relevant results. Several kinds of heterogeneity are discussed in the literature: structural heterogeneity refers to diverse representations of documents, e.g., nested or 20 flat structures, nesting levels, etc. as shown in Figure 1; separate documents [START_REF] Shvaiko | A survey of schema-based matching approaches[END_REF], e.g., country and nation. In this paper we focus on structural heterogeneity.

Usually, four main types of solution are considered when dealing with structural heterogeneity: (i) applying schema matching techniques to merge heterogeneous structures [START_REF] Rahm | A survey of approaches to automatic schema matching[END_REF], 30 (ii) transforming all document schemas to a single common schema which leads to a homogeneous collection [START_REF] Tahara | Sinew: a sql system for multi-structured data[END_REF], (iii) using automatic schema discovery from original heterogeneous data to support querying, which requires the user to take heterogeneity into account [START_REF] Wang | Schema management for document stores[END_REF], and (iv) introducing 35 a new querying mechanism to give transparency to the heterogeneity in the data [START_REF] Florescu | Jsoniq: The history of a query language[END_REF].

In this paper we provide an automatic mechanism based on formal foundations so that multi-structured document stores can be queried. We support the user query a collec-40 tion based on the knowledge of absolute, i.e., a full path leading to the attribute of interest starting from the root of the document, or partial paths, i.e., a sub-path starting from any intermediary location within the document leading to the attribute of interest, that exist in some schema.

45

Our query reformulation engine generates a new query that automatically integrates the description of heterogeneous structures. Therefore, the engine enriches path expression in the query with all the absolute paths that exist in any expression.

The rest of our paper is structured as follows. In Section 2 we examine the main issues addressed in this paper. Section 3 reviews the state-of-the-art research work which provides support for querying multi-structured documents. Section 4 describes our approach in detail. Section 5 presents our first experiments and evaluates our approach. Finally, we summarize our findings in Section 6.

Issues in Querying Multi-Structured Documents 60

In this section we outline the issues that arise when querying multi-structured documents.

Structural Heterogeneity

Classically, a collection contains a set of documents that usually represent the same entity. Nevertheless, because of their flexibility, document stores can store documents inside the same collection regardless of their structure. Such schema variability appears as applications evolve and change for many reasons: systems evolution, systems maintenance, diversity of data sources, data enrichment over time, etc. Because of their schemaless nature, querying document stores requires a knowledge of the underlying document structure and the use of full paths to access data in queries. Most document stores adopt this assumption (e.g., MongoDB, CouchDB, Terrastore [START_REF] Chodorow | MongoDB: The Definitive Guide: Powerful and Scalable Data Storage[END_REF][START_REF] Anderson | CouchDB: The Definitive Guide: Time to Relax[END_REF][START_REF] Murty | Programming amazon web services: S3, EC2, SQS, FPS, and SimpleDB[END_REF]). Since it is possible to construct a collection where documents are structurally heterogeneous, users can therefore formulate queries which affect the quality of the results, i.e., by excluding relevant documents whose schema is not explicitly expressed in the query.

In Figure 1 we present a collection composed of four documents (a, b, c, d) using the JSON (JavaScript Object Notation) format for formatting semi-structured data in human-readable text. Each document contains a set of attribute-value pairs whose values can be simple (atomic), e.g., the value of the attribute title, or complex, e.g., the value of the attribute ranking in document (a). A special attribute id in each document identifies the document inside the collection. In addition, documents form a hierarchical data structure composed of several nesting levels 90 (also called nodes or attributes), e.g., the attribute score in document (a) is nested under the complex attribute ranking. The top node for all attributes in the document is called the root, but has no specific name. Figure 2 illustrates the hierarchical representation of document (a).

In collection (C), the documents (b, c, d) share the same leaf nodes (attributes with atomic/array of atomic values, e.g., title, genres) as document (a). The structural heterogeneity lies in the fact that these leaf nodes exist in different locations in documents (b, c, d), for in-100 stance, the absolute path to reach the attribute title in document (c) is film.title. However, in documents (a, b), the path title is enough to reach this information because it is directly nested under the root node. Nevertheless, film.title represents a third absolute path in document (c) 105 and description.title represents a fourth absolute path in document (d) for the title information.

Querying Issues

To retrieve information from a document attribute in most existing document stores, it is necessary to build 110 queries using the absolute path from the document root down to the attribute of interest. If a user formulates a projection query using only the absolute path title, any document store engine ignores the information related to this attribute in documents (c) and (d), despite the fact 115 it is present in those documents. As a result, document stores return only {" id":1, "title":"Million Dollar Baby"}, {" id":2, "title":"Gran Torino"}. This result is closely related to the paths expressed in the query. Because the majority of NoSQL document stores require the use of 120 absolute paths, when a user makes a query, native query engines expect this user to explicitly include all existing paths from the database to target the relevant data.

It is not a straightforward task to handle structural heterogeneity manually, especially in continuously evolving 125 big data contexts where data variety is quite common, for instance, to project out all information related to the attribute year, the user should know about the distinct absolute paths found in collection (C) (i.e., year, info.year, film.details.year, description.year) otherwise the resulting 130 information could be reduced.

Let us suppose that a user wishes to project out all information related to movies: title with their related ranking.score. If she formulates a query with the paths (title, ranking.score) the result is {" id":1, "title":"Million Dollar 135 Baby", {"ranking":{"score":8.1}}, {" id":2, "title":"Gran Torino"}. Despite the presence of the information ranking.score in the four documents, the result does not include this information since it is located in other paths in documents (b, c, d). We can also see the same be-140 haviour for the attribute title with documents (c, d). Let us assume that the user knows the absolute path for ranking.score in document (b) and formulates a second query with the paths (title, info.ranking.score), in this case the result is {" id":1, "title":"Million Dollar Baby"}, {" id":2, 145 "title":"Gran Torino", {"info":{"ranking":{"score":8.1}}. When we compare the results of the two previous queries, we can observe that information related to ranking.score for document (a) is only present for the first result. However the second query just retrieves ranking.score information 150 from document (b). Formulating and executing several queries is a complex and an error prone-task. Data redundancy may occur (case of title information present in both results). Therefore, if a user wishes to query multi-structured data and use several queries to target 155 different paths, she has to make an effort to merge results, to learn the underlying data structures, and to remove { "_id":1, "title":"Million Dollar Baby", "year":2004, "link":null, "awards":["Oscar", "Golden Globe", "Movies for Grownups Award", "AFI Award"], "genres":["Drama", "Sport"], "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{ "score":8.1 } }

(a)

{ "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "link":"https://goo.gl/2A253A", "genres":["Drama", "Action", "Crime"], "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{ "score":7.2 } } }

(b)

{ "_id":3, "film":{ "title":"Gran Torino", "awards": "AFI Award", "link":null, "details":{ "year":2008, "country":"USA", "genres":"Drama", "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "Bee Vang", "Christopher Carley"] } }, "others":{ "ranking":{ "score":8.1 } } } }

(c)

{ "_id":4, "description":{ "title":"The Good, the Bad and the Ugly", "year":1966, "link":"goo.gl/qEFfUB", "country":"Italy", "director":{ "first_name":"Sergio", "last_name":"Leone" }, "stars":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "Eli Wallach", "Lee Van Cleef"] } }, "classification":{ "ranking":{"score":7.2 }, "genres":["Western"] } } (d) Contexts such as data-lake [START_REF] Hai | Constance: An intelligent data lake system[END_REF], federated database [START_REF] Sheth | Federated database systems for managing distributed, heterogeneous, and autonomous databases[END_REF], data integration, schema matching [START_REF] Rahm | A survey of approaches to automatic schema matching[END_REF], and recently, schemaless data support in NoSQL systems [START_REF] Corbellini | Persisting big-data: The nosql landscape[END_REF] have highlighted the importance of building transparent mechanisms that use the underlying data in a transparent way. In addition 170 to large volumes of data, there is a need to overcome the heterogeneity of the collected data. Different sources generate data under different structures, versions and languages. The problem of querying multi-structured data has pushed the database community to rethink how information is 175 accessed with regards to the underlying data structure heterogeneity [START_REF] Hamadou | Towards schema-independent querying on document data stores[END_REF].

We classify state-of-the-art research work based on the solutions proposed for querying multi-structured documents. The first family of work examines methods of Schema integration. The schema integration process is performed as an intermediary step to facilitate a query execution process. In their survey paper [START_REF] Rahm | A survey of approaches to automatic schema matching[END_REF], the authors presented the state-of-the-art techniques used to automate the schema integration process. Matching techniques can cover schemas [START_REF] Do | Comaa system for flexible combination of schema matching approaches[END_REF] or even instances [START_REF] Wang | Instance-based schema matching for web databases by domain-specific query probing[END_REF]. Traditionally, lexical matches are used to handle syntactic heterogeneity [START_REF] Hall | Approximate string matching[END_REF]. Furthermore, thesauruses and dictionaries are used to perform semantic matching [START_REF] Voorhees | Using wordnet to disambiguate word senses for text retrieval[END_REF]. Schema integration techniques may present certain issues such as data duplication, e.g., in the case of physical re-factorization, or potential original structure loss, e.g., when constituting a common schema. These two characteristics may make it impossible or unacceptable to support legacy applications.

Therefore, changing the data structure necessitates changing the workload in the application side. Furthermore, this task is required whenever a new common structure is integrated into the collection data. It is important to note that our schema-independent querying manages to resolve heterogeneity at the schema level using schema level matching techniques. We do not consider instances and values in our approach, only the document structures.

Physical re-factorization. Work has been conducted to ensure that semi-structured data can be queried without any prior schema validation or restriction. Generally, this work recommends flattening XML or JSON data into a relational form [START_REF] Chasseur | Enabling json document stores 2250 in relational systems[END_REF][START_REF] Tahara | Sinew: a sql system for multi-structured data[END_REF][START_REF] Discala | Automatic generation of normalized relational schemas from nested key-value data[END_REF]. SQL queries are formulated based on relational views built on top of the inferred data structures. This strategy implies that several physical 215 re-factorizations should be performed which will affect scalability. Hence, this process is time-consuming, and it requires additional resources, such as an external relational database and more effort from the user to learn the unified inferred relational schema. Users of these systems have to 220 learn new schemas every time they change the workload or when new data are inserted (or updated) in the collection, as this is necessary to regenerate the relational views and stored columns after every change.

Schema inference. Other research work recommends

225

inferring implicit schemas from semi-structured documents.

The idea is to give an overview of the different elements present in the integrated data [START_REF] Baazizi | Schema inference for massive json datasets[END_REF][START_REF] Ruiz | Inferring versioned schemas from nosql databases and its applications[END_REF]. In [START_REF] Wang | Schema management for document stores[END_REF] the authors suggest that all document schemas should be summarized in a skeleton framework to discover the existence of fields 230 or sub-schemas inside the collection. In [START_REF] Herrero | Nosql design for analytical workloads: variability matters[END_REF] the authors suggest extracting collection structures to help developers in the process of designing their applications. In [START_REF] Gallinucci | Schema profiling of document-oriented databases[END_REF] a novel technique is defined to explain the schema variants within a collection in document stores. Therefore, the heterogeneity 235 problem in this research work is detected when the same attribute is represented differently (different type, different position inside documents). Schema inference methods enable the user to have an overview of the data and take the necessary measures and decisions during the application 240 design phase. The limitation with such a logical view is that it requires a manual process in order to build the desired queries by including the desired attributes and all their possible navigational paths. In such approaches, the user is aware of data structures but is required to manage 245 the heterogeneity.

Querying techniques. Other work recommends resolving the heterogeneity problem by focusing on the query side. Query rewriting [START_REF] Papakonstantinou | Query rewriting for semistructured data[END_REF] is a strategy for reformulating an input query into several derivations to overcome heterogeneity. The majority of research work is designed in the context of the relational database, where heterogeneity is usually restricted to the lexical level. When it comes to the hierarchical nature of semi-structured data (XML, JSON documents), the problem of identifying similar nodes is insufficient to resolve the problem of querying documents with structural heterogeneity. To this end, keyword querying has been adopted in the context of XML [START_REF] Lin | Towards heterogeneous keyword search[END_REF]. The process of answering a keyword query on XML data starts with the identification of the existence of the keywords within the documents without the need to know the underlying schemas. The problem is that the results do not consider heterogeneity in terms of nodes, but assume that if the keyword is found, no matter what its containing node is, the document is adequate and has to be returned to the user. Other alternatives for finding different navigational paths which lead to the same nodes are supported by [START_REF] Clark | Xml path language (xpath) version 2310 1[END_REF][START_REF] Boag | An xml query language[END_REF]. However, structural heterogeneity is only partially addressed. There is always a need to know the underlying document structures and to learn a complex query language. Moreover, these solutions are not built to run with large-scale data. In addition, we can see the same limitations with JSONiq [START_REF] Florescu | Jsoniq: The history of a query language[END_REF], the extension to XQuery designed to deal with large-scale semi-structured data.

In Table 1 we present the state-of-the-art research work intended to resolve the problem of querying multistructured data. We compare this work according to the following criteria:

• The type of heterogeneity examined in each type of work: structural, syntactic or semantic;

• The level of heterogeneity. For each type of work we consider whether the contribution is designed to resolve heterogeneity at schema level or instance level;

• The querying mechanism. We examine if the type of work recommends a new query language, reuses existing systems or does not offer any querying support;

• The underlying store. We indicate if each type of work is limited to one store or several stores;

• The solution proposed for the heterogeneity problem. We describe the nature of the solution for each type of work, for instance, does it perform physical refactorization and change the original schemas, does it focus only on inferring underlying schemas or does it offer a new query language?

• The data models. We classify work according to the data models it supports: documents, key-value, relational, etc.;

• Schema evolution support. We indicate how each type of work handles the arrival of new data structures in the database (insert/update/delete documents). Do they offer transparent and native support to handle these new structures? Are manual changes needed to support this change?

Similarly to our work, the majority of the state-of-theart research concentrates on managing heterogeneity at 305 a structural level. If we take into account schema evolution support, to the best of our knowledge our work is the first contribution that manages automatic support to overcome structural heterogeneity without regenerating relational views or re-executing schema inference techniques. 310 Moreover, our contribution is able to automatically extract existing schemas, build and update a dictionary with all the details of the attributes and their corresponding paths in the collection, and offer querying capabilities without introducing a new querying language or new store. In ad-315 dition, we built our query reformulation mechanism based on ideas introduced in previous work designed for this purpose. We propose to help the user overcome heterogeneity: she queries the system with a minimum knowledge of the data structures and the system reformulates the query to 320 overcome the underlying heterogeneity. We ensure that our query reformulation is able to reformulate queries with the latest schemas in the collection.

This paper introduces a schema-independent querying approach that is based on the native engine and operators 325 supported by conventional document stores. Furthermore, we offer greater support for most querying operators, e.g, project-select-aggregate-unnest-lookup to enhance the basic querying capabilities of our previous work which only supports project, select and aggregate operators [START_REF] Hamadou | Towards schema-independent querying on document data stores[END_REF][START_REF] Hamadou | Querying heterogeneous document stores[END_REF].

330

Our approach is an automatic process running on the initial document structures; there is no need to perform any transformation to the underlying structures or to use further auxiliary systems. Users are not asked to manually resolve the heterogeneity. For collections of heterogeneous 335 documents describing a given entity, we believe that we can handle the structural heterogeneity of documents by using a query reformulation mechanism introduced in this paper.

Easy Schema-independent Querying for Hetero-

geneous Collections in NoSQL Document Stores

In this section we give an in-depth description of the key component of our approach, EasyQ (Easy Query), with reference to a series of formal backgrounds, in particular, the data model and the querying operators.

345

Most document-oriented databases do not offer native mechanisms which enable schema-independent querying. Schemaless flexibility is ensured during the loading stages. However, querying multi-structured collections becomes challenging.

350

Let us consider the collection (C) from Figure 1 and let us suppose that a user wishes to project the attribute year. There are four distinct locations for the attribute year in documents: root-based for document (a), but as a leaf-node for documents (b, c, d). Hence, the simple and classical query (year) can only reach year information in document (a) since document stores only accept absolute paths (root-based) in queries.

To overcome the structural heterogeneity we propose an automatic mechanism that reformulates the initial query as a new query where all corresponding locations for the attribute year are considered. The attribute year is reachable using the following four distinct absolute paths: (year, info.year, film.details.year, description.year). Our mechanism produces a new projection operation that contains all these absolute paths.

To facilitate the task of path discovery we introduce a dictionary that contains the set of corresponding absolute paths in all document structures for any partial path (sub-path included in an existing absolute path), any leaf node and any absolute path in the collection. During the data loading stage, the system parses the underlying document structures and creates new dictionary entries or updates existing ones with their corresponding absolute paths. For instance, in the case of collection (C), to reformulate the projection operation, our query reformulation engine finds the following entry in the dictionary (year,[year, info.year, film.details.year, description.year]) and reformulates the query.

As previously highlighted, most document stores only accept queries which have been formulated for absolute paths. In our proposal we offer the possibility of querying a collection using partial paths that are not necessarily root-based and could not end with leaf nodes. Furthermore, the use of partial paths helps the user to disambiguate her query when ambiguous entities appear in documents. For example, a single leaf node attribute may refer to various semantics when used for different objects in the same document, and thus relates to different entities. Let us consider the attribute first name in document (a). It is found under director, and in this case the semantic attribute is related to the director of the film and under lead actor the semantic attribute is related to the main actor in the film. When the user tries to execute the following projection operation (director.first name), the native query engine considers an absolute path and will only return document (a). With EasyQ, when we search for director.first name in the dictionary we will find the following entry: (director.firstname: [director.first name, info.people.director.first name, film.details.director.first name, description.director.firstname]). The reformulation hence leads to the projection (director.first name, info.people.director.first name, film.details.director.first name, description.director.firstname) and the result contains information related to director.first name for all documents (a, b, c, d). The query reformulation therefore overcomes heterogeneity, and the use of partial paths considerably helps the user resolve the ambiguous entity problems when formulating their queries.

The presence of all existing partial paths and leaf node as keys in the dictionary enables users to freely express their query in order to use the different semantics embedded in document structures. When a user formulates a query with leaf nodes, EasyQ returns all the information for each leaf node, regardless of their semantics. However, when the 415 user indicates partial or absolute paths, EasyQ only returns information related to the explicit semantic expressed by these paths.

In the next sections we give an in-depth description of the key components of our approach, EasyQ (Easy Query), 420 with reference to a series of formal backgrounds, in particular, the data model and the querying operators. Figure 3 provides a high-level illustration of the architecture of EasyQ with its two main components: the 425 query reformulation engine and the dictionary. Moreover, Figure 3 shows the flow of data during the data loading stage and the query processing stage.

Architecture Overview

We introduce the data structure extractor during the data loading phase. It enriches the dictionary with new 430 partial path entries and updates existing ones with corresponding absolute paths in documents. From a general point of view, the dictionary is updated each time a document is updated, removed or inserted in the collection.

At the querying stage, EasyQ takes as input the user 435 query, denoted by Q, which is formulated using any combination of paths (leaf nodes, partial paths and absolute paths) and the desired collection. The EasyQ query reformulation engine reads from the dictionary and produces an enriched query known as Q ext , that includes all existing 440 absolute paths from all the documents. Finally, the document store executes Q ext and returns the result to the user.

In the remainder of this section we describe the formal model of multi-structured documents, the dictionary and 445 the queries across multi-structured documents, and the reformulation rules for each operator.

Formal Foundations

In this section we introduce the formal foundations that cover the basic definition of the document and collection 450 concepts.

Definition (Collection).

A collection C is defined as a set of documents.

C = {d 1 , . . . , d nc } where n c = |C| is the collection size. 455 Definition (Document). A document d i ∈ C, ∀i ∈ [1, n c],
is defined as a (key, value) pair

d i = (k di , v di)
• k di is a key that identifies the document, We first start by defining a generic value v which can be atomic or complex (object or array).

• v di is the document value.
An atomic value v can take one of following four forms:

• v = n where n is a numerical value form (integer or f loat); 465 • v = "s"
where "s" is a string formulated in U nicode A * ;

• v = β where β ∈ B, the set of boolean B = {T rue, F alse};

• v = ⊥ where ⊥ is the null value.

470

A complex value v can take one of the following two forms:

• v = {a 1 : v 1 , . . . , a m : v m } is an object value, m = |v| and ∀j ∈ [1.
.m], v j are values, and a j are strings (in U nicode A *) called attributes. This definition is 475 recursive since a value v j is defined as a generic value v;

• v = [v 1 , . . . , v m] represents an array of m = |v| val- ues v j and ∀j ∈ [1.
.m] v j are values. This definition is also recursive because a value v j is defined as a 480 generic value v.

We use the definition of generic value v to define: (i) the document value v di composed of a set of attribute a di,j value v di,j pairs, (ii) the attribute value v di,j , j ∈ [1..|m|]. Therefore, in the event of complex attribute values v di,j , i.e., 485 object or array, their internal values

v di,j,k , k ∈ [1..|v di,j |],
can also be complex and they can take the same form as generic value v (atomic or complex). To cope with nested documents and navigate through schemas, we adopt classical navigational path notations [START_REF] Bourhis | Json: data model, query languages and schema specification[END_REF][START_REF] Hidders | J-logic: Logical foundations for json querying[END_REF]. 490 Definition (Path). A path represents a sequence of dot concatenated attributes starting from the root of the document and leading to a particular attribute in the document value v di that could be an atomic value of a leaf node or a complex value of a document object. In both cases, the 495 path from the root to any atomic or complex document value in v di is called an absolute path, e.g., the path ranking.score in document (a) represents an absolute path to reach the information referenced by the attribute score. Likewise, the path info.people.actors in document (b) is an 500 absolute path. Furthermore, a path could be a sub-path when the sequence of attributes does not start from the root. In this case, the path is called a partial path, e.g., the path lead actor.first name in documents (b, c, d) represents partial paths which reach the information referenced 505 by the attribute first name of the lead actor. Likewise, people.director in document (b) is a partial path. Finally, leaf node attributes are considered as paths too since they respond to the partial path definition.

Definition (Document Schema). The document 510 schema S di inferred from the document value v di from document d i , is defined as:

S di = {p 1 , . . . , p Ni } where, N i = |S di | and ∀j ∈ [1..N i],
p j is an absolute path leading to an attribute of v di . For multiple nesting 515 levels, the navigational paths are extracted recursively in order to find the path from the root to any attribute that can be found in the document hierarchy. The schema S di of a document d i is defined from its value v di = {a di,1 :

v di,1 , . . . , a di,ni : v di,ni } as follows: 520 • if v di,j is atomic, S di = S di ∪ {a di,j } where a di,j is
a path leading to the value v di,j ;

• if v di,j is an object, S di = S di ∪ {a di,j } ∪ {∪ p∈s d i ,j a di,j .
p} where s di,j is the schema of v di,j and a di,j .p is a path composed of the complex attribute 525 a di,j dot concatenated with the path p extracted from s di,j leading to the internal values of v di,j ;

• if v di,j is an array, S di = S di ∪ {a di,j } ∪ { ∪ mj k=1 { a di,j .k} ∪ {∪ p∈s d i ,j,k a di,j .k.p} } where s di,j,k is
the schema of the k th value in the array v di,j , a di,j .k.p 530 is a path leading to the k th entry from the array value v di,j composed of the array attribute a di,j dot concatenated with the index k and dot concatenated with the path p extracted from s di,j,k ; we adopt this notation from [START_REF] Hidders | J-logic: Logical foundations for json querying[END_REF].

535

Example The document schema for the document (b) is as follows: Definition (Collection Schema). The schema S C inferred from a collection C is the set of all absolute paths defined in each document schema extracted from each document in the collection C:

S b =
S C = nc i=1 S di

Dictionary

The architecture of our approach relies on the construction of a dictionary that enables the query reformulation process. A dictionary is a repository that binds each existing path in the collection (partial or absolute paths, including leaf nodes) to all the absolute paths from the collection schema leading to it.

In the following paragraphs we first define partial paths in documents (called document paths), then partial paths in the collection (called collection paths) and we finally give the formal definition of the dictionary. Definition (Document Paths). We define P di = {p di } as the set of all existing paths in a document d i : absolute paths and partial paths. We give a formal and recursive definition of P di starting from the value v di of document d i .

For

v di = {a di,1 : v di,1 , . . . , a di,ni : v di,ni } • if v di,j is atomic: P di = P di ∪ S v d i ,j ;
• if v di,j is an object:

P di = P di ∪ S v d i ,j ∪ P v d i ,j
where

P v d i ,j
is the set of existing paths for the value v di,j (document paths for v di,j);

• if v di,j is an array:

P di = P di ∪ S v d i ,j ∪ (∪ n l k=1 P v d i ,j,k) where P v d i ,j,k is the set of existing paths of the k th value of v di,j (document paths for v di,j).
Since sets contain paths, the union of sets must be interpreted as a union of different paths. Example The document paths P b for document (b) in Figure 1 is as follows:

P b = {_id,
P C = ∪ nc i=1 P di
We notice that S C ⊆ P C (all absolute paths to any leaf 655 node are included in P C).

Definition (Dictionary). The dictionary dict C of a collection C is defined as:

dict C = {(p k , C p k)}
where:

660 • p k ∈ P C is an existing path in the collection C, k ∈ [1..|P C |]; • C p k = {p k,1 , . . . , p k,n k } ⊆ S C is the set of all absolute paths of the collection leading to p k , n k = | C p k |.

665

Formally, the dictionary value C p k is a set of all absolute paths p k,j ∈ S C , j ∈ [1..n k], of the form p k,j = p l .p k where p l is a path or p l is empty. Thus, the dictionary value C p k contains all the absolute paths to p k that exist in at least one document in the collection. For example, if we build 670 the dictionary for a collection composed of document (b), the dictionary keys will contain title and info.people, but also info.people.director, people.director, people, director and so on.

Example. In the following example we present some dictio-675 nary entries from the collection (C) in Figure 1

Minimum Closed Kernel of Operators

In this section we define a minimum closed kernel for operators based on the document operators defined in [START_REF] Botoeva | Expressivity and 2325 complexity of mongodb queries[END_REF].

Definition (Kernel). The kernel K is a minimal closed 700 set composed of the following operators:

K = {σ, π, γ, µ, λ}
The select, also called restriction (σ), the project (π), the aggregate (γ) and the unnest (µ) are unary operators whereas the lookup (λ) is a binary operator.

705 Definition (Query). If we take into consideration the kernel K for operators, a query Q is formulated by combining the previously presented unary and binary operators as follows:

Q = q 1 • . . . • q r (C) 710 where r = |Q|, ∀i ∈ [1, r], q i ∈ K.
We define the kernel as closed because each operator in the kernel operates across a collection and as a result, returns a new collection. Furthermore, we can observe that these operators are neither distributive, commutative nor 715 associative; such operator combinations are valid in very particular cases only. Some algebraic manipulations are helpful in reducing the query complexity and they will be the subject of our future research work.

In our preliminary work the kernel was limited to project 720 and select operators [START_REF] Hamadou | Towards schema-independent querying on document data stores[END_REF]. In recent work we have extended it to offer support for aggregate operators [START_REF] Hamadou | Querying heterogeneous document stores[END_REF]. In this paper we support two additional operators: unnest and lookup. Moreover, we give new definitions for the previously supported operators by adding additional features for the 725 project and select operators as introduced in [START_REF] Botoeva | Expressivity and 2325 complexity of mongodb queries[END_REF].

In the next sections, each operator is studied in five steps. We first give the operator definition, including partial paths. Next we give a query example for the operator and its evaluation in classical engines. We then explain 730 how existing engines classically evaluate the operator. Finally, we define the operator reformulation rules which are illustrated with some reformulation examples. Defining the classical evaluation of operators is necessary in order to define the reformulation of operators so that these re-735 formulations are evaluated in the same way as classical operators, particularly when considering missing paths and null values.

σ P C in = C out
The select operator (σ) is a unary operator that filters the documents from collection C in in order to retrieve only those that match the specified condition P. This can be a 745 boolean combination expressed by the logical connectors {∨, ∧, ¬} of atomic conditions, also called predicates, or a path check operation. The documents in C out have the same document structures as the documents in collection C in . However, the condition P may reduce the number of 750 documents in C out when applied to collection C in .

The condition P is defined by a boolean combination of a set of triplets (p k ω k v k) where p k ⊆ P Cin is a path, ω k ∈ {=; >; <; =; ≥; ≤} is a comparison operator, and v k is a value that can be atomic or complex. In the case of an 755 atomic value, the triplet represents an atomic condition. In the case of a complex value, v k is defined in the same way as a document value as defined in Section 4.2, v k = {a k,1 : v k,1 , . . . , a k,n : v k,n } and ω k is always " = ". In this case the triplet represents a path check operation. We assume 760 that each condition P is normalized to a conjunctive normal form: • if p k ∈ S di the result of the predicate is T rue/F alse depending on the evaluation of

P = p k ω k v k where k ∈ [1..|P |],
p k ω k v k in d i ; 775 • if p k / ∈ S di , the evaluation of p k ω k v k is F alse.
The select operator will select only documents d i ∈ C in where the evaluation of the normal form of condition P returns T rue.

Example. The previous selection operation only selects 780 movies produced in 2004, and the movie is directed by Clint Eastwood when the path director is an object with the following value {"first name": "Clint", "lastname":"Eastwood"}. In a classical evaluation, the execution of this operation returns the following documents:

785

• { "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":["Drama", "Sport"],

790

"country":"USA", "director":{"first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{"first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{"score":8.1}}

795

}

Because a classical evaluation only takes absolute paths into account, the result only contains the document (a) despite the presence of other documents (document (c)) which seem to satisfy the selection condition.

800 Selection reformulation rules. The reformulation of the select operator aims to filter documents based on a set of conditions from a collection of documents regardless of their underlying structures. The predicate triplets of the select condition are built across one path (atomic condition or path check). In practical terms, the query reformulation engine replaces each path used in a condition by all their corresponding absolute paths extracted from the dictionary. Therefore, a triplet condition p k ω k v k , p k ∈ P Cin becomes a boolean "OR" combination of triplet conditions based on paths found in the dictionary. If we take into consideration the classical evaluation as defined above, the evaluation of this generated boolean "OR" combination in the reformulated select operator ensures that (i) a document containing at least one path can match the triplet condition, and (ii) a document containing no path evaluates the triplet condition as False.

σ Pext (C in) = C out
The query reformulation engine reformulates the normal form of predicates P = p k ω k v k by transforming each triplet (p k ω k v k) into a disjunction of triplets, replacing the path p k with the entries Cin p k while keeping the same operator ω k and the same value v k as follows :

(∀pj ∈ C in p k p j ω k v k).
The reformulated normal form of the predicate is defined as:

P ext = (∀pj ∈ C in p k p j ω k v k)
Example. Let us suppose that we want to reformulate the select operator described above:

σ (year ≥ 2004) ∧ (director = {"first name": "Clint", "last name":"Eastwood"}) (C)

The query reformulation engine reformulates each condition as follows:

• the condition year ≥ 2004 becomes: year ≥ 2004 ∨ info.year ≥ 2004 ∨ film.details.year ≥ 2004 ∨ description.year ≥ 2004

• the condition director = {"first name":"Clint", "lastname":"Eastwood"} becomes:

director={"first name":"Clint", "last name":"Eastwood"} ∨ info.people.director = {"first name":"Clint", "last name":"Eastwood"} ∨ film.details.director = {"first name":"Clint", "last name":"Eastwood"} ∨ description.director = "last name":"Eastwood"} After applying the reformulation rules, the select operator becomes: {"first name":"Clint", "last name":"Eastwood"} ∨ info.people. director = {"first name":"Clint", "last name":"Eastwood"} ∨ film.details.director = {"first name":"Clint", "last name": 850 "Eastwood"} ∨ description.director = {"first name":"Clint", "last name":"Eastwood"}) (C) The execution of this latest select operator returns:

• { "_id":1,

855

"title":"Million Dollar Baby", "genres":["Drama", "Sport"], "country":"USA", "director":{ "first_name":"Clint", 860 "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", 865 "Hilary Swank", "Morgan Freeman"], "ranking":{"score":8.1}} } • { 870 "_id":3, "film":{ "title":"Gran Torino", "details":{ "year":2008,

875

"country":"USA", "genres":"Drama", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, 880 "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", 885 "Bee Vang","Christopher Carley"]}}, "others":{"ranking":{ "score":8.1}} } 890 } Executing the select operator after reformulation gives all the desired results, since it contains all the absolute paths that lead to the different selection conditions.

π E (C in) = C out
The project operator (π) is a unary operator that projects 900 only a specific portion from each document of a collection, i.e., only information referring to paths given in the query. In document stores, this operator is applied to a collection C in by possibly projecting existing paths from the input documents, renaming existing paths or adding new paths 905 as defined by the sequence of elements E. This returns an output collection C out . The result contains the same number of documents as the input collection while the schema of the documents is changed.

The sequence of project elements is defined as E = 910 e 1 , . . . , e n E , n E = |E|, where each element e j is in one of the following forms:

• (i) p j , a path existing in the input collections; p j ∈ P Cin which enables the projection of existing paths. As a result, the schema of the collection C out may 915 contain p j ;

• (ii) p j : p j , where p j represents an absolute path (string in U nicode A *) to be injected into the structure of the collection C out and p j is an existing path in the input collection; p j ∈ P Cin and its value is 920 assigned to the new absolute path p j in C out . This form renames the path p j to p j in C out ; Example. The previous projection operation returns documents composed of the following paths:

• cond : the evaluation of a boolean expression which checks if the value of the path director.first name is equal to the value of the path lead actor.first name

980
or not, i.e., it checks whether both director and lead actor have the same first name or not;

• desc: an array composed of information from the title and genre paths;

• production year : information from the path year us-

985

ing a new path called production year, i.e., the path year from the input collection is renamed production year ;

• ranking.score: information from the path ranking.score, i.e., the same path as defined in the input 990 collection is retained.

In a classical evaluation, the execution of this operation returns the following documents:

• { "_id":1,

995

"cond":true, "desc": ["Million Dollar Baby", "Drama", "Sport"], "production_year":2004, "ranking":{"score":8.1} The execution of the project operator gives rise to misleading results. We can see that only the first results include all the desired information. In the second result, only the title information is present for the new array desc. We can see that in some cases the result which is true is 1025 not always real (case of document (d)) due to unreachable paths in the documents.

Projection reformulation rules. The aim of reformulating the project operator is to extract information from a collection of documents regardless of their underlying 1030 structures. In practical terms, the query reformulation engine replaces each path in the projection operation by their corresponding absolute paths extracted from the dictionary. In order to ensure that the reformulated operator has the same behaviour as the standard execution of the 1035 classical projection operation we introduce two specific notations, i.e., "|" and "||" to deal with missing paths and null values.

In the operation π E (C in) = C out , the original set of project elements E is extended as follows:

E ext = e 1ext , . . . , e next where each e jext is the extension of the e j ∈ E. The extended project operator is defined as follows:

π Eext (C in) = C out
We introduce the notation "|" to exclude path p j from the result when the project element e j is atomic or the path p j if e j is complex. In practical terms, an expression such as p k,1 |. . . |p k,nj is evaluated as follows for a document d i :

• if ∃p k ∈ [p k,1 ..p j,n k],
where p k ∈ S di , then the corre-1050 sponding document in the output collection d i ∈ C out contains the path p k with the value v p k (from d i);

• if p k ∈ [p k,1 ..p k,n k],
where p k ∈ S di , i.e., no path from the list is found in the document d i , the corresponding document in the output collection d i ∈ C out 1055 does not contain the path p k .

In the notation "|", if a first path from the list is found in the document, the corresponding value is kept for the output. Otherwise, the desired path is excluded from the output. Therefore, in the event where multiple paths are found in the document, the notation selects only the first one.

The notation "||" is very similar to "|" notation when evaluating an expression such as p k,1 ||. . . ||p k,n k but it returns null instead of erasing the path in the output. It 1065 returns a null value in the following case:

• if p k ∈ [p k,1 ..p k,n k],
where p k ∈ S di , i.e., no path from the list is found in the document d i , the operator returns a null value.

We can now define the following set of rules to extend 1070 each element e j ∈ E based on its four possible forms: After applying the reformulation rules, and with reference to previous paragraphs for reformulations, the project operator becomes: The execution of this latest project operator returns:

• (i) e j is
• { 1120 "_id":1.0, "ranking":{"score":8.1}, "cond":true, "desc":["Million Dollar Baby", "Clint"],

1125 "production_year":2004} }

• { "_id":2, "info":{"ranking": 1130 {"score":7.2}}, "cond":true, "desc":["In the Line of Fire", "Clint"], "production_year":1993 1135 } • { "_id":3, "film":{"others": {"ranking": 1140 {"score":8.1}}}, "cond":true, "desc":["Gran Torino", "Clint"], "production_year":2008} 1145 } • { "_id":4, "classification": 1150 {"ranking": {"score":7.2}}, "cond":false, "desc":["The Good, the Bad and the Ugly", 1155 "Clint"], "production_year":1966 }

The reformulated project operator is now able to reach all the paths from the initial query regardless of their 1160 numerous locations inside the collection. In addition, the comparison of path information now gives reliable results.

Aggregation

Definition (Aggregation). The aggregate operator is defined as:

1165 G γ F (C in) = C out
The aggregate operator is a unary (γ) operator grouping documents according to the values from the grouping conditions G. The output is a collection of documents where each document refers to a group and contains a computed the grouping and aggregation function by their corresponding absolute paths extracted from the dictionary. Nevertheless, a preliminary project operation is needed to unify the heterogeneous paths in documents with a set of common paths for all documents. Then a classical aggregation is 1230 applied to the previously projected documents.

In practical terms, the query reformulation engine first starts by projecting out all values reached by the paths from both G (grouping conditions) and F (aggregation function). This project operation renames the distinct 1235 absolute paths extracted from the dictionary for paths in G (G = p 1 , . . . , p g) and F (path p f) to the paths initially expressed in the original query. Then we apply the classical aggregate operator to the output of the added project operator.

1240

Let Att be the set of all paths expressed in G and F , that is Att = G ∪ {p f }. The additional project operator is defined as:

π Eext (C in)
where

E ext = ∪ ∀pj ∈Att {p j : p j,1 |. . . |p j,nj }, ∀p j,k ∈ 1245 Cin pj
The reformulated aggregate operator is formally defined as:

G γ F (π Eext (C in)) = C out
Example. Let us suppose that we want to reformulate 1250 the aggregate operator as described above:

(ranking.score) γ (titles count: Count(title))

To reformulate the aggregate operator, the query reformulation engine must first generate a project operator, which is defined as follows: The structure of the output documents is identical to the original document d i , except that p (initially an array) is replaced by a path leading to one value of the array in d i .

Example. Let us suppose that we want to run the following unnest operation on collection (C) from Figure 1:

µ genres (C)
Classical unnest evaluation. During an unnest evaluation, classical query engines generate new documents for the operation µ p (C in) = C out as follows: Example. The previous unnest operator takes into account the array referenced by the path genres and returns a new document for each element in the array. By executing 1300 this query, the unnest operator only applies to document (a) due to the presence of the absolute path genres in this document. As a result, the array genres from document (a) is split into two documents as follows:

• If p ∈ S di
• { 1305 "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":"Drama", 1310 "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ 1315 "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"],

1320 "ranking":{"score":8.1} }

• { "_id":1, "title":"Million Dollar 1325 Baby", "year":2004, "genres":"Sport", "country":"USA", "director":{ 1330 "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, 1335 "actors":["Clint Eastwood", "Hilary Swank", "Morgan

Freeman"], "ranking":{"score":8.1} } 1340 Unnest reformulation rules. The aim of reformulating the unnest operator is to generate documents where on each occasion the path p contains an element from the initial array referenced by p in the collection C in regardless of the underlying structure of the documents. In practical 1345 terms, the query reformulation engine combines a series of different unnest operators applied to each path p j extracted from the dictionary entry Cin p that leads to the path p. We represent the combination of the operators by using the " • " composition symbol. The reformulation of the 1350 unnest operator is formally defined as:

• ∀pj ∈ C in p µ pj (C in)
Example. Let us suppose that we want to reformulate the following unnest operation as described above:

µ genres (C) 1355
After applying the above-mentioned transformation rules, the unnest operation becomes:

µ genres • µ info.genres • µ film.details.genres • µ classification.genres (C)
Now, executing this query returns seven documents 1360 where the array from document (a) generates two documents which have the same information as document (a) and the array becomes a simple attribute whose value is an entry from the array. We obtain three documents from document (b) (the array genres contains three entries).

1365 Document (c) stays invariant. Finally, document (d) returns one document (the array genres contains only a single entry):

• { "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":"Drama", "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{"score":8.1} }

• { "_id":1, 1370 "title":"Million Dollar Baby", "year":2004, "genres":"Sport", "country":"USA", "director":{ for document (a). This entry contains the information from document (a) since the lookup operation can only match the information from document (a). The content of the new path dir actor for document (a) is as follows:

• "dir_actor":[1540 { "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":["Drama","Sport"],

1545 "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ 1550 "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"],

1555 "ranking":{"score":8.1} }]

Here we explain the classical evaluation process and the possible incorrect results. The lookup succeeds in matching 1560 document (a) with itself, but despite the presence of other documents that may satisfy the lookup condition we can see that they are absent from the new path dir actor. We can see this same result inside the remaining documents (b, c, d) that give three documents as a result, and each 1565 resulting document contains the same value for the new path dir actor : modify the composition of the query in order to replace each operator by its extension (defined in the previous sections). The final extended query is then the composition of the reformulated operators corresponding to q 1 • . . . • q r . Ultimately, the native query engine for documentoriented stores, such as MongoDB, can execute the reformulated queries. It is therefore easier for users to find all the desired information regardless of the structural heterogeneity inside the collection.

Experiments

In this section we present a series of experiments to evaluate EasyQ and validate its ability for enabling schema-independent querying for NoSQL documentoriented databases. We conducted all our experiments on an Intel I5 i5-4670 processor with a clock speed of 3.4 GHz and 4 cores per socket. The machine had 16GB of RAM and a 1TB SSD drive. We ran all the experiments in singlethreaded mode. We chose MongoDB as the underlying document store for our experiments. We focused on the measurement of the execution time for each executed query.

We implemented the Algorithm 1 using the Python programming language. We used PyMongo, which is a Python distribution containing tools for working with Mon-goDB. EasyQ takes as input the collection name, the query representing a combination of operators and the set of parameters. Using the reformulation algorithm, EasyQ automatically reformulates the input query and executes it directly on MongoDB. Results are automatically displayed to the user in the raw format as the MongoDB query engine returns them.

In addition to EasyQ, we developed a module to build the dictionary. The dictionary construction module runs a recursive algorithm that goes through all documents trees starting from the root down to each leaf node before going up to collect all the absolute paths, partial paths and leaf rewritten queries when the size of the collection is varied and is this cost acceptable or not?

• Is the time to build the dictionary acceptable, and is the size of the dictionary affected by the number of structures in the collection?

Experimental Protocol

In this section we describe the different customized synthetic datasets that we generated to run our experiments, (all datasets are available online 1). Furthermore, we define the query set that we used to evaluate the EasyQ query 1800 reformulation engine.

Datasets

In order to analyse the behaviour of EasyQ on varying collection sizes and structures, we generated customized synthetic datasets. First we collected a CSV document with information relating to 5,000 movies. Then we started generating an initial homogeneous dataset that we called Baseline where documents within the different collections are composed of 10 attributes (4 primitive type attributes, 1 https://www.irit.fr/recherches/SIG/SDD/EASY-QUERY/ 3 array type attributes and 3 complex attributes of an 1810 object type in which we nested additional primitive attributes). All documents within the different collections in the Baseline dataset share the same structure as document (a) in Figure 1. We intentionally chose to work with attributes that may be absent from some documents, e.g., 1815 awards in collection (C) in Figure 1. Moreover, we may have some attributes with null values, e.g., link. Figure 4a illustrates a document from the Baseline dataset. We used the Baseline dataset as baseline for our experiments. It helped us to compare our schema-independent querying 1820 mechanism with the normal execution of queries on collections that have a unique homogeneous structure. The Baseline dataset was composed of five collections of 1M, 10M, 25M, 50M, 100M and 500M documents for a total disk space ranging from 500MB to more than 250GB.

1825

In addition to the Baseline dataset, we then injected heterogeneity into the structure of documents from the Baseline dataset. We opted to introduce structural heterogeneity by changing the location of the attributes of the documents from the Baseline dataset. We introduced new 1830 absolute paths with variable lengths. The process of generating the heterogeneous collection took several parameters into account: the number of structures, the depth of the absolute paths and the number of new attributes of an object type. We randomly nested a subset of attributes, 1835 e.g., up to 10 attributes, under these complex attributes at pre-defined depths. The complex attributes are unique in each structure, which enables unique absolute paths for each attribute in each structure.

Figure 4b describes a sample of a generated document 1840 along with the parameters used to generate it. Therefore, for each attribute there are as many absolute paths as the chosen number of structures.

For the purpose of the experiments we used the above mentioned strategy to generate the following datasets:

1845

• A Heterogeneous dataset to evaluate the execution time of the reformulated query on varying collection sizes. This dataset was composed of five collections of 1M, 10M, 25M, 50M, 100M and 500M documents for a total disk space ranging from 500MB to more than 1850 250GB and each collection contained 10 schemas;

• A Schemas dataset to evaluate the time required to reformulate a query for a varying number of schemas and to study the consequences on the dictionary size. This dataset was composed of five collections 1855 of 100M documents with 10, 100, 1,000, 3,000 and 5,000 schemas respectively;

• A Structures dataset to evaluate the time required to execute a query for a varying number of schemas. This dataset was composed of five collections of 10M 1860 documents with 10, 20, 50, 100 and 200 schemas respectively;

• A Loaded dataset to evaluate the dictionary construction time on an existing collections. This dataset was • An Adhoc dataset to evaluate the dictionary construction time for the loading collections phase. This dataset was composed of five collections of 1GB containing 2, 4, 6, 8 and 10 schemas respectively.

In Table 2 In order to have the same results when executing queries across baseline and heterogeneous collections, we carried on using the same values for leaf nodes. The same results imply: (i) the same number of documents, and (ii) the same values for their attributes (leaf nodes). This is why the evaluation did not target result relevance, as the same results will be retrieved by all queries: either homogeneous documents or heterogeneous documents built from 1880 homogeneous documents.

Query Set

We built two workloads composed of a synthetic series of queries; (i) an operator evaluation to evaluate the execution time of reformulated selection-projection-aggregation-1885 unnest-lookup operators, and (ii) an operator combination evaluation to evaluate the execution time of the reformulated query composed of operator combination.

The details of the five queries, • For the selection operation we chose to build a query that covers the classical comparison operators, i.e., {<,>,≤,≥,=, =} for numerical values, e.g., (year ≥ 2004) as well as classical logical operators, i.e., {and:∧, or:∨} between query predicates (e.g., ((year ≥ 2004) ∨ (genres.1 = "Drama"))) Also, we combined these traditional comparisons with a path check condition, e.g., (ranking = {"score": 6 }). The following is the selection query that we used in our experiments:

Q 1 , Q 2 , Q 3 , Q 4 , Q 5 ,
Q 2 : σ (year ≥ 2004 ∨ genres.1 = "Drama") ∧ (ranking = {"score": 6 } ∨ link = null) (C)
• For the aggregation operation we decided to group movies by country and to find the maximum score for all movies for each country. The following is the aggregation query that we used in our experiments:

Q 3 : country γ maximum score:Max(score) (C)
• We chose to apply the unnest operator to the array awards which contains all the awards for a given film.

The following is the unnest query that we used in our experiments:

Q 4 : µ awards (C)
• For the lookup operation we decided to generate a new collection, "actors", which is composed of four attributes (actor, birth year, country and genre) with 3,033 entries, and we built a lookup query that enriches movie documents with details of the lead actor in each movie. The following is the lookup query that we used in our experiments:

Q 5 : (C)λ res:actors.1=actor (actors)
This first workload helped us to separately evaluate each operator. In the second workload operator combination evaluation we introduced three additional queries, Q 6 , Q 7 , Q 8 , in which we combined two or more operators. These combinations enabled us to study the effects of operator combinations on the query reformulation and its evaluation by the document query engine. We present these additional queries below:

• We combined the unnest operator from the query "Q 4 " with the project operator from query "Q 1 ": • We combined the select operator form query "Q 2 " and the project operator from the query "Q 1 ": • We combined the select operator from query "Q 2 ," the unnest operator from query "Q 4 " and the project operator from query "Q 1 ": In our queries we employed 11 attributes of different types (primitive and complex) and different depths ranging from 2 to 9 intermediary attributes that should be traversed 1965 to reach the attributes containing data of interest. Also, we represented the paths in several ways, e.g., absolute paths, array entries, relative paths and leaf node. Table 4 gives the number of documents to be retrieved for each query.

The query reformulation process replaces each element 1970 with its 10 corresponding paths. For instance, the query Q 1,ext contains 60 absolute paths for its 6 initial paths, 10 in query Q 4,ext etc. We present the details of the three evaluation contexts as follows:

• Q Base is the name of the query that refers to the 1985 initial user query (one of the queries from above): it was executed across the Baseline dataset. The purpose of this first context was to study the native behaviour of the document store. We used this first context as a baseline for our experimentation; • Q Ext refers to the query Q Base reformulated by our approach. It was executed across the Heterogeneous dataset;

• Q Accumulated refers to distinct queries where each query is formulated for a single schema found in 1995 the collection. In our case we needed 10 separated queries as we were dealing with collections with ten schemas. These queries were built manually without any additional tools. We did not consider the time required to merge the results of each query as we were 2000 more interested in measuring the time required to retrieve relevant documents. We executed each of the Q Accumulated across the Heterogeneous dataset. The result was therefore the accumulated time required to process the 10 queries.

Queries evaluation results

As shown in Figure 5, we can see that our reformulated query, Q Ext , outperforms the accumulated query, Q Accumulated , for all queries. The difference between the two execution scenarios comes from the ability of our query 2010 to automatically include all corresponding absolute paths for the different query elements. Hence, the query is executed only once when the accumulated query requires several passes through the collection (10 passes). This solution requires more CPU loads and more intensive disk 2015 I/O operations. We now examine the efficiency of the reformulated query when compared to the baseline query Q Base . We can see that the overhead of our solution is up to three times more, e.g., projection, selection and unnest when compared to the native execution of the baseline query 2020 on the Baseline dataset. Moreover, we score an overhead that does not exceed a multiple of two in the evaluation of the aggregation operator. We believe that this overhead is acceptable as we can bypass the costs needed for refactoring the underlying data structures, similarly to other 2025 state-of-the-art research work. Unlike the baseline, our Heterogeneous dataset contains different grouping objects with varying nesting levels. Therefore, the rewritten query includes several navigational paths which were processed by the native query engine, MongoDB, to find matches for 2030 each visited document among the collection. Finally, we must emphasize that the execution time for the lookup operators is very similar between Q Base and our reformulated query Q Ext .

We do not present the Q Accumulated evaluation for the 2035 query Q 5 from the operator evaluation workload and the operator combination evaluation workload due to the complexity and the considerable number of accessed collections required to evaluate the Q Accumulated context. For example, to evaluate the query Q 8 from the second workload,

2040

we would need to build 30 separate queries. Therefore, we would need to go through the collection 30 times. Furthermore, it is complicated to combine the results. Thus, this process is difficult and time-consuming, and combining partial results may lead to corrupted results.

2045

In Figure 6, we compare the time required to execute Q Ext with the time required to execute Q Base when the query is a combination of operators. It is notable that the overhead arising from the evaluation of our reformulated query is the same as the overhead arising from the execution 2050 of the standalone operator (around three times the size when compared to querying a heterogeneous collection).

This series of workload evaluations shows that the overhead for the time required to evaluate our reformulated query is linear with the increasing number of documents.

2055

The same behaviour for the native query occurs when studying the effects of the scalability on the query evaluation. Furthermore, the overhead induced by the evaluation of our reformulated query is not affected by the number of documents or the combination of operators. 2060 Furthermore, we executed the query Q 6 from the operator combination evaluation workload over the Structures dataset: we present the time needed to execute the reformulated query in Table 6. This experiment helps us to study the effect of executing our reformulated query on 2065 the varying number of schemas. It is notable that the time evolves linearly rather than exponentially as more heterogeneity is added. This is due also to the important number of comparison required waiting for the one query. For instance, the execution of the query Q 6 over the col-2070 lection having 200 schemas requires 200 possible paths for each attribute.

Query Reformulation Evaluation

For this experiment we only executed the query Q 6 from the operator combination evaluation workload over 2075 the Schemas dataset: we present the time needed to build the reformulated query in time to generate the reformulated query is less than two seconds, which is very low. Also, it is possible to construct a dictionary that covers a collection of heterogeneous docu-2080 ments. Here our dictionary can support up to 5,000 distinct schemas, which is the limit for the number of schemas we decided on for the purpose of this experiment. The resulting size of the materialized dictionary is very promising because it does not require significant storage space. Furthermore, 2085 we also believe that the time required to reformulate the query is of great interest and represents another advan-tage of our solution. In this series of experiments we have tried to find distinct navigational paths for eight predicates. Each rewritten query is composed of numerous disjunctive 2090 forms for each predicate. Table 5 shows 80 disjunctive forms for datasets containing 10 schemas, 800 disjunctive forms for 100 schemas, 8,000 for 1,000 schemas, 24,000 for 3,000 schemas and 40,000 for 5,000 schemas. We believe that the dictionary and the query rewriting engine 2095 scale effectively when handling heterogeneous collections which contain a high number of schemas. We succeeded in executing all the reformulated queries on MongoDB. We noticed a limitation in terms of performance: the execution time can be 50 times more than the execution of similar 2100 queries on the Baseline dataset. This limitation is due to the considerable number of comparisons per document. In the worst case scenario we would need to perform 40,000 comparisons per document when dealing with a collection containing 5,000 distinct schemas.

Dictionary Construction Time

In this part we focus on the dictionary construction process. EasyQ offers the possibility of building the dictionary from existing collections or during the data loading phase. We studied both configurations. First we evaluated 2110 the time required to build the dictionary for collections from the Loaded dataset. We can see from the results in Table 7 that the time taken to build the dictionary increases when we start to deal with collections which have more heterogeneity. When 2115 a collection has 10 structures, the time does not exceed 40% when we compare it to a collection with 2 structures. In Table 7 we can again see the negligible size of the generated dictionaries when compared to the 100GB of the collection. Afterwards we wanted to evaluate the overhead 2120 that causes the generation of the dictionary at loading time using the Adhoc dataset. We present two measurements in Table 7. First, we measured the time to classically load each collection (without the dictionary building). Second, we measured the overall time to build the dictionary while 2125 loading the collection. In this experiment we found that the overhead measure does not exceed 50% of the time required to only load data. The time evolves linearly rather than exponentially as more heterogeneity is added, which is encouraging. Many factors 2130 may affect the dictionary construction phase. The number of attributes and the nesting levels may increase or decrease the overhead. The advantage of our solution is that once the data is loaded and the dictionary is built or updated, the rewritten query automatically takes all the changes 2135 into account.

Conclusion

NoSQL document stores are often called schemaless because they may contain variable schemas among stored data. Nowadays, this variability is becoming a common fea-2140 ture of many applications, such as web applications, social media applications and the internet of things. Nevertheless, the existence of structural heterogeneity makes it very hard for users to formulate queries that achieve relevant and coherent results.

2145

In this paper we have presented EasyQ, an automatic mechanism which enables schema-independent querying for multi-structured document stores. To the best of our knowledge, EasyQ is the first mechanism of its kind to offer schema-independent querying without the need to 2150 learn new querying languages and new structures, or to perform heavy transformation on the underlying document structures.

Our contribution is based on a constructed dictionary which matches each possible partial path, leaf node and 2155 absolute path with its corresponding absolute paths among the different document structures inside the collection. Using this dictionary, we can apply reformulation rules to rewrite the user query and find relevant results. The query reformulation can be applied to most document store oper-2160 ators based on formal foundations that are stated in the paper.

In our experiments we compared the execution time cost of basic MongoDB queries and rewritten queries proposed by our approach. We conducted a set of tests by 2165 changing the size of the dataset and the structural heterogeneity inside a collection (number of grouping levels and nesting levels). Results show that the cost of executing the rewritten queries proposed in this paper is higher when compared to the execution of basic user queries, but al-2170 ways less than a multiple of three. Nevertheless, this time overhead is acceptable when compared to the execution of separated (manually built) queries for each schema while heterogeneity issues are automatically managed.

Our approach is a syntactic manipulation of queries, so 2175 it is based on an important assumption: the collection describes homogeneous entities, i.e., a field may have the same meaning in all document schemas. In case of ambiguity, the user should specify a sub-path (partial path) in order to overcome this ambiguity. If this assumption is not guar-2180 anteed, users may obtain irrelevant results. Nevertheless, this assumption may be acceptable in many applications, such as legacy collections, web applications and IoT data. One novel aspect of our proposal is that we have provided a generic reformulation mechanism based on a dic-2185 tionary. For the scope of this paper, the dictionary is built and updated automatically. Nevertheless, the dictionary content may be defined specifically for a given application in order to target specific heterogeneity. The reformulation mechanism remains generic for all applications whereas 2190 dictionaries can be tailored to specific needs.

This paper contrasts with classical documents stores in that we offer users the ability to query documents using partial paths and thus EasyQ manages to find all information regardless of the document structures. Furthermore, 2195 by using specific dictionaries we extend the native querying capabilities of document stores, even when querying homogeneous documents. the collection. Indeed, the query is reformulated each time it is evaluated. If new heterogeneous documents have been added to the collection, their schemas are integrated into the dictionary and the reformulated query will cover these new structures too.

Future research work will cover the different aspects presented in this paper. Initial research will focus on testing EasyQ on more complex queries and ever larger datasets. We also plan to employ our mechanism on real data-intensive applications. For the query reformulation process we will enable support for more document operations. This will cover all "C.R.U.D." operations such as "update" and "delete" to overcome structural heterogeneity in document stores. Moreover, we will work on the interaction between the user and our systems so that the 2215 user has the possibility of selecting certain absolute paths or removing unnecessary absolute paths, e.g., because a multi-entity has collapsed in the reformulated query, which will assist our mechanism while reformulating the initial user query. A long-term aim will be to cover most classes 2220 of heterogeneity, e.g., syntactic and semantic classes, and thus provide different dictionary building processes.

Figure 1 :

 1 Figure 1: Illustrative example of a collection (C) with four documents describing films

Figure 2 :

 2 Figure 2: Hierarchical representation of the document (a)

Figure 3 :

 3 Figure 3: EasyQ architecture: data structure extractor and query reformulation engine.

 460

 For example {a.b, a.b.c, a.b.d} ∪ {a.b, b.a} = {a.b, a.b.c, a.b.d, b.a}.

4. 4

 4 .1. Selection Definition (Selection). The select operator is defined 740 as:

 |P | is the number of triplets in the select condition 765 Example. Let us suppose that we want to execute the following select operator on collection (C) from Figure 1: σ year ≥ 2004 ∧ director = {"first name": "Clint", "last name":"Eastwood"}) (C) Classical selection evaluation. During a selection eval-770 uation, classical query engines return documents d i ∈ C in based on the evaluation of the predicates p k ω k v k of P = ∧(∨ p k ω k v k) as follows:

σ

 (year ≥ 2004 ∨ info.year ≥ 2004 ∨ film.details. year ≥ 2004 ∨ description.year ≥ 2004) (director =

895 4 .

 4 4.2. ProjectionDefinition (Projection). The project operator is defined as:

π

 cond:p a = p b , desc:[p 1 , p 2], production year:year | 1115 info.year | film.details.year | description.year, ranking. score | info.ranking.score | film.others.ranking.score | classification.ranking.score (C)

•

 1170 aggregated value as defined by the aggregation function F . • G represents the grouping conditions, G = p 1 , . . . , p g , where ∀k ∈ [1..g], p k ∈ P Cin ; • F is the aggregation function, F = p : f (p f), where p represents the new path in C out for the value com-1175 puted by the aggregation function f for the values reached by the path p f where p f ∈ P Cin ∧ p f / ∈ G, f ∈ {Sum, M ax, M in, Avg, Count}. Example. Let us suppose that we want to run the following aggregation operation on collection (C) from Figure 1: 1180 ranking.score γ titles count:Count(title) (C) Classical aggregation evaluation. During an aggregation evaluation, classical query engines perform as follows based on the paths in G = p 1 , . . . , p g , p i ∈ S Cin and p f (F = p : f (p f), p f ∈ S Cin): 1185 In the grouping step, documents are grouped according to the presence or non-presence of the paths from G = p 1 , .

1255π

 ranking.score:ranking.score | info.ranking.score | others.ranking.score | classification.ranking.score, title:title | film.title | description.title (C) The aggregate operator after reformulation becomes: ranking.score γ titles count:Count(title) (µ p (C in) = C out The unnest operator (µ) is a unary operator which flattens an array reached via a path p in C in . For each document d i ∈ C in that contains p, the unnest operator outputs a new document for each element of the array.

 1280

•

 , the collection C out contains new k docu-1290 ments where k = |v p | is the number of entries of the array referenced by the path p. Each new document contains the path p. The value of p in each new document d i,j is equal to the j th entry from the array value v p in d i ; 1295 If p / ∈ S di , the collection C out contains a copy of the original document d i .

 if ej = p j : [p1, . . . , pmj], ∀l ∈ [1..mj], p l ∈ S C in // new array [p1, . . . , pmj] composed of paths p l then ej ext = p j : [p1,1|| . . . || p1,n 1 , . . . , pm,1|| . . . || pm,n m] ∀p j,l ∈ C in p l if ej = p j : β, β = (pa ω p b) // comparing values of paths pa and p b thenej ext = pa,1 | . . . | pa,n a ω p b,1 | . . . | p b,n b , ∀p a,k ∈ C in pa , ∀p b,l ∈ C in p b Eext = Eext ∪ {ej ext } //extending Eext by the new extended element ej ext end Qext ← Qext • π E ext // adding the extended projection π E ext to Qext end case σ P : // qi is a select operator and the condition is normalised to P = p k ω k v k ω k v k) // extending the condition with a disjunction ∀p j ∈ C in p k pj ω k v k Qext ← Qext • σ P ext // adding the extended selection σ P ext to Qext end case G γ F : where G = p1, . . . , pg, and F = p : f (p f) // qi is an aggregate operator do Eext ← ø foreach pj ∈ {G} ∪ {p f } // for each attribute in G and F do Eext = Eext ∪ {pj : pj,1|. . . |pj,n j }, ∀p j,l ∈ C in p j // generating elements where paths C in p j are renamed to pj end Qext ← Qext • (G γ F • π E ext) // adding the combined aggregation G γ F and the custom projection π E ext to Qext end case µp : // qi is an unnest operation do foreach pj ∈ C in p // for each attribute pj in C in p do Qext ← Qext • µp j // extending Qext with µp j end end case λres:p in =pex : // qi is a lookup operation do Qext ← Qext • λ res:p j,1 | ... | p j,n j = p l,1 | ... | p l,n l ∀pj,x ∈ C in p in , ∀p l,y ∈ Cex pex end end 60 end 61 return Qext 62 * For the purpose of this paper, details regarding temporary dictionary maintenance are not presented in this algorithm

Figure 4 :

 4 Figure 4: Examples From the Baseline and the Heterogeneous dataset used in Query Reformulation Evaluation

Q 6 :

 6 π cond:director.first name = lead actor.first name, desc:[title, genres.1], production year:year, score (µ awards (C))

Q 7 :

 7 π cond:director.first name = lead actor.first name, desc:[title, genres.1], production year:year, score) (σ (year ≥ 2004 ∨ genres.1 = Drama) 1950 ∧ (ranking = {score: 6 } ∨ (link = null) (C))

Q 8 :

 8 π cond:director.first name = lead actor.first name, 1955 desc:[title, genres.1], production year:year, score (σ (year ≥ 2004 ∨ genres.1 = Drama) ∧ (ranking = {"score": 6 } ∨ link = null) (µ awards (C)))

 1990

Figure 5 :Figure 6 :

 56 Figure 5: Query reformulation evaluation

 2105

Table 1 :

 1 Comparative study of the main contributions to querying heterogeneous semi-structured data

	Contribution Heterogeneity	Querying mechanism	Underlying store	Solution	Data model	Schema evolution support
		Type	Level				
	ARGO[12]	structural schema	ARGO/SQL	MySQL, Postgres physical re-factorization document	manual
	Sinew[6]	structural schema	SQL	Postgres	physical re-factorization key-value	manual
	[13]	semantic	schema	SQL	RDBMS	physical re-factorization key-value	manual
	[14]	structural instance Keywords queries + SQL -	data annotation	document	manual
	[15]	structural schema	-	Distributed DB	schema inference	document	manual
	[16]	structural schema	-	MongoDB	schema inference	document	manual
	SQL++[17]	structural schema	SQL++	RDBMS+NoSQL query language	relational + document manual
	JSONiq[8]	structural schema	JSONiq	-	query language	document	manual
	XQuery[18]	structural schema	XQuery	-	query language	document	manual
	EasyQ	structural schema	Aggregation Framework	MongoDB	query reformulation	document	automatic

schema matching; the second recommends performing materialized structural changes to unify heterogeneous forms of documents; the third recommends operating queries on a virtual schema derived from the heterogeneous structures and the last recommends querying techniques to overcome the heterogeneity in documents.

 The set of all existing paths, absolute paths, partial paths and leaf nodes in a collection is called P C and is defined as:

				info.genres.3,	630	people.lead_actor,
			610	genres,	people.lead_actor.first_name,
				genres.1,	people.lead_actor.last_name,
				genres.2,	lead_actor,
				genres.3	lead_actor.first_name,
				info.people,	635	lead_actor.last_name,
			615	info.people.director,	info.people.actors,
				info.people.director.first_name,	info.people.actors.1,
				info.people.director.last_name,	info.people.actors.2,
				people	info.people.actors.3,
				people.director,	640	people.actors,
			620	people.director.first_name,	people.actors.1,
				people.director.last_name,	people.actors.2,
				director,	people.actors.3,
				director.first_name,	actors.1,
				director.last_name,	645	actors.2,
			625	first_name,	actors.3,
				last_name,	info.ranking,
				info.people.lead_actor,	info.ranking.score,
				info.people.lead_actor.first_name,	ranking.score,
				info.people.lead_actor.last_name, 650	score}
				Definition (Collection Paths).
			country,
	title,		info.link,
	info,	605	link,
	info.year,		info.genres,
	year,		info.genres.1,
	info.country,		info.genres.2,

 :

		• score:		description.director]
		[ranking.score,		
		others.ranking.score,		• lead_actor.first_name:
	680	info.ranking.score,		[lead_actor.first_name,
		classification.ranking.score] 690	film.personas.lead_actor.
				first_name,
				info.people.lead_actor.
		• director:		first_name,
		[director,		description.stars.lead_actor.
	685	film.details.director,	695	first_name]
		info.people.director,		

 • (iii) p j : [p 1 , . . . , p m], where [p 1 , . . . , p m] is an array composed of m paths where ∀l ∈ [1..m] p l ∈ P Cin produces a new absolute path p j in C out whose value is an array composed of the values obtained through the paths p l ; • (iv) p j : β, where β is a boolean expression that compares the values of two paths in C in , i.e., β = (p a ω p b), p a ∈ P Cin , p b ∈ P Cin and ω ∈ {=; >; <; =; ≥; ≤}. The evaluation of the boolean expression is assigned to the new absolute path p j in C out .Example. Let us suppose that we want to run the following project operator on collection (C) from Figure1:π cond:director.first name = lead actor.first name, Cin . For a document d i ∈ C in , if the corresponding document in the output collection d i ∈ C out contains the path p j leading to an array that contains m values and one value for each p l in [p 1 , . . . , p m], then the l th value is as follows:-If the path p l leads to a value v p l = null/atomic/object/array in the document d i , the corresponding value is v p l , -If the path p l / ∈ S di , the corresponding value is null;• (iii)p j : β. β is the boolean expression β = (p a ω p b) where p a ∈ S Cin and p b ∈ S Cin . For a document d If p a ∈ S di and p b ∈ S di , the value is the boolean evaluation of β, T rue/F alse, -If p a / ∈ S di and p b ∈ S di , the value is F alse, -If p a ∈ S di and p b / ∈ S di , the value is F alse, -If p a / ∈ S di and p b / ∈ S di , the value is T rue.

	975

desc:[title, genres], production year:year, ranking.score (C) Classical projection evaluation. During a projection operation, classical query engines deal with missing paths or null values in the following documents with regards to the four possible forms of the projection element e j :

• (i) p j and (ii) p j : p j where p j is a path from the input collection, p j ∈ S Cin :

-

If

the path p j leads to a value v pj = null/atomic/object/array in a document d i ∈ C in , the corresponding document in the output collection d i ∈ C out contains: (i) the path p j with the value v pj from d i (p j ∈ S d i), (ii) the path p j with the value v pj from d i -If the path p j / ∈ S di , where d i ∈ C in , the corresponding document in the output collection d i ∈ C out does not contain: (i) the path p j , (p j / ∈ S d i), and (ii) the path p j (p j / ∈ S d i); • (ii) p j : [p 1 , . . . , p m] where [p 1 , . . . , p m] is an array of paths from the input collection and each p l ∈ S i ∈ C in , then the corresponding document in the output collection d i ∈ C out contains the path p j leading to a boolean value: -

 Cin pj ;• (ii) p j : p j , where p j is a path, p j ∈ P Cin , then e jext is of the form p

	1085	Example. Let us suppose that we want to reformulate
		the project operator described above:
		π cond:director.first name = lead actor.first name,
		desc:[title, genres], production year: year, ranking.score (C)
		Below we present the results of applying the reformula-
	1090	tion rules to each element of the project operator:
		• the element cond:director.first name = lead actor.first name
		becomes:
		cond:p a = p b
		where
	1095	p a = director.first name | info.people.director.first name |
		film.details.director.first name | description.director.first name
		p b = lead actor.first name | info.people.lead actor.first name |
		film.details.personas.lead actor.first name |
		description.stars.lead actor.first name

a path p j in the input collection p j ∈ P Cin ,

e jext = p j,1 | . . . | p j,nj ∀p j,k ∈ j : p j,1 | . . . | p j,nj , ∀p j,k ∈ Cin pj ; • (iii) p j : [p 1 , .

. . , p m], where [p 1 , . . . , p m] is an array of paths, then each path p j ∈ [p 1 , . . . , p m] is replaced by a "||" combination and e jext is of the form p j : p 1,1 || . . . || p 1,n1 , . . . , p m,1 || . . . || p m,nm ∀p j,l ∈ Cin p l ; • (iv) p j : β, where β is the boolean expression β, e jext = (p a ω p b) where p a = p a,1 | . . . | p a,na , ∀p a,l ∈ Cin pa and p b = p b,1 | . . . | p b,n b , ∀p b,l ∈ Cin p b . • the element desc:[title, genres] becomes: 1100 desc:[p 1 , p 2] where p 1 =title || film.title || description.title p 2 = genres || info.genres || film.details.genres || classification.genres 1105 • the element production year:year becomes: production year: year | info.year | film.details.year | description.year • the element ranking.score becomes: ranking.score | info.ranking.score | film.others.ranking.score | 1110 classification.ranking.score

 . . , p g in documents. Documents are grouped when they have the same subset of paths from G and the same values for these paths. Finally, 1190 a group is created for those documents that contain no paths from G. Formally, a group is a subset of documents {d} such that: (i) ∃H = h 1 , . . . , h h , ∀i h i ∈ G or H is empty, (ii) ∀d document of the group, ∀h i ∈ H, h i ∈ S d and every d has the same value If d, a document from the group, is such that p f ∈ S d , then f is evaluated as a null value (no

		Example. The previous aggregation operation groups
		movies by their scores as defined in the path ranking.score
		and counts the number of titles (movies) for each group.
	1210	The native query engine returns the following results:
		• {	• {
		"_id":null,	"_id":8.1,
		"titles_counts":3	"titles_counts":1
		}	}
	1215	
	1220	These results place document (a) with a ranking.score
		of 8.1 in one group and the other documents (b, c, d) in a
		second group with a ranking.score of null since this path
		is unreachable in the remaining documents.
		Aggregation reformulation rules. The aim of reformu-
	1225	lating the aggregate operator is to replace each path from
	1195	
	∀i h i ∈ H;	
	• In the computation step, for each group established	
	in the grouping step, the function f is applied as	
	follows:	

-If ∃ d in the group is such that p f ∈ S d , then 1200 f is computed across all documents d i of the group where p f ∈ S di , and documents d k of the group where p f / ∈ S d k are simply ignored, -1205 matter what f is).

 1375 each element of res is a document from C ex that satisfies the lookup condition p in = p ex . The output collection C out is the same size as the input collection C in . The structure of the documents in C out are slightly different from C in because each document in C out includes an additional path If p in ∈ S di , d i ∈ C in , res contains an array with all documents d j ∈ C ex where p ex ∈ S dj and v pin = v

	1515	
		res whose value is an array of the nested external docu-
		ments. Despite lookup and unnest operators being used
		to nest or unnest values, it is important to underline that
		lookup and unnest operators are not reverse operators.
	1520	Example. Let us suppose that we want to run the follow-
		ing lookup operation on collection (C) from Figure 1:
		(C)λ dir actor:director.first name=lead actor.first name (C)
		Classical lookup evaluation. During a lookup evalua-
		tion, classical query engines deal with misleading paths or
		null values in documents based on the evaluation of the

1525

condition p in = p ex as follows:

• pex ; • If p in / ∈ S di , d i ∈ C in ,

res contains an array with all 1530 documents d j ∈ C ex where p ex / ∈ S dj . Example. The previous lookup operator left joins each film based on the director's first name with other films that have the same first name for the main actor. The execution of this query returns one entry in the new path dir actor 1535

 we represent the characteristics of documents in the Heterogenous dataset.

	Setting	Value
	# of schemas	10
	# of grouping objects per schema	
	(width heterogeneity)	{5,6,1,3,4,2,7,2,1,3}
	Nesting levels per schema	
	(depth heterogeneity)	{4,2,6,1,5,7,2,8,3,4}
	Avg. percentage of schema presence 10%
	# of leaf nodes per schema	9 or 10
	# of attributes per grouping objects [1..10]

Table 2 :

 2 Settings of the Heterogeneous Dataset for Query Reformulation Evaluation

 from the operator evaluation workload are as follows: , e.g., year, title, director.firstname, lead actor.first name paths for a particular entry in the array, e.g., genres.1 and leaf nodes, e.g., score. The following is the projection query that we Q 1 : π cond:director.first name = lead actor.first name, desc:[title, genres.1], production year:year, score (C)

	1890	
		• For the projection query we chose to build a query
		that covers the different options offered for projection
		operations, e.g., a Boolean expression to compare two
		paths, project and rename paths, and project paths
	1895	into an array and the normal projection operation. In
		addition, we built our query with absolute paths from
		the baseline collection

Table 3

 3 highlights the different characteristics of the selected attributes in queries from both workloads and gives

	1960				
	details about their depth inside the structurally heteroge-
	neous collection.			
	Path Attribute	Type	Paths Depths
	p1	director.first name	String	10	{3,6,5,4,8,9,5,7,2,3}
	p2	lead actor.first name String	10	{3,6,5,4,8,9,5,7,2,3}
	p3	title	String	10	{3,6,5,4,8,9,5,7,2,3}
	p4	genres.1	String	10	{3,6,5,4,8,9,5,7,2,3}
	p5	year	Int	10	{3,6,5,4,8,9,5,7,2,3}
	p6	awards	Array	10	{3,6,5,4,8,9,5,7,2,3}
	p7	ranking	Object 10	{3,6,5,4,8,9,5,7,2,3}
	p8	link	String	10	{3,6,5,4,8,9,5,7,2,3}
	p9	country	String	10	{3,6,5,4,8,9,5,7,2,3}
	p10	score	Float	10	{3,6,5,4,8,9,5,7,2,3}
	p11	actors.1	String	10	{3,6,5,4,8,9,5,7,2,3}

Table 3 :

 3 Workloads Query elements

Table 4 :

 4 The number of extracted documents per the two workloads We describe three contexts for which we ran the queries as defined above. For the purpose of this experiment we 1975 used the Baseline dataset to study the classical query engine execution time for both workloads. Furthermore, we used the Heterogeneous dataset to evaluate the execution

	20

Table 5 :

 5 Number of schema effects on query rewriting (# of paths in reformulated query and reformulation time) and dictionary size (query Q 6) over Schemas dataset

		time of reformulated queries from both workloads. For
	1980	each context we measured the average execution duration
		after executing each query at least five times. The query
		execution order was random.

Table 5 .

 5 It is notable that the

	Execution time in Seconds	0 10000 25000	0	100	200 Q1 Projection Evaluation 300	400	500	Execution time in Seconds	0 5000 15000	0	100	200 Q2 Selection Evaluation 300	400	500
					Number of documents in Millions							Number of documents in Millions		
	Execution time in Seconds	0 4000 8000	0	100	200 Q3 Aggregation Evaluation 300	400	500	Execution time in Seconds	0 20000 50000	0	100	200 Q4 Unwind Evaluation 300	400	500
					Number of documents in Millions							Number of documents in Millions		
	Execution time in Seconds	0e+00 4e+05 8e+05	0	100	200 Q5 Lookup Evaluation 300	400	500			QAccumulated	Q5 :	Query type QExt	QBase	
					Number of documents in Millions									

QAccumulated is >> 10 times than QExt Unnest

Table 6 :

 6 Evaluating Q 6 on varying number of schemas, Structures dataset

Table 7 :

 7 Time to build the dictionary for collections from the Loaded dataset

Table 8 :

 8 Study of the overhead added during load time

used in our experiments:

"first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan

Freeman"], "ranking":{"score":8.1} } • { "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "genres":"Drama", "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{"score":7.2} } }

• { "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "genres":"Action", "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{"score":7.2} } }

• { "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "genres":"Crime", "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ 1440 "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] 1445 }, "ranking":{"score":7.2} } }

• { 1450 "_id":3, "film":{ "title":"Gran Torino", "details":{ "year":2008,

1455

"country":"USA", "genres":"Drama", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, 1460 "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", 1465 "Bee Vang", "Christopher Carley"] } }, "others":{ 1470 "ranking":{"score":8.1} } } } • { 1475 "_id":4, "description":{ "title":"The Good, the Bad and the Ugly", "year":1966, 1480 "country":"Italy", "director":{ "first_name":"Sergio", "last_name":"Leone"}, "stars":{ 1485 "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Eli Wallach", "Lee Van 1490

Cleef"] } }, "classification":{ "ranking":{"score":7.2},

1495

"genres":"Western" } } 4.4.5. Lookup Definition (Lookup). The lookup operator is defined as:

The lookup operator (λ) is a binary operator which enriches (embeds or left-joins) documents from the input collection C in with documents from the external collection C ex that satisfy a lookup condition. This condition determines whether the values of paths reached from local paths p in in C in match the values reached via external paths p ex in C ex or not. This operator is similar to the left outer join operator in relational algebra. As a result, the lookup operator adds an array res to each document from C in and "dir_actor":[{ "_id":2, "title":"In the Line of Fire", "info":{ "year":1993, "country":"USA", "genres":["Drama","Action", "Crime"],

"people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] }, "ranking":{"score":7.2} } }, { "_id":3, "film":{ "title":"Gran Torino", "details":{ "year":2008, "country":"USA", "genres":"Drama", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", 1605 "Bee Vang", "Christopher Carley"] } }, "others":{"ranking":

{"score":8.1} 1610 } } }, { "_id":4,

1615

"description":{ "title":"The Good, the Bad and the Ugly", "year":1966, "country":"Italy", 1620 "director":{ "first_name":"Sergio", "last_name":"Leone"}, "stars":{"lead_actor":{ "first_name":"Clint", 1625 "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Eli Wallach", "Lee Van Cleef"] } 1630 }, "classification":{ "ranking":{"score":7.2}, "genres":["Western"] }

1635

}]

We can see that this result does not contain the expected information, for instance, document (d) should not match any of the other documents since the director.first name is totally different from the lead actor.first name. It is supposed to return an empty array for the new path diractor. Also, document (a) is excluded from the results. Therefore, the evaluation of the lookup condition returns True when both paths from the input collection and the output collection are not found in the documents. In this case, the operator performs join.

Lookup reformulation rules. The aim of reformulating the lookup operator is to replace each path from the join condition by their corresponding absolute paths extracted from the dictionaries. We reuse the previously defined notation "|" to ensure an identical evaluation for the reformulated lookup compared to the classical evaluation mentioned in the previous paragraph. We observe that the lookup reformulation requires a dictionary for the input collection C in and for the external collections C ex . In practical terms, the query reformulation engine includes a combination of all absolute paths of Cin pin and a combination of all absolute paths of Cex pex . The reformulated lookup operation is defined as: The execution of this lookup operation gives three documents, i.e., documents (a, b, c). Each resulting document contains the same value for the new path dir actor :

• "dir_actor":[1675 { "_id":1, "title":"Million Dollar Baby", "year":2004, "genres":["Drama", "Sport"], 1680 "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ 1685 "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], 1690 "ranking":{"score":8.1} }, { "_id":2, "title":"In the Line of Fire", 1695 "info":{ "year":1993, "country":"USA", "genres":["Drama", "Action", "Crime"], 1700 "people":{ "director":{ "first_name":"Clint", "last_name":"Eastwood"}, "lead_actor":{ 1705 "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", "John Malkovich", "Rene Russo Swank"] 1710 }, "ranking":{"score":7.2} } }, { 1715 "_id":3, "film":{ "title":"Gran Torino", "details":{ "year":2008, 1720 "country":"USA", "genres":"Drama", "director":{ "first_name":"Clint", "last_name":"Eastwood"}, 1725 "personas":{ "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood"}, "actors":["Clint Eastwood", 1730 "Bee Vang", "Christopher Carley"] } }, "others":{ 1735 "ranking":{"score":8.1} } } }] 1740 However, the document (d) does not have the same information for the paths director.first name and leadactor.first name. Therefore, the lookup operation returns the following result:

Algorithm for Automatic Operator Reformulation

In this section we introduce the query extension algorithm that automatically enriches the user query.

If we take into account the definition of a user query (section 4.4), the goal of the extension Algorithm 1 is to nodes. All documents in the collection are involved in this process.

The purpose of the experiments was to answer the following questions:

• What are the effects on the execution time of the { "_id":1, "title":"Million Dollar Baby", "year":2004, "link":null, "awards":["Oscar", "Golden Globe", "Movies for Grownups Award", "AFI Award"], "genres":["Drama", "Sport"], "country":"USA", "director":{ "first_name":"Clint", "last_name":"Eastwood" }, "lead_actor":{ "first_name":"Clint", "last_name":"Eastwood" }, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "ranking":{ "score":8.1 } } (a) Document from the Baseline dataset {"_id":1 "group_1A": {"level0": {"level1": {"level2": {"level3": {"ranking" : {"score": 8.1}, "country" : "USA", "lead_actor" : {"first_name": "Clint", "last_name": "Eastwood"}, "director" : {"first_name": "Clint", "last_name": "Eastwood"}, "link" : null } } } } }, "group_2A":

{"level0": {"level1": {"level2": {"level3": {"genres" : ["Clint Eastwood", "Hilary Swank", "Morgan Freeman"]} } } } }, "group_3A":

{"level0": {"level1": {"level2": {"level3": {"title" : "Million Dollar Baby", "year" : 2004, "actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"], "awards":["Oscar", "Golden Globe", "Movies for Grownups Award", "AFI Award"] } } } } } } (b) Document from the Heterogeneous dataset (3 groups, 5 nesting levels)