
HAL Id: hal-02976606
https://hal.science/hal-02976606

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Interest-based recommendations for business intelligence
users

Krista Drushku, Julien Aligon, Nicolas Labroche, Patrick Marcel, Veronika
Peralta

To cite this version:
Krista Drushku, Julien Aligon, Nicolas Labroche, Patrick Marcel, Veronika Peralta. Interest-
based recommendations for business intelligence users. Information Systems, 2019, 86, pp.79-93.
�10.1016/j.is.2018.08.004�. �hal-02976606�

https://hal.science/hal-02976606
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Interest-based recommendations for Business
Intelligence users

Krista Drushkua,b,∗, Julien Aligonc,b, Nicolas Labrocheb, Patrick Marcelb,
Verónika Peraltab

aSAP Research, France
bUniversity of Tours, France

cUniversity of Toulouse 1 Capitole, France

Abstract

It is quite common these days for experts, casual analysts, executives and data
enthusiasts, to analyze large datasets through user-friendly interfaces on top of
Business Intelligence (BI) systems. However, current BI systems do not ade-
quately detect and characterize user interests, which may lead to tedious and
unproductive interactions. In this paper, we propose a collaborative recom-
mender system for BI interactions, specifically designed to take advantage of
identified user interests. Such user interests are discovered by characterizing
the intent of the interaction with the BI system. Building on user modeling
for proactive search systems, we identify a set of features for an adequate de-
scription of intents, and a similarity measure for grouping intents into coherent
clusters. On top of these automatically identified interests, we build a col-
laborative recommender system based on a Markov model that represents the
probability for a user to switch from one interest to another. We validate our
approach experimentally with an in-depth user study, where we analyze traces
of BI navigation. Our results are two-fold. First, we show that our similarity
measure outperforms a state-of-the-art query similarity measure and yields a
very good precision with respect to expressed user interests. Second, we com-
pare our recommender system to two state-of-the-art systems to demonstrate
the benefit of relying on user interests.

Keywords: User interest, Feature construction, Clustering, BI analyses,
Collaborative recommender systems

∗Corresponding author
Email addresses: Krista.Drushku@sap.com (Krista Drushku),

julien.aligon@ut-capitole.fr (Julien Aligon), Nicolas.Labroche@univ-tours.fr (Nicolas
Labroche), Patrick.Marcel@univ-tours.fr (Patrick Marcel),
Veronika.Peralta@univ-tours.fr (Verónika Peralta)

Preprint submitted to Information Systems May 16, 2018

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0306437917307032
Manuscript_544e3bfaf7a0b60fc8958295dcd25a0f

http://www.elsevier.com/open-access/userlicense/1.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0306437917307032

1. Introduction

BI system users range from executives to data enthusiasts who share a com-
mon way of interaction, i.e., they navigate large datasets by means of sequences
of analytical queries elaborated through user-friendly interfaces. For example,
users may express their information needs via keywords, and let the system infer
from them the most likely formal queries (generally MDX or SQL) to be sent
to the underlying data sources (generally data warehouses or databases). It
usually takes many interactions with the system to satisfy an information need,
and the overall session is often a tedious process, especially in the case when
the information need is not even clear for the user. This bears resemblance with
Web Search, where users typically need to repeatedly query the search engine
to determine whether there is interesting content.

Being able to automatically identify user interests from BI interactions is a
challenging problem that has many potential applications, such as suggestion of
interesting data found by other users, repetitive task prediction, alert raising,
etc. that would help reduce the tediousness of the analysis. In this article, we
are particularly interested in showing how user interest detection helps devise
recommendations of queries for the users to pursue their interaction with the BI
system. To this end, we first describe a method for BI user interest detection
and then we propose an original interest-based recommender system.

The challenge of user interest detection lies in the fact that interests are
hidden in the interactions, and two users with the same interest would probably
interact with the system differently. As in Web Search where users may have
no idea of the retrieval algorithm, BI users are generally ignorant of the data
sources and the formal queries they trigger. However, once logged, all this
information (keywords, sources, formal queries, etc.) provides a rich basis for
discovering user interests. In Web Search, state-of-the-art approaches [1, 2, 3]
characterize user interests by means of features extracted from user traces and
classify them in order to group queries related to the same information needs. In
the context of BI, we consider that an interaction relies on a sequence of keyword
queries over some data sources. Each keyword query produces an ordered set
of formal queries suggested from the set of keywords. One of these formal
queries, chosen by the user, is evaluated over the data source, and then, the
answer retrieved is displayed to the user. All this (keyword query, suggestions
and chosen query) is called an observation. We extract a set of features that
describe each observation of all user interactions. To group observations into
coherent user interests, we first use supervised classification to define a similarity
measure that basically assigns a weight to each of the features. Then, we use
our measure with an off-the-shelf clustering algorithm to group the observations.
This modeling of BI interactions and this detection of user interests were the
focus of our earlier work presented in [4], and were inspired by the work Guha et
al. did in the context of Web Search [1]. While the present paper extends this
work by providing additional details and examples of user interest detection, as
well as new tests to better characterize the clusters obtained, its main objective
is to demonstrate the practical benefit of clustering user interests in the context

2

of BI interactions and, more specifically, in implementing interest-based query
recommender systems.

Recommending queries suitable for BI interactions has indeed attracted
much attention recently, either in the context of On-Line Analytical Processing
(OLAP) explorations (see e.g., [5]) or SQL sessions (see e.g., [6]). However,
to our knowledge, none of the proposed approaches considered clustering user
interests to generate recommendations. To leverage discovered user interests
for the purpose of query recommendation, we present an original interest-based
recommender system, named IbR, that we test and compare to two state-of-
the-art approaches. IbR is a collaborative recommender system that adopts a
technique first proposed in the literature for query prediction [7] and later ex-
tended for query recommendation [8]. This latter work uses an unsupervised
learning approach to cluster OLAP queries based on their syntax, then builds
a Markov model whose states are the clusters, and transitions between clusters
represent the moving from one query to another, less similar one. While our
present approach also builds a Markov model on top of predetermined clusters,
it differs from the one proposed in [8] on a major point: we ensure that clusters
correspond to coherent interests thanks to the supervised learning of the metric
used for the clustering.

Precisely, the contributions presented in this article include:

• a simple formal model of BI interactions,

• the identification of a set of features for characterizing BI user interests,

• the learning of a similarity measure based on these features,

• an approach to automatically discover user interests based on our measure
and an off-the-shelf clustering algorithm,

• IbR, a simple yet effective user interest-based collaborative recommender
system inspired by earlier works [8] in OLAP query prediction, specifically
designed to take advantage of the clusters identified, that can recommend
a sequence of queries to complement an existing interaction,

• an extensive set of experiments for the tuning and validation of our ap-
proach through a user study, including the comparison of our similarity
measure with a state-of-the-art metric tailored for OLAP queries [9] and
the comparison of our recommender system with two state-of-the-art rec-
ommender systems agnostic of user interests [6, 5]. To our knowledge,
this is the first time such a comparison is performed. Note that we do not
compare our recommender system to that proposed by Aufaure et al. in
[8], since our recommender can be seen as a natural evolution of the latter
to more robust clusters.

The paper is organized as follows: Section 2 gives an overview of related
work. Section 3 presents our formal model of BI interactions and user interests.
Section 4 details the set of features used to characterize user interests and our

3

algorithm for discovering coherent cross-interaction interests. Section 5 intro-
duces our interest-based recommender system. Sections 6 and 7 present our
experimental validation and Section 8 concludes the paper.

2. Related work

Analyzing web search sessions for personalizing user experience has attracted
much attention, varying in models for session, similarities and clustering al-
gorithms [10]. As the users information needs span multiple search sessions,
state-of-the-art approaches attach importance to both intra and inter-session
similarities. Various forms of user interests have been defined, such as con-
textual intent, task repetition or long term interests, and methods have been
proposed to identify them. Sun et al. [11] are interested in contextual intent.
Contextual intent attaches importance to context with a particular emphasis on
the external physical environment, and complex context-intent relationships are
modeled. Consequently, intent tracking is done in real-time. In our work, we
are not interested in modeling the context, nor real-time tracking, but in mod-
eling the user’s interest in certain data to answer a particular business question,
which is generally context-independent. Song and Guo [2] address the problem
of predicting task repetition, i.e., whether a task represents a one-time infor-
mation need or exhibits recurrent patterns. A feature-based approach is used
to train a deep neural network classifier to recognize the characteristics of task
repetition patterns. The features incorporate information on queries, clicks,
and attach a particular importance to time, with the underlying assumption
that similar users often perform similar activities at similar times. A similar
approach is proposed by Guha et al. [1]. The goal is to discover new intent and
obtain content relevant to users’ long-term interests. They develop a classifier
to determine whether two search queries address the same information need.
This is formalized as an agglomerative clustering problem for which a similarity
measure is learned over a set of descriptive features (the stemmed query words,
top 10 web results for the queries, the stemmed words in the titles of clicked
URL, etc.). One advantage of this approach is that it allows for the building of
contexts that span over several user sessions or only a portion of one session.
Thus, contexts provide insights on short and long term information needs and
user habits, to build accurate user profiles. Our approach of discovering user
interests is inspired by the work Guha et al. did in the context of Web Search
[1]. However, our work deviates from it on major aspects. First, we present our
own formal model tailored to BI interactions and we address a specific type of
intent. Consistently, we use a specific set of features. Second, we focus more on
the expressiveness of the model rather than on specific optimizations for scal-
ing to web data volumes. Finally, our approach is entirely automatic, and we
present our own evaluation of it, which includes a specific user study.

While many recent works propose techniques to assist query formulation for
the purpose of interactive database exploration [12], few works address the issue
of discovering user interests based on past queries without asking for explicit

4

feedback. Many approaches are more focused on extracting navigational behav-
ior than user interests. The SnipSuggest approach [13] analyzes a log of past
queries to extract correlations between SQL clauses, and use them to suggest
SQL snippets for auto-completing SQL queries on the fly. In the DICE ap-
proach [14], the query log is used to prioritize speculative queries transparently
sent for the purpose of pre-fetching. With the same pre-fetching motivation,
the Promise approach [7] builds Markov models out of a query log to represent
a user’s behavior when querying a data cube. Two Markov models are built.
In the first one, the states represent query patterns, i.e., groups of queries with
the same group by set. This model allows the probabilities of a pattern to be
obtained when given another one. The second Markov model focuses on the
selection of predicate values. This model obtains the probabilities to change
a selected value by another one. At run time, these two models are used to
obtain the query most likely to follow the query just executed. The Promise
approach has influenced later work on query recommendation [8]. In this work,
Aufaure et al. probabilistically model user behavior using a Markov model built
on top of query clustering using the similarity metric proposed in [9]. Identified
clusters are the states of the Markov model and log sessions define transition
probabilities. Like in Promise, this model is used at runtime to find the most
likely query to follow a given current query. Perhaps the closest to our interest
detection approach is the work of Nguyen et al. [15] dealing with discovering
the most accessed areas of a relational database. Their notion of user interest
relies on the set of tuples that are more frequently accessed, and is expressed
as selection queries (mostly range queries). They use DBSCAN to cluster user
interests. Their similarity metric relies on the Jaccard coefficient of the accessed
tables and on overlapping of predicates. Being tailored for range queries, their
metric is inappropriate for OLAP queries that are mostly dimensional (i.e., point
based), due to the nature of the hierarchical dimensions used to select data. In
particular, consistent with the study by Aligon et al. [9], the query log used for
our tests includes a very small fraction of range queries.

Recommender systems are now well established as an information filtering
technology and field of research, with application in a wide range of domains
[16, 17]. The most prominent technique in recommendation is collaborative rec-
ommendation, which is often implemented for predicting missing ratings in a
user-item matrix recording user preferences. Recommender systems are clas-
sically evaluated with predictive accuracy-based measures, coverage, which is
the degree to which recommendations can be generated to all users or items, or
diversity, which is the capacity to suggest relevant items of a different nature.
The limitations of collaborative recommenders are well known, in particular
new items cannot be recommended without relying on some additional knowl-
edge source. It is also well known that the application domain exerts a strong
influence over the types of methods that can be successfully applied.

Recent approaches value models of users or items that can be described in
terms of, e.g., semantic technologies, concepts and ontologies [18, 19], or using
contextual information [20].

Many recent proposals investigated the use of database query logs for query

5

recommendation in the context of interactive database exploration. One of
the most prominent proposals is the QueRIE approach [6], where collaborative
filtering is used to recommend a set SQL queries. Interactions in QueRIE are
sequences of SQL queries called sessions. QueRIE constructs a matrix with
logged sessions, where all past queries and sessions are vectorized using the
database tuples or the SQL fragments (selections, projections, etc.). When a
new session is created and a recommendation for it is sought, a KNN approach
is used with classic Jaccard or Cosine similarities to find the queries closest to
this session in the matrix.

BI can be seen as a prototypical context of interactive database exploration.
In OLAP systems, for instance, the typical interaction between the user and the
system consists of a sequence of queries answering a business question. Studying
such sequences can help in suggesting what the next query of the session could
be. A survey of query recommendation approaches for BI is proposed in [5],
showing that user interest is poorly considered in state-of-the-art approaches.
In [5], Aligon et al. propose a recommender system tailored for exploratory
OLAP over a datacube, whose sessions can be seen as a particular type of BI
interactions, where queries are regular dimensional queries [21]. This system
recommends a sequence of queries and proceeds in three steps. When a new
session is created and a recommendation for it is sought, a KNN approach is
used, with a customized session similarity, to search in the log for the closest
past sessions. Then one subsequence that best fits the new session is determined.
Finally, this subsequence is adapted to the new session using patterns identified
in the new session and the subsequence. This approach builds upon a review
of query similarity measures and the proposal of two similarity measures: one
tailored for OLAP queries and another tailored for OLAP sessions [9]. The
authors showed through user studies that the proposed measures better respect
the similarity perceived by users over the other measures reviewed.

To the best of our knowledge, our work is the first attempt to automati-
cally discover BI users’ interests in a multi-user environment and to show that
detecting user interests in past user traces helps query recommendation.

3. Formal model of BI interactions

This section presents our model of BI interaction. Given the proximity of
BI interactions in modern BI systems and web searches, our modeling of BI
interactions is inspired by the modeling of web search sessions. Note that the
generation of formal (MDX or SQL) queries from keywords is out of the scope
of this paper.

3.1. BI Questions, Suggestions and Queries

Let D be a database schema, I an instance of D and Q the set of formal
queries one can express over D. For simplicity, in this paper, we consider re-
lational databases under star schemata, queried with multidimensional queries
[22]. Without lack of generality, we consider D to be a global schema resulting

6

from the integration of several data sources. We simply note sources(q) the set
of sources used by a query q over D.

Let A be the set of attributes of the relations of D. Let M ⊂ A be a set of
attributes defined on numerical domains called measures. Let H = {h1, . . . , hn}
be a finite set of hierarchies, each characterized by (1) a subset Lev(hi) ⊂ A of
attributes called levels and (2) a roll-up total order �hi of Lev(hi). Consistent
with the literature on database theory [23], we denote by adom(I) the set of
all constants appearing the instance I of D, i.e., the constants that are used to
form the tuples of instance I. We call a database entity an element of the set
A ∪ adom(I). The result (or answer) of a query q over a database instance I is
denoted by q(I).

Let T be a countably infinite set of keywords named tokens. A BI question
(or question for short), K, is a set of tokens entered by a user. Note that tokens
may contain stop words (e.g. “by” or “as”) that have no equivalent in formal
queries but that the BI system may use in formal queries generation. The
reason for including such stop words in our model is that use of stop words may
convey a certain user behavior or expertise with the system. Each token may
be matched with the entities in A ∪ adom(I) to generate queries. To simplify,
we describe a multidimensional query q in Q as a set of query parts, as in [24].
A query part is either a level of a hierarchy in H used for grouping, a measure
in M , or a simple Boolean predicate of the form a op v, where a is a level of a
hierarchy in H, op is an operator in {=, <,>,≤,≥, 6=} and v is a constant in
adom(I). In what follows, queries are confounded with their sets of query parts,
unless otherwise stated.

Example 1. Starting from the question “Revenue for France as Country”
the following tokens K1 = {”Revenue”, ”for”, ”France”, ”as”, ”Country”} are
identified. A corresponding formal query contains the following query parts:
Revenue is a measure, Country a level in a hierarchy, and France is a con-
stant, resulting in Country=France being a Boolean predicate.

If a query part p is a selection predicate of the form a op v, or a grouping
attribute a we use level(p) to denote attribute a. Given two query parts p1 and
p2, FD(p1, p2) denotes a functional dependency level(p1) → level(p2). Given
two queries q1 and q2, the Boolean expression OP (q1, q2) indicates if they differ
in at most one query part. This allows for the detection of OLAP operations
when users navigate along hierarchies or change selection conditions.

As keywords are entered, a BI system might on the fly suggest further tokens
to complete the current ones, letting the user choose among them, as in web
search engines. The underlying idea is that a suggestion completes the original
BI question to obtain a well-formed query over a database.

We formalize the notion of suggestions as follows. A suggestion S is a
triple 〈K,D, q〉 where K is a BI question, D is a database schema and q is a
query over D. For short, given a suggestion S = 〈K,D, q〉, we note tokens(S)
for referring to K, query(S) for referring to q, and sources(S) for referring to
sources(q).

7

Example 2. The question K1 = {”Revenue”, ”for”, ”France”, ”as”, ”Coun-
try”} is completed to focus on year 2017. The corresponding suggestion, S11 =
〈K,D, q〉, consists of question K = {”Revenue”, ”for”, ”France”, ”as”, ”Coun-
try”, ”and”, ”2017”, ”as”, ”Year”}, schema D, that includes a relation Sales,
and the formal query q, represented by its three query parts {Revenue, Country =
France, Y ear = 2017}, whose SQL code is:
SELECT sum(Revenue) FROM Sales WHERE Country=’France’ AND Year=2017;

3.2. Observations, Interactions and User Interests

In Web Search, search histories (i.e., interactions with a search engine) are
analyzed to identify coherent information needs as basis for recommendation
generation. For instance, Guha et al. [1] propose modeling information needs
as sequences of observations, an observation being a search engine query with
its associated web results (Search Engine Result Page or SERP for short) and
clicks. We adapt the model proposed by Guha et al. in [1] to model contexts of
BI interactions. This adaptation relies on the following simple analogy: (i) the
search engine query corresponds to the BI question, (ii) the SERP corresponds
to the set of suggestions associated with the BI question, and (iii) a click on one
SERP link corresponds to the choice of a suggestion and hence to the evaluation
of the query associated with the suggestion.

Formally, an observation o is a triple o = 〈K,S, s〉 where K is a question,
S = {s1, . . . , sn} is a set of suggestions for question K, and s ∈ {s1, . . . , sn} is
the suggestion selected by the user. Given an observation o, we note Ko the
question K of o, suggestions(o) its set of suggestions, and chosen(o) the chosen
suggestion. We note query(o) = query(chosen(o)), the query of the chosen
suggestion, and result(o) = query(o)(I), the result set of the query over a data
source instance I. In addition, we annotate each observation o with a binary
property indicating the expertise of the user who interacted with the system,
denoted by expertise(o).

An interaction of length v is a sequence of v observations i = 〈o1, . . . , ov〉
that represents the user interaction with the BI system.

Example 3. Consider question K2 = {”Revenue”, ”for”, ”France”} of an
observation o2. Several suggestions are proposed, with respective questions:
{”Revenue”, ”for”, ”France”, ”as”, ”Country”}, {”Revenue”, ”for”, ”France”,
”as”, ”Market Unit”}, {”Revenue Closed”, ”for”, ”France”, ”as”, ”Country”},
etc. Assume the first suggestion is chosen by the user, its formal query query(o2)
is evaluated and its result result(o2) is displayed to the user. Other ques-
tions {”Revenue”, ”for”, ”France”, ”2010”} or {”Revenue”, ”for”, ”France”,
”2015”}, {”Revenue Closed”, ”for”, ”France”} follow, to create a complete
interaction of the user with the BI system, analyzing the economic growth of
France.

Without loss of generality and to keep the formalism simple, we assume
that an observation is part of only one interaction. The function interaction(o)
returns the interaction to which o belongs. Given two observations ox and oy

8

Characteristics Definition Interpretation
questions(U) ∪o∈U{Ko} all the questions
tokens(U) ∪Bo∈UKo all the tokens
suggestions(U) ∪o∈Usuggestions(o) all the suggestions
chosenSuggest(U) ∪o∈U chosen(o) all the chosen suggestions
queries(U) ∪Bo∈U{query(o)} all the chosen queries

qParts(U) ∪Bo∈U query(o) all the chosen query parts

interactions(U) ∪Bo∈U interaction(o) all the interactions
results(U) ∪o∈Uresult(o) all the results
sources(U) ∪o∈Usources(chosen(o)) all the sources
expertise(U) ∪o∈Uexpertise(o) all the expertises
refTok(U) {t ∈ tokens(U) | ∃o, o′ ∈ U, tokens that refine other ones

t ∈ (Ko \Ko′), o refines o′}
matchTok(U, P) {t ∈ tokens(U) | ∃p ∈ P, tokens that match a given set

matches(t, p)} of query parts

Table 1: Basic characteristics of user interests

in an interaction, we say that oy refines (is a refinement of) ox if ox precedes
oy and either Kox = Koy ∪ {t} or Koy = Kox ∪ {t} or Koy = Kox \ {t} ∪ {t′},
where t, t′ ∈ T .

A user interest is a finite set U = {o1, . . . , on} of observations that repre-
sents one particular information need.

Table 1 presents the basic characteristics we use in our features to describe
user interests. Note that ∪B denotes bag union (preserving duplicates to com-
pute frequencies), P is a set of query parts and matches(t, p) is a binary function
indicating if token t matches query part p.

3.3. Running example

Consider two user interests U1 and U2, with U1 containing a unique ob-
servation o1 = 〈K1, {S11}, S11〉 of a unique interaction i1 (described in Exam-
ple 2), and U2 containing two observations o2 = 〈K2, {S21, S22, S23}, S21〉 and
o3 = 〈K3, {S31, S32}, S32〉 that are part of the interaction i2 (described in Ex-
ample 3). The observations are summarized in Table 2 by listing questions
and suggestions (by means of their questions and query parts). For the sake
of readability, Table 2 describes the suggestions only by means of their queries.
Assume that all suggestions access the same database and the same underlying
source Sales and that all users are beginners.

o1 : K1 “Revenue for France as Country”
S11 : {“Revenue”, “Country=France”, “Year=2007”}

o2 : K2 “Revenue for France”
S21 : {“Revenue”, “Country=France”}
S22 : {“Revenue”, “Market Unit=France”}
S23 : {“Revenue Closed”, “Country=France”}

o3 : K3 “Revenue for France 2010”
S31 : {“Revenue”, “Year”, ‘Country=France”}
S32 : {“Revenue”, “Country=France”, “Year=2010”}

Table 2: Summary of observations in the running example

9

Table 3 presents the characteristics of both user interests. For the sake of
space, we do not show the query results. RefToken is defined when an obser-
vation refines another one, in which case it contains the tokens involved in the
refinement. MatchTok contains the tokens that match some set of query parts;
in Table 3 we used P = {“Revenue”, “Country = France”, “Y ear = 2007”},
arbitrarily.

U1 U2

questions {{Revenue, for, France, as, {{Revenue, for, France},
Country}} {Revenue, for, France, 2010}}

tokens {Revenue, for, France, as, {Revenue, Revenue, for, for,
Country} France, France, 2010}

suggestions {S11} {S21, S22, S23, S31, S32}
chosenSuggest {S11} {S21, S32}
queries {{Revenue, Country=France, {{Revenue, Country=France},

Year=2007}} {Revenue, Country=France,
Year=2010}}

qParts {Revenue, Country=France, {Revenue, Revenue,
Year=2007} Country=France, Country=France,

Year=2010}
interactions {i1} {i2, i2}
sources {Sales} {Sales}
expertise {beginner} {beginner}
refTok ∅ {2010}
matchTok {Revenue, France, Country} {Revenue, France}

Table 3: Characteristics of user interests in the running example

4. Characterizing and clustering user interests

Following Guha et al.’s approach [1], we formalize the problem of discovering
coherent user interests as a clustering problem, for which a similarity measure
is learned over a set of descriptive features. These features allow observations
(and user interests) to be grouped based not only on their intentions expressed
by the BI question but also based on their objectives as expressed by the cho-
sen suggestion, and on their knowledge, as provided by the evaluation of the
chosen query. To compare two user interests, a global similarity is computed
as a weighted sum of feature-based similarity measures. We first define the set
of features we consider, together with their similarities, then explain how the
features are weighted and how the contexts are clustered.

4.1. User interest description features

To provide the best characterization of user interest, we define a set of can-
didate features, that we subsequently analyze to identify those maximizing the
accuracy from the user’s perspective. We considered three groups of features,
listed in Table 4. The first group of features relates to the BI questions and
suggestions (features 1-6). The second group relates to the chosen suggestions,
and especially their query parts (features 7-9). Both groups proved effective in
identifying interests in the context of Web searches [1]. The third group consists

10

of specific BI features and relates to formal queries and their answers (features
10-15).

Feature Formal definition Similarity

1 Frequency of tokens freq(tokens(U1)) Cosine
2 Frequency of refining tokens freq(refTok(U1)) Cosine
3 Suggestions suggestions(U1) NormInt.
4 BI questions questions(U1) NormInt.
5 U1 questions that are {K ∈ questions(U1) | MaxFrac.

sub-questions in U2 ∃K′ ∈ questions(U2),K′ ⊂ K}
6 U1 questions in the same {Ko | o ∈ U1, ∃o′ ∈ U2, MaxFrac.

interaction as a question in U2 interactions(o) = interactions(o′)}

7 Frequency of chosen query parts freq(qParts(U1)) Cosine
8 Frequency of tokens of U1 that freq(matchTok(U1, qParts(U2))) Cosine

match chosen query parts of U2

9 Chosen suggestions chosenSuggest(U1) NormInt.

10 Levels in chosen query parts {Level(p) | p ∈ qParts(U1)} Jaccard
11 Tuples retrieved by chosen queries results(U1) NormInt.
12 Queries in U1 that differ by one {q ∈ queries(U1) | MaxFrac.

query part from a query in U2 ∃q′ ∈ queries(U2), OP (q, q′)}
13 Sources sources(U1) MaxFrac.
14 Attributes of U1 functionally {level(p) | p ∈ qParts(U1) MaxFrac.

identifying attributes in U2 ∃p′ ∈ qParts(U2), FD(p, p′)}
15 Expertise of users expertise(U1) MaxFrac.

Table 4: Features considered

Contrary to most works where features are descriptive and relate to each
data object independently of the others, in our proposal, features should be
understood as dimensions on which it is possible to compare two user interests,
U1 = {o11, . . . , o1l } and U2 = {o21, . . . , o2m}. As a consequence, each feature has a
proper semantic attached to it, as it describes a particular aspect of a relation
between the user interests - for example the number of occurrences of tokens
in the questions of each user intent. Then, each feature f is also paired with a
similarity measure denoted by vf ∈ R, which hereafter quantifies this relation.

Table 4 details the features by giving their formal definition and the feature-
based similarity measure used for comparing two user interests. Given a bag
of elements x, freq(x) is a vector counting the number of occurrences of each
element of x. For each feature, we propose a similarity measure that is the
most suited for it (e.g., cosine for vectors of frequencies, Jaccard for sets). We
follow the same logic as in [1], and, in particular, the definition of similarity
measures MaxFrac and NormInt are drawn from [1]. MaxFrac measures the
maximum fraction of observations of each user interest that match an observa-
tion in the other user interest. Given two interests U1 and U2, it is defined by:

MaxFrac(U1, U2) = max(
|Os

1|
|O1| ,

|Os
2|

|O2|), where Os
i are the observations that satisfy

some property s over the total number of observations Oi of Ui. NormInt is a
version of Jaccard similarity that aims at evaluating the number of features two

user interests share. It is defined by NormInt(U1, U2) = |F1∩F2|
min(|F1|,|F2|) , where Fi

is the set of features of Ui, the ith user interest, and |Fi| is the cardinality of this

11

set of features. It is important to note that, different from Jaccard similarity,
NormInt favors the merging of U1 and U2 whenever U1 ⊆ U2.

Example 4. Let consider the user interests described in the running example
(Section 3.3) and the feature 1 from Table 4.

freq(tokens(U1) = <(Revenue,1),(for,1),(France,1),(as,1),(Country,1)>

freq(tokens(U2) = <(Revenue,2),(for,2),(France,2),(2010,1)>

By following a bag-of-word representation for both user interests, we end-up
with the vectors t1 and t2 representing respectively tokens’ frequency for users
U1 and U2.

Revenue for France as Country 2010
t1 1 1 1 1 1 0
t2 2 2 2 0 0 1

Following Table 4, the similarity for feature 1 is a cosine measure defined as:
v1(t1, t2) = <t1,t2>√

<t1,t1>∗
√
<t2,t2>

where <,> denotes the inner product. Here, the

similarity would be v1(t1, t2) = 0.74, meaning that on this particular feature user
interests U1 and U2 are relatively close to each other.

4.2. Clustering user interests

Grouping observations into user interests, and then grouping similar user
interests, requires addressing two problems: (i) determining a similarity measure
between user interests and (ii) finding a clustering algorithm that can work on
the sole basis of this similarity.

Regarding problem (i), our aim is to distinguish among the candidate fea-
tures presented above, those who are the most suitable to identify coherent
interests from a user standpoint. As we are expecting an understandable model
that provides the relative importance of each feature in the process of comparing
two user interests U1 and U2, we rely on a linear aggregation for our similarity
Sim(U1, U2) defined as follows:

Sim(U1, U2) =

n∑
f=1

ωfvf (U1, U2) (1)

where n is the number of features, vf is the similarity measure indicated in
Table 4 for feature f and ωf is a weight representing this feature’s importance
in the comparison.

With this formulation, the problem of designing a similarity naturally trans-
lates into a problem of determining the set of weights ωf paired with each
similarity measure vf .

To this end, we formalize the problem of discovering ωf as a classification
task, which proved effective in [1, 25]. Indeed, we are able to train a classifier
(X,Y) in which each entry x ∈ X corresponds to a couple of user interests, the

12

descriptive features of each entry being the one introduced in Table 4 and the
output y ∈ Y being set to 1 if two users, U1 and U2, relate to the same interest,
and −1 otherwise.

We use an off-the-shelve SVM linear classifier paired with some ground truth
knowledge about user interests to learn the predictive value of the feature. For
a feature f , the weight ωf is set to the conditional probability that two ob-
servations correspond to the same user interest knowing that they coincide on
feature f . The absolute value of ωf reflects how discriminant feature f is (a
large value indicates that feature f is very influential in the decision process),
while the sign of ωf denotes that feature f will either act in favor of grouping
user interests or, conversely, to separate them. In particular, the descending
list of the absolute value of weights ranks the features, stating from the most
important one.

Noticeably, some preprocessing and optimizations have been performed to
ensure that our SVM is accurate. First, our data set of user interests’ couples
has been balanced to guarantee that there were the same number of couples
related to the same user interest (labeled 1) as the couples related to different
user interests (labeled −1). Second, the hyper parameter C, which traditionally
determines the balance between the flatness of solution weights and the amount
up to which it is possible to deviate from the regulation term in the SVM
optimization model, has been tuned to its best possible value by an extensive
cross validated random search. Finally, we note that we disregard the weight
ω0 learned by the linear SVM classifier, as it only plays the role of an offset in
the similarity S.

Problem (ii) is addressed by experimenting with off-the-shelf well-known
and trusted relational clustering algorithms implementing different strategies,
i.e., centroid-based clustering, connectivity-based clustering and density-based
clustering, as explained in Section 6.1.4.

5. Interest-based recommender system

To illustrate the practical use of our approach, in this section, we present
IbR (Interest-based Recommender), a simple recommender system specifically
designed to exploit the clusters that represent user interests. IbR is inspired
by and adapts previous approaches proposed to predict or recommend OLAP
queries.

First, inspired by the collaborative recommender system described in [5],
IbR recommends a sequence of queries representing the sequence of moves that
is expected to best complete the beginning of an interaction. As remarked by
Aligon et al. in [5], it is expected that users, especially non-expert ones, benefit
from a sequence of recommended queries, in that it gives them a compound and
synergic view of a phenomenon, carries more information than a single query or
set of queries by modeling the potential expert users behavior after seeing the
result of the former query.

Second, we borrowed from the work of Sapia [7] and the work of Aufaure et al.
[8] the idea of using an order-1 Markov model to probabilistically represent user

13

behaviors. Like in the latter [8], the states of the Markov model are clusters
constructed from a set of past interactions, with the notable difference that
observations are used in our case, instead of queries. IbR can be seen as a
model that guides the user’s next moves based on the probabilities of moving
between discovered user intents.

By construction, we expect our recommender system to have two types of
benefits: the first one is sharing expertise between different users, and the second
one is recommending queries that are diversified in terms of interest.

5.1. Principle

The principle of the recommender system follows the same two-step approach
as that of Aufaure et al. [8]. The first step is off-line and consists of clustering the
observations to detect user interests, as detailed in the previous sections. The
second step consists in treating these clusters as states of a Markov chain model
and in computing the probabilities of the most likely next state as explained
below. The only on-line phase of the recommender is when a new interaction
begins, each observation of the interaction is used to compute the most likely
query in the sense of the Markov model. An exhaustive calculation is needed
for the first observation to define its current state by comparing it with every
observation of every state. For the rest of observations, an exhaustive search of
its current state is not needed since the recommendation only derives from the
previous recommendations, i.e., the last state calculated by the Markov model.

5.2. Learning the Markov model

The creation of the Markov model is done as follows. Let U be the set
of clusters expressing user interests. The states of the Markov model are the
clusters of U . The transition probability distribution is given by Pr(Xn+1 = x |
Xn = y) =

nxy

ny
where x and y are clusters in U , ny is the size (the number of

observations) of cluster y and nxy is the number of interactions that contain two
adjacent observations oi, oi+1 such that oi is in cluster y and oi+1 is in cluster
x. We use a special state to represent the end of interactions, which is used to
obtain the probability of ending the recommendation.

5.3. The prediction algorithm

Given an observation, called the current observation (whose chosen query is
called the current query) from now on, we identify the user interest (i.e., the
cluster) that this observation is the closest to by computing the average simi-
larity between the current observation and all the observations of each cluster.
Noticeably, instead of all pairwise distance calculations, a possible optimization
would be to directly compute the distance between the current observation and
the representative of each cluster. However, as this optimization is not guaran-
teed to lead to the same result as that obtained with all pairwise calculations,
especially in the presence of overlapping clusters, we deliberately chose not to
implement it.

14

Once we have identified the cluster, the Markov model gives the most likely
next state. By construction, since states coincide with user interests, it is ex-
pected that the most likely next state is the current one. To distinguish between
the two types of benefits our recommender can have, we devised two strategies
for generating the recommended sequence, reflected in the two modes our rec-
ommender can operate. Mode 1, named IbR1, tries to benefit from the expertise
coming from this next probable cluster only. Conversely, Mode 2, named IbR2,
tries to anticipate when users change their focus and, for instance, address other
business questions in their explorations. IbR2 fully combines the Markov model
with interest detection, with a two-fold purpose, which is: i) to anticipate the
users’ change of focus, and ii) to propose recommendations diversified in terms
of user interests. We now describe these two modes precisely.

IbR1 forces the recommender to choose the queries for the recommended
observations in the next probable state only. In other words, IbR1 does not
use the Markov model but uses only interest identification. The chosen queries
are ordered by decreasing similarity to the current query. The length of the
recommended sequence is ruled by a similarity threshold that ends the sequence
if the similarity between two consecutive queries is considered too small.

The second mode, named IbR2, fully uses the Markov model based on user
interests. In other words, IbR2 acknowledges the fact that user interactions
may span across different interests and composes the recommended sequence of
queries as follows:

1. the first query of the sequence is the chosen query of the observation that
is the most similar to the current observation;

2. this observation is used as the new current observation for which the next
interest is identified with a random draw using the Markov model, which
means that the probability to reach another interest is low, not null, which
is different from IbR1;

3. the most similar observation of the next probable state, according to the
Markov Model, that has not been yet recommended, is identified and is
added to the sequence;

4. this algorithm iterates until the final state of the Markov model is reached.

6. Testing user interest detection

This section presents the empirical evaluation of our approach for detecting
user interests. It starts with the experimental protocol (Section 6.1) and exposes
our results (Section 6.2).

Our first objective is to determine a metric based on the features introduced
in Section 4.1 that allows, when paired with a clustering algorithm, the grouping
of user observations into clusters that accurately reflect user interests. The main
goal is to use these clusters for recommending queries that share the same user’s
interests. In this regard, the first experiments (Section 6.2.1 to Section 6.2.4) aim
at determining and validating the best subset of features from the set presented
in Table 4. We test its sensitivity to the clustering algorithm as well as its

15

behavior when confronted with observations or clusters of observations related
to a business need. Then, a comparative experiment (Section 6.2.6) with the
state-of-the-art similarity measure for OLAP sessions proposed in [9] shows the
effectiveness of our proposal in the particular context of user interests discovery.
Incidentally, our experiments also reveal that considering the reference metric
[9] as a feature in our similarity measure in some cases improves the overall
quality of our approach.

After that, we propose two side experiments to further validate our clustering
approach, as follows: (i) the behavior of our metric when confronted with unseen
business needs (Section 6.2.5), and (ii) the behavior of our metric in detecting
intra-interaction interests (Section 6.2.7).

6.1. Experimental protocol

6.1.1. Data set

The data used for our experiments consist of navigation traces of 14 volun-
teers at SAP, covering a range of skills in data exploration, divided into two
groups, namely, beginners and experts, based on their position in the company.
To evaluate to what extent actual user interests were discovered by our method,
we set 10 business needs (named Q1 to Q10), each corresponding to a specific
user interest. Users were asked to analyze some of the 7 available data sources
to answer each of the 10 business needs, using an SAP prototype that supports
keyword-based BI queries1. The business needs were grouped in different busi-
ness cases, such as: ”For each European country, detect which genres of films
did not reach the expected sales” or ”In which income group would you classify
a candidate country with a GDP of $6 billion?”. All business needs are listed
in Appendix A. To be more realistic, business needs were defined to expect
some overlap in terms of accessed data and queries. In the context of user in-
terest discovery, the business needs Q1 to Q10 serve as our ground truth, our
objective being to cluster together observations (potentially from different user
interactions) that addressed the same business need.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Difficulty low med med med low high low low med high
Number of interactions 19 11 10 10 10 8 9 9 9 8
Number of queries 84 65 60 41 50 43 61 51 26 49
Number of relevant queries 34 26 30 16 26 10 27 24 24 9
Queries / interaction 4.4 5.9 6.0 4.1 5.0 5.4 6.8 5.7 2.9 6.1
Relevant queries / interaction 1.8 2.4 3.0 1.6 2.6 1.25 3.0 2.7 2.7 1.1

Table 5: Analysis of business needs

In total, our data set, named Complete hereafter, contains 24 user inter-
actions, each one possibly concerning several business needs, accounting for 530

1Patent Reference: 14/856,984 : BI Query and Answering using full text search and key-
word semantics

16

queries. Table 5 describes, for each business need, its difficulty, estimated by an
expert (in terms of time, number of queries and exploited sources expected in
its resolving), the number of interactions devised for solving it, the number of
queries and the number of queries perceived as relevant by users in their own
activity. To have several difficulty settings, we also built two reduced data sets
named Reduced 1 and 2, each corresponding to 4 business needs and 4 distinct
data sources, which in turn removes most of the potential overlap. Each of them
contains 225 observations. Importantly, Reduced 1 and 2 are not related to
the same business needs. When dealing with these data sets, only 4 well sepa-
rated clusters are to be found, contrary to the Complete data set in which 10
clusters with overlap are expected.

6.1.2. Assessing the user intents quality

Our objective is to build groups of observations that are only related to a
single user interest. As in any clustering problem, there are two main solutions
to assess the quality of the results, i.e., either based on some external knowledge
of the ground truth clusters or based on some internal criterion evaluation. In
our case, we evaluate both as follows.

Concerning the external evaluation, the main indicator of success in our case
is the precision of the clustering when compared to the theoretical grouping of
observations provided by the business questions. At a second level, recall allows
for determining to which extent each cluster covers all of the observations related
to a user interest. Finally, we use the classic Adjusted Rand Index (ARI) to
evaluate the overall quality of the clustering. The values of this index range from
below 0 (when the clustering performs badly and produces a partition close to
a random clustering) and 1 (when the clustering is perfect) [26].

The internal evaluation comprises measuring the quality of the obtained
clusters through the classic Silhouette coefficient. We observe, for each cluster,
the intra similarity between its composing observations and the inter-cluster
similarity, so that we can conclude on the compactness of the clusters. Being
aware of possible observation overlapping between clusters, we should ensure
that the distance between the observations within a cluster is shorter compared
to the distance with other clusters’ observations. The Silhouette coefficient is a
way of validating this consistency of clusters. It ranges from -1 to 1, where the
higher the positive value is, the better the observation is classified in its own
cluster and the further it is from the other clusters. Negative values show that
most of the observations of the clusters are nearer to another one rather than
in the cluster in which they are categorized.

6.1.3. Metric learning

The feature weights are learned over 50% of all observations chosen ran-
domly, with a balance in the number of observations per business needs. Our
objective is two-fold and aims at finding the smallest subset of features to avoid
any problem of over-fitting when the number of dimensions increases, while
still maximizing the quality of the discovery of user interests. To this aim, we
tested several subsets of features and trained the weights of the metric with a

17

linear SVM algorithm, as presented in Section 4.2, on the sole basis of these
features. The subsets of features are selected as follows. We consider all 15
features described in Table 4 and learn the metric. The linear SVM outputs
weights that traduce the relative importance of each feature. It is thus pos-
sible to order features by the absolute value of their weights. This ranking
allows the forming of subsets of features starting from those with only highly
weighted features to subsets that more widely cover the whole set of features.
We give the results for the following meaningful subsets: G2={1, 3, 7, 8, 9},
G3=G2∪{5, 10, 11, 13, 14} and ALL, that include the features with the high-
est relative importance (the top-5, top-10 and all features, respectively). We
also constitute a group G1={7, 8, 9, 10, 13} that includes the top-5 features se-
lected by repetitively adding to the group those features that increase precision,
similar to the work in [1]. Note that G3 includes both G1 and G2. Finally,
groups G4={1, 2, 3, 4, 5, 6} and G5={7, 8, 9, 10, 12, 13, 14} are specific groups of
features related only to keywords (G4) and query parts (G5).

6.1.4. Choice of the clustering algorithms

As no hypothesis can a priori be made on the shape of expected groups of
observations, we use in our tests various clustering algorithms that are repre-
sentative of the diversity of common methods from the literature. The only
constraint imposed by the formulation of our problem is that these methods
must be relational, i.e., only based on the expression of a distance or dissimi-
larity between pairs of data instances. The first method is the PAM algorithm
[27], which is a k-medoid algorithm that finds hyperspherical clusters centered
around the k most representative observations. We also use agglomerative hi-
erarchical clustering algorithms [28] with single and complete linkage criterion
to either allow for either elongated or compact clusters. Finally, we use the
traditional DBSCAN algorithm [29] that is not restricted to a specific cluster
shape but constraints clusters to share the same density of points.

6.1.5. Implementation

Our approach is implemented in Java. We also use Python Scikit Learn
[30] linear SVM to learn the weights of our similarity measure and R clustering
packages cluster for k-medoids and hierarchical clustering, as well as fpc for
DBSCAN.

6.2. Lessons learned

6.2.1. Determining the best subset of features and the clustering algorithm

Table 6 shows that the quality of the discovered groups of observations heav-
ily depends first on the subset of features, as expected, but also on the clus-
tering algorithm used. It can be seen that approaches that allow for elongated
clusters, such as hierarchical clustering with single link criterion and DBSCAN
algorithms, achieve very poor precision results (Prec = 0.11). This can be ex-
plained by the fact that these two algorithms are sensitive to potential overlap-
ping between clusters. In our case, similarities between user interests cause early

18

unwanted merging between groups of observations. The stability in precision is
because these two approaches constantly built a majority of mono-observation
clusters and one cluster with almost all the observations, whatever the group
of features considered. Conversely, clustering algorithms that favor compact
clusters, such as hierarchical clustering with complete link or k-medoids PAM
algorithms, perform better. PAM performs significantly better than the hierar-
chical complete link algorithm, knowing that standard deviations (not reported
here for the sake of readability) do not exceed 10−2 and are usually around
10−3. Finally, when considering only PAM, it can be seen that the subset of
features G2 outperforms all the others. Interestingly, these features are those
that had the most discriminating behavior based on the SVM weights observed
on all our 15 features (see Section 6.1.3). Adding more features only slightly
increases the recall. Other strategies (not mixing features from different specific
groups or using the strategy proposed in [1]) can dramatically harm the preci-
sion. It is also important to note that subset G2 does not include BI specific
features, which indicates that enough semantics is beared by the other features
in detecting user interests. From the previous findings, we define G2 as the set
of features and we use PAM clustering in the remaining tests, unless otherwise
stated.

H. Single H. Complete PAM DBSCAN

Features Rec. Prec. ARI Rec. Prec. ARI Rec. Prec. ARI Rec. Prec. ARI

ALL 0.96 0.11 0.002 0.49 0.34 0.315 0.52 0.46 0.42 0.82 0.11 0.008
G1 0.90 0.11 0.0004 0.67 0.12 0.026 0.43 0.40 0.35 0.86 0.11 0.006
G2 0.92 0.11 -0.0001 0.68 0.11 0.006 0.51 0.50 0.44 0.73 0.11 0.017
G3 0.97 0.11 0.001 0.38 0.28 0.23 0.52 0.47 0.43 0.77 0.11 0.007
G4 0.96 0.11 -0.0005 0.67 0.14 0.06 0.47 0.29 0.26 0.85 0.11 -0.0008
G5 0.91 0.11 0.0004 0.39 0.28 0.23 0.45 0.42 0.37 0.75 0.11 0.01

Table 6: Clustering results with distinct subset of features on Complete data set. For short,
Rec, Prec and ARI denote respectively recall, precision and ARI scores.

6.2.2. G2 metric interpretation

Several features were proposed to describe the differences between the obser-
vations. The first two groups presented in Table 4 are inspired by the features
used in the Web while the last one is a new proposal to show specific differences
related to the BI context. The succeeding experiments concluded that a particu-
lar group of features presented in Table 7, named G2 in Section 6.1.3, principally
composed of features related to business objects and formalized queries, in col-
laboration with PAM, identifies better the user interest.

The BI tool used for these experiments assisted juniors to reach the in-
formation needed, despite their non-precise questions in natural language, by
proposing well formalized query suggestions. The user intent is expressed by
the keywords (Tokens (Feature 1)) and the suggestions (Feature 3) proposed,
but the real difference between user observations is specified by the chosen sug-
gestion (Feature 9) with the query parts composing it (Feature 7) and their

19

G2 Features Tokens Suggestions Query Parts Token-Query Parts Chosen

Weights 0.39 0.41 1.23 0.38 0.4

Table 7: Feature weights

matching tokens (Feature 8). Consequently, the features of G2 in Table 7 are
the best selection that achieve identification of the user interests, as they di-
rectly represent the user choices. Adding more dimensions in the observations
comparison reduces the accuracy of the measured dissimilarity between them,
which leads to interests that are non well-defined.

6.2.3. G2 metric behavior

While our metric is learned from observations, our experimental protocol
aims at grouping together observations participating in the analysis of a business
need. To understand the behavior of our G2 metric, we tested how it degrades
when applied to analyses and then to observations. Analyses are defined as sets
of observations participating to answering the same need. This is unlikely to
be detected in practice, and this information was explicitly asked to the users
when they answered the different needs. Obviously, as shown in Table 8, when
applied to analyses, our metric achieves optimal to very good performance.
In the easiest case, when user interests are clearly distinct from each other
and rich information is provided to our algorithm with analyses rather than
observations, the clustering fits perfectly, with precision, recall and ARI scores
equal to 1. Interestingly, when we cluster analyses based on the metric learned
on observations, the results are identical to the previous results. In contrast,
learning metric weights on the basis of analyses (although not realistic) do not
lead to good clusters of observations with significantly lower scores. Therefore,
this experiment validates our choice of learning weights on observations and our
choice of the G2 features.

Complete Reduced 1
Input Weighting Recall Precision ARI Recall Precision ARI

Observations Observations 0.51 0.50 0.44 0.70 0.64 0.54
Analyses Analyses 0.80 0.74 0.74 1.0 1.0 1.0
Analyses Observations 0.80 0.74 0.74 1.0 1.0 1.0
Observations Analyses 0.44 0.42 0.36 0.61 0.59 0.45

Table 8: Behaviour of G2 set of features with PAM clustering when learning weights over
observations or analyses. Column “Weighting” indicates whether weights are learned over
observations or analyses.

20

1 2 3 4 5 6 7 8 9 10
1 0.716 0.798 0.968 0.957 0.919 0.935 0.973 0.913 0.942 0.892
2 0.722 0.963 0.950 0.887 0.908 0.972 0.886 0.922 0.915
3 0.869 0.960 0.934 0.941 0.929 0.928 0.963 0.983
4 0.764 0.913 0.910 0.969 0.945 0.970 0.975
5 0.763 0.873 0.962 0.892 0.933 0.962
6 0.781 0.955 0.937 0.951 0.967
7 0.834 0.969 0.981 0.984
8 0.701 0.809 0.967
9 0.691 0.973
10 0.634

Table 9: Average dissimilarities between clusters.

Cluster IDs
1 2 3 4 5 6 7 8 9 10

#observations 48 77 53 74 58 60 78 34 30 18
Silhouette 0.09 0.08 0.01 0.14 0.09 0.08 0.1 0.13 0.15 0.27
Diameter 0.71 0.72 0.86 0.76 0.76 0.78 0.83 0.70 0.69 0.63

Table 10: Silhouette coefficients and diameter for 10 clusters obtained with PAM using G2
based dissimilarities.

6.2.4. G2 metric robustness

The choice of the clustering algorithm and the features to learn the similarity
between observations is decisive, in the sense that they have to fit the data that
we collected. The main goal is to separate observations in compact clusters, as
distant as possible from each-other to identify clear user intents. As shown in
Table 9, the intra clusters dissimilarities, presented in the diagonal, are lower
than inter clusters dissimilarities. While these differences are not significant
because of high standard deviation (not reported for the sake of readability), this
result is confirmed by the Silhouette coefficient [31]. This coefficient is positive
for all the clusters, as presented in Table 10, verifying that the built clusters
are cohesive and the majority of observations in each of them are well classified
in their own clusters. In view of the business questions corresponding to the
cluster interests, we notice a higher compactness for the groups of observations
responding to well separated questions, as in clusters 9 and 10. As expected,
increasing the number of finer interests we want to discover, i.e., augmenting
the number of clusters, results in more compact groups of observations. For
instance, for 50 clusters, better Silhouette coefficients are obtained for most of
the clusters, reaching the highest value of 0.5, with the notable exception of
two small clusters (having 6 and 7 observations, respectively) that manifest a
negative coefficient, close to 0, showing the inconsistency of the observations
composing these clusters. Regarding the diameter, it is well balanced among
the discovered clusters, with some minor differences being explained by outliers.

6.2.5. Handling unseen business needs

In this experiment, we study how our method handles previously unseen
business needs and how general the metric learned on the G2 features is. To

21

this aim, we consider both Reduced data sets and use one to train the metric
and the other to test with PAM clustering. Recall that reduced data sets cover
different business needs, with no overlap among them. The results in Table 11
show that our metric is indeed general and can adapt to new business needs
as there is no drop in performance between each of the generalization tests.
Moreover, the results are comparable to those observed in previous tests, as
reported in Table 12. Finally, it can be seen that testing on Reduced 2 leads to
better results than with Reduced 1. This is expected, as Reduced 2 contains
observations related to business need Q9, which has more relevant queries than
Q10 contained in the Reduced 1 data set (see Table 5).

Training Testing Recall Precision ARI

Reduced 2 Reduced 1 0.76 0.67 0.61
Reduced 1 Reduced 2 0.73 0.71 0.62

Table 11: Generalization of our approach. Each test correspond to the training of the metric
and discovery of user interests on different subsets of business needs.

6.2.6. Comparative experiments

Table 12 shows how our metric compares to a reference metric that Aligon
et al. [9] designed for OLAP queries. This metric has been validated by user
tests that showed its effectiveness in grouping queries in accordance with what a
human expert would have done. Table 12 reveals 2 distinct behaviors depending
on whether we consider the Complete data set or the Reduced 1 (where
clusters are well separated). With the Complete data set, our metric with G2
features performs better than the other metrics, as it only relies on the most
discriminating features. Indeed, we know from the protocol that the groups of
observations heavily overlap. Thus, our metric, based on SVM, cannot find a
proper linear separation between observations related to different user interests.
In this particular context, adding more features makes the problem even more
complex to solve for SVM, as it has to determine a solution that compromises
over 15 dimensions for ALL features rather than 5 in the case of G2 features,
and with only a few training instances. In contrast, with the Reduced 1 set
of observations, groups are clearly separable, the problem is much easier for the
linear SVM and adding features may help in finding a better solution by fine
tuning the separation hyper plane. Consequently, in this case, slightly better
results may be achieved with features other than G2’s.

If we dig into the details of the features involved in each result, it can be
seen that good results are achieved when the weights of the features related to
queryParts, tokenQPart or Chosen are important. For the Complete data set,
this is observed for G2 features that reach the best overall clustering results.
In the case of ALL features, queryParts is slightly below, which may explain
the small difference in performance with G2 features. Adding the similarity

22

Complete Reduced 1
10 clusters 4 clusters

Features Recall Precision ARI Recall Precision ARI

ALL 0.52 0.46 0.42 0.73 0.64 0.56
G2 0.51 0.50 0.44 0.70 0.64 0.54

Metric [9] 0.39 0.20 0.14 0.41 0.33 0.10
ALL + [9] 0.40 0.40 0.32 0.78 0.65 0.63
G2 + [9] 0.45 0.43 0.38 0.69 0.62 0.52

Table 12: Comparison of our metric based on G2 features with other metrics when paired
with PAM clustering. ALL denotes the set of 15 features, [9] is the state-of-art metric and
“+” indicates a metric with added features and corresponding weights.

proposed by Aligon et al. [9] to G2 or ALL decreases the weights of queryParts
or tokenQPart, which in turn degrades the results. These observations are
coherent with what is observed for the Reduced 1 data set. In this case, adding
the similarity proposed by Aligon et al. [9] to G2 only slightly lowers the score
on tokenQPart and queryPart, which again may explain the small difference
observed. Finally, with ALL features, it can be seen that adding the similarity
proposed by Aligon et al. [9] causes a drop in the previous important features,
but that is compensated by the emergency of new features, such as the OLAP
operation. However, we expect our approach to be the most efficient in any
scenarios and the hypothesis that clusters of observations are clearly separated
is too strong in practice. Thus, the metric based on G2 features seems to be the
most appropriate among those that we evaluated, in particular when compared
to the state-of-the-art metric [9].

6.2.7. Discovering intra-interaction interests

In this test, we successively increase the number of clusters and we check how
many users of different expertise are represented in each cluster. The aim is to
show that our metric is good not only at grouping observations that participate
in the resolution of a particular business need but also at identifying parts of the
resolution that are shared by users with different expertise. To emphasize the
evolution of precision (which indicates the coherence of clusters), we use the (G2
+ [9]) configuration, which is a good compromise in the previous experiment,
and test it on the well separated Reduced 1 data set, starting with 10 clusters.
The results reported in Table 13 show how the mixing of users decreases while
the precision increases (and consequently recall and ARI decrease) as we increase
the number of clusters. It can be noted that for high precisions, the composition
of clusters in terms of users with different expertise remains very acceptable.
For instance, when precision reaches 95%, more than 63% of clusters have users
with different expertise. In other words, this shows that our metric can be
used to identify shared sub-tasks (or intra-interaction interests), where some
experts’ queries could be recommended to beginner users having to solve the
same business need.

23

clusters Recall Precision ARI Dense UI Expertise

10 0.35 0.86 0.41 10 (100%) 10 (100 %)
15 0.24 0.90 0.31 14 (93.3%) 14 (93.33 %)
20 0.20 0.92 0.26 14 (70%) 18 (90 %)
25 0.18 0.92 0.24 13 (52%) 19 (76 %)
30 0.17 0.95 0.23 13 (43.3%) 19 (63.33 %)
35 0.16 0.95 0.22 12 (34.3%) 19 (54.29 %)
50 0.14 0.96 0.19 11 (22%) 20 (40 %)

Table 13: Increasing the number of clusters to detect intra-interaction interests. Dense UI
indicates the number of clusters with more than 5 different users. Expertise indicates the
number of clusters with both types of users (beginners and experts).

7. Testing the interest-based recommender system

Finally, we take advantage of the identified user interests to recommend a
sequence of observations to users, to help them continue their explorations. We
experiment with the two recommendation modes that use the Markov model
over the clusters (introduced in Section 5), respectively called IbR1 and IbR2,
and we compare them with two state-of-the-art query recommender systems:
the one proposed by Aligon et al. [5] and one of the recommenders proposed by
Eirinaki et al. [6], adapted to recommend a sequence of queries instead of a set
of queries (Section 7.1.3). We first present our protocol (Section 7.1), and then
the experimentation results (Section 7.2).

7.1. Experimental protocol

7.1.1. Recommender system construction and analysis

Our recommender system is built as a Markov model over the interactions
from which observations have been clustered to identify user interests. Consis-
tent with the protocol proposed in [8], we remove from the set of interactions
the ones consisting of only one observation. For the constructed Markov model,
we report the transition probabilities between clusters and check if, as expected
for consistent user interest, the highest probabilities are for transitions leading
from one cluster to itself.

7.1.2. Evaluation of recommendation results

To evaluate our approach, we rely on the literature on recommender systems
[32, 33, 34] as well as on a recent protocol specially conceived for comparing
recommendations of query sequences [5]. We measure two of the most commonly
employed criteria to judge the recommendation quality to assess whether our
recommender is able to achieve a good balance between the ability to recommend
and the quality of its recommendations, namely:

• accuracy, i.e., the degree to which recommendations correspond to what
is expected in terms of queries, and

24

• coverage, i.e., the degree to which recommendations can indeed be gener-
ated.

We enrich this set of measures with the following criteria to understand whether
our recommender system favors expertise sharing between users and interest
diversity:

• expected diversity, i.e., the degree to which recommendations correspond
to what is expected in terms of user interests,

• expected user, i.e., the degree to which the current user is retrieved in the
recommendations,

• expertise, i.e., the degree to which recommendations come from experts,
and

• expertise benefit, i.e., the degree to which beginners can benefit from
expert recommendations.

Regarding accuracy, the protocol acknowledges the fact that finding the ex-
act next query of an interaction is very unlikely, as our set of interactions con-
sists of mostly unique observations. The protocol therefore implements extended
versions of precision and recall measures to incorporate similarity between in-
teractions.

For our tests, we use the similarity between sessions defined and proposed
in [9], that is itself based on the similarity between queries. In our adaptation
we assimilate interactions to sessions and we use the similarity between queries
to compare the chosen queries of interactions to recommended queries. We use
this similarity measure because it is independent from our proposal and can fit
any recommender system under testing, contrary to ours, which needs proper
interactions to work.

Definitions. The underlying idea is, given the beginning of an interaction, to
compare the recommended queries with the unseen queries (that actually con-
tinued the interaction) and calculate the precision, recall and F-measure. In
what follows, depending on the criteria considered, we use ∼ to denote a simi-
larity function between sequences of queries, which is instantiated differently in
each measure (accuracy, expertise, expected diversity, expected user).

Let I be a set of interactions and IC be a set of current interactions for which
recommendations are to be computed. Given an interaction i ∈ IC , let fi be its
actual future (i.e., the sequence of queries the user would have formulated after
the last query of i if they had not been given any recommendation) and ri be
a recommended future. Recommendation ri is considered to be correct when
ri ∼ fi, i.e., when it is similar to the actual future of i.

Let FI = {fi|i ∈ IC} and RI = {ri|i ∈ IC}. The set of true positives is
then defined by

TP = {ri|i ∈ IC ; ri ∼ fi} (2)

25

i.e., the set of recommended futures similar to their actual counterparts. The
set of false positives is FP = RI \ TP and the set of false negatives is FN =

FI \TP . Then, Recall = |TP |
|TP |+|FN | = |TP |

|FI| , Precision = |TP |
|TP |+|FP | = |TP |

|RI| and

F -measure = 2 Precision·Recall
Precision+Recall .

Let RQ bet the set of queries in RI, FQ be the set of queries in FI, TQ
be the set of queries in TP , IE be the set of interactions written by expert
users, QE be the set of queries of IE , QUj

be the set of queries of interactions
of interest Uj for j ∈ {1, c}, where c is the number of discovered interests, and
Quserk be the set of queries of interactions of user k, for k ∈ {1, |Su|}, where Su

is the set of users.
Our measures are defined as follows:

• accuracy is measured using the F-measure, where ∼ is the similarity be-
tween sessions proposed in [9],

• coverage is the number of recommendations divided by the number of

interactions: |RI|
|IC | ,

• expected diversity is measured using F-measure, where ∼ is the Jaccard
similarity on interests of interactions, defined by:

ri ∼ fi =
|{QUj

|∃q∈QUj
∩ri}∩{QUj

|∃q∈QUj
∩fi}|

|{QUj
|∃q∈QUj

∩ri}∪{QUj
|∃q∈QUj

∩fi}| ,

• expected user is measured using the F-measure, where ∼ is the Jaccard
similarity of users participating in interactions. Note that observations
in fi correspond to a unique user (the actual user), while recommended
observations in ri may come from several users.

ri ∼ fi =
|{Quserk

|∃q∈Quserk
∩ri}∩{Quserk

|∃q∈Quserk
∩fi}|

|{Quserk
|∃q∈Quserk

∩ri}∪{Quserk
|∃q∈Quserk

∩fi}| ,

• expertise is measured with the F-measure, but for a version of precision

and recall that incorporate expert queries, as follows: precision is |TQ∩QE |
|TQ| ,

recall is |TQ∩QE |
|QE | ,

• expertise benefit is measured as the probability to recommend a query
made by an expert to a session made by a beginner:
P (q ∈ QE ∩ ri|i ∈ IC \ IE).

Protocol. To create sets FI, RI and TP , our protocol uses cross-validation as
follows. We iterate over a set L of interactions with a leave-one-out approach
by (i) picking one interaction i ∈ L; (ii) taking one of its prefix in of size n
as one current interaction of i and the remaining subsequencefi as one actual
future of FI, with n ∈ {1, |i|}; (iii) finding a recommendation ri for in using
the remaining interactions, L \ {i}. If such a ri exists, it is added to RI. ri is
considered correct and added to TP when ri ∼ fi and is incorrect otherwise.
For accuracy and expertise, the similarity between interactions is parametrized
by a threshold varying in [0,0.9]. This threshold controls the extent to which

26

two interactions should be considered similar. Hence these criteria are mea-
sured by progressively increasing this threshold ruling the minimal demanded
similarity between the expected future and the recommendation. The same is
done to compare systems in terms of expected diversity and expected user, with
a threshold ruling the similarity of sets of recommended queries in terms of
interests and users, respectively.

7.1.3. Comparison with state-of-the-art recommendation algorithms

In order to illustrate the added value of user interest detection, as well as to
show that our approach is agnostic of the query language used, we compare it
with two state-of-the-art, session-based recommendation algorithms, both based
on collaborative filtering and kNN. These approaches are i) an OLAP session
recommendation approach [5, 35], referred to as Falseto in what follows, and ii)
a SQL query recommendation approach, QueRIE [6]. Precisely:

1. QueRIE. We use the fragment-based, non-binary version of QueRIE,
which handles queries (both in the log and in the current session) rep-
resented by their SQL fragments, i.e., projected attributes (levels and
measures), selections, and group-by expressions, that are easily extracted
from the query-parts. This representation of user sessions based on query
fragments is called the signature. The recommended queries are selected
from the closest session to the current one based on their respective signa-
tures. As the number of queries to recommend is a parameter in QueRIE,
we tuned it and selected the value of the parameter that achieved the best
accuracy, precisely 2 queries. Finally, the set of recommended queries is
ranked using the similarity to the current session and arranged in a se-
quence as was done for IbR1. Note that this transformation of QueRIE
output is necessary to ensure that it is comparable to the other recom-
menders and is under the same conditions.

2. Falseto. In order to use Falseto, an OLAP schema (a constellation) was
reverse engineered from data sources (schemata and constraints) following
DFM methodology [21], pruning attributes not accessed by users (based
on the query log). Interfacing with Falseto is straightforward, as we use
the same format for representing queries. However, it should be noted that
different from IbR1, IbR2 and QueRIE, Falseto does not directly recom-
mend queries that are simply picked in a log file of past queries. Indeed, it
picks queries from a log file and then modifies these queries to align them
with the current interaction. Therefore, to measure the diversity and ex-
pertise related criteria, we disregarded that alignment and looked at the
original queries picked in the log. We expect this recommender system to
explore more globally the space of possible queries as it builds new queries
(not necessarily existing in the logs) based on current queries.

We use our own implementation of QueRIE and Falseto.

27

7.1.4. Impact of user interests on the recommendation strategy

Finally, we aim at investigating whether leveraging user interests calls for a
tailored recommendation strategy or can benefit an existing one. To this end,
we give Falseto and QueRIE, which are agnostic of user interests, the chance of
knowing the user interest beforehand by restricting their input to one particular
user interest. We repeat this test for each discovered user interest. We report
their accuracy and coverage in each restricted log and compare them to their
own results on the whole log.

7.2. Lessons learned

7.2.1. Recommender system construction and analysis

The Markov model at the heart of our recommender is built from a set of
24 interactions corresponding to 530 unique observations. We removed 17% of
the interactions from it, which contain only one observation and do not provide
any information to the Markov model.

Table 14 presents the transition probabilities between clusters (states), sources
in rows and targets in columns. Note that, as this model is recreated several
times in our tests, we present here the model learned over the whole log. It is
easily perceived that, as expected, observations of a cluster are mainly followed
by observations of the same cluster, meaning that interactions tend to remain
within the same user interest.

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10 Final State
State 1 0.40 0.13 0.06 0.0 0.08 0.13 0.02 0.04 0.0 0.0 0.14
State 2 0.10 0.58 0.06 0.04 0.05 0.04 0.03 0.03 0.01 0.04 0.02
State 3 0.0 0.06 0.43 0.02 0.09 0.13 0.06 0.0 0.13 0.04 0.04
State 4 0.0 0.03 0.05 0.68 0.05 0.03 0.05 0.0 0.05 0.02 0.04
State 5 0.02 0.07 0.02 0.05 0.54 0.03 0.15 0.10 0.02 0.0 0.0
State 6 0.02 0.17 0.02 0.08 0.07 0.46 0.15 0.03 0.0 0.0 0.0
State 7 0.04 0.0 0.10 0.14 0.0 0.1 0.55 0.03 0.0 0.0 0.03
State 8 0.03 0.03 0.08 0.0 0.06 0.03 0.15 0.50 0.06 0.0 0.06
State 9 0.17 0.03 0.03 0.0 0.03 0.07 0.03 0.10 0.50 0.0 0.04
State 10 0.11 0.06 0.11 0.0 0.0 0.06 0.0 0.0 0.0 0.39 0.27

Table 14: Transition probabilities for the 10 states (clusters) of the recommender’s Markov
model

7.2.2. Evaluation of recommendation results

Figure 1, 2 and 3 report the measures of the various criteria defined to as-
sess the quality of the recommenders. We start by discussing these measures
for IbR1 and IbR2. The coverage is as expected. By design, IbR1 achieves a
perfect coverage, while IbR2, using a probability for ending the session, may
not recommend, particularly for a longer current session. Regarding accuracy,
both recommenders perform very well, with IbR1 performing the best, when the
similarity threshold is set low (0.4 or below). Below this threshold, both recom-
menders show the same behavior. In terms of expected diversity, as expected,
IbR2 outperforms IbR1 since the latter cannot move outside a current inter-
est. Notably, even for quite demanding similarity thresholds, IbR2 performs
reasonably well in predicting interest switches. The very low scores for both

28

recommenders in terms of the expected user is expected in that it confirms that
none of them were designed to stick to the current user. Nevertheless, we note
that both IbR1 and IbR2 still do better than state-of-the-art recommenders for
low similarity thresholds, which can be interpreted as a side effect of user in-
terest detection. Both recommenders perform well in terms of expertise, with
IbR2 being more robust than IbR1 to the similarity threshold. This is due to
IbR2 being more likely to find expert queries in clusters other than the current
one. Finally, both recommenders perform fairly in recommending expert queries
to beginners. We note that they were not designed to do so and good perfor-
mances for this criterion would have been a side effect of clustering interests.
However, extending the recommenders to favor this behavior can be done easily
if expertise is recorded or can be deduced from the observations. In summary,
IbR1 performs slightly better in terms of accuracy and coverage, while IbR2,
with its global exploration of the user interests, is better at identifying interest
switching and proposing recommendations coming from expert users.

Figure 1: Coverage and accuracy for IbR1, IbR2, Falseto and QueRIE.

Figure 2: Expected diversity and expected user for IbR1, IbR2, Falseto and QueRIE.

7.2.3. Comparison with state-of-the-art algorithms

We now discuss how IbR1 and IbR2 compare to two state-of-the-art recom-
menders.

Comparison with QueRIE. QueRIE achieves perfect coverage, as does IbR1,
and it is similar to it in terms of accuracy for low similarity thresholds, being

29

Figure 3: Expertise and expertise benefit for IbR1, IbR2, Falseto and QueRIE.

slightly more robust to more demanding thresholds. This similarity of behav-
ior can be explained by the nature of both recommender systems, which are
very similar as they tend to locally explore the user intent based on current
queries. Interestingly, in this case, the difference in the similarities used to
rank potential recommended queries in QueRIE and IbR1 (fragment-based ver-
sus feature-based) has no influence since potential queries to recommend are
already issued from the same user interest. We note that QueRIE is always
better than IbR1 for expected diversity, since the latter is bound to a specific
interest, and is slightly better than IbR2 for very low similarity thresholds but
is expectedly less robust than it to high thresholds. Finally, as expected, its
results in terms of expected user, expertise or expertise benefit show that it has
not been specifically designed to take these features into account.

Comparison with Falseto. Among all the recommenders, Falseto achieves the
worst performances both in terms of coverage and accuracy for low similarity
thresholds. Regarding coverage, it is clearly impacted by the demanding ses-
sion similarity measure that Falseto internally uses to align current and past
sessions to generate candidate recommendations. Indeed, when query similarity
is below Falseto’s built-in threshold, no past session is found to be similar to
the current one, which results in no candidate recommendations, which disables
the recommendation. Remarkably, Falseto is more robust in terms of accuracy
when the similarity threshold becomes more demanding. This can be explained
by its fitting phase, which aligns the recommendations with the current inter-
action, i.e., even if the candidate recommendation picked from the log is not
the one expected, the fitting phase is able to sufficiently modify it to bring it
closer to the expected future. As expected, Falseto is outperformed in terms of
expected diversity, expected user, and expertise, but surprisingly achieves the
best expertise benefit. This can be because its candidate recommendations are
sequences that are similar to others in the log and that such sequences are more
likely produced by expert users.

7.2.4. Impact of user interests on the recommendation strategy

In this last test, we observe the behavior of Falseto and QueRIE in the pres-
ence of discovered user interests. More precisely, we force them to recommend

30

queries inside each cluster separately and to simulate their behavior if they were
not agnostic of user intent. The goal of these tests is to compare the accuracy
and coverage of the recommender over a user interest, with itself on the whole
log. Note that we do not intend to investigate which cluster achieves better
performance, so the identification of individual curves is irrelevant. The results
are reported in Figures 4 and 5 where the test is done for all of the 10 detected
user interests, with the dark square curve representing the recommender over
the whole log. Coverage for QueRIE is not depicted because QueRIE achieves
perfect coverage in all cases.

Figure 4: Accuracy for QueRIE on the entire log and on each user interest

Figure 5: Coverage and accuracy for Falseto on the entire log and on each user interest

The results show that detecting user interest may be useful for already ex-
isting recommendation strategies. This is particularly clear for QueRIE, which
performs better in the majority of cases when the interest is leveraged. QueRIE
benefits from targeting its recommendation in a specific context, which increases
the similarity between recommendations and the actual future that is mostly
contained in a single user interest. Notably, Clusters 6 and 10 are those for
which QueRIE obtains its worst results. These are less homogeneous clusters
(see Table 9), leading to the observed decrease in accuracy.

This is more contrasted for Falseto, where in three cases only leveraging
user interests makes the recommendations more accurate, interestingly, for high
similarity thresholds. Due to its fitting phase, Falseto is more likely to be sensi-
tive to cluster overlapping, and thus more likely to deviate to other neighboring

31

interests. Therefore, when only one cluster is available, Falseto will miss those
sessions spanning different clusters. Similarly, restricting the past history to a
single user interest can decrease the coverage of Falseto because of the size of the
clusters representing each user interest and because the intra-cluster similarity
is not on par with the session-based similarity used by Falseto.

8. Conclusion

This article presents a collaborative recommendation approach that lever-
ages user interests in modern BI systems to relieve the user from tedious ex-
plorations. This system combines state-of-the-art techniques from literature in
Web Search and BI query recommendation. At the heart of it is an approach
for identifying coherent interests of BI users with various expertise querying
data sources by means of keyword-based analytical queries. Our approach relies
on the identification of discriminative features for characterizing BI interactions
and on the learning of a similarity measure based on these features. Once user
interests are identified, they are treated as first-class citizens in a collaborative
BI query recommender system, that suggest next moves in an exploration based
on the probability for a user to switch from one interest to another.

We have shown through user tests that our approach is effective in practice
and can be beneficial to analysts whose interests match those of expert users,
or whose interests change during the analysis. Overall, our results show that
keyword-based interaction systems provide semantically rich user traces well
adapted to the detection of coherent BI user interest and that such interests can
also be exploited successfully by state-of-the-art recommendation strategies.

Building upon these results, our long term goal is to go beyond keyword-
based interaction systems. We envision the implementation of an intelligent
assistant that raises alerts when data sources are refreshed or when user infor-
mation needs and expertise change. To this end, our future works include the
development of interest and skill-based recommendation approaches and their
validation via larger user studies.

References

[1] R. Guha, V. Gupta, V. Raghunathan, R. Srikant, User modeling for a
personal assistant, in: WSDM, Shanghai, China., 2015, pp. 275–284.

[2] Y. Song, Q. Guo, Query-less: Predicting task repetition for nextgen proac-
tive search and recommendation engines, in: WWW, 2016, pp. 543–553.

[3] L. Yang, Q. Guo, Y. Song, S. Meng, M. Shokouhi, K. McDonald, W. B.
Croft, Modeling user interests for zero-query ranking, in: ECIR, 2016, pp.
171–184.

[4] K. Drushku, J. Aligon, N. Labroche, P. Marcel, V. Peralta, B. Dumant,
User interests clustering in business intelligence interactions, in: Advanced

32

Information Systems Engineering - 29th International Conference, CAiSE
2017, 2017, pp. 144–158.

[5] J. Aligon, E. Gallinucci, M. Golfarelli, P. Marcel, S. Rizzi, A collaborative
filtering approach for recommending OLAP sessions, DSS 69 (2015) 20–30.

[6] M. Eirinaki, S. Abraham, N. Polyzotis, N. Shaikh, Querie: Collaborative
database exploration, IEEE Trans. Knowl. Data Eng. 26 (7) (2014) 1778–
1790.

[7] C. Sapia, PROMISE: predicting query behavior to enable predictive caching
strategies for OLAP systems, in: DaWaK, 2000, pp. 224–233.

[8] M. Aufaure, N. Kuchmann-Beauger, P. Marcel, S. Rizzi, Y. Vanrompay,
Predicting your next OLAP query based on recent analytical sessions, in:
DaWaK, 2013, pp. 134–145.

[9] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, E. Turricchia, Similarity mea-
sures for OLAP sessions, KAIS 39 (2) (2014) 463–489.

[10] B. Mobasher, Data mining for personalization, in: The Adaptive Web:
Methods and Strategies of Web Personalization, Vol. 4321 of LNCS, 2006,
pp. 90–135.

[11] Y. Sun, N. J. Yuan, Y. Wang, X. Xie, K. McDonald, R. Zhang, Contextual
intent tracking for personal assistants, in: SIGKDD, 2016, pp. 273–282.

[12] S. Idreos, O. Papaemmanouil, S. Chaudhuri, Overview of data exploration
techniques, in: SIGMOD, 2015, pp. 277–281.

[13] N. Khoussainova, Y. Kwon, M. Balazinska, D. Suciu, Snipsuggest: Context-
aware autocompletion for SQL, PVLDB 4 (1) (2010) 22–33.

[14] P. Jayachandran, K. Tunga, N. Kamat, A. Nandi, Combining user inter-
action, speculative query execution and sampling in the DICE system,
PVLDB 7 (13) (2014) 1697–1700.

[15] H. V. Nguyen, al., Identifying user interests within the data space - a case
study with skyserver, in: EDBT, 2015, pp. 641–652.

[16] G. Adomavicius, A. Tuzhilin, Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible ex-
tensions, IEEE Trans. Knowl. Data Eng. 17 (6) (2005) 734–749.
doi:10.1109/TKDE.2005.99.
URL https://doi.org/10.1109/TKDE.2005.99

[17] R. D. Burke, A. Felfernig, M. H. Göker, Recommender systems: An
overview, AI Magazine 32 (3) (2011) 13–18.
URL http://www.aaai.org/ojs/index.php/aimagazine/article/view/2361

33

[18] I. Cantador, A. Belloǵın, P. Castells, Ontology-based personalised and
context-aware recommendations of news items, in: 2008 IEEE / WIC /
ACM International Conference on Web Intelligence, WI 2008, 9-12 Decem-
ber 2008, Sydney, NSW, Australia, Main Conference Proceedings, 2008,
pp. 562–565.
URL https://doi.org/10.1109/WIIAT.2008.204

[19] R. Ghani, A. E. Fano, Using text mining to infer semantic attributes for
retail data mining, in: Proceedings of the 2002 IEEE International Confer-
ence on Data Mining (ICDM 2002), 9-12 December 2002, Maebashi City,
Japan, 2002, pp. 195–202.

[20] C. Palmisano, A. Tuzhilin, M. Gorgoglione, Using context to improve pre-
dictive modeling of customers in personalization applications, IEEE Trans.
Knowl. Data Eng. 20 (11) (2008) 1535–1549. doi:10.1109/TKDE.2008.110.
URL https://doi.org/10.1109/TKDE.2008.110

[21] M. Golfarelli, S. Rizzi, Data Warehouse Design: Modern Principles and
Methodologies, McGraw-Hill, 2009.

[22] A. A. Vaisman, E. Zimányi, Data Warehouse Systems - Design and Imple-
mentation, Data-Centric Systems and Applications, Springer, 2014.

[23] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-
Wesley, 1995.
URL http://webdam.inria.fr/Alice/

[24] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, E. Turricchia, Mining pref-
erences from OLAP query logs for proactive personalization, in: ADBIS,
2011, pp. 84–97.

[25] H. Wang, Y. Song, M.-W. Chang, X. He, R. W. White, W. Chu, Learning
to extract cross-session search tasks, in: In WWW, 2013.

[26] B. Desgraupes, Clustering indices, Tech. rep., University Paris Ouest - Lab
Modal’X (April 2013).

[27] L. Kaufman, P. Rousseeuw, Clustering by means of medoids, in: Statistical
Data Analysis based on the L1 Norm, Elsevier, 1987, pp. 405–416.

[28] L. Kaufman, P. Rousseeuw, Finding groups in Data: An introduction to
Cluster Analysis, Wiley, 1990.

[29] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for
discovering clusters in large spatial databases with noise, in: KDD, AAAI
Press, USA, 1996, pp. 226–231.

[30] F. Pedregosa, al., Scikit-learn: Machine learning in Python, Journal of
Machine Learning Research 12 (2011) 2825–2830.

34

[31] P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis, Computational and Applied Mathematics 20
(1987) 5365.

[32] J. L. Herlocker, J. A. Konstan, L. G. Terveen, J. Riedl, Evaluating collabo-
rative filtering recommender systems, ACM Trans. Inf. Syst. 22 (1) (2004)
5–53. doi:10.1145/963770.963772.
URL http://doi.acm.org/10.1145/963770.963772

[33] R. A. Baeza-Yates, B. A. Ribeiro-Neto, Modern Information Retrieval - the
concepts and technology behind search, Second edition, Pearson Education
Ltd., Harlow, England, 2011.
URL http://www.mir2ed.org/

[34] A. Gunawardana, G. Shani, Evaluating recommender systems, in: Recom-
mender Systems Handbook, 2015, pp. 265–308.

[35] J. Aligon, K. Boulil, P. Marcel, V. Peralta, A holistic approach to OLAP
sessions composition: The falseto experience, in: DOLAP, 2014, pp. 37–46.

35

Appendix A. Business needs

Hereafter, we list the business needs that were proposed to SAP analysts
during our experiments.

1. Plan what kinds of films should Spain media shops aim to sell this year
and in which media format? According to your prediction, calculate a
target sales revenue.

2. For each European country, detect which genres of films did not reach the
expecting sales.

3. For which Medias and Genres Iceland has not reached the total sales
target? What should they change in their selling politics, knowing their
preferences and top retailers?

4. For each region, and for each month (from January to June), which should
be the priority country for Decathlon to be supplied with goods?

5. Which retailer has the best performance (sales revenue/target sales rev-
enue) in 2013 and what is its growth for 2014 and 2015? Which were the
most successful colours in these three last years?

6. Which are the three most problematic countries running out of stocks?
Which are the retailers and products they should be supplied?

7. Which airports have the most increasing number of passengers from 1990-
2010? Analyze the main airports with the greatest number of passengers
(2010) for each region to find out if this is related to the increasing number
of destination/population.

8. Which is the country with the greatest number of airports? How many
passengers have flown from this country in 2005 and in 2010? Is this in
proportional with the number of destinations from each airport?

9. For at least one country of low / lower middle / upper middle income
countries, analyze how the GDP has evaluated.

10. In which Income Group would you classify a candidate country with a
GDP of $6 billion?

36

