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Abstract The continuous ranked probability score (CRPS) is a much used measure
of performance for probabilistic forecasts of a scalar observation. It is a quadratic
measure of the difference between the forecast cumulative distribution function (CDF)
and the empirical CDF of the observation. Analytic formulations of the CRPS can be
derived for most classical parametric distributions, and be used to assess the efficiency
of different CRPS estimators. When the true forecast CDF is not fully known, but
represented as an ensemble of values, the CRPS is estimated with some error. Thus,
using the CRPS to compare parametric probabilistic forecasts with ensemble forecasts
may be misleading due to the unknown error of the estimated CRPS for the ensemble.
With simulated data, the impact of the type of the verified ensemble (a random sample
or a set of quantiles) on the CRPS estimation is studied. Based on these simulations,
recommendations are issued to choose the most accurate CRPS estimator according
to the type of ensemble. The interest of these recommendations is illustrated with
real ensemble weather forecasts. Also, relationships between several estimators of the
CRPS are demonstrated and used to explain the differences of accuracy between the
estimators.
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1 Introduction

Verifying the quality of forecasts expressed in a probabilistic form requires specific
graphical or numerical tools (Jolliffe andStephenson2011), among themsomenumeri-
calmeasures of performance such as theBrier score (Brier 1950), theKullback–Leibler
divergence (Weijs et al. 2010) and many others (Winkler et al. 1996; Gneiting and
Raftery 2007). When the probabilistic forecast is a cumulative distribution function
(CDF) and the observation is a scalar, the continuous ranked probability score (CRPS)
is often used as a quantitative measure of performance. Classically (Matheson and
Winkler 1976; Hersbach 2000), the instantaneous CRPS is defined as the quadratic
measure of discrepancy between the forecast CDF, noted F , and 1(x ≥ y), the empir-
ical CDF of the scalar observation y

crps(F, y) =
∫
R
[F(x) − 1(x ≥ y)]2 dx, (INT)

where 1 is the indicator function.
Analytic formulations of crps(F, y) can be derived for most classical parametric

distributions, some of which are listed in Table 1. In some situations, the forecast CDF
may not be fully known, such as for ensemble numerical weather prediction (NWP)
or other types of Monte-Carlo simulations, or the forecast CDF may be known, but an
analytic formulation of the CRPS may not be derivable. In the latter case, one may be
able to sample values from F . In any case, in these two situations, the forecast CDF is
summarized with a set of M values xi=1,...,M . Following the convention in meteorol-
ogy, such a set will be called here an “ensemble”, and each value xi will be called a
“member”. The instantaneous CRPS must then be estimated with this ensemble. This
may be problematic when using the CRPS to compare parametric forecasts, whose
CRPS may be computed exactly, and forecasts whose CRPS is estimated based on
the limited information about F contained in the ensemble. The unknown error in the
CRPS estimation may lead to the wrong choice of the best forecast. Although meteo-
rological vocabulary is used, this situation can occur in other fields of geosciences too,
for instance when conditional simulations are used to sample from a probability distri-
bution and choose between competing techniques or settings (Emery and Lantuéjoul
2006; Pirot et al. 2014; Yin et al. 2016).

Usually, the instantaneous CRPS is averaged in space and/or time over several pairs
of forecast/observation. Candille (2003) and Ferro et al. (2008) showed that when the
ensemble is a random sample from F , the usual estimator of the instantaneous CRPS
based on Eq. (INT), introduced later, is biased: its expectation over an infinite number
of forecast/observation pairs does not give the right theoretical value. This bias stems
from the limited information about F contained in an ensemble with finite size M .
Several solutions have been proposed to remove this bias. Ferro (2014) introduced
the notion of fair score and a formula to correct the bias in the estimation of the
averaged CRPS. Müller et al. (2005) proposed two solutions to the same problem of
biased estimation of the ranked probability score (RPS), the version of the CRPS for
ordinal random variables. Adapted to the CRPS, their first solution would be to use an
absolute value instead of a square inside the integral in Eq. (INT). As demonstrated
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Table 1 List of distributions whose closed-form CRPS exists and were used in this study

Distribution Original reference

Beta: Y ∼ Beta(α, β) Taillardat et al. (2016)

Gamma: Y ∼ Gamma(α, β) Möller and Scheuerer (2013)

Gaussian mixture: Y ∼ ∑p
i=1 ωiN (μi , σi ), with Grimit et al. (2006)∑p

i=1 ωi = 1, ωi=1,...,p > 0

Generalized extreme value: Y ∼ GEV (μ, σ, ξ) Friederichs and Thorarinsdottir (2012)

Generalized Pareto: Y ∼ GPD(μ, σ, ξ) Friederichs and Thorarinsdottir (2012)

Log-normal: ln(Y ) ∼ N (μ, σ ) Baran and Lerch (2015)

Normal: Y ∼ N (μ, σ ) Gneiting et al. (2005)

Square-root truncated normal:
√
Y ∼ N 0(μ, σ ) Hemri et al. (2014)

Truncated normal: Y ∼ N 0(μ, σ ) Thorarinsdottir and Gneiting (2010)

The reference of the original article where to find the formula is also given. Taillardat et al. (2016) gathers
the closed form expression of the CRPS for these and other distributions

in Appendix A, this score for an ensemble is minimized if all the members xi equal
the median of F , which is obviously not the purpose of an ensemble. Their second
solution is to compute the RPS skill score against some ensemble of sizeM whoseRPS
is estimated by bootstrapping past observations. Although interesting, this solution
does not allow assessing the absolute performance of the ensemble, but only the
performance relative to this bootstrapped ensemble.

This study aims at improving heuristically the estimation of the average CRPS
of a forecast CDF under limited information. The information is limited in two
ways: (i) the CDF is known only through an ensemble as defined above, and (ii)
the average CRPS is computed over a finite number of forecast/observation pairs.
The problem is not to estimate the unknown forecast CDF F , but to estimate the
CRPS of F under limited information about F . To improve the estimation with this
limited information, the usual strategy is to correct the empirical mean score, as in
Ferro (2014) or Müller et al. (2005). Here the approach is to improve the estima-
tion of each term of the average, that is, the estimation of the instantaneous CRPS
crps(F, y).

The rest of this paper is organized as follows. Section 2 reviews several estimators
of the instantaneous CRPS proposed in the literature and demonstrates relationships
among them. In particular, it is shown that the four proposed estimators reduce to two
only. In Sect. 3, synthetic data are used to study the variations in accuracy of these
two CRPS estimators, with the size M of the ensemble and the way this ensemble is
built. These simulations lead to recommendations on the best estimation of the CRPS.
Section 4 illustrates issues in CRPS estimation with two real meteorological data
sets. Improvements in the inference obtained by following the recommendations from
Sect. 3 are shown on these data. Section 5 gives a summary of the recommendations
to get an accurate estimation of the instantaneous CRPS, concludes and discusses the
results.
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2 Review of Available Estimators of the CRPS

The instantaneous CRPS is defined as a quadratic discrepancy measure between the
forecast CDF and the empirical CDF of the observation

crps(F, y) =
∫
R
[F(x) − 1(x ≥ y)]2 dx . (INT)

Equation (INT) is called the integral form of the CRPS.
Gneiting and Raftery (2007) showed that, for forecast CDFs with a finite first

moment, the CRPS can be written as

crps(F, y) = EX |X − y| − 1

2
EX,X ′ |X − X ′|, (NRG)

where X and X ′ are two independent random variables distributed according to F ,
and EA is the expectation according to the law of the random variable(s) A. This is
called the energy form of the CRPS, since it is just the one-dimensional case of the
energy score introduced by Gneiting and Raftery (2007), based on the energy distance
of Székely and Rizzo (2013).

Taillardat et al. (2016) introduced a third expression of the CRPS, valid for contin-
uous forecast CDFs

crps(F, y) = EX |X − y| + EX X − 2EX XF(X), (PWM)

which is called the probability weighted moment (PWM) form of the CRPS because
its third term is a probability weighted moment (Greenwood et al. 1979; Rasmussen
2001; Furrer and Naveau 2007).

When F is known only through an M-ensemble xi=1,...,M , the above definitions
lead to the following estimators of the instantaneous CRPS

ĉrpsINT(M, y) =
∫
R

[
1

M

M∑
i=1

1(x ≥ xi ) − 1(x ≥ y)

]2

dx, (eINT)

ĉrpsNRG(M, y) = 1

M

M∑
i=1

|xi − y| − 1

2M2

M∑
i, j=1

|xi − x j |, (eNRG)

ĉrpsPWM(M, y) = 1

M

M∑
i=1

|xi − y| + β̂0 − 2β̂1, (ePWM)

respectively, where EX X is estimated by β̂0 = 1
M

∑M
i=1 xi , and EX XF(X) is esti-

mated by β̂1 = 1
M(M−1)

∑M
i=1(i − 1)xi . Without loss of generality, the members xi
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are supposed sorted in increasing order, and the size M of the ensemble is supposed
greater than two.

Candille (2003) and Ferro et al. (2008) showed that the expectation of Eq. (eINT)
over an infinite number of forecast/observation pairs is biasedwith, under conditions of
stationarity of the observation and the ensemble, and exchangeability of the members

EY ĉrpsINT(M,Y ) = EY crps(F,Y ) + 1

M
EX1,X2

|X1 − X2|
2

, (1)

where X1 and X2 are any two distinct members of one ensemble forecast. This relation
holds only when the ensemble is a random sample from F . Ferro (2014) proposed
the notion of fair score for an ensemble of random values, which leads to a fourth
estimator of the instantaneous CRPS, the fair CRPS defined as

ĉrpsFair(M, y) = 1

M

M∑
i=1

|xi − y| − λ̂2, (eFAIR)

where λ̂2 = 1
2M(M−1)

∑M
i, j=1 |xi − x j | estimates EX1,X2

|X1−X2|
2 , and is unbiased

when the members are independently sampled from F .
These four estimators reduce to only two since, as shown in Appendix B

ĉrpsINT(M, y) = ĉrpsNRG(M, y),

ĉrpsPWM(M, y) = ĉrpsFair(M, y).

The properties of only two estimators have to be studied. In light of the second equality,
the fair CRPScan be interpreted as a PWM-based estimator of the instantaneousCRPS,
which explains why it is an unbiased estimator of the average CRPS of a random
ensemble as proven by Ferro (2014). Indeed, the unbiasedness property of the mean
for the first term and of the PWMs for the second term, in the case of a random sample,
immediately proves that the two terms in Eq. (ePWM) are unbiased estimators of their
population counterpart, if the members are randomly and independently drawn from
F .

Moreover, the relationship

ĉrpsINT(M, y) = ĉrpsPWM(M, y) + λ̂2

M
(2)

holds for these two estimators, as shown in Appendix B. Equation (2) holds for a
single forecast/observation pair, and requires no assumption on the nature or statistical
properties of the ensemble.

3 Study with Simulated Data

The accuracy of the two instantaneous CRPS estimators presented above, ĉrpsPWM
(M, y) and ĉrpsINT(M, y), is studied with synthetic forecast/observation pairs. The
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forecast CDF F is chosen such that the theoretical CRPS crps(F, y) can be exactly
computed with a closed-form expression (see Table 1 for a list of such distributions).
To mimic actual situations when F is not fully known, two types of ensembles are
built from this forecast CDF. The two types of ensembles successively used in the
remaining of this section are random ensembles and ensembles of quantiles, defined
later. The estimators are then computed and compared to the theoretical value.

3.1 CRPS Estimation with a Random Ensemble

3.1.1 Methodology

Arandomensemble is a sample ofM independent draws from F . In actual applications,
a random ensemble may be viewed as M members from an NWP ensemble model, or,
more generally, as an M-sample from Monte-Carlo simulations. Protocol 1 describes
the simulation plan.

Protocol 1: Estimation of the CRPS with simulated random ensem-
bles
Input: M : number of members.

F : forecast CDF.
G: CDF of the observation.
N : number of ensemble forecast/observation pairs.

Output: N values of instantaneous CRPS for each estimator.
1 for n ← 1 to N do
2 Draw the observation y from G.
3 Compute the theoretical CRPS crpsth(F, y) with its closed-form expression.
4 Draw xi=1,...,M from F .
5 Compute and store ĉrpsINT(M, y) and ĉrpsPWM(M, y) with this ensemble.

3.1.2 Results

The results are presented for a standard normal forecast CDF F . For the sake of
simplicity the CDF of the observation is also standard normal (G = F).

Since the ensemble is random, the estimated CRPS is also a random variable that
depends on the observation y and the members xi=1,...,M . In order to study the vari-
ability of the estimated CRPS with the ensemble only, the observation is first held
constant (with a value of −0.0841427, for each n in Protocol 1), while N = 1000
ensembles of M members are drawn from F . The impact of M on the accuracy of
the estimated CRPS is assessed by observing Protocol 1 with different ensemble sizes
M .

The point-wise 10, 50 and 95% intervals of the estimation error crpsth − ĉrps (with
crpsth = 0.2365178 here) are computed over these 1000 ensembles for each ensemble
size M . The intervals contain the corresponding proportion of the 1000 computed
CRPS errors for a given ensemble size. As shown in Fig. 1 (left) for ĉrpsINT, the

123



Math Geosci (2018) 50:209–234 215

50 100 150 200 250 300

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Number of members

cr
ps

th
−

cr
ps

IN
T

10%
50%
95%

50 100 150 200 250 300

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Number of members

cr
ps

th
−

cr
ps

P
W

M

10%
50%
95%

Fig. 1 Intervals of estimation error of ĉrpsINT (left) or ĉrpsPWM (right) for a random ensemble of varying
size. Intervals are computed point-wise, with the 1000 CRPS of independently built random ensembles with
the same observation. The observation and members come from a standard normal distribution

error tends toward 0 when the ensemble size increases. However, important errors
(as high as ± 10% of crpsth) can still occur even for very large ensembles of several
hundreds of members. As shown in Fig. 1 (right), the estimator ĉrpsPWM exhibits a
similar behaviour for large random ensembles, as deduced from Eq. 2 if M → ∞.
But ĉrpsPWM becomes unbiased for much smaller ensemble sizes than ĉrpsINT. The
unbiasedness of ĉrpsPWM proven by Ferro (2014) holds only for ensembles with more
than about 20 members. The variability of the estimation, as quantified by the half-
width of the 50% central interval, may be important when the random ensemble
contains less than 50 members (more than 10% of crpsth, in Fig. 2). With increasing
ensemble sizes, the variability of this estimation does not scale linearlywith the number
of members, as shown in Fig. 2. Tripling the ensemble size from M = 100 to about
M = 300 decreases the half-width of the 50% central interval of the relative estimation
error by only about 2% (from 7 to 4%).

Common practice is to average instantaneous CRPSs over several locations and/or
times. Here, this is mimicked by taking the average of N instantaneous CRPSs gen-
erated according to Protocol 1, while no longer holding the observation constant. The
number of forecast/observation pairs N is varied from 1 to 1000. The size M of the
ensemble is also varied, with 10, 30, 50, 100 and 300 members. The average theoret-
ical CRPS and average estimation are computed for each combination of N and M .
As shown in the left of Fig. 3 for ĉrpsINT, a stable estimation of the average CRPS is
reached if the number of averaged estimations is large enough (more than 300 for a
random ensemble of 10 members). But a large ensemble is required to get an accurate
estimation of the true average CRPS. As shown in the right of Fig. 3, the averaged
ĉrpsPWM shows a better estimate than the averaged ĉrpsINT, even for small ensembles
and small numbers of averaged estimations.

These behaviours for the instantaneous and the averaged estimates remain true for
every distribution listed in Table 1, every parameter value and even if the G and F are
different (not shown).
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Fig. 2 Same as in Fig. 1, but for
the relative estimation error of
ĉrpsPWM
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Fig. 3 Evolution of the relative estimation error of the averaged ĉrpsINT (left) or ĉrpsPWM (right) with
the number of members for a random ensemble. The averaged CRPS is an arithmetic mean of the CRPS of
several pairs of ensemble/observation among 1000. The vertical grey dashed lines correspond to an average
computed with 30, 90 and 365 ensembles (to mimic a monthly, seasonal or yearly average CRPS)

The added value of these simulations to the results of Ferro (2014) is to show
the behaviour of ĉrpsPWM for small ensemble sizes M and finite numbers of fore-
cast/observation pairs. The poor scaling of this estimator’s variability with the
ensemble size has been empirically shown, which had never been done, to the best of
our knowledge. Finding a formula for the variability of ĉrpsPWM would be interesting
to quantify the estimation uncertainty for practical purposes. Theoretical error bounds
have been demonstrated but are not usable in practice since they require to know the
forecast distribution (not shown).

The conclusion of these simulations is that, for a random ensemble, the estimation
of the instantaneousCRPS is not very accuratewhatever estimator is used, but the aver-
aged CRPS can be estimated with a good accuracy. The unbiasedness of ĉrpsPWM for
random ensembles stems from the use of estimators that are unbiased for independent
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samples from the underlying distribution F . In practice, if one seeks to estimate the
potential performance of an ensemble with an infinite number of members, one should
use the PWM estimator of the CRPS. The integral estimator of the CRPS assesses the
global performance of the actual ensemble, and should be used for actual performance
verification.

3.2 CRPS Estimation with an Ensemble of Quantiles

3.2.1 Methodology

An ensemble of M quantiles of orders τi=1,...,M ∈ [0; 1] is a set of M values xi=1,...,M
such that: xi = F−1(τi )∀i ∈ {1, . . . , M}. Contrasting with a random ensemble, the
orders τi associated to the members xi are known.

In this case, the data are simulated according to Protocol 2. The two built ensembles
of quantiles are defined as:

– regular ensemble (reg): it is the ensemble of the M quantiles of orders τi , with
τi ∈ { 1

M , 2
M , . . . , M−1

M , M−0.1
M } of F . The last order is not 1 to prevent infinite

values.
– optimal ensemble (opt): it is the set of M quantiles of orders τi ∈ { 0.5M , 1.5

M , . . . ,
M−0.5

M } of F . This ensemble is called “optimal” because Bröcker (2012) showed
that this set of quantiles minimizes the expectation of the CRPS of an ensemble
over an infinite number of forecast/observation pairs, when using Eq. (eINT).

Protocol 2: Estimation of the CRPS with simulated ensembles of
quantiles
Input: M : number of quantiles.

F : forecast CDF.
G: CDF of the observation.
N : number of ensemble forecast/observation pairs.

Output: N values of the instantaneous CRPS for each estimator and type of quantile ensemble.
1 Compute the ensemble of M regular quantiles of F .
2 Compute the ensemble of M optimal quantiles of F .
3 for n ← 1 to N do
4 Draw y from G.
5 Compute and store the theoretical CRPS crpsth(F, y) with this observation.
6 Compute and store ĉrpsINT(M, y) and ĉrpsPWM(M, y) with this observation for the ensemble of

regular quantiles.
7 Compute and store ĉrpsINT(M, y) and ĉrpsPWM(M, y) with this observation for the ensemble of

optimal quantiles.

3.2.2 Results

Relative estimation errors of ĉrpsINT and ĉrpsPWM have been computed for a fixed
observation (N = 1, y = − 0.0841427) and regular and optimal ensembles, all built
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Fig. 4 Evolutionwith ensemble size of relative error of several estimations ofCRPS, for different ensembles
and different estimators of CRPS. All computation are done with the same observation for all forecasts.
The ensembles and the observation come from a standard normal distribution

from a standard normal distribution (G = F for the sake of simplicity). As shown in
Fig. 4, the CRPSs estimated with quantile ensembles clearly outperform the ĉrpsPWM
estimationwith one randomensemblewhatever the number ofmembers.Averaging the
ĉrpsPWM estimations of 1000 random ensembles gives a similar estimation accuracy
to the one of the best estimation with quantile ensembles, namely ĉrpsINT with optimal
quantiles. This configuration is not feasible in most applications, since it requires 1000
forecast/observation pairs with the same observation. Anyway, computing one set of
quantiles may be much simpler and quicker than creating 1000 random ensembles.
Among the estimation with ensembles of quantiles, the combination of ĉrpsINT and
optimal quantiles exhibits a dramatic improvement in accuracy over the other com-
bination, even for ensembles with less than 10 quantiles. Whatever the distribution
F is used, ĉrpsINT computed with the optimal quantiles gives a much more accurate
estimation, for all ensemble sizes, than the other combinations of estimator and type
of ensemble of quantiles (not shown).

In order to assess the robustness of the remarks in the last paragraph in regards to
the observation, data are simulated with Protocol 2 for several ensemble sizes M , with
N = 1000 ensemble forecast/observation pairs for each ensemble size. Note that, atM
fixed, the ensemble of quantiles is the same for all the forecast/observation pairs. From
the point-wise intervals of the relative estimation errors represented in Fig. 5, it appears
that computing ĉrpsINT with the optimal quantiles gives the most accurate estimation
of crps(F, y), whatever number of quantiles is used. With only a few tens of quantiles,
this estimation achieves a much higher precision than the others with several hundreds
of quantiles. Figure 5 also shows that, for finite ensembles of quantiles, the PWM
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Fig. 5 10, 50, 95 and 100% point-wise intervals of relative error for several combination of quantile
ensembles and CRPS estimator. Intervals are computed by drawing 1000 observations from a standard
normal distribution. Ensembles are regular (left column) or optimal (right column) quantiles of a standard
normal distribution. The CRPS is estimated with the PWM (top) or integral (bottom) estimator

estimator is biased, being too low (positive relative errors). Indeed, according toEq. (2),
since ĉrpsINT is an unbiased estimator of the average CRPS of an ensemble of quantiles
as shown here, and since λ̂2 is positive, ĉrpsPWM must be biased towards low values.

These conclusions hold for all the tried distributions and the set of parameters values
for each distribution (not shown). As for the poor performance of ĉrpsPWM with an
ensemble of quantiles, let us recall that ĉrpsPWM is a sum of terms that are unbiased
estimators of their population counterpart when computed with a random sample,
which is not the case of an ensemble of quantiles. The computation of ĉrpsINT uses
the approximation of the forecast distribution as a step-wise CDF, with a fixed stair-
step height 1

M . The difference in estimation accuracy with the type of quantiles comes
from the position of the stair steps.With regular quantiles, the step-wise CDF is always
located below the forecast CDF. With optimal quantiles, the associated quantiles are
shifted leftward, making the stair steps sometimes above F and sometimes below. This
better approximates the forecast CDF F than with regular quantiles, thus improves
the estimation of the CRPS.

3.2.3 Influence of Ties in an Ensemble of Quantiles

An ensemble of quantiles may be produced by statistical methods called quantile
regression (White 1992; Koenker 2005; Meinshausen 2006; Takeuchi et al. 2006).
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Some of these quantile regression methods can produce only a subset τ av
j=1,...,Nτ

∈
[0; 1] of Nτ orders. The quantiles associated to these available orders are called “avail-
able quantiles” hereafter and correspond to the abscissa of the black dots in Fig. 6.
If one requires a quantile with an order τ outside of the subset of available orders,
the quantile regression will not return the associated quantile of the forecast CDF
(abscissa of the blue circles in Fig. 6), but the available quantile corresponding to the
highest available order lower than τ (abscissa of the red triangles of Fig. 6). The set
of different values returned by the quantile regression method when certain orders
are requested is called the “unique quantiles” hereafter. It is a subset of the available
quantiles. The quantile regression methods with this feature will introduce many ties
in the produced ensembles of quantiles, as shown in Fig. 7 on real data. For the Cana-
dian ensemble forecasts, although 1002 regular quantiles are required from a quantile
regression method at one grid point and one lead time, the number of unique quantiles
returned by the quantile regression function varies from a few tens of values to a few
hundreds. On average, only about one hundred unique quantiles are produced in this
example. Some implementations of quantile regression methods, such as the function
rq in R package quantreg, have an option to produce the available orders τ av

j and
their associated quantiles. Other packages, such as quantregForest, have not yet
implemented this possibility, and will return only forecast quantiles with (potentially
many) ties.

In order to assess the impact of ties on the accuracy of the CRPS estimators for an
ensemble of quantiles, ensembles of quantiles with ties are simulated with Protocol 3,
with N = 1000 forecast/observation pairs. The left side of Fig. 8 shows that with only
Nτ = 30 available orders, the four estimates become inaccurate. The distribution of
the estimated CRPS becomes clearly biased whatever ensemble size is considered.
This bias is pessimistic (negative estimation errors) for most ensemble sizes, but may
be optimistic (positive estimation errors).

A way to address this issue of equal quantiles is to remove the ties by interpolation.
The first considered case is when the implementation of the quantile regressionmethod
do not propose to know the available quantiles. Protocol 3 is modified as follows at
lines 3 and 4: after computing the quantiles with ties, linear interpolation is done
between unique values to recover the number of required regular or optimal quantiles,
as explained in Fig. 6. As shown on the right side of Fig. 8, this interpolation results
in a better estimation accuracy, even though the curves are less smooth than when all
orders are available (compare with Fig. 5). The best CRPS estimation is now obtained
with ĉrpsINT and regular quantiles, with at least M = 30 regular quantiles to get
a sufficient accuracy. This behavior barely depends on the chosen distribution and
parameter value, but requiring 100 regular quantiles seems to be the minimal number
to get satisfactory accuracy, whatever the forecast distribution F is used (not shown).
If the available quantiles and orders can be produced by the implementation of the
quantile regression method, similar linear interpolation can be done relatively to the
associated points, that is, the black dots in Fig. 6. Figure 9 shows that this linear
interpolation nearly fully reproduces the good accuracy obtained when all orders are
available. The best estimation strategy is again to use ĉrpsINT with optimal quantiles,
albeit with a slightly worst accuracy than the one reached without ties.
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Fig. 6 Graphical illustration of the production of ties by quantile regressionmethods. The black continuous
line is the forecast CDF. The abscissa (resp. ordinates) of the Nτ = 4 black dots are the available quantiles
(resp. orders), that can produce the quantile regression method. The empty blue dots are the five requested
points. The red triangles are the five points actually obtained, due to the limited number of available quantiles
and orders. Within each group of obtained points whose abscissa is the same, only the point with the lowest
order is kept (three red diamonds) for removing the ties by interpolation. The interpolation function (dashed
red line) is a linear interpolation between the red diamonds, and a constant order of 0 or 1 outside (left and
right, respectively)

The influence of the number of available orders Nτ and the kind of post-processing
on ĉrpsINT is crucial as shown in Fig. 10. If the number of available quantiles is too
low, no matter the post-processing of the quantile ensemble, the estimated CRPS
will not converge to the true value due to insufficient information about F . The
number of available quantiles necessary to achieve a good accuracy depends on
the complexity of the forecast distribution: a gaussian mixture with many differ-
ent modes requires more available quantiles to be accurately described (not shown
here).

Based on these simulations, several recommendations can be drawn to esti-
mate the instantaneous CRPS of an ensemble of quantiles. First, if the quantile
regression cannot yield enough available quantiles (less than about Nτ = 30),
the instantaneous CRPS should not be used whatsoever. Even the average CRPS
should be used with care due to a (possibly large) estimation bias. However, if the
number of available unique quantiles is sufficient (more than 30), the estimation
of the instantaneous CRPS can be much improved by interpolating the quantiles
and using of ĉrpsINT. The best interpolation depends on the available informa-
tion: if the whole set of available quantiles in the quantile regression method is
not accessible, linear interpolation between the unique quantiles and their associ-
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Fig. 7 Number and percentage of unique quantiles among 1002 regular quantiles requested from a quantile
regression method applied to the Canadian ensemble model
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Fig. 8 Same as in Fig. 5 but with ties in the ensembles and only Nτ = 30 available orders (left), and after
removing ties by linear interpolation of the unique quantiles in the forecasts (right)

ated order toward regular quantiles is preferred. However, if the available quantiles
and orders can be known, linear interpolation of those quantiles and orders toward
optimal quantiles is the best approach. Table 2 sums up the recommendations to
estimate the instantaneous CRPS for a random ensemble or an ensemble of quan-
tiles.
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Fig. 9 Same as in Fig. 5, but with ties in the ensembles, only Nτ = 30 available orders, and linear
interpolation of the Nτ available quantiles

Protocol 3: Estimation of the CRPS with simulated ensembles of
quantiles, with ties
Input: M : number of quantiles.

F : forecast CDF.
G: CDF of the observation.
N : number of ensemble forecast/observation pairs.
Nτ : number of available quantiles.

Output: N values of instantaneous CRPS for each estimator and kind of quantile ensemble.
1 Draw uniformly in [0; 1] the Nτ available orders τav

j .

2 Compute the available quantiles of F : F−1(τav
j )∀ j ∈ {1, . . . , Nτ }.

3 Compute the ensemble of M regular quantiles of F . Make each regular quantile xi equal to the
available quantile with order τav

j immediately inferior to τi .

4 Compute the ensemble of M optimal quantiles of F . Make each optimal quantile xi equal to the
available quantile with order τav

j immediately inferior to τi .

5 for n ← 1 to N do
6 Draw y from G.
7 Compute and store the theoretical CRPS crpsth(F, y) with this observation.
8 Compute and store ĉrpsINT(M, y) and ĉrpsPWM(M, y) with this observation for the ensemble of

rounded regular quantiles.
9 Compute and store ĉrpsINT(M, y) and ĉrpsPWM(M, y) with this observation for the ensemble of

rounded optimal quantiles.
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Fig. 10 Influence of post-processing. The ensemble quantiles are post-processed by linear interpolation
between unique quantiles (linjitter) or between the Nτ available quantiles (fulljitter). Each panel represents
the same intervals as in Fig. 5 for ĉrpsINT computed from post-processed quantile ensembles with a varying
number Nτ of available quantiles

Table 2 Summary of recommendations to estimate the CRPS

Type of ensemble Condition Recommendation

Random The purpose is to assess the
performance of an infinite
ensemble

Use average ĉrpsPWM

The purpose is to assess the
performance of the actual
ensemble

Use average ĉrpsINT

Quantiles All orders available Use average ĉrpsINT with optimal quantiles

Nτ � 30 Use average ĉrpsINT with care

Nτ � 30 and available quantiles
unknown

Use average ĉrpsINT with linearly
interpolated regular quantiles between
unique quantiles

Nτ � 30 and available quantiles
known

Use average ĉrpsINT with linearly
interpolated optimal quantiles between
available quantiles
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4 Real Data Examples

With two real data sets, issues resulting from the uncertainty in the estimation of the
instantaneous CRPS are illustrated. The practical benefits of the recommendations
listed in Table 2 are highlighted.

4.1 Raw and Calibrated Ensemble Forecast Data Sets

The first forecast data set consists in four NWP ensembles from the TIGGE project
(Bougeault et al. 2010). Ten-meter highwind speed forecasts have been extracted from
four operational ensemble models issued by meteorological forecast services: the US
National Centers for Environmental Prediction (NCEP), the Canadian Meteorological
Center (CMC), the European Center for medium-range weather forecasts (ECMWF)
and Météo-France (MF). Those ensembles have respectively 21, 21, 51 and 35 mem-
bers. The study domain is France with a grid size of 0.5◦ (about 50 km), for a total
of 267 grid points. Available forecast lead-times are every 6h. The period goes from
2011 to 2014.

The second forecast data set is composed of two versions of each ensemble
calibrated with statistical post-processing methods. In order to improve the fore-
cast performance, each ensemble has been post-processed thanks to two statistical
methods: nonhomogeneous regression [NR, Gneiting et al. (2005)] and quantile
regression forests [QRF, Meinshausen (2006)]. In NR, the forecast probability dis-
tribution F is supposed to be some known distribution: here the square root of
forecast wind speed follows a truncated normal distribution whose mean and vari-
ance depend on the ensemble forecast. This is similar to the work of Hemri et al.
(2014), who also gives the closed form expression of the instantaneous CRPS
for this case. QRF is nonparametric and yields a set of quantiles xi with chosen
orders τi . This study uses a simplified version of the model proposed in Tail-
lardat et al. (2016). Since QRF is nonparametric, the CRPS has to be estimated
with limited information. Furthermore, QRF cannot yield every order and may
lead to many ties among predicted quantiles, as seen in Fig. 7. To the best of our
knowledge, no implementation of QRF in R allows knowing the available quan-
tiles. Post-processing was done separately for each of the 267 grid points, each
ensemble and each lead time. The regression was trained with cross-validation:
3years were used as training data, the fourth one being used as test data. The
four possible combinations of three training years and one test year were tested.
The raw ensembles can be seen as random ensembles whereas the ensembles cal-
ibrated with QRF are ensembles of quantiles as defined above. The observation
comes from a wind speed analysis made at Météo-France, presented in Zamo et al.
(2016).

4.2 Issues Estimating the CRPS of Real Data

In Figs. 11 and 12, the CRPS is estimated with the first M members of the raw
CMC ensemble at one grid point and for lead time +42 h. First, as shown in
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Raw cmc, longitude: 0° latitude: 48° lead time: +42h year: 2012
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Fig. 11 Scatter plots of instantaneous CRPS computed for raw ensemble forecasts, with the two CRPS
estimators. The forecasts are for one grid point of the Canadian ensemble forecast model. The number of
members goes from 2 to 21 (the actual size of the ensemble). Each point corresponds to one forecast (one
date and valid time)

Fig. 11, for very small ensemble sizes, differences between ĉrpsINT and ĉrpsPWM
may be huge. With an increased ensemble size, both estimators get very similar
values. Even for the largest number of members, ĉrpsINT is systematically higher
than ĉrpsPWM, in agreement with Eq. (2). These differences result in important dif-
ferences on the averaged CRPS, as shown in Fig. 12, representing the evolution
with M of the yearly averaged ĉrpsINT and ĉrpsPWM. Whereas the yearly averaged
ĉrpsPWM is nearly independent of M , the average ĉrpsINT requires a minimum ensem-
ble size to yield a stable value. But even then, the two estimators do not yield the
same average CRPS: for the year 2011, on average ĉrpsINT(M = 21) � 0.75m/s
whereas ĉrpsPWM(M = 21) � 0.7m/s, a difference of 7%. These conclusions from
Fig. 12 are in agreement with those from Fig. 3, that shows that the average ĉrpsPWM
attains the true value with much smaller ensembles than ĉrpsINT. The left side of
Fig. 3 exhibits negative estimation errors, which is in agreement with the averaged
ĉrpsINT being higher than the averaged ĉrpsPWM in Fig. 12 and in agreement with
Eq. (2).

Figure 13 uses the version of the CMC ensemble calibrated with QRF. For each of
the two sets of quantiles, ĉrpsINT and ĉrpsPWM are computed for each forecast date
and averaged over each test year. The number M of requested quantiles is varied from
2 to 50 and are either of regular or optimal orders. Figure 13 shows the evolution of the
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Model: raw cmc, longitude: 0° latitude: 48° lead time: +42h
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Fig. 12 Evolution of the yearly averaged CRPS with the number of members for the raw CMC ensemble.
Each panel contains the average CRPS computed by averaging the instantaneous CRPS estimator, ĉrpsINT
(left) or ĉrpsPWM (right). Each curve is computed by averaging the estimated instantaneous CRPS over one
test year, for forecasts at one grid point and for one lead time

four estimated average CRPSwith the number of quantiles, for the same grid point and
lead time as above. First, the average ĉrpsINT decreases rapidly toward some value,
whatever the type of quantile. Second, the yearly averaged ĉrpsPWM is not independent
of the number of quantiles, as it was independent of the number of members in Fig. 12.
Here, it slowly increases toward some value for a fixed type of quantile. Third, the limit
values are on average ĉrpsPWM(50) � 0.48m/s, ĉrpsINT(50) � 0.47m/s a difference
of only 2%. Last, the rate of evolution of the average CRPS with the ensemble size
strongly depends on the choice of the CRPS estimator and of the type of required
quantiles. For these data, removing ties in the forecast quantiles does not change the
conclusions (not shown). In agreement with the recommendations from the simulated
data, the fastest converging estimate is the average ĉrpsINT computed with optimal
quantiles. Other ensembles, grid points and lead-times give similar results (not shown).

4.3 Issues on the Choice Between QRF and NR

For the real data set, the CRPS of QRF has been estimated with ĉrpsINT and ĉrpsPWM
computed with optimal quantiles, and ties have been kept or removed by interpola-
tion. Figure 14 shows the proportion of times QRF gets a lower CRPS than NR, out
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cmc calibrated with QRF, longitude: 0° latitude: 48° lead time: +42h
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Fig. 13 Evolution with the number of members of the estimated CRPS averaged over 1year for CMC
ensemble forecast calibrated with quantile regression forests. Two sets of quantiles are requested: regular
(left) and optimal (right). Ties between quantiles are not removed. Equations (eINT) (top) and (ePWM)
(bottom) are used to estimate the instantaneous CRPS for each quantile sets. Each curve is then computed
by averaging the estimated instantaneous CRPS over 1year, for forecasts at one grid point and for one lead
time

of the 365 forecasts during test year 2012, for one grid point and one lead time with
calibrated CMC data. The proportion of times QRF outperforms NR strongly depends
on the number of quantiles, but stabilizes at similar values when ĉrpsINT or ĉrpsPWM
is used. In agreement with the conclusions on simulated data, the proportion stabi-
lizes with less quantiles when ĉrpsINT is used. With too few quantiles (less than about
20), the difference of performance between QRF and NR may be deemed significant
depending on the estimator. But in this specific case, after the curves have stabilized,
the performance of QRF and NR are not statistically different to the level 0.01 for all
the estimations. This shows that the choice of the best post-processed forecast may
be misguided by poor performance estimates if the wrong estimator is used and/or
not enough quantiles are required. The number of available quantiles is unknown,
but has been estimated to be at least 52 for this test year. Based on the recommen-
dations in Table 2, the best method to estimate the CRPS of QRF would be to use
ĉrpsINT and at least 30 optimal quantiles, which is in agreement with the previous
remarks.
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Fig. 14 Proportion of forecastswhenQRFgets a lowerCRPS thanNR, for calibratedCMCensemble, at one
grid point, for one lead time and one test year. QRF yields M optimal quantiles and its CRPS is estimated
with ĉrpsPWM (continuous line) or ĉrpsINT (dashed line), without removing ties (black curves) or after
removing ties with linear interpolation between unique quantiles (red curves). NR’s CRPS is computed
with the closed form expression available in Hemri et al. (2014). The grey zone is the 0.01-confidence
interval that the proportion is not significantly different from 0.5 (quantiles 0.995 and 0.005 of a binomial
distribution with 365 tries)

5 Conclusions

A review of four estimators of the instantaneous CRPS when the forecast CDF is
known through a set of values have been done. Among these four estimators pro-
posed in the literature, only two, called the integral estimator and the probability
weighted moment estimator, are not equal. Furthermore, a relationship between these
two estimators has been demonstrated and generalizes to the instantaneous CRPS of
any ensemble, a relationship established by Ferro et al. (2008) for the average CRPS
of a random ensemble. With simulated data, the accuracy of the two estimators has
been studied, when the forecast CDF is known with a limited information and the
number of forecast/observation pairs is finite. The study leads to recommendations
on the best CRPS estimator depending on the type of ensemble, whether random or a
set of quantiles. For a random ensemble, the best estimator of the CRPS is the PWM
estimator ĉrpsPWM if one wants to assess the performance of the ensemble of infinite
size, whereas the integral estimator ĉrpsINT must be used to assess the performance
of the ensemble with its current size. For an ensemble of quantiles, ties introduced
by quantile regression methods strongly affect the estimation accuracy, and removing
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these ties by an interpolation step is paramount to allow a good estimation accuracy. If
the number of available quantiles is too low (say, Nτ ≤ 30) all the studied estimators
exhibit a strong bias. But if the number of available quantiles is larger, the best estima-
tion is obtained by computing the integral estimator ĉrpsINT with linearly interpolated
quantiles, between the available quantiles if they are known or between the unique
quantiles otherwise.

The established relationships between the estimators proposed in the literature have
been linked to previous results. These relationships also explain why an estimator is
more accurate for one type of ensemble and not for the other. The PWM estimator
performs better on random ensembles because it is based on estimators that are unbi-
ased for independent samples from the true underlying distribution. On the other hand,
the integral estimator gives a good estimate when computed with optimal quantiles.
This is because regular weights are associated to the members in the estimator for-
mula but, when using optimal quantiles, the associated quantiles are shifted to better
approximate the underlying forecast CDF.

The important consequences on the choice of method of estimation of the CRPS has
also been illustrated on real meteorological data with raw ensembles and calibrated
ensembles. As an example, the comparison of several calibrated ensembles may be
mislead by a poor estimate of the average CRPS of ensembles of quantiles.
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AWhat is Elicited When the 1-Norm CRPS of an Ensemble is
Minimized?

Let {xi }i=1,...,M be an ensemble of M values. Let Fe(x) = ∑M
i=1 ωi1(x ≥ xi ) be the

associated empirical CDF, with weights ωi , such that ωi ≥ 0 ∀i ∈ {1, . . . , M} and∑M
i=1 ωi = 1. Let y be the observation.
Following Müller et al. (2005), the 1-norm CRPS of this ensemble relative to this

observation is defined as

crps1(Fe, y) =
∫
R

|Fe(x) − 1(x ≥ y)|dx .

This can be rewritten in a more interpretable form.
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crps1(Fe, y) =
∫ y

−∞

∣∣∣∣∣
M∑
i=1

ωi1(x ≥ xi )

∣∣∣∣∣ dx

+
∫ +∞

y

∣∣∣∣∣
M∑
i=1

ωi (1(x ≥ xi ) − 1)

∣∣∣∣∣ dx

=
∫ y

−∞

M∑
i=1

ωi1(x ≥ xi )dx

+
∫ +∞

y

M∑
i=1

ωi (1 − 1(x ≥ xi )) dx

=
M∑
i=1

ωi

[ ∫ y

−∞
1(x ≥ xi )dx

+
∫ +∞

y
1 − 1(x ≥ xi )dx

]
.

If y ≥ xi

∫ y

−∞
1(x ≥ xi )dx =

∫ xi

−∞
0dx +

∫ y

xi
1dx = y − xi ,

and

∫ +∞

y
1 − 1(x ≥ xi )dx =

∫ +∞

y
0dx = 0.

If y ≤ xi

∫ y

−∞
1(x ≥ xi )dx =

∫ y

−∞
0dx = 0,

and

∫ ∞

y
1 − 1(x ≥ xi )dx =

∫ xi

y
1dx +

∫ +∞

xi
0dx = xi − y.

Therefore, ∀y and ∀i
∫ y

−∞
1(x ≥ xi )dx +

∫ +∞

y
1 − 1(x ≥ xi )dx = |y − xi |.
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Finally

crps1(Fe, y) =
M∑
i=1

ωi |y − xi |.

The 1-norm CRPS is just the weighted mean of the absolute error of each member.
The average 1-normCRPS is thusminimized if all themembers are equal to themedian
of the observation CDF (Gneiting 2011).

B Relationships Between the Estimators of the CRPS

Without loss of generality, the forecast is an ensemble of M values xi=1,...,M sorted
in increasing order.

B.1 Equality of ĉrpsFair and ĉrpsPWM

Following the definition of L-moments and their relationshipwith PWMs (Wang 1996;
Hosking 1990), one can rewrite

λ̂2 = 1

2M(M − 1)

M∑
i, j=1

|xi − x j |

= 2β̂1 − β̂0

= 1

M(M − 1)

M∑
i, j=1

(2i − M − 1)xi , (3)

where λ̂2, β̂1 and β̂0 are estimators of the second linear moment, the PWM of order 1
and the PWM of order 0 (i.e. the average), respectively. These estimators are unbiased
if the ensemble is a random sample.

Introducing these notations in Eq. (eFAIR) leads to

ĉrpsFair(M, y) = 1

M

M∑
i=1

|xi − y| + β̂0 − 2β̂1

= ĉrpsPWM(M, y).

B.2 Equality of ĉrpsNRG and ĉrpsINT

As Gneiting and Raftery (2007) showed, the representations in Eqs. (INT) and (NRG)
are equivalent for forecast CDFs with a finite first moment. Since empirical distribu-
tions have a finite first moment, and since Eqs. (INT) and (NRG) reduce to Eqs. (eINT)
and (eNRG) respectively, equality of ĉrpsINT and ĉrpsNRG follows immediately.
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Thanks to Pr. Tilmann Gneiting for this proof, much more straightforward than the
one initially proposed.

B.3 Relationship Between ĉrpsPWM and ĉrpsNRG

Using Eq. (3) leads to

ĉrpsNRG(M, y) = 1

M

M∑
i=1

|xi − y| − 2M(M − 1)

2M2

(
2β̂1 − β̂0

)

= 1

M

M∑
i=1

|xi − y| + β̂0 − 2β̂1 + λ̂2

M

= ĉrpsPWM(M, y) + λ̂2

M
.
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