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ABSTRACT

Context. The formation of a large-scale current sheet is a generic feature of pulsar magnetospheres. If the magnetic axis is misaligned
with the star rotation axis, the current sheet is an oscillatory structure filling an equatorial wedge determined by the inclination angle,
known as the striped wind. Relativistic reconnection could lead to significant dissipation of magnetic energy and particle acceleration,
although the efficiency of this process is debated in this context.
Aims. In this study, we aim at reconciling global models of pulsar wind dynamics and reconnection in the stripes within the same
numerical framework in order to shed new light on dissipation and particle acceleration in pulsar winds.
Methods. To this end, we perform large three-dimensional particle-in-cell simulations of a split-monopole magnetosphere, from the
stellar surface up to 50 light-cylinder radii away from the pulsar.
Results. Plasmoid-dominated reconnection efficiently fragments the current sheet into a dynamical network of interacting flux ropes
separated by secondary current sheets that consume the field efficiently at all radii, even past the fast magnetosonic point. Our results
suggest there is a universal dissipation radius solely determined by the reconnection rate in the sheet, lying well upstream from the
termination shock radius in isolated pair-producing pulsars. The wind bulk Lorentz factor is much less relativistic than previously
thought. In the co-moving frame, the wind is composed of hot pairs trapped within flux ropes with a hard broad power-law spectrum,
whose maximum energy is limited by the magnetization of the wind at launch.
Conclusions. We conclude that the striped wind is most likely fully dissipated when it enters the pulsar wind nebula. The predicted
wind particle spectrum after dissipation is reminiscent of the Crab Nebula radio-emitting electrons.

Key words. acceleration of particles – magnetic reconnection – radiation mechanisms: non-thermal – methods: numerical –
pulsars: general – stars: winds, outflows

1. Introduction

Large-scale current sheets are generic features of planetary
and stellar magnetospheres. Their formation can be externally
driven, as in the Earth magnetotail shaped by the Solar wind,
or internally driven by the intrinsic magnetic activity of the star
or by the rapid rotation of the magnetosphere, like in Jupiter.
Perhaps the most extreme example of rotationally driven current
sheets in an astrophysical environment is found in the vicinity
of pulsars. The short rotation period of the star (P ∼ 1−103 ms)
combined with strong surface magnetic fields (B ∼ 109−1012 G)
lead to significant field line winding and opening beyond the
light cylinder, a virtual cylindrical surface of radius RLC =
cP/2π ∼ 50−50 000 km, beyond which the co-rotation velocity
becomes superluminal. A large-scale current sheet forms outside
the light cylinder where both magnetic polarities of the star meet
(Michel 1971; Coroniti 1990). The magnetic and current struc-
tures are supported by a plasma of relativistic electron-positron
pairs that are self-generated near the stellar surface via pair pro-
duction. This plasma flows along open field lines in the form
of a radially expanding, relativistic magnetized wind, simply
referred to as the pulsar wind in the following (Rees & Gunn
1974; Kennel & Coroniti 1984).

If the magnetic axis is aligned with the rotation axis, the
magnetosphere is axisymmetric and the current sheet is a flat

disk lying in the equatorial plane. If the magnetic axis is inclined,
the current sheet has the shape of an oscillatory structure of
wavelength 2πRLC confined within an equatorial wedge of a half-
opening angle set by the magnetic inclination angle (Bogovalov
1999). A cut through this surface at a constant latitude gives rise
to a succession of narrow stripes of currents separated by smooth
wind regions (Fig. 1). For this reason, this structure is usu-
ally referred to as the “striped wind” (Coroniti 1990; Kirk et al.
2009). Away from this region, the wind is smooth and is well
described by a rotating monopole-like configuration (Michel
1973).

One fundamental question regards the fate of the stripes as
the wind propagates outward, and so far this issue has led to con-
tradictory conclusions (Coroniti 1990; Lyubarsky & Kirk 2001;
Lyubarsky 2003; Kirk & Skjæraasen 2003; Cerutti & Philippov
2017). It is generally accepted that relativistic reconnection
occurs within the current layer (e.g., Kagan et al. 2015), leading
to a transfer of magnetic energy into particle kinetic energy. The
main uncertainty lies in the rate of dissipation and its feedback
on the global dynamics of the wind. In a collisionless plasma,
the current layer thickness is determined by the plasma kinetic
scales (i.e., on the order of plasma skin-depth and particle Lar-
mor radius scales). In pulsars, this scale is microscopic such that
the aspect ratio of the current sheet is very large, meaning that
the layer will most likely reconnect into the plasmoid-dominated
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regime, a regime where reconnection is fast (Uzdensky et al.
2010). Recent particle-in-cell (PIC) simulations of plane-parallel
reconnection have confirmed the efficiency of relativistic recon-
nection mediated by the plasmoid instability at dissipating the
field and accelerating particles (e.g., Zenitani & Hoshino 2001;
Cerutti et al. 2012; Sironi & Spitkovsky 2014; Werner et al.
2018). In a parallel effort, global PIC simulations of pul-
sar magnetospheres have shown the major role that recon-
nection has at dissipating a sizeable fraction of the Poynt-
ing flux into high-energy particles and pulsed gamma-ray
emission (Cerutti et al. 2016; Philippov & Spitkovsky 2018;
Kalapotharakos et al. 2018). These simulations were focused on
the inner magnetospheric regions and restricted to a few light-
cylinder radii only so that the large-scale evolution of dissipation
was not probed.

In this study, we aim at reconciling global models of pul-
sar wind dynamics, reconnection, and particle acceleration in the
stripes within the same numerical framework, using large three-
dimensional (3D) PIC simulations. The latter are supplemented
by a series of two-dimensional (2D) simulations restricted to the
equatorial plane to explore the parameter space and the effect
of numerical resolution. This work is the logical continuation of
our previous effort in this direction (Cerutti & Philippov 2017).
We begin by introducing the numerical setup in Sect. 2. Simula-
tion results are presented in Sect. 3 and discussed in Sect. 4 with
an emphasis on dissipation and particle acceleration. Radiative
signatures will not be discussed in this paper and will be left to
a future study.

2. Methodology and setup

We used the relativistic electromagnetic PIC code ZELTRON
(Cerutti et al. 2013; Cerutti & Werner 2019) in its full 3D
spherical coordinate (r, θ, φ) version that was first introduced
in Cerutti et al. (2016). The numerical grid is logarithmically
spaced along the r-axis. This choice is well suited for this prob-
lem, in which the plasma density and the field strength present a
sharp gradient in the vicinity of the star; it also allows us to probe
large physical distances, the key objective in this work. The grid
along the θ-direction follows a cos θ-spacing. This is a natural
choice for a 3D spherical grid as it keeps the volume of the cell
constant at a given radius, that is to say, the grid is refined at the
equator but is coarser at the poles. This choice is also motivated
by the fact that the pulsar wind power is concentrated within the
equatorial regions (for a monopole it scales as ∝ sin2 θ). The grid
is uniformly spaced along the φ-direction.

The full numerical grid is composed of (2016 × 1024 × 512)
cells along the r-, θ-, and φ-directions, respectively. The box
extends from the stellar surface rmin = r? up to rmax = 100 RLC,
where we fixed RLC/r? = 3, θ = [0.03π, 0.97π] and φ =
[0, 2π]. A damping layer absorbs all outgoing electromagnetic
waves and particles to mimic an open boundary (Cerutti et al.
2015). We applied reflective boundary conditions along the θ-
boundaries for the particles and axial symmetry to the fields
(Holland 1983). As for the φ-direction, we applied standard peri-
odic boundary conditions to the fields and the particles. The
rotation axis of the star is aligned with the axis of the spher-
ical domain (i.e., θ = 0). The magnetic axis is inclined at an
angle χwith respect to the rotation axis and rotates at the angular
velocity of the star Ω. Following Cerutti & Philippov (2017), we
chose a split-monopole magnetic configuration (Michel 1973;
Bogovalov 1999), which is a good proxy for the asymptotic
structure of the pulsar wind, the main region of interest in this

work. At t = 0, the magnetic field configuration is purely radial,

Br = ±B?
( r?

r

)2
, (1)

where B? is the magnetic field strength at the surface of the star
(+B? in the northern hemisphere and −B? in the southern hemi-
sphere). At any instant t, the plane that separates both magnetic
polarities at the stellar surface is given by the following condi-
tion:

sin θ sin χ cos (Ωt − φ) + cos χ cos θ = 0. (2)

The solid rotation of field lines is enforced by applying the co-
rotation electric field at the stellar surface at every time step.
Assuming a perfectly conducting neutron star yields

E = −
(Ω × r) × B

c
· (3)

Fresh plasma exclusively composed of electron-positron pairs is
uniformly injected at the stellar surface. The plasma is in co-
rotation with the star and has a net radial velocity determined by
the E × B drift velocity of the monopole solution. Normalized
by the speed of light, the initial particle velocity components are
(Cerutti & Beloborodov 2017)

β?r =
1

1 + R2
LC/R

2
, (4)

β?θ = 0, (5)

β?φ =
R/RLC

1 + R2/R2
LC

, (6)

where R = r sin θ is the cylindrical radius. The injected plasma
is neutral and has a multiplicity κ? = n?/n?GJ = 10, where n?GJ =
ΩB?/2πec is the fiducial plasma density (Goldreich & Julian
1969) and e the elementary electric charge. This prescription is
a simple numerical recipe to efficiently fill the magnetosphere
with plasma and therefore reach a quasi force-free configu-
ration, which is most appropriate for modeling active pulsars
(Cerutti et al. 2015). In this work, we are not aiming at model-
ing pair production, which is most likely happening in the inner
magnetosphere, but focus our numerical resources on the wind
region instead, assuming that plenty of pairs are produced along
all field lines. On average, one new pair is injected per cell at
the neutron star surface every eight time steps. At the end of the
simulation, when most of the numerical box has been filled with
plasma, there are about ∼1010 particles, which represents about
ten particles per cell on average.

In addition to the Lorentz force, particles feel the radiation-
reaction force due to both curvature and synchrotron radiation
(see Cerutti et al. 2016 for its implementation). The simulation
time step is fixed at half the Courant-Friedrichs-Lewy time step,
∆t = 0.5∆tCFL. One pulsar period is 3.6× 104∆t. All simulations
were evolved for about ten rotation periods (i.e., for about 3.6 ×
105∆t). The fiducial plasma magnetization at the star surface is
set at

σ? =
B2
?

4πn?mec2 = 250, (7)

where me is the electron rest mass. The shortest plasma time
scale, ω−1

pe , as well as the shortest radiative cooling time scale,
ω−1

c , are well resolved in all simulations, with ωpe∆t ≈ 20 and
ωc∆t ≈ 14. The smallest plasma scale, the local skin depth de =
c/ωpe, is also very well resolved everywhere in the simulation
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Table 1. Global 3D and 2D PIC simulations of the pulsar striped wind
performed in this work.

Run Grid cells χ rmax r σ? κ?

3D runs: Obliquity & grid spacing
Z30 2016 × 1024 × 512 30 100 log 250 10
Z60 2016 × 1024 × 512 60 100 log 250 10
Z85 2016 × 1024 × 512 85 100 log 250 10
Z60c 2016 × 1024 × 512 60 50 uni 250 10

2D runs: Resolution & grid spacing
Zrl1 4032 × 2016 90 100 log 250 10
Zrc1 2016 × 1008 90 10 uni 250 10
Zrc2 4032 × 2016 90 10 uni 250 10
Zrc3 4032 × 2016 90 20 uni 250 10
Zrc4 8064 × 4032 90 20 uni 250 10
Zrc5 8064 × 4032 90 100 uni 250 10

2D runs: Magnetization
Zs125 4096 × 2048 90 100 log 125 20
Zs250 4096 × 2048 90 100 log 250 20
Zs750 4096 × 2048 90 100 log 750 20

2D runs: Multiplicity
Zk02 4096 × 2048 90 100 log 250 0.2
Zk06 4096 × 2048 90 100 log 250 0.6
Zk2 4096 × 2048 90 100 log 250 2
Zk6 4096 × 2048 90 100 log 250 6
Zk20 4096 × 2048 90 100 log 250 20
Zk60 4096 × 2048 90 100 log 250 60

Notes. 2D runs are in the rφ-plane for θ = 90◦. “log” and “uni” stand,
respectively, for logarithmic and uniform grid spacing along the r-
direction. rmax is expressed in units of RLC, and the obliquity angle χ
is in degrees.

box with de/∆r & 10−30, where ∆r is the radial size of a cell.
At the light cylinder, the local plasma skin depth is de/RLC ≈

3 × 10−2.
We performed 3D simulations with three different magnetic

obliquity angles: χ = 30◦, 60◦, and 85◦; all other parameters
remained identical. We ran another 3D run for χ = 60◦ and
rmax = 50 RLC with a constant spacing along the radial direction
to evaluate the role of the grid on magnetic dissipation. We also
performed a series of 2D runs limited to the equatorial plane,
as in Cerutti & Philippov (2017), to explore the parameter space
and to investigate the role of numerical resolution on the dissipa-
tion of the striped wind. To this end, we performed a first series
of six simulations with κ? = 10 and σ? = 250 using a loga-
rithmic or a constant radial grid spacing with different numerical
resolutions both in r and φ. In a second set, we aimed at assess-
ing the role of the wind magnetization σ? = 125, 250, 750 while
keeping κ? = 10. In the last set, we explored the role of the
plasma multiplicity while keeping the stellar magnetic field the
same, with κ? = 0.2, 0.6, 2, 6, 20, 60. Table 1 shows the full
listing of all runs used in this work.

3. Simulation results

3.1. Plasma structures

Shortly after the onset of the simulations, the plasma blown
from the star establishes a force-free split-monopole-like con-
figuration as it propagates out. It is characterized by a toroidal-
dominated magnetic structure whose polarity reverses across the
current sheet. The shape of this sheet is consistent with the

Fig. 1. 3D rendering of plasma density isosurfaces for χ = 60◦ from the
star surface (yellow dot at the center) up to 50 RLC. A spherical wedge
has been removed to show the internal structure of the striped wind.

prediction of Bogovalov (1999): It is a 3D spherical
Archimedean spiral of wavelength 2πRLC defined within the
spherical wedge π/2 − χ ≤ θ ≤ π/2 + χ (Figs. 1 and 2). This
region, which includes both the sheet and the plasma in between,
is the striped wind (Michel 1971; Coroniti 1990; Kirk et al.
2009). Away from the stripes, the wind closely resembles a sin-
gle rotating magnetic monopole (Michel 1973).

The current sheet fragments soon after its formation near
the light cylinder. It is unstable to the relativistic tearing mode
(Zelenyi & Krasnoselskikh 1979; Pétri & Kirk 2007), which
mediates fast magnetic reconnection. It results in the forma-
tion of a dynamical chain of plasma overdensities trapped in
magnetic loops, or plasmoids, separated by secondary current
sheets where the field reconnects. These features are clearly
visible in the zoomed-in view of the plasma density in both
the toroidal and poloidal planes in Fig. 2. In full 3D, these
structures form a network of interconnected flux ropes remi-
niscent of plane-parallel reconnection simulations (Kagan et al.
2013; Cerutti et al. 2014; Werner & Uzdensky 2017). Secondary
flux ropes are produced within secondary current sheets, which
then merge with others to form bigger structures. The dynami-
cal nature of reconnection is most pronounced within .10 RLC
and is quenched by the expansion of the wind at larger radii.
Although severely fragmented, the striped wind structure retains
its global coherent structure. Hence, the 2D picture drawn in
Cerutti & Philippov (2017) qualitatively holds in full 3D.

We observe that the sheet is also mildly kink unstable
(Zenitani & Hoshino 2005; Cerutti et al. 2014). It appears as
wiggles, which are most visible in the zoomed-in view of the
poloidal plane in Fig. 2, but these distortions do not lead to
the complete disruption of the sheet. The kink is more effective
at low magnetic obliquities (Philippov et al. 2015; Cerutti et al.
2016) and can lead to a significant latitudinal spreading of the
striped wind region, well outside of its natural boundaries. At
χ = 30◦, the kink instability may be responsible for a widen-
ing of the stripes of about 10◦, whereas there are no noticeable
deviations for χ = 60◦ and above (Fig. 2, top panel). The plasma
density is distributed in a highly inhomogeneous and anisotropic
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Fig. 2. 2D slices of the plasma density r2(n/n?GJ) for χ = 60◦. Top: rθ-plane containing the magnetic axis at the phase φ = Ωt. Bottom: rφ-plane at
the equator (θ = 90◦). The radius is expressed in units of RLC. Right panels: zoomed-in views of the regions delimited by the white boxes drawn
on the left panels. The striped wind region is contained within π/2 − χ ≤ θ ≤ π/2 + χ (white dashed lines).

manner. The unstriped wind is composed of a low-density uni-
form plasma, of multiplicity κ = n/nGJ of order unity, except
close to the axis where numerical plasma fluctuations are artifi-
cially enhanced by the spherical grid. In the striped zone, there is
a strong plasma density contrast between, in order of increasing
density, the wind (κ ∼ 2−3), secondary current layers (κ ∼ 4−5),
and the far denser flux ropes (κ ∼ 10−103). The wind zone
between two stripes is itself inhomogeneous, in contrast with
the unstriped region. There is a clear plasma depletion on the
leading edge of the spiral, which was already reported in pre-
vious studies (Philippov et al. 2015; Cerutti & Philippov 2017;
Philippov & Spitkovsky 2018). In this sense, reconnection pro-
ceeds in a highly asymmetric way.

3.2. Poynting flux and dissipation

We now turn our attention to the central question of mag-
netic dissipation. In a dissipationless steady-state split-monopole
magnetosphere, the outgoing Poynting flux integrated over a
spherical radius is conserved in virtue of the Poynting flux

theorem. The predicted value is

L0 =
c

4π

"
(E × B) r2 sin θdθdφ =

2cB2
?r4

?

3R2
LC

· (8)

Figure 3 shows the radial and latitudinal dependence of the
Poynting flux, L, for all 3D simulations. The first element to
notice is that the numerical values are closer to L ≈ L0/5 at
the star surface. This discrepancy is explained by the fact that
the analytical split-monopole solution used in Eq. (8) assumes
that all field lines cross the light cylinder and therefore partici-
pate in the pulsar spindown. In all runs, a large fraction of ini-
tially open field lines reconnects in the equatorial region to form
a series of closed field lines nearly co-rotating with the star up
to the light cylinder, and thus they do not contribute to the out-
flowing Poynting flux. Only polar field lines remain open so that
the magnetospheric structure simulated here qualitatively resem-
bles a force-free dipole inside the light cylinder. Nonetheless,
the Poynting flux does not present a strong dependence with
magnetic obliquity as expected from the split-monopole solution
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Fig. 3. Left panels: radial evolution of the Poynting flux normalized to the expected monopole solution L0 = 2cB2
?r4

?/3R2
LC (top) and dissipated

fraction relative to the light-cylinder value ∆L = L(r) − LLC normalized by LLC (bottom). Right panels: latitude dependence of the normalized
Poynting flux per unit of solid angle dL/dΩ (top) and dissipated fraction (bottom) averaged over the radial range 40 ≤ r/RLC ≤ 50. Vertical dotted
lines show the predicted maximal latitudinal extension of the striped wind. The dot-dashed line is a sin2 θ profile for comparison with the monopole
prediction (top-right panel). The full dissipation model of the striped wind proposed by Lyubarsky (2003), Komissarov (2013) is shown by the
dashed black line in the lower-right panel. In all panels, these quantities are shown for all 3D runs performed in this study, including the constant
radial grid spacing solution for χ = 60◦, represented by the dashed red line.

(Bogovalov 1999). More formally, we can express the spindown
power as a function of the flux of open magnetic field lines per
hemisphere, Ψopen. For an aligned monopole,

Ψopen = 2πr2Br

(
1 − cos θopen

)
, (9)

so that Eq. (8) should be changed into the more general expres-
sion (e.g., Tchekhovskoy et al. 2016)

L =
Ω2Ψ2

open

6π2c
= L0

(
1 − cos θopen

)2
. (10)

Thus, physically, L/L0 ≈ 0.2 is a measure of the fraction of the
solid angle squared filled by open field lines in the inclined split-
monopole simulations.

The presence of reconnection in the current sheet leads to
significant dissipation, which translates into a decay of the radial
Poynting flux. Here, dissipation is by no means spurious numer-
ical dissipation, but it has a real physical origin: The reservoir
of Poynting flux provided by the star is gradually consumed
by reconnection, which converts magnetic free energy into par-
ticle kinetic energy and radiation such that the total energy

in the system is conserved to a good accuracy, as shown in
Fig. 4. Irregularities in the total power curve reflect the inter-
mittent nature of reconnection. The radial profile of the Poynt-
ing flux first drops by about 20% within a few light-cylinder
radii after launching, a number consistent with past studies
that have focused on the magnetosphere and inner wind zone
(Parfrey et al. 2012; Philippov & Spitkovsky 2014; Cerutti et al.
2015; Belyaev 2015). Dissipation continues further at a much
slower but steady rate beyond r & 10 RLC until it reaches about
40−50% of the total initial flux at r = 50 RLC (Fig. 3). This rate
seems to be independent of the magnetic obliquity. It does not
seem to be sensitive to the choice of the grid spacing either: After
a brief overshoot at low radii, likely due to the low numerical
resolution in comparison with the log-spacing run, the constant
r-spacing simulation asymptotically converges toward the same
amount and rate of dissipation (see the solid and the dashed red
lines in Fig. 3). To strengthen this point further, 2D simulations
restricted to the equatorial plane with different numerical resolu-
tions, box sizes, and grid spacing present the same evolution of
Poynting flux and the same amount of dissipation (top panel in
Fig. 5).
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Fig. 4. Radial evolution of the kinetic energy flux carried by the parti-
cles, Lpart =

!
n(γ−1)mec2vrr2 sin θdθdφ (dashed blue line), along with

the Poynting flux, L (solid red line) and the total power, Ltot = L + Lpart
(thick solid black line) for χ = 60◦. Luminosities are normalized by the
monopole spindown power L0.

Figure 3 also shows the latitudinal dependence of the Poynt-
ing flux and of its dissipation. As expected, the Poynting
flux is preferentially distributed within the equatorial regions,
and the θ-profiles closely resemble the split-monopole solu-
tion (i.e., dL/dΩ ∝ sin2 θ). We note that the profiles are
slightly sharper than predicted, although not as much as reported
in Tchekhovskoy et al. (2013) where dL/dΩ ∝ sin4 θ for an
initially dipolar magnetic field configuration. The transition
between the striped and the unstriped wind regions is smooth,
except at χ = 30◦ where small dips are visible. An inter-
esting feature is that the same fraction of power is dissipated
at all latitudes within the striped wind region. This fraction
reaches about 40−50% depending on the obliquity and vanishes
within the dissipationless unstriped wind region (see lower-right
panel in Fig. 3)1. Incidentally, the kink-induced widening of the
sheet at χ = 30◦ described in Sect. 3.1 results in a broader
angular dissipation rate profile, well outside the boundaries
60◦ ≤ θ ≤ 120◦.

In Fig. 5 (middle and bottom panels), we report on the
dependence of dissipation with the plasma magnetization, σ?,
and multiplicity, κ?, based on our large set of 2D simulations.
While there is no noticeable dependence on magnetization (at
least as long as σ? � 1), dissipation monotonically increases
with increasing plasma multiplicity. Low-multiplicity solutions
(κ? < 1) present 10−20% dissipation rates at r/RLC = 50.
In contrast, high-multiplicity solutions (κ � 1) show up to
70−80% dissipation without any sign of saturation with the
radius, indicating that the striped wind structure most likely dis-
appears far before the pulsar wind terminates in isolated sys-
tems (Sect. 4). Putting everything together, simulations reported
in this work suggest that reconnection proceeds efficiently and
homogeneously within the striped wind regardless of magnetic
inclination, numerical resolution, grid spacing, or plasma mag-
netization, but that there is a clear distinction between charge-

1 For χ = 85◦, the dissipation rate seems to reach 100% near the
θ-boundaries in Fig. 3. This number should be taken with great cau-
tion since this is the ratio between two small numbers that are close to
numerical fluctuations, and also because it is so close to the spherical
axis where the numerics are not free of artifacts.
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Fig. 5. Top: convergence study of dissipation with grid spacing and
numerical resolution using 2D simulations (see Table 1 for grid param-
eters). The 3D run with χ = 85◦ is reported here for comparison with
2D runs (black solid line). Middle: dependence of dissipation with the
plasma magnetization for κ? = 20. Bottom: dependence of dissipation
with the plasma multiplicity for σ? = 250. The dashed lines are best-
fit models to the analytical solution proposed in Sect. 4, Eq. (20). In
all panels, the Poynting flux is normalized to its light-cylinder value,
L/LLC.

starved (slow dissipation) and high-multiplicity (fast dissipation)
winds.

3.3. Wind kinematics and particle spectra

In this section, we exploit the particle data to reconstruct the bulk
motion of the wind and the particle spectrum in the context of
magnetic dissipation and particle acceleration. Figure 6 focuses
on the radial and latitudinal dependence of the wind bulk Lorentz
factor Γ. Here, all quantities are averaged over azimuth so that
the wind can be referred to as a single homogeneous entity.
Within r/RLC . 4, the wind accelerates quasi-linearly with the
cylindrical radius as expected from the monopole prediction, that
is to say Γ = (1+r2 sin2 θ/R2

LC)1/2 if the plasma follows the E×B
drift velocity (see Eqs. (4)–(6)). Then, the wind quickly reaches
the fast magnetosonic point defined by Γfms = µ1/3

M ≈ 4, where

µM ≡
B2

4πnmec2 = Γσ (11)

is Michel’s magnetization parameter (Kirk et al. 2009). With
σ ≈ 15 at the fast point, the wind remains highly magnetized.
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Fig. 6. Top: φ-averaged plasma bulk Lorentz factor in the striped wind
region within 80◦ ≤ θ ≤ 100◦ as a function of radius Γ(r). The dot-
ted black line is the monopole prediction, Γ = (1 + r2 sin2 θ/R2

LC)1/2.
The dashed green line is the Michel magnetization parameter, µM (see
Eq. (11)), to the power 1/3. The fast magnetosonic point is located at the
yellow star, where Γfms = µ1/3

M . Bottom: θ-dependence of Γ(θ). Vertical
dashed lines delimit the extension of the striped wind region. The black
dotted line is a sin θ profile, as expected from the monopole solution.

Past this point, the wind acceleration slows significantly and
saturates at Γ∞ ≈ 11 for r/RLC & 30 within the equatorial
regions. This result is not sensitive to the magnetic obliquity
angle and confirms theoretical expectations (Tomimatsu 1994;
Beskin et al. 1998) as well as our previous findings in 2D,
although here we obtain significantly larger asymptotic values in
full 3D (Γ2D

∞ ≈ 6 reported in Cerutti & Philippov 2017). The lat-
itudinal dependence of the bulk Lorentz factor is consistent with
the monopole solution in the unstriped region with Γ(θ) ∝ sin θ.
At large radii in the striped region, the profile is much flatter
and departs significantly from the ideal solution (bottom panel
in Fig. 6). These deviations are most likely due to dissipation
and particle acceleration within the current sheets, whose effects
are not negligible at large radii.

The wind acceleration is an ideal process governed solely
by the E × B drift velocity. It should not be confused with
non-thermal particle acceleration that is due to reconnection
or other nonideal dissipative processes, which come in addi-
tion to this ideal process. Figure 7 shows the radial and
latitudinal evolution of the individual particle Lorentz factor
spectrum, (γ/N)dN/dγ. The r-dependence highlights the for-
mation of a broad non-thermal particle spectrum as magnetic
energy is consumed and transferred to the particles via recon-
nection. The saturated-looking state of the particle spectrum at
large radii hides a strong latitude dependence, as shown in the
middle panel of Fig. 7. The spectrum is narrow and peaks at low
energies near the rotation axis (〈γ〉 ∼ 3). The mean energy shifts
to higher energy without any significant spectral broadening in
the unstriped zone. This evolution follows the ideal bulk accel-
eration of the wind, which is not accompanied by non-thermal
acceleration. In contrast, the particle spectrum dramatically
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Fig. 7. Top panel: normalized particle energy spectrum, (γ/N)dN/dγ,
within the spherical shells of radius r and r + RLC as a function of radius
(color-coded) for χ = 60◦. Middle panel: latitudinal dependence (color-
coded) of the particle energy spectrum averaged between 40 ≤ r/RLC ≤

50 for χ = 60◦. Bottom panel: total particle spectra beyond r = 40 RLC
and 80◦ ≤ θ ≤ 100◦ for χ = 30◦, 60◦, and 85◦.

widens inside the striped region, where non-thermal particle
acceleration pushes particles up to γ � Γ∞. This evolution is
not very sensitive to the magnetic obliquity.

The asymptotic spectrum in the striped wind can be decom-
posed into two parts: a thermal bath peaking at γ ≈ Γ∞ and
a hard power-law spectrum dN/dγ ∝ γ−1 cutting at µLC

M =

B2
LC/4πnLCmec2 = ΓLCσLC ≈ 50, where ΓLC ≈ 1.4. To uncover

the origin of these two components, it is useful to look at the
φ-resolved particle spectrum (see Fig. 8). This analysis clearly
shows that the low-energy particles are associated with the wind
region located far upstream from the current layers, where the
ideal monopole wind acceleration mechanism applies. A closer
look reveals that the wind itself is composed of two distinct parts
with slightly different energies: a low-energy component at the
leading edge of the spiral sheet corresponding to the low-density
region with 〈γ〉 ≈ 8 and a high-energy component at the trail-
ing edge of the spiral with 〈γ〉 ≈ 15. There is a sharp spatial
segregation about halfway between two current sheets (around
φ = 0◦ and φ = 180◦ in Fig. 8), which marks the zone of influ-
ence of each reconnecting layer on the plasma in the wind. As for
the hard power-law component, it is unambiguously associated
with non-thermal particle acceleration within the reconnection
layers. The spectral index of ≈−1 is consistent with high-
σ reconnection simulation studies (Zenitani & Hoshino 2001;
Sironi & Spitkovsky 2014; Guo et al. 2015; Werner et al. 2016).
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Fig. 8. Top: φ-profile of the normalized current density flowing along
the θ-direction in the equatorial plane (θ = 90◦) for r = 48 RLC and χ =
60◦. The locations of the current sheets and wind regions are labeled
“Layer 1,” “Layer 2,” and “wind,” respectively. Middle: corresponding
φ-resolved particle energy spectrum. Bottom: decomposition of the total
particle spectrum in the striped region (dashed black line) into a wind
component (solid red line) and a layers component (solid blue line). The
vertical dotted lines show γ = Γ∞ ≈ 11 and γ = σLC ≈ 50.

Therefore, to a first order, the asymptotic particle spectrum
within the striped wind can be approximatively described as

dN
dγ
∝ γ−1, µ1/3

M . γ . µLC
M . (12)

The asymptotic spectrum does not seem to collapse into a nar-
rower distribution at large radii, in contrast to our previous 2D
runs. This suggests that 3D effects may be important in produc-
ing a power-law spectrum.

4. Interpretation and discussion

4.1. A toy model for dissipation

We propose a simple analytical model for the evolution of mag-
netic dissipation inspired by our simulations in an attempt to
extrapolate our results to realistic pulsar winds. In a steady state,
the radial variations of the Poynting flux is governed solely
by Joule dissipation between two spherical shells that we will
choose here to be of radius r = RLC and an arbitrary radius

r > RLC, such that

L(r) − L0 = −

∫ r

RLC

∫ π

0

∫ 2π

0
J · E r2 sin θdrdθdφ. (13)

To a very good accuracy, we have

J · E ≈ JθEθ ≈ JθBφ. (14)

To make further progress, we need to take a closer look at the
distribution of currents and fields in the vicinity of current sheets
where Joule dissipation is localized. Figure 9 shows the radial
profile of Bφ, Jθ and the product of the two for κ? = 0.2, 2, and
20 at a pulsar phase φ chosen such that it crosses only current
sheets and avoids magnetic islands. The spatial distribution of
J · E within islands is dipolar such that there is no net contribu-
tion integrated over their volume, in contrast to secondary cur-
rent sheets. The magnitude of the current carried by the particles
depends on the plasma multiplicity and is localized in the form
of thin sheets, as expected. At low multiplicities (κ? < 1), the
conduction current is small, too small in fact to explain the mag-
netic reversal, and it is not localized at the magnetic nulls. In this
regime, the current is mostly carried by the displacement current
(∂E/∂t, only possible for an oblique rotator), which is a logical
consequence of charge starvation in the wind. With increasing
multiplicities, the magnetic profile changes from a nearly sinu-
soidal shape at low-κ? to an asymmetric square shape at high-κ?,
with sharp gradients where the field reverses and where a strong
conduction current is localized. Thus, the electric field in Joule’s
terms may be understood as the reconnection electric field, Erec,
which represents a fraction of the upstream magnetic field, Bup

φ ,
such that

Erec = βrecBup
φ , (15)

where βrec is the dimensionless reconnection rate (Lyubarskii
1996; Uzdensky & Spitkovsky 2014).

Another important observation we can make from Fig. 9 is
that the magnetic field strength that contributes to dissipation is
always on the trailing edge of the spiral because of the asym-
metric nature of reconnection in the striped wind, the most pro-
nounced effect being visible at high multiplicities. This conclu-
sion is also compatible with the asymmetry in the phase-resolved
particle spectrum reported in Sect. 3.3. We find that the upstream
magnetic field strength at the trailing edge of the sheet, Bup

φ , is
on the order of the ideal split monopole field at all radii, even
though the striped-averaged field strength decreases with radius
due to dissipation, that is:

Bup
φ ≈ BMichel

φ = ∓
R

RLC
B?

( r?
r

)2
, (16)

such that the sheet is always fed with a fresh, non-reconnected
magnetic field. The electric current is given by Ampère’s law.
Assuming perfect symmetry on both sides of the current layer for
the sake of simplicity, we have (e.g., Cerutti & Philippov 2017)

4π
c

Jθδ = 2Bup
φ , (17)

where δ is the layer thickness. Putting everything together, the
Joule’s term within a single current sheet can be approximately
estimated as

J · E ≈
cβrec(Bup

φ )2

2πδ
=

3βrecL0

4πδ
sin2 θ

r2 · (18)
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Fig. 9. Radial profile of Jθ (dashed black line), Bφ (red line), and JθBφ
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The integral over φ at a constant radius and latitude vanishes
everywhere, except at two phases where the layers are located.
The angular width of each layer can be estimated as ∆φ ∼ δ/r,
such that Eq. (13) becomes

L(r) − L0 ≈ −
3βrecL0

2π

∫ r

RLC

∫ π

0

dr
r

sin3 θdθ, (19)

that is to say, dissipation is independent of the width of the cur-
rent layer. The integrals over θ and r lead to the final result,

L(r)
L0

= 1 − βrec ln
(

r
RLC

)
, (20)

where we absorbed the constant 2/π of order unity into the
reconnection rate, (i.e., βrec ← 2βrec/π). Applying this model to
simulation data provides a good description of the Poynting flux
decay and a direct measure of the rate of dissipation. Figure 10
shows the evolution of the dissipation rate with the plasma multi-
plicity. It is determined from the best-fit model to the dissipation
curves in Fig. 5 (bottom panel), assuming the evolution given
in Eq. (20). As expected, dissipation is low at low multiplicities
because the current is mostly carried away by the displacement
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Fig. 10. Evolution of the dissipation rate βrec (blue line, dots, and axis)
and the extrapolated full dissipation radius of the stripes Rdiss/RLC =
exp(β−1

rec) (red line, dots, and axis) with the typical plasma multiplicity
measured at secondary current sheets, κX. The estimated radius of the
Crab pulsar wind termination shock is shown by the horizontal dotted
line (RTS/RLC ∼ 109) for comparison.

current. The contribution from the conduction current increases
with the plasma supply until it reaches an approximate saturation
at high multiplicities where βrec ∼ 0.1−0.2. One should keep in
mind that the rate measured from the simulations includes addi-
tional physical effects neglected in the above toy model, which
are of order unity, such as asymmetries, deviations from the split
monopole solutions, or the filling factor of plasmoids, which do
not contribute to dissipation. These effects may account for the
slow increase in the dissipation rate at high multiplicities.

Another effect not captured by this simple model is dissipa-
tion due to the formation of vacuum gaps in the low-multiplicity
solutions, as reported in Cerutti et al. (2015) for an aligned rota-
tor. In the 2D equatorial plane simulations used here, Ω · B = 0,
and therefore no gap can form in this special configuration. We
would expect an additional source of dissipation at low, but finite
multiplicities in a full 3D setup, which we did not explore in this
work. In this sense, the model gives a lower limit of dissipation
in this regime. This being said, the real solution must smoothly
connect to the fully dissipationless vacuum solution (Deutsch
1955), meaning that dissipation should necessarily cease as we
asymptotically approach the vacuum regime, as reported here.

4.2. Implications

If the model presented above is a fair description of real astro-
physical pulsar winds, it has important astrophysical implica-
tions. The first observation to make is that dissipation depends
only on the reconnection rate. Studies of local plane-parallel
reconnection consistently find a high reconnection rate, βrec ∼

0.1−0.2 (see, e.g., Kagan et al. 2015, and references therein),
similar to what is reported here. This rate does not seem to
depend on anything as long as the layer is thin, meaning that it is
on the order of the plasma kinetic scales, δ ∼ de. In particular, it
should not depend on the plasma multiplicity as long as κ � 1,
as reported in Fig. 10, and thus the radius at which the striped
wind has fully dissipated should be similar for all pulsars pro-
ducing pairs (e.g., gamma-ray pulsars). In this sense, our results
suggest that there is a universal dissipation radius for all pulsar
winds loaded with pairs. Using Eq. (20) and assuming a naive
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extrapolation of the model to any radius, we predict a complete
decay of the Poynting flux at a radius

Rdiss = RLC exp
(
β−1

rec

)
∼ 102−104RLC (21)

for βrec = 0.1−0.2. Although this radius is quite sensitive to
the exact value of the reconnection rate, simulations show that
βrec is high, meaning that the striped wind will most certainly
decay entirely far before reaching its termination (Coroniti 1990;
Cerutti & Philippov 2017) unless it is truncated at short dis-
tances by an accretion disk or a companion star wind.

At this stage, it is important to emphasize that the expan-
sion of the current layer plays no role in dissipating the field,
as long as the layer thickness remains small compared with
the stripe half-wavelength, δ/πRLC � 1 (Lyubarsky & Kirk
2001; Kirk & Skjæraasen 2003; Zrake & Arons 2017), which is
the case in all of the simulations reported here. In contrast to
Eq. (21), this condition explicitly depends on the plasma mul-
tiplicity: A denser sheet is also a thinner one, thus the condi-
tion for which two consecutive sheets would overlap is pushed
further away as the multiplicity increases (Cerutti & Philippov
2017). Therefore, Rdiss should be seen as an upper limit for the
radius of full dissipation. It is also worth noting that we do not
find any evidence for a significant bulk acceleration of the wind
due to magnetic dissipation as anticipated by Lyubarsky & Kirk
(2001) and Kirk & Skjæraasen (2003). Here, reconnection pro-
ceeds at a similar rate even past the fast point where the bulk
Lorentz factor remains constant (Fig. 6). As discussed further
below, dissipation does not perform work on the wind as a bulk
but rather benefits hot pairs trapped within plasmoids.

The wind kinematics and the shape of the particle spec-
trum reported here also have important astrophysical conse-
quences. The commonly accepted picture is that the wind is
composed of cold, nearly monoenergetic pairs traveling at ultra-
relativistic velocities such that Γ ∼ 104−106 (Rees & Gunn
1974; Wilson & Rees 1978; Kennel & Coroniti 1984). While
most of the predicted wind properties are recovered here, we
find that the bulk Lorentz factor may not be as relativistic as
previously thought. A good proxy is given by the wind Lorentz
factor at the fast magnetosonic point, Γ∞ ∼ µ

1/3
M . The magnetiza-

tion at the light cylinder is poorly constrained mostly because of
the uncertainty of the plasma multiplicity, but it could be on the
order of

µLC
M =

B2
LC

4πκnGJmec2 =
ePBLC

4πmecκ
= 1.4 × 106P100B5κ

−1
4 , (22)

where P100 = P/100 ms is the pulsar period, B5 = BLC/105 G
and κ4 = κ/104, for a typical young gamma-ray pulsar. Hence,
we expect Γ∞ ∼ µ

1/3
M ∼ 100 at most, that is to say, more similar

to what is usually inferred in gamma-ray burst jets2. This gives
a good estimate of the bulk particle Lorentz factor throughout
the pulsar wind. It is also a fair estimate of the individual par-
ticle Lorentz factor located within ideal regions, that is to say
the unstriped polar regions and the inter-stripe medium where
the particle spectrum remains narrow and cold. Within the cur-
rent layers, relativistic reconnection leads to the formation of a
broad power law of index p ∼ −1, with a low-energy cutoff at
γ ≈ Γ∞ ∼ 102 and a high-energy cutoff at γ ≈ µLC

M ∼ 106.
The fundamental difference with the standard picture is that

the pairs accelerated in the sheet are not cold with γ = Γ,

2 The cascade developing at the polar caps, which is not captured here,
may give an additional bulk motion to the plasma flow injected near the
stellar surface, and thus may increase this upper estimate.

but instead the particles remain hot and trapped within the flux
ropes in the wind frame. Thus, we expect the pulsar wind to
inject ultra-relativistic pairs with a hard spectrum into the neb-
ula and not just at a single energy scale. Interestingly, apply-
ing this model to the Crab Nebula with the typical magneti-
zation scale quoted above, µM ∼ 106, could provide a nat-
ural explanation for the mysterious radio-electron component
responsible for the hard, low-energy emission from the nebula.
In the spectral modeling by Meyer et al. (2010), this population
is well fitted by a single power law of index −1.6 cutting off
at γmin ∼ 20 and γmax ≈ 2 × 105, which fits well within our
results. Although our spectrum is slightly too hard, a larger and
therefore more realistic separation of scales between the layer
thickness and the light-cylinder scale could lead to a significant
spectral steepening (Petropoulou & Sironi 2018). Pairs injected
into the shock could be further accelerated into the nebula by
some other mechanisms to form the softer X-ray to gamma-ray
electron component, which would naturally result in a smooth
transition between both components.

5. Summary

We performed large 3D PIC simulations of pulsar winds with a
focus on magnetic dissipation and particle acceleration within
the striped region. The global structure of the striped wind
is consistent with the split-monopole prediction (Michel 1973;
Bogovalov 1999). The current sheet is prone to the plasmoid
instability shortly after its launching at the light cylinder. This
instability leads to an efficient fragmentation of the sheet into
a network of interconnected flux ropes separated by secondary
thin current layers where the field reconnects, a structure rem-
iniscent of 3D plane-parallel reconnection studies. This chain
is highly dynamical and flux ropes form and merge to form
bigger structures, which may result in bright, short bursts of
radio emission (Philippov et al. 2019; Lyubarsky 2019) aligned
with the incoherent gamma-ray-pulsed emission from the sheet
(Cerutti et al. 2016). The sheet is also kink unstable, which leads
to a significant widening of the striped wind region at low mag-
netic obliquity. Reconnection in this environment proceeds in a
highly asymmetric way, in a qualitatively similar manner as the
dayside of the Earth’s magnetopause. More efforts are needed
to better understand asymmetric reconnection in the relativistic
regime using local studies.

Relativistic reconnection gradually consumes the oscillatory
component of the toroidal magnetic field. This feature is robust
against numerical resolution, grid spacing, and plasma magneti-
zation. The Poynting flux monotonically decreases with the dis-
tance to the light cylinder, reaching up to about 40% dissipation
at the outer parts of the box (i.e., r = 50 RLC). The dissipation
rate weakly depends on latitude within the striped region and on
the magnetic obliquity angle. Based on a large set of 2D simula-
tions restricted to the equatorial plane, we can establish that the
fate of the striped wind is not sealed by the sheet width as pre-
viously thought, but it is instead controlled by the dimensionless
reconnection rate βrec ≈ 0.2, which lies well within reported val-
ues in plane-parallel reconnection studies where βrec ∼ 0.1−0.2.
This rate is known to weakly depend on the system size and
plasma magnetization in the ultra-relativistic regime (σ � 1,
Werner et al. 2018), meaning here that dissipation should not
depend on other parameters such as the plasma multiplicity as
long as there is a large supply of pairs (κ � 1). Therefore,
we propose that there is a universal dissipation radius valid in
all pair-producing pulsars of order Rdiss/RLC = exp

(
β−1

rec

)
∼
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102−104, meaning that the stripes should disappear long before
reaching the wind termination shock radius in isolated systems
such as the Crab pulsar where RTS/RLC ∼ 109.

The wind bulk Lorentz is not as relativistic as previously
imagined. After crossing the fast magnetosonic point, the wind
speed quickly saturates to Γ∞ ≈ µ1/3

M and thus does probably
not exceed Γ∞ . 100, which is closer to the gamma-ray burst
jet Lorentz factor than the standard Crab pulsar wind model
where Γ ∼ 103−106 (Rees & Gunn 1974; Wilson & Rees 1978;
Kennel & Coroniti 1984). On top of the wind acceleration driven
by ideal processes, non-thermal particle acceleration proceeds in
the striped region, driven by reconnection. The particle spectrum
is consistent with high-σ reconnection simulations, meaning a
hard power-law distribution of index p ∼ −1 between γmin ∼

µ1/3
M and γmax ∼ µM. Scaled up to realistic Crab-like parameter

yields, the pulsar wind would be composed of ultra-relativistic
pairs distributed as dN/dγ ∝ γ−1 between 102 . γ . 105.
Injected at the shock front, the wind particles could then natu-
rally explain the mysterious hard radio component in the Crab
Nebula (Meyer et al. 2010).
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