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ABSTRACT

Context. The use of interferometric nulling for the direct detection of extrasolar planets is in part limited by the extreme sensitivity of
the instrumental response to tiny optical path differences between apertures. The recently proposed kernel-nuller architecture attempts
to alleviate this effect with an all-in-one combiner design that enables the production of observables inherently robust to residual
optical path differences (�λ).
Aims. To date, a unique kernel-nuller design has been proposed ad hoc for a four-beam combiner. We examine the properties of this
original design and generalize them for an arbitrary number of apertures.
Methods. We introduce a convenient graphical representation of the complex combiner matrices that model the kernel nuller and
highlight the symmetry properties that enable the formation of kernel nulls. The analytical description of the nulled outputs we
provide demonstrates the properties of a kernel nuller.
Results. Our description helps outline a systematic way to build a kernel nuller for an arbitrary number of apertures. The designs
for three- and six-input combiners are presented along with the original four-input concept. The combiner grows in complexity with
the square of the number of apertures. While one can mitigate this complexity by multiplexing nullers working independently over
a smaller number of sub-apertures, an all-in-one kernel nuller recombining a large number of apertures appears as the most efficient
way to characterize a high-contrast complex astrophysical scene.
Conclusions. Kernel nullers can be designed for an arbitrary number of apertures that produce observable quantities robust to residual
perturbations. The designs we recommend are lossless and take full advantage of all the available interferometric baselines. They are
complete, result in as many kernel nulls as the theoretically expected number of closure-phases, and are optimized to require the
smallest possible number of outputs.

Key words. instrumentation: interferometers – techniques: high angular resolution – techniques: interferometric –
planets and satellites: detection

1. Introduction

The last 25 years have seen the detection of more than 4000 exo-
planets (Schneider et al. 2011). Despite the indirect nature of
most detections, existing observations already provide us with a
wealth of information on the properties of exoplanetary systems:
their mass, size, and orbital elements. Even so, direct detection
of a planet’s reflected or radiated light, which would permit the
direct spectral analysis of a large sample of targets, remains
an exciting prospect that will contribute to further characteriz-
ing individual planets, in particular the properties of their atmo-
spheres (Marois et al. 2008; Zurlo et al. 2016).

The use of coronagraphic instruments is now leading to the
detection of young giant planets in wide orbits around nearby
stars (Macintosh et al. 2015; Chauvin et al. 2017; Mesa et al.
2019). This success is advanced by the continued improvements
of extreme adaptive optics systems (Sauvage et al. 2016; Lozi
et al. 2018; Boccaletti et al. 2020). For smaller separations
approaching the diffraction limit (below ∼3λ/D), small resid-
ual wavefront errors still dominate the error budget and corona-
graphic solutions become less favorable.

Lacour et al. (2019) have demonstrated the advantages
brought by long-baseline interferometry for the characterization
of extrasolar planets. This observing mode takes advantage of
the spatial filtering provided by the resolving power of each of
the 8 m telescopes of the Very Large Telescope Interferometer
(VLTI), coupled into single mode fibers to reach the required
contrast. Interferometric nullers (Bracewell 1978; Colavita et al.

2009; Serabyn et al. 2019; Hoffmann et al. 2014; Defrère et al.
2015; Norris et al. 2020) offer the possibility to explore smaller
angular separations through the use of fragmented apertures and
long-baseline interferometry. Some combining solutions have
been found that optimize the rejection of resolved stars (Angel
& Woolf 1997; Guyon et al. 2013). The exploitation of these
instruments is still limited by their vulnerability to optical path
difference (OPD) errors, and requires sophisticated statistical
analysis, like those proposed by Hanot et al. (2011) and Defrère
et al. (2016), and more recently used by Norris et al. (2020) to
disentangle the off-axis astrophysical signal from the effects of
unwanted OPDs.

Classical long-baseline and Fizeau interferometry make
extensive use of the production of robust observables, like clo-
sure phases (Jennison 1958), and their generalized form, kernel
phases (Martinache 2010), to sidestep the limitations brought by
the OPD residuals. This approach has provided reliable perfor-
mance at very small separations, down to one resolution element
and below.

Bringing together the robustness of interferometric observ-
ables and the photon-noise suppression of nulling is an excit-
ing perspective as it opens a novel high-contrast, high-precision
regime. The double-Bracewell architecture (Angel & Woolf
1997) was noted to offer such robustness (Velusamy et al. 2003)
when implemented with the adequate phase shift between the
two stages (known as sin-chop). A different approach was later
proposed by Lacour et al. (2014), which exploits the measure-
ment of fringes in the leakage light.
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Martinache & Ireland (2018) introduced an alternative, more
efficient solution for a four-telescope beam-combiner archi-
tecture that produces six nulled outputs. By analyzing the
response of these outputs to parasitic OPDs (instrumentally or
atmospherically induced phase error), the authors identify linear
combinations of outputs that are robust to these aberrations to
second order. The solution they propose uses a four-input nuller
that provides three nulled kernel observables.

In this paper we look for the properties that ensure that a
combiner will produce kernel nulls. They help outline a general
strategy for the design of kernel nullers for an arbitrary number
of apertures.

2. Analysis of the existing four-input kernel-nulling
architecture

2.1. Kernel-nulling approach

Using the nuller architecture laid out by Martinache & Ireland
(2018) for a four-beam interferometer as the starting point and
reexamining its properties, we look into ways of generalizing
this special case to a wider range of configurations involving dif-
ferent numbers of apertures.

The inner structure of a homodyne interferometric combiner
(nulling or not) is conveniently represented by a combiner matrix
M that acts on a vector z of input electric fields and leads to the
production of an output electric field vector x:

x = M · z. (1)

A detector then records the intensity associated with the square
norm of this output electric field.

The fact that only the square norm of the field is recorded has
two consequences. The first is that the response of the combiner
is insensitive to the absolute phase of the input electric field: one
of the sub-apertures can therefore be arbitrarily picked as a ref-
erence, and the phases of the different electric fields sampled by
the other sub-apertures are measured relative to that reference.
The second is that the output intensity is equally insensitive to
any global phase shift φ applied to any row m of the matrix M
describing the combiner. This is of consequence when identify-
ing distinct combinations (or rows).

Assuming that the recombiner is fed by a balanced array
of identical sub-apertures, the complex amplitude of the input
electric field can be described by a vector of phasors. We fur-
ther assume that the combiner benefits from a fringe tracker that,
although not perfect, brings the system close to its nominal state.
The fringe tracking residuals are assumed to be small and all
phasors e− jϕk are approximated using the following expansion,
where j is the imaginary unit:

zk = e− jϕk ≈ 1 − jϕk. (2)

Since only intensities are measured, the overall response of
the system is a quadratic function of the perturbation phase vec-
tor. Martinache & Ireland (2018) thus use this description to look
at the properties of the second-order derivative of the intensity
relative to the phase. One of the na sub-apertures being used
as a phase reference, there are na − 1 degrees of freedom, and
nd = na ∗ (na − 1)/2 such derivatives. This response can be
stored in a no × nd matrix A called the matrix of second-order
derivatives, where no is the number of relevant outputs. Linear
combinations of rows of A that equal 0 cancel out the second-
order intensity deviations caused by small input phase errors.
The same linear combination applied to the intensity measured
after the recombiner will be equally insensitive to small input
phase errors. We refer to these linear combinations as kernel

outputs or kernel nulls when applied to a collection of nulled
outputs.

The rank of A and the possibility of forming such robust
observables rely entirely on the properties of the matrix M, and
therefore does not depend on the geometry of the input array.
However, the question of whether a kernel null carries astrophys-
ically relevant information also depends on the configuration of
the array. Throughout this work, phase and amplitude contri-
butions are considered independently, but their coupled contri-
bution is neglected. In Sects. 2.2, 2.3 and 3, of this paper we
introduce a convenient visual representation of the structure of
M, and further examine the properties of the combiner.

2.2. Visualization of complex combiner matrices

The effect of the matrix M on the complex amplitude of the input
electric field can be conveniently visualized by a series of plots
of the complex plane. For a given combiner, each input is repre-
sented by a colored arrow that, in the absence of environmental
perturbation, is aligned with the real axis. Each plot illustrates
the effect of a row of M on such inputs: the resulting electric field
is the sum of all colored arrows present in the plot. A nuller is
characterized by several outputs for which the sum of the arrows,
associated with the electric fields, sum up to zero. These complex
matrix plots (CMPs) are used throughout this work to describe
several nuller designs of varying complexity.

2.3. From real to complex nulls

The architecture of the kernel nuller described in Martinache &
Ireland (2018) builds from an initial all-in-one four-beam nuller
whose overall effect can be described by the following matrix:

N4 =
1
√

4


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 . (3)

This matrix is real. Each nulled row of N4 recombines distinct
arrangements of the four input electric fields such that the coeffi-
cients on the corresponding rows sum up to zero, as represented
in Fig. 1, with arrows aligned with the real axis: two positive
(or not phase-shifted), and two negative (or phase-shifted by π).
As discussed in this reference, this nuller does not allow the for-
mation of kernels because the output intensities it produces are
a degenerate function of the target information and input phase
perturbations. The outputs of this nuller can however be fed to a
second stage, described by the following matrix:

S4 =
1
√

4



2 0 0 0
0 1 e j π2 0
0 e j π2 1 0
0 1 0 e j π2

0 e j π2 0 1
0 0 1 e j π2

0 0 e j π2 1


, (4)

which leaves the bright output untouched, but further splits the
nulled ones and selectively introduces π/2 phase shifts. The
overall effect of the combiner is described by a now complex
combiner matrix, result of the product M4 = S4 · N4. The CMPs
of this modified combiner, shown in Fig. 2, offer a more easily
readable description of its effect, with components of the out-
put electric field no longer simply aligned with the real axis, but
spanning the complex plane.

The new complex configuration enables the greater diver-
sity that is required to disentangle the otherwise degenerate
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Fig. 1. CMP of the matrix N4 in Eq. (3), representing a four-input
nulling combiner. The first row constitutes the bright channel, with all
inputs combined constructively. Each output is a contribution of all the
inputs, and not just a pair of them, which prevents the direct interpreta-
tion through the uv plane.

effect that environmental perturbations have on the input elec-
tric fields. The modified nuller indeed features more outputs
than inputs, and a close examination of the CMPs in Fig. 2
shows that all six combinations offer a distinct arrangement
of the four input fields. The construction of a larger number
of distinct nulls is one of the requirements for the existence
of a non-empty left null space for A described in Sect. 2.1.
Pairs of outputs produce the same response to environmen-
tal effects while still producing different response to off-axis
light.

3. Properties of conjugate pairs of nulls

3.1. Kernel outputs

Identifying the kernel-forming combinations of outputs no
longer requires building the second-order derivative matrix A,
but can be achieved by examination of the CMP representation
of the nuller. Figure 2 lays out, side by side, the two outputs
leading to one kernel-null observable. Since close examination
of such pairs of outputs reveals that the electric field combina-
tion patterns are the mirror image of one another, we call them
enantiomorph.

Given that the measured intensity associated with any out-
put is insensitive to a global phase shift, such a shift can
always be applied so as to align the arrow corresponding
to the phase reference input with the real axis, and point it
towards the positive direction. After such a rotation is applied,
enantiomorph outputs simply become complex conjugate. This
makes it possible to write simple equations that describe the two
key properties of kernel nulls: their robustness to small phase
perturbation, and the antisymmetric nature of the signal they
provide.
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Fig. 2. CMP of the S4 · N4 combination. The first output is the bright
channel for which all the inputs add up constructively. The vectors are
staggered for readability. Pairs of nulled rows represented side by side
are mirror images of each other (enantiomorph). The amplitude of the
phasors is reduced compared to Fig. 1 due to additional splitting.

3.2. Robustness

We consider m1 and m2 a conjugate pair of null rows of M:

m2 = m∗1. (5)

A corresponding kernel null κ(z) writes as the difference of the
two measured intensities:

κ(z) = |m1z|2 − |m2z|2 = m1z(m1z)∗ −m2z(m2z)∗. (6)

Using (5) and (6) gives

κ(z) = m1z(m1z)∗ −m∗1z(m∗1z)∗. (7)

In the case of the approximation mentioned in Eq. (2), we have

κ(z) = m1(a + jϕ)(m1(a + jϕ))∗

−m∗1(a + jϕ)(m∗1(a + jϕ))∗, (8)

where a is a vector of ones. Developing this expression, since
m1a = 0 and m∗1a = 0, the only terms left are those containing
only the imaginary perturbation term jϕ:

κ(z) = m1 jϕ(m1 jϕ)∗ −m∗1 jϕ(m∗1 jϕ)∗. (9)
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Distributing the conjugate operator gives

κ(z) = −m1 jϕm∗1 jϕ + m∗1 jϕm1 jϕ, (10)

and therefore κ(z) = 0 due to the commutativity. This shows that
the subtraction of intensity of complex conjugate pairs of nulled
outputs always produces a kernel null that is robust to arbitrary
imaginary phasors, to which the small input phase aberrations
are approximated.

This property also applies to arbitrary purely real input elec-
tric fields that would correspond to pure photometric error gen-
erated by fluctuations of the coupling efficiencies. Considering a
purely real input vector a, we have

κ(z) = m1a(m1a)∗ −m∗1a(m∗1a)∗. (11)

Distributing the conjugate operator gives

κ(z) = m1am∗1a −m∗1am1a, (12)

and therefore κ(z) = 0 due to the commutativity.
At any instant the subtraction of the signals recorded by con-

jugate (or more generally enantiomorph) outputs forms a ker-
nel null. Conjugate pairs of nulls allow the formation of ker-
nel nulls. This property generalizes to enantiomorph pairs of
nulls through the rotation by a single common phasor. A com-
plementary approach for the identification of robust combina-
tions of outputs is the use of the singular value decomposition
(SVD) of the second-order derivative matrix A, as mentioned by
Martinache & Ireland (2018), which ensures the identification of
all the robust combinations of outputs.

This behavior can be illustrated by adding different phased
contributions to the inputs, and plotting the resulting electric
field on top of the original perfectly cophased CMPs (dashed
lines). The first panel of Fig. 3 uses this representation of the
combined light to illustrate how small input phase aberrations
affect the amplitude (and therefore the intensity) of the com-
biner’s outputs. In particular it shows how, for small phase errors,
conjugate pairs of nulls suffer the same leakage-light intensity.

3.3. Symmetry of the response

The second and third panels of Fig. 3 show how input light com-
ing from a significantly off-axis source (input phases φ ≥ 1
radian) propagates to the nulled outputs. They highlight how this
off-axis light produces different intensities at the outputs of the
conjugate pairs, translating into a kernel-null signal.

For a combiner that is fed by an array of apertures collecting
the light from the sky, the value of this response as a function
of the incidence of the light is the response map of the inter-
ferometer and depends on the position of each of the apertures.
Martinache & Ireland (2018) note how this map is antisym-
metric, therefore providing a rejection of the photosphere of
stars and symmetric circumstellar disks that could hide a plane-
tary companion, and provide the astrometry of such companions
without ambiguity. Using our formalism, we can demonstrate
this antisymmetric property for any aperture configuration. If z
and z′ are two input electric field vectors coming from sources
located at symmetric positions in the field of view, then

z′ = z∗. (13)

Considering again a conjugate pair of null rows m1 and m2, and
by substitution of (13) into (6) we get

κ(z) = m1z′∗m∗1z′ −m2z′∗m∗2z′. (14)

After substitution of (5), this becomes

κ(z) = m∗2z′∗m2z′ −m∗1z′∗m1z′. (15)

This leads to the conclusion that the response is antisymmetric:

κ(z) = −κ(z′). (16)

Conversely, we can also extract from this pair of nulls the
complementary observable

τ(z) = m1z(m1z)∗ + m2z(m2z)∗ (17)

whose response is symmetric. The observables κ and τ therefore
carry complementary information on the target field, much like
the amplitude and phase of complex visibility in classical inter-
ferometry.

Although τ does not have the same robustness to aberra-
tions, there may be ways to use it with the processing meth-
ods employed by Hanot et al. (2011) and Norris et al. (2020)
so as to provide additional information on the target in different
science cases. The kernel null κ is best suited for the study of
high-contrast non-symmetrical features such as planetary com-
panions, while τ may be used to study brighter symmetrical fea-
tures such as debris disks or stellar envelopes. Combining the
two types of observables could enable image reconstruction.

The τ observables carry some information about the input
phase errors. We can use their values over the course of a scan
or modulation of the OPDs to locate the setpoint of the kernel
nuller, for which they will reach a minimum.

4. Construction of new nullers

4.1. Blueprints of kernel-nulling matrices

The properties used in Sects. 3.2 and 3.3 to demonstrate the
robustness of kernel nullers to small phase perturbations can be
used as constraints to guide the design of an arbitrary kernel-
nuller matrix. For the output of any row l to provide an on-axis
null, the matrix coefficients must satisfy

na−1∑
k=0

Mk,l = 0. (18)

Output intensities are unchanged when the coefficients of a row
are all multiplied by a common phasor. We therefore apply one
such phasor so as to get Arg(M0,l) = 0. We also build out-
put zero by combining all the inputs without any phase offset:
Arg(Mk,0) = 0.

Simple solutions to Eq. (18) for a balanced array can be
found by picking arrangements of uniformly spaced phase val-
ues in the [0, 2π] interval as can be seen of Figs. 2, 4, and 6. The
phase of each coefficient is therefore a multiple of Φ0 = 2π/na.
On the CMPs seen thus far, this would result in the rotation of all
of the arrows on the nulled outputs until the one associated with
input zero is aligned with the real axis in the positive direction.
With these constraints in place, outputs will only differ in the
order in which the remaining na − 1 phase offsets are associated
with the inputs. The maximum number of distinct nulled outputs
is therefore

nmax = (na − 1)!. (19)

The phase term φk,l writes

φk,l = ck,lΦ0, (20)
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Fig. 3. CMP for a four-input combiner, representing the coefficients of the combiner matrix M′
4 (dashed lines), functionally equivalent to M4, and

the contributions of the complex amplitude of an example input electric field (solid arrows) to the output electric field represented in black. Most
dashed lines are hidden under the arrows. A black circle of radius equal to the modulus of this output is plotted for a visual cue, its area being
proportional to the corresponding intensity. Enantiomorph pairs that generate kernel combinations by subtraction are represented side by side. As
do Martinache & Ireland (2018), we use the example of the VLTI UT configuration observing at zenith at a wavelength of 3.6 µm. Left panel:
source located at 0.2 mas from the optical axis and for which the corresponding input phase shifts are within the small phase approximation. As
a result, the output intensities within each pair are fully correlated and result in no kernel signal. Center panel: source located 1.1 mas off-axis,
which generates larger phase shifts. As a result, the null intensities from the enantiomorph pairs begin to decorrelate and generate kernel-null
signal. Right panel: source located 4.3 mas from the optical axis, in the position where the first nulled output peaks. At this position the second
output gets to zero.

where ck,la is the kth term of the lth possible combination on the
circle. In general, a complex coefficient of M will therefore write

Mk,l = al · e jφk,l , (21)

where al is a real coefficient, normalizing the matrix, so that M
represents a lossless beam-combiner for which each column vec-
tor is of unit norm. As mentioned in Appendix A, this condition
on the norm is necessary (but not sufficient) to ensure that the
matrix represents a lossless beam combiner, and one solution for
it is to haveal = 1

√
na

for the bright output

al = 1
√

na

√
na−1
nnull

for the nulled outputs
, (22)

where nnull is the number of nulled outputs. Normalization is not
mandatory to study the qualitative properties of the combiner,
but it is necessary to study their throughput in a quantitative man-
ner and their practical implementation.

The matrix M obtained with Eq. (21), represents a combiner
for which pairs of complex conjugate nulls can be subtracted to
build the kernel nulls that are the focus of this work.

Table 1. Growth of kernel-nuller combiners with the number of
apertures.

Inputs Distinct nulls Indep. nulls Kernel nulls
na nmax nindep. nkn

3 2 2 1
4 6 6 3
5 24 12 6
6 120 20 10
7 720 30 15

4.2. Information redundancy

As shown by Eq. (19) and Table 1, the number of nulled outputs
that would result from a strict application of these blueprint rules
rapidly grows as the factorial of the number of inputs. However,
for numbers of apertures larger than four, although all the nulls
produced with the presented scheme are distinct, some of them
do not carry new information on the target as their response func-
tion to an off-axis signal is a linear combination of the response
function of other nulls.
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Here we analyze this property empirically by examin-
ing the response maps (analogous to Figs. 5 and 7 of
Martinache & Ireland 2018) and assembling them as vectors of
a set of nulled outputs and a set of kernel outputs. The ranks
of these sets provide the number of independent observables
produced by the combiner. Although we were not able to link
this property to particular traits of the combinations, the largest
number of independent kernel nulls obtainable by a given non-
redundant array of apertures was always the same as the number
of independent closure phases, which is in agreement with the
expectations set by Martinache & Ireland (2018). For any non-
redundant array of apertures, this number is

nkn(na) =

(
na

2

)
− (na − 1) =

(na − 1)(na − 2)
2

. (23)

The underlying relationship between the baselines and our new
observables is non-trivial, but will be assumed to hold for
any non-redundant array. For redundant arrays this number
decreases. We call “complete” a nuller that provides the above-
mentioned maximum number nkn of independent observables.
The number of independent nulls in the full set is nindep. = 2×nkn.
The results obtained empirically for up to seven inputs are shown
in Table 1, along with their expected progression for larger num-
bers of inputs.

As seen in Eq. (22), an increase in the number of nulled
rows decreases the normalization coefficients ai as, in prac-
tice, fewer splittings of the input light are necessary to obtain
fewer combinations. Our goal may therefore be to construct
complete combiners using the minimum number of nulled com-
binations from the full matrix M, with the intent of increas-
ing its throughput. Expecting this number to be twice the
number of kernel nulls (if we consider only pairwise kernel
nulls), this produces a very large number ncrops(na) of possible
combinations:

ncrops(na) =

(
(na − 1)!

(na − 1)(na − 2)

)
. (24)

Only for the cases of three and four inputs is the solution unique
(ncrops(na) = 1), and all null rows must be kept. For more
inputs, this number grows rapidly. Although a large fraction
of them are complete, fewer satisfy the conditions detailed in
Appendix A for conservation of energy. The following charac-
teristics are shared by the three- and four-input combiners, as
well as all the lossless realizations of the cropped five-input
combiner:

– All nulls appear in conjugate (or enantiomorph) pairs, which
implies that robust observables can be constructed by sub-
traction.

– Each phasor appears in each column the same number of
times (except for that of phase zero which serves as the ref-
erence). Equation (23) implies that for a combiner producing
no = 2nkn nulls, each phasor is used (na − 2) times for each
input.

Enforcing these characteristics as rules for reducing the number
of outputs has helped us to identify lossless realizations of the
cropped six-input combiner outlined in Sect. 5.2 by reducing the
parameter space. The process leading to a valid solution remains
one of trial and error: chosen randomly among all the possible
arrangements that respect the above-mentioned characteristics,
a solution is only accepted when the corresponding combiner is
both lossless (see Appendix A) and produces a complete set of
kernel nulls.
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Fig. 4. CMP for a three-input kernel nuller of Eq. (25). The first row cor-
responds to the bright channel with the overlapping phasors staggered
for readability. The two nulled outputs are complex conjugates of one
another and form a kernel null.

5. Examples of combiners

5.1. Three-input kernel nuller

The simplest practical example of this architecture appears for
the combination of three inputs. Here the algorithm results in
the formation of two enantiomorph nulled outputs. These two
outputs will, by subtraction, produce one robust observable. The
resulting combiner matrix writes

M3 =
1
√

3


1 1 1
1 e

2 jπ
3 e

4 jπ
3

1 e
4 jπ
3 e

2 jπ
3

 . (25)

The combinations offered by this matrix are illustrated in
Fig. 4.

As an example, we built a response map of the robust observ-
able produced by this combiner fed by three of the VLTI (von der
Lühe 1997) unit telescopes (UTs) observing at zenith. Figure 5
shows the values of the kernel-null observable represented as
a two-dimensional function of the relative position of a source
normalized by the flux of one aperture. While simpler than
that provided in Fig. 7 of Martinache & Ireland (2018) for the
four-input combiner, this pattern retains the same antisymmetric
property.

Assuming the practical implementation of the combiner
itself can be manufactured either with bulk or integrated
optics, this configuration would allow the production of robust
high-contrast observables with the least amount of infrastruc-
ture. Drawing a parallel between this type of combinations
and closure triangles used for closure phases is tempting but
misleading. Here, as the combination must be done optically
rather than in post-processing, kernel nulling does not scale in
the same way. The advantages and drawbacks of using these
simple combiners as building blocks is briefly discussed in
Sect. 6.1.
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5.2. Six-input kernel nuller

We also outline a solution for a kernel-nulling recombiner for
six telescopes that could, for example, be used at the focus of the
CHARA array. The initial algorithm produces a combiner matrix
M6 with 121 rows with redundancy in the off-axis response. It is
cropped to M′

6 using the guidelines offered in Sect. 4.2 to reduce
it to the minimum of 21 rows, while making sure the number
of independent kernel nulls nkn is preserved. Furthermore, by
enforcing the properties outlined in Appendix A, we make sure
that M′

6 remains the matrix of a lossless beam combiner.
The matrix describing this six-input combiner writes

M′
6 =

1
√

6

1
√

4



2 2 2 2 2 2
1 e

5 jπ
3 e

4 jπ
3 −1 e

jπ
3 e

2 jπ
3

1 e
jπ
3 e

2 jπ
3 −1 e

5 jπ
3 e

4 jπ
3

1 −1 e
jπ
3 e

2 jπ
3 e

5 jπ
3 e

4 jπ
3

1 −1 e
5 jπ
3 e

4 jπ
3 e

jπ
3 e

2 jπ
3

1 e
4 jπ
3 e

5 jπ
3 e

2 jπ
3 e

jπ
3 −1

1 e
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jπ
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3 e
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jπ
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1 e
jπ
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2 jπ
3 e

4 jπ
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5 jπ
3

1 e
5 jπ
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3
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

. (26)

This combiner offers a total of 20 independent nulls, and 10 inde-
pendent kernel nulls. The corresponding CMP is shown in Fig. 6
and highlights how each aperture contributes to all of the out-
puts.

To illustrate the astrophysical information gathered by the
larger number of kernel nulls, we construct response maps of
the kernel-null observables. The plots are shown in Fig. 7 and
display the response of each of the observables for the combiner
being fed by the CHARA array observing a target at zenith in
the 3.6 µm wavelength. The patterns reflects the richness of the
uv coverage provided by an array like CHARA, and the fact that
each output uses information collected by every telescope. As a
consequence, each map covers the field of view differently, and
brings a new constraint on the properties of the astrophysical
scene observed.

6. Discussion

No active long-baseline optical interferometer currently provides
more than six sub-apertures. However, the masking of mono-
lithic apertures to produce interferometric arrays is an estab-
lished practice (Tuthill et al. 2010; Jovanovic et al. 2012) that
may be used in conjunction with nulling interferometry (Norris
et al. 2020). Therefore, the use of even larger combiners may
prove to be a viable alternatives to small inner working angle
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Fig. 5. Top: three telescope configurations picked for the example and
corresponding to the positions of three of the VLTI UTs. Bottom: value
of the kernel null as a function of the relative position of a source of unit
contrast at 3.6 µm, normalized to the throughput of one aperture. The
map is relevant for a target observed at Zenith and would evolve with
the projected aperture map. The nature of the response is antisymmetric,
as demonstrated in Sect. 3.3.

coronagraphs (Guyon et al. 2006). Their robustness to small
aberrations might provide unprecedented contrast performance
in the 1−3λ/D regime in the near-infrared.

6.1. Multiplexing nullers

Instead of building an all-in-one combiner, which may be dif-
ficult to construct for a large number of apertures, an alterna-
tive approach would be to multiplex several independent nullers,
each of which recombines a smaller number of apertures. For
example, instead of a six-input nuller producing 20 nulled out-
puts, one conservative option would be to use two three-input
kernel nullers (identical to the one presented in Sect. 5.1) side
by side, producing four nulled outputs.

While the second of these two options results in a reassuring
higher throughput per output, it can only produce distinct robust
observables, whereas the M′

6 combiners offer ten. Moreover, this
multiplexed option also results in two bright channels where
some of the off-axis light is also lost, further reducing the overall
efficiency of the combiner. In between these two extreme scenar-
ios intermediate solutions can be imagined to alleviate some of
their risks and deficiencies, with a modular design multiplexing
the nullers much like a number of ABCD combiners are multi-
plexed inside the beam combiner of VLTI/GRAVITY.
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Fig. 6. Representation of the 20 nulled outputs of the six-input beam
combiner proposed in Eq. (26). The conjugate pairs that form the ten
kernel nulls are represented side by side.

It was already argued by Guyon et al. (2013) that efficient
nulling solutions concentrate the most starlight into the smallest
number of outputs, which favors the all-in-one combiner over
the multiplexed versions. If manufacturability or operational
constraints were to prevent the deployment of an all-in-one com-
biner at the focus of a specific observatory, one way to allevi-
ate this inefficiency could be to recombine the light from the
multiple bright outputs into an additional nulling stage so as
to extract additional useful observables. This type of architec-
ture, in part inspired by the hierarchical fringe tracker idea of
Petrov et al. (2014), might prove a necessary compromise to
the implementation of a kernel nuller at the focus of a very-
long-baseline observing facility such as the envisioned Planet
Formation Imager (Monnier et al. 2016), for which a distributed
hierarchical recombination mode seems particularly apt.

6.2. Evolution of robustness

In addition to trade-off considerations between the total num-
ber of observables and the throughput efficiency of the available
options, we must also consider whether the number of inputs has
an impact on the phase-noise rejection performance of a kernel
nuller.

To evaluate this risk, we trace the evolution of the noise
affecting the outputs and their kernels as a function of the amount
of phase noise affecting the inputs. We do this for the 3T, 4T,
and 6T designs described in the previous sections. For sim-
plicity, this study assumes that the phase noise affecting all
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Fig. 7. Top: six-telescope configuration for the CHARA array used as
example. Bottom: value of all ten kernel nulls as a function of the rel-
ative position of a source at the wavelength 3.6 µm observed at zenith.
The transmission is normalized by the flux of a single aperture. Again,
each map remains antisymmetric.

inputs is Gaussian, non-correlated, and characterized by a sin-
gle rms value equally affecting all inputs. Following a Monte
Carlo approach, random realizations of input piston errors are
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Fig. 8. Propagation of phase noise from the input to the nulled intensi-
ties for different kernel-nulling architectures. Values are normalized by
the peak transmission of an off-axis signal. The raw nulls (dashed lines)
are compared with their corresponding kernel-null observable (solid
lines), showing the suppression of second-order phase noise (by a few
orders of magnitude) for small input phase error. This effect decreases
as the input phase errors depart from the small phase approximation.
The behavior of the Bracewell nuller is shown for reference (dashed
blue lines).

drawn, propagated through the different combiner matrices, and
the standard deviation of the output intensities are evaluated.
Figure 8 thus shows the evolution of the standard deviation
of the output intensities of the nulls and of the kernel nulls
of the different architecture normalized by the peak null inten-
sity Ipeak from their response map. This therefore constitutes a
noise-to-signal ratio of sorts. The simple Bracewell nuller is also
added to this study for comparison, as modeled by the combiner
matrix:

MB =

[
1 1
− j j

]
. (27)

This plot shows that the larger kernel-nulling combiners pro-
vide a rejection of the phase noise that is very similar to the
smaller ones, if not slightly better. The improvement on the raw
observables may be credited to a manifestation of the central
limit theorem affecting the distribution of the sum of a larger
number of complex intensities. Further interpretation of this plot
must be undertaken with caution. While the distribution of kernel
nulls under such conditions is close to Gaussian (Martinache &
Ireland 2018), the distribution of null intensities is not (Hanot
et al. 2011) and is therefore poorly described by its standard
deviation. While a full performance comparison of the differ-
ent designs lies outside the scope of the present paper and would
include the coupled effects of phase and amplitude fluctuations
(Lay 2004), these elements already indicate that kernel nullers
recombining a large number of sub-apertures are intrinsically at
least as robust to phase noise as their smaller, simpler counter-
parts. This is an encouraging prospect for single telescope appli-
cations of the kernel nuller for which a potentially large number
of sub-apertures can be used.

7. Conclusions

In this work we offer a new description of the kernel-nuller
design introduced by Martinache & Ireland (2018). This is done
by introducing a new graphical representation of the complex
matrix that models the nuller and the transformations it operates

on the input electric field. Combined with an analytical descrip-
tion of the outputs used to form a kernel, these representations
explain the origin of a kernel nuller’s main properties: their
intrinsic robustness to small input piston and amplitude fluctua-
tions, and their sensitivity to asymmetric features of the observed
scene. We show that the same outputs can also be summed so as
to fall back on the original outputs of an all-in-one N4 nuller
stage; while not robust to perturbations, this can nevertheless
provide further astrophysical information.

Our visual and analytical representations help devise a sys-
tematic way to build a kernel nuller as a combiner featuring pairs
of channels that are enantiomorph in the complex plane. It is this
feature that makes two channels equally sensitive to perturba-
tions, although they respond differently to the presence of an off-
axis structure. This approach allow us to design kernel nullers for
an arbitrary number of apertures, which we apply in this paper
to three- and six-aperture arrays.

We discuss the possibility of simplifying kernel nullers that
grow in complexity when they recombine a larger number of
input beams, for instance using distinct nullers operating in par-
allel over a subset of input beams. For a given total number of
inputs, a global architecture that gives access to a larger num-
ber of high-contrast observables is more efficient and offers the
means to explore and characterize complex astrophysical scenes.
For the same number of inputs, we also note that the total num-
ber of outputs for a kernel nuller (exactly twice the number
of theoretical closure-phases) is in fact less than that of non-
nulling combiners designed to measure the complex visibility
of all baselines. Integrated optical circuits in particular already
enable the implementation of such complicated designs in small
and stable packages, and are a very promising avenue for the
construction of these larger kernel-nulling combiners.

While no existing long-baseline optical interferometric facil-
ity currently offers the simultaneous combination of more than
six apertures, a kernel nuller sampling the pupil of a single tele-
scope could prove to be a valuable complement to a coronagraph,
producing high-contrast observations near one resolution ele-
ment that would be insensitive to the small but ever present adap-
tive optics residuals. The evaluation of performance in practical
implementations including the contribution of coupled phase an
amplitude contributions and the consideration of relevant science
cases will be the topic of future theoretical and experimental
work.
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Appendix A: Lossless combiners

As emphasized by Loudon (2000) in Sect. 3.2, the conservation
of energy in a single beamsplitter cube imply that its matrix is

unitary. This property can be generalized to larger combiners.
The required condition is that the sum of intensities of the inputs
is the same as the sum of intensities at the outputs. As the output
intensities are gathered in the vector x, this sum also writes

noutputs∑
i=0

|xi|
2 = xHx, (A.1)

with H designating the Hermitian adjoint (conjugate transpose)
operator. Based on Eq. (1) this sum writes

xHx = (Mz)HMz, (A.2)

which develops as

xHx = zHMHMz. (A.3)

As a consequence we obtain

∀z ∈ Cna

noutputs∑
i=0

|xi|
2 =

na∑
i=0

|zi|
2 ⇐⇒ MHM = I. (A.4)

Thus, the following propositions are equivalent:
– M is the matrix of a lossless beam combiner;
– M is semi-unitary on the left;
– MH is the left inverse of M;
– The columns of M are orthonormal;
– All the singular values of M are equal to one.
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