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The need for high efficiency energy production, conversion, storage and transport

is serving as a robust guide for the development of new materials. Materials with

physical-chemical properties matching specific functions in devices are produced

by suitably tuning the crystallographic- defect- and micro-structure of the involved

phases. In this review, we discuss the case of Rare Earth doped Ceria. Due to

their high oxygen diffusion coefficient at temperatures higher than ∼500◦C, they are

very promising materials for several applications such as electrolytes for Solid Oxide

Fuel and Electrolytic Cells (SOFC and SOEC, respectively). Defects are integral part

of the conduction process, hence of the final application. As the fluorite structure

of ceria is capable of accommodating a high concentration of lattice defects, the

characterization and comprehension of such complex and highly defective materials

involve expertise spanning from computational chemistry, physical chemistry, catalysis,

electrochemistry, microscopy, spectroscopy, and crystallography. Results coming from

different experimental and computational techniques will be reviewed, showing that

structure determination (at different scale length) plays a pivotal role bridging theoretical

calculation and physical properties of these complex materials.

Keywords: rare earths doped ceria, energy, defects chemistry, structure, diffraction, microscopy, spectroscopy,

theoretical calculations

INTRODUCTION

Pure and doped cerium oxides have high catalytic, oxygen exchange and charge transport
performances. The pure compound easily exchanges oxygen with the atmosphere and undergoes
oxidation-reduction cycles, based on the Ce3+/Ce4+ redox couple, making CeO2 useful for many
catalytic processes especially in nanostructured form, to maximize the surface to bulk ratio. On
the other hand, doping with lower valent cations (e.g., trivalent rare earth cations, RE3+) depresses
Ce3+ concentration and introduces a huge amount of oxygen vacancies (VOs) so increasing the O
diffusion coefficient, paving the way to high ionic conductivity at reasonable low T-values (500–
700◦C). Hence, RE-doped CeO2 solid solutions are candidates for applications as electrodes and/or
electrolytes in Solid Oxide Fuel Cells (SOFC) and Electrolysis Cells (SOEC).

Nevertheless, doping introduces a large amount of defects which form complex and hierarchical
architectures depending on dopant nature and amount, crystallite size, and even synthetic path.
Defects architectures deeply affect the structure at different length scales with not obvious
consequences on physical properties.
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The combination of technological interest and tricky scientific
problems attracted the attention of the scientific community
in the last decades like flies to honey resulting in hundreds
of research and review papers covering a wide part of
material science spectrum. In fact, the characterization and
comprehension of such complex and highly defective materials
involve expertise spanning from computational chemistry to
physical chemistry, catalysis, electrochemistry, spectroscopy,
microscopy and crystallography making a hard task to build a
summa of existing literature.

We do not pretend to climb such a high mountain. This
review addresses the close relationship among defect chemistry,
structure, and physical properties. Some recent results from
various experimental and computational techniques will be
reviewed, showing that structure determination (at different scale
length) plays a pivotal role bridging theoretical calculations and
physical properties.

After a brief introduction on technological applications, we
will introduce the defect chemistry of pure and doped cerium
oxide. Then structural, spectroscopic and computational tools
adopted to investigate them are reviewed and discussed.

TECHNOLOGICAL APPLICATIONS OF
CEO2-BASED MATERIALS

Ceria is one of the most studied mixed ionic and electronic
conducting materials and benefits of outstanding redox
properties associated to the easy interconversion between Ce(III)
and Ce(IV) (Trovarelli, 1996). Its applications span from three-
way catalyst in automotive industry to electrolyte in Solid Oxide
Fuel Cells (Montini et al., 2016).

SOFCs at intermediate (500◦ <T<700◦C) and high
temperature (T>800◦C) have high energy conversion efficiency
and high compatibility with many fuels without suffering from
CO poisoning. They are promising devices for innovative energy
applications where ceria derivatives can be used in different ways,
as a catalyst in both cathodes and anodes, as protective layer
on cathodes to limit aggressive action of Y2O3 stabilized ZrO2

(ZYO) electrolyte, and as electrolyte (Montini et al., 2016).
Ceria is a very interesting anodic material thanks to its

capability of oxidizing carbon containing fuels (Park et al., 1999;
McIntosh and Gorte, 2004) while still showing an extended
electrochemically active area. Although undoped CeO2 is not a
good ionic conductor, doping with lower valent oxides, like e.g.,
Samaria, induces the formation of VOs thus increasing oxygen
ion conductivity thanks to a vacancy jumpmechanism (Koettgen
et al., 2018). Performance can be enhanced by improving the
ionic conductivity of the anode (Zhu and Deevi, 2003). Similar
results have been obtained for gadolinium doped ceria (CGO)
(Nakamura et al., 2008; DeCaluwe et al., 2010; Chueh et al.,
2011; Papaefthimiou et al., 2013; Feng et al., 2014), which
is characterized by both high surface electroactivity toward
H2 oxidation and mixed ionic/electronic conductivity at high
temperatures (Nakamura et al., 2008; DeCaluwe et al., 2010;
Chueh et al., 2011; Papaefthimiou et al., 2013; Feng et al., 2014;
Riegraf et al., 2017). Anode tolerance to sulfur is an important

property since sulfur, contained in SOFC fuel as natural gas and
bio gas, is a detrimental poison for the cell efficiency (Riegraf
et al., 2017). To overcome this problem and increase sulfur
tolerance, Cu and Ni were added on the anode surface with
promising results (He et al., 2005; Riegraf et al., 2017). The use of
a Cu-CGO in H2-feeded SOFC maintains fuel cell performance
in the presence of sulfur-based impurity levels up to 445 ppm
(He et al., 2005). As to Ni-CGO anodes for CO conversion
tolerance has been demonstrated at H2S concentrations up to
20 ppm (see Figure 1) and the sulfur poisoning behavior was
reversible for the investigated short exposure times (Riegraf et al.,
2017). Also, infiltration of CGO nanoparticles into porous Ni-
CGO-based SOFC reduces sulfur poisoning and is beneficial to
stabilizing the performances of SOFCs: infiltrated SOFCs show
stable performance with sulfur contaminated fuel for over 290 h,
while unmodified SOFCs become inoperative after 60 h (Hays
et al., 2018).

Anodes based on Ni-Samaria-doped ceria (Ni-CSO) show
better long-term durability and performance in SOFCs fueled
with humidified methane than Ni-ZYO. This improvement was
attributed to higher catalytic activity and electronic conductivity
of Ni-CSO (Lee et al., 2013).

Another important parameter affecting SOFC performances
is the morphology of the catalyst used as anode. As reported in
Montini et al. (2016) Pd@CeO2 core–shell systems have good
activity as anode in a SOFC fed by hydrogen and methane. The
core–shell structure provides an extra stabilization enhancing
high temperature performance (Adijanto et al., 2013).

Ceria can be also used as a protective layer on cathodes of
SOFC to limit the aggressive action of ZYO electrolytes (Montini
et al., 2016). Cathode in high-performance SOFCs are usually
based on La1−xSrxCo1−yFeyO3−δ. When they are applied on
ZYO an interlayer of SrZrO3 is formed, which modifies the
resistance toward worse performance. This undesired reaction
can be limited by introducing a layer of CGO between
lanthanum-modified oxide and ZYO (Szász et al., 2017). This
interlayer can interdiffuse in ZYO, improving performances, but
it is strongly dependent on the CGO sintering temperature (Szász
et al., 2017).

Due to their peculiar ionic conductivity, ceria and ceria-
derivatives are extensively studied as solid electrolytes in SOFC
for intermediate and low temperatures (Inaba and Tagawa,
1996). A high oxygen ion conductivity in the electrolyte is
necessary to obtain good performance, and, among challenging
materials, the very promising ones are rare-earth (RE) doped
ceria Ce1−xRExO2−x/2 (Mogensen et al., 2000). As observed
above, an increase in ionic conductivity is obtained by increasing
VOs through doping ceria. Gadolinium, samarium and yttrium
are typical dopants (Steele, 2000; Montini et al., 2016). Bulk ionic
conductivity of rare earths doped ceria will be the main subject of
section Defect Chemistry and Transport Properties.

Crystal size is another important parameter since for
polycrystalline samples bulk and grain boundary domains
affect conductivity differently. In the bulk, oxygen ions jump
through the regular lattice, but at grain boundaries they
do along or across dislocations and in space charge zones.
For small dopant fractions, grain boundary conductivity is
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FIGURE 1 | i–V curves of the (A) Ni/CGO- and (B) Ni/YSZ-based cells. Experiments were conducted at 850◦C. The reformate consisted of gas mixture IV (blue)

containing 7% H2, 7% H2O, 20% CO, 20% CO2, and 46% N2, and the reference mixture V (red) consisted of 7% H2, 7% H2O, 86% N2. i–V curves were recorded

with (squares) and without (circles) the addition of 20 ppm of H2S. Reprinted with permissions from Riegraf et al. (2017). © 2017 American Chemical Society.

low thus limiting the total conductivity. Instead, for large
dopant concentration, the conductivity is defined by the
low bulk conductivity. Nanostructuring causes a conductivity
enhancement due to a larger contribution of grain-boundary
conductivity in comparison with traditional polycrystalline solids
(Koettgen et al., 2018) and also a better electrode activity (Tuller,
2000; Guo et al., 2002). Macroscopic charge transport through
nanometric materials can be attained by means of high-pressure
spark plasma sintering processes that form dense samples
(>99%) without growing nanoparticles (Anselmi-Tamburini
et al., 2006).

All these aspects are also important when cerium based
materials are applied in SOECs, where they play the same role as
in SOFC. In these devices hydrogen, carbon monoxide or syngas
can be obtained by high temperature electrolysis of CO2 and
H2O (Duboviks et al., 2014). However, there are drawbacks in
SOECs based on zirconia-derived electrolyte that prevented their
commercialization so far. The most important is the deposition
of carbon at the electrode-electrolyte interface, demonstrated
by Raman spectroscopy (Duboviks et al., 2014). Carbon at the
interface reduces the number of active sites and, in the worst case,
delaminate the interface (Navasa et al., 2018). This is especially
relevant when the co-electrolysis of CO2 and H2O is performed
at high current densities. The presence of an interlayer of ceria
derivatives between Ni-based electrode and Ni-ZYO electrolyte
improve performances (Navasa et al., 2018), owing to different
carbon deposition characteristics of ceria and Ni-ZYO (Duboviks
et al., 2015; Li et al., 2015; Hartvigsen et al., 2017).

DEFECT CHEMISTRY AND TRANSPORT
PROPERTIES

The outstanding properties described above are closely related
to the high oxygen diffusion coefficient and to the capability of
pure and doped ceria of exchanging oxygen with the atmosphere.

Being oxygen ions charged particles, this implies also high
ionic conductivity and fast redox reactions. In this section we
will present and briefly discuss the charge transport properties,
focusing on bulk conductivity of polycrystalline samples. Readers
interested in surface phenomena are referred to two recent
reviews focused on ceria catalytic properties (Montini et al., 2016;
Trovarelli and Llorca, 2017).

Firstly, we will introduce defect equilibria, limiting the
analysis to zero-dimensional species, thus excluding one-
and two-dimensional structures such as dislocations and
antiphase boundaries (APB). Then, we will present conductivity
experiments pointing out the open problems raised by the
complex trends of conductivity σ as a function of defect nature
and concentration.

Defect Chemistry
Starting from pure ceria, let’s consider first the formation of
anti-Frenkel (AF) defects: an oxygen ion jumps to an interstitial
site, leaving an VO at the O site (Mamontov and Egami, 2000).
Following the Kröger-Vink notation (Kröger, 1977), the defect
equation is:

OO
−→
←V••O + Oi

′′ (1)

AF defects are supposed to be involved in the oxygen storage
capacity of these materials, especially in nanocrystalline form
(Mamontov et al., 2000).

VOs can be also formed by the interaction of CeO2−δ with the
atmosphere, following the equilibrium:

OO
−→
←V••O + 2e′ +

1

2
O2 (g) (2)

Oxygen deficiency δ values vs. temperature and oxygen partial
pressure pO2 from different authors were reviewed by Mogensen
et al. (2000).
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For each VO, two electrons are injected in the conduction
band (Tuller and Nowick, 1979). The pertinent equilibrium
constant is:

Kn =
[

V••O
] [

e′
]2
pO

1/2
2 (3)

where pO2 is the oxygen partial pressure. Electrons produced
in equilibrium (2) form adiabatic small polarons and electronic
conduction is achieved via an activated diffusive hopping
mechanism involving Ce4+ to Ce3+ reduction (Tuller and
Nowick, 1977; Chiang et al., 1996; Oliva et al., 2004; Farra et al.,
2013). Electronic conductivity σe can be expressed as:

σ e = neq
µ0

T
exp

(

−
EH

kT

)

(4)

In Equation (4), ne and q are the electron concentration in
the conduction band and electric charge, respectively, µ0 is the
T-independent part of the electron mobility term, EH is the
hopping activation energy of the polaron and k is the Boltzmann’s
constant.

Considering the electro-neutrality condition 2
[

V••O
]

=
[

e′
]

,
electron concentration in the conduction band and oxygen
partial pressure are related by:

ne =
[

e′
]

=
3
√

2KnpO
−
1/6

2 (5)

Doubly ionized VOs are dominant at low δ, while defects
interactions and single ionized VOs become important at larger
δ (Tuller and Nowick, 1979), bringing to different equilibria
(Mogensen et al., 2000). In any case, an oxygen partial pressure
dependent conductivity is an efficient way to detect electronic
contribution to charge transport in non-stoichiometric oxides
(Scavini et al., 1994).

Upon doping ceria with trivalent RE ions, RE3+ substitute
Ce4+ and VOs are introduced in the structure for charge
compensation. Doping occurs during the synthesis process and
the reaction can be described using the following equation:

(1− x)CeO2 +
x/2RE2O3

−→
← (1− x)CeCe + xRECe

′

+
(

2− x/2
)

OO +
x/2V

••

O (6)

Equation (6) assumes trivalent cations only. If not, VO

concentration differs from x/2.
Ceria doped materials display high oxygen mobility via a

vacancy diffusion mechanism and, as a consequence, high ionic
conductivity σi. σi can be expressed as Tuller and Nowick (1975):

σ i = ni
νa2q2

4kT
exp

(

1Si

k

)

exp

(

−
Ei

kT

)

=
σ 0,i

T
exp

(

−
Ei

kT

)

(7)

where ni =
[

V••O
]

, is proportional to the probability to
find a vacant site around the jumping oxygen ion, Ei and
1Si are the activation energy (Enthalpy) and Entropy for
oxygen diffusion, respectively, q is the charge (=2e), k is the
Boltzmann constant, υ is a frequency factor and a/2 (i.e., half

of the cell parameter) is the jump distance for an VO, along
the <100> crystallographic direction (Mogensen et al., 2000;
Koettgen et al., 2018). According to equilibrium (6), RE doping
introduces additional VOs; also, the presence of the chargedRE′Ce
defects changes the electro-neutrality condition into 2

[

V••O
]

=
[

RECe
′
]

+
[

e′
]

and, as a consequence, the dependence of ne vs.

pO2 described in Equation (5) is turned into ne ∝ pO
−

1
4

2 for
[

RECe
′
]

≫
[

e′
]

(Tuller and Nowick, 1975). Finally, for large x
values, equilibrium (2) is pushed toward its left side and the
concentration of conducting electrons is negligible but at very
low oxygen partial pressures (see below).

Transport Properties
Electrochemical Impedance Spectroscopy (EIS) is usually
adopted to measure conductivity in materials in which the ionic
conduction is prevalent on the electronic one (Sacco, 2017).
A small sinusoidal voltage V = V0sin(ωt) is applied and the
response current I = I0sin(ωt+α) is measured at the same
frequency. As a consequence of the (possible) phase shift α, the
impedance Z calculated through Ohm’s law is a complex number
(Z= Z′ + iZ′′ =V/I). A wide range of frequencies ω are sampled
and Z data are typically plotted using the Nyquist representation.
Data are then fitted against an equivalent circuit that is a
combination of resistive R and capacitive C terms considering
the transport across the bulk (Rb and Cb) and the grain boundary
(Rgb and Cgb) of a polycrystal. Further elements are usually
added for the electrode-electrolyte surface contribution and/or
electronic transport in mixed ionic/electronic conductors.

In Figure 2 conductivity data (from Eguchi et al., 1992) on (Y,
Gd, Sm)-doped CeO2 are plotted against T. Activation energies
for conduction can be calculated fitting the Arrhenius plots
(logσT vs T−1) of Figure 2. The plots of the insets of Figure 2
(logσ vs. pO2) assess the electronic and ionic contributions
to conductivity: at high pO2, σ is constant and fully ionic;
conversely σ increases lowering pO2 by reason of additional
electronic contribution. For application as a solid electrolyte
in SOFC/SOEC it is important to assess the zone of x, T and
pO2 where the equilibrium with the atmosphere brings to the
formation of additional VOs according to equilibrium (2) because
electronic conduction provokes undesired shortcuts between the
electrodes.

A huge number of experimental and review papers
focus on the transport properties of RE-doped ceria solid
solutions as a function of temperature, oxygen partial pressure,
composition and microstructure. Limiting to reviews (Jacobson,
2010) and (Goodenough, 2003), discussed the suitability of
Ce1−xRExO2−x/2 materials for SOFC applications while Inaba
and Tagawa (1996) and Kilner (2008) and, more recently,
Koettgen et al. (2018) reviewed their electrical conductivity.

Although data from different groups are highly scattered,
as pointed out by Koettgen et al. (2018), some general trends
emerge. As suggested by Equations (6, 7), isothermal ionic
conductivity increases with x. However, this applies to light
doping only. σi decreases above a critical concentration xc
depending on RE nature and temperature, as observed for Gd
(Faber et al., 1989; Zhang et al., 2002, 2004; Zha et al., 2003), Sm
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FIGURE 2 | Bulk ionic conductivity data of different Ce0.8RE0.2O1.9 solid

solutions measured in air. In the inset are shown conductivity data collected at

800◦C on Ce0.8Sm0.2O1.9 (black circles) and Ce0.8Gd0.2O1.9 (blue

diamonds) vs. pO2. In the low pO2 range, also electrons contribute to charge

transport (ionic/electronic mixed regime). Data from Eguchi et al. (1992).

(Zhan et al., 2001; Jung et al., 2002; Zha et al., 2003), Y (Wang
et al., 1981; Faber et al., 1989; Zhang et al., 2004; Sato et al., 2009)
and other dopants like La, Nd, Yb (Faber et al., 1989; Dikmen
et al., 1999). The critical concentrations xc reported in the
literature are scattered and usually occur in the range xc = 0.06-
0.2, depending on RE and temperature considered (Koettgen
et al., 2018). For example, maxima for Gd were observed by
different authors at xc∼0.10 (Steele, 2000), 0.15 (Zha et al., 2003),
and 0.20 (Zhang et al., 2002).

As an example, σ i(x) vs. T registered for Ce1−xYxO2−x/2 are
reported in Figure 3A (data from Faber et al., 1989). Isothermal
conductivity maxima appear around x≈ 0.10, at which only 2.5%
of the oxygen sites are vacant. The measured activation energies
also depend on x and show minima around the same x values
(Kilner, 2008). In Figure 3B the Ei values as a function of x are
displayed (data from Faber et al., 1989).

Ei and σ i also change by moving across the lanthanide series:
the highest σ i is observed for Gd and Sm (Eguchi et al., 1992;
Chen et al., 1997; Omar et al., 2006; Zajac and Molenda, 2008),
while σ i reduces for lighter and heavier RE elements. The inset
of Figure 3B shows Ei and σ i at T = 400K and x ≈ 0.10 as a
function of the RE ionic radius (data from Faber et al., 1989).

To rationalize the bell curves of Ei and σ i vs. the ionic radii,
several authors evidenced the role of ionic radii (ir) mismatch
between Ce+4 and RE+3. It should be noted that, for plotting
purposes, in Figure 3B we used the ionic radii of the 8-fold-
coordinated Re ions (Shannon, 1976). However, the correct
coordination to calculate the “mismatch” is matter of debate and
it will be discussed in section Lattice Parameters.

Following the “mismatch” idea, too small and too big RE3+

cations cause large structural distortions depressing conductivity.
Codoping with a suitable combination of small and big cations
has been proposed to minimize elastic strain and improve
conductivity (Yoshida et al., 2001; Wang et al., 2004; Omar et al.,
2006, 2007; Kilner, 2008; Zajac andMolenda, 2008). For example,
it has been observed that Sm and Nd-co-doped ceria is more
conducting than single Gd-doped ceria at 550◦C (Omar et al.,
2008); on the other hand, Ce0.90LuxNdyO1.95 is less conductive
than Ce0.90RE0.10O1.95 with RE = Y, Sm, Gd (Omar et al.,
2006).

Conductivity measurements display complex behaviors
moving along the x and ri coordinates. Actually, ionic
conductivity is a macroscopic quantity that sums up (and
average) a plethora of elementary migration processes each one
involving a jump of one oxygen ion from a lattice site to an
empty vacant site around. Thus, the local structure rather than
the average one does influence these processes. As pointed out
by several authors, part of the VOs could be excluded from
the diffusion process (at least within a certain temperature
range) because of RE-VOs defect clustering. VOs involved
in defect clusters should be thermodynamically more stable
than the remaining ones thus hindering or reducing the jump
frequency toward them. On the other hand, the activation
energy for diffusion could depend on the local structure
around the jumping coordinate and also include a term for
the interaction of the vacancy with other point defects (Kilner,
2008). Koettgen and coworkers identify two phenomena:
“trapping” and blocking. In the former the RE distribution
affects the initial and the final oxygen sites energies differently;
migration energy is therefore different for forward and backward
jumps. In the latter, forward and backward energies are equal
but dopants affect the transition state energy (Koettgen et al.,
2018).

To apply these ideas to real ceria-based phases it is
fundamental to map the RE and VOs distribution as a function
of RE nature, concentration and temperature. This implies
knowledge of the structure at different length scales using
different experimental techniques spanning from diffraction to
spectroscopy, microscopy and magnetic resonance. This is the
core of the present review and some findings are presented
in the next section. Then, coupling theoretical calculations to
experimental findings should allow estimating also the energies
at work on defect clusters formation and on oxygen migration
paths (see section Atomistic Modeling Methods of Doped Ceria
for some details).

EXPERIMENTAL STRUCTURAL PROBES

This section aims at gathering the main experimental findings on
structure and defects in doped ceria. First we consider undoped
ceria, with a focus on the structure evolution induced by oxygen
non stoichiometry and consequent defect structures. Then we
review the effect of doping in CeO2-RE2O3 systems, highlighting
stability ranges and nature of the different phases involved. We
will introduce local scale investigations with different probes and
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FIGURE 3 | (A) Conductivity data of Ce1−xYxO2−x vs. composition x at different T values. (B) Activation energies Ei vs. x for Ce1−xRExO2−x solid solutions. In the

inset are shown the Ei values in the (300<T<600K range) together with σ i values at 400K and x ≈ 0.10 as a function of the ionic radii of the 8-fold coordinated RE3+

ions. Data from Faber et al. (1989).

the postulation of defect models, moving toward longer scale
defects and discussing how crystallite size and synthesis route
affect structure and defects. Eventually the discussion will move
toward fuel cells’ operating conditions.

Undoped Ceria
Cerium oxide exhibits fluorite structure: cubic, space group Fm-
3m, with Ce and O in special positions, namely Ce in 4a (0, 0,
0) and O in 8c (¼, ¼, ¼). Ceria is used as reference standard
material by NIST. Fluorite is stable over a wide range of T
and oxygen non stoichiometry δ. No phase transformation was
found down to 2K by neutron powder diffraction (Coduri et al.,
2012a), while high temperature promotes the splitting of O into
two different sites consistent with a disordering along <111>
direction (Yashima et al., 2006).

When CeO2 is reduced to CeO∼1.7−1.8, a disordered, non-
stoichiometric, fluorite-related phase (α) forms (Bevan and
Kordis, 1964; Trovarelli, 2002). By further increasing δ, a number
of fluorite related superstructures were observed, lowering the
cell symmetry owing to vacancy orderings along the fluorite
<111> direction, consistently with high temperature studies
(Yashima et al., 2006). A comprehensive description of the
superstructures in CeO2−δ, down to CeO1.66, is given by a
single crystal neutron diffraction study (Kuemmerle and Heger,
1999).

Though still fluorite, the atomic scale structure can be
different. An example for CeO2 is given in Mamontov and Egami
(2000). Using Pair Distribution Function (PDF), they probed
Frenkel-type defects in octahedral sites. These defects, which can
be removed by high-temperature treatment, are related to the
oxygen storage capacity of ceria. Hence, the structure is fluorite,

but the application is driven by defects that alter, locally, the
fluorite structure.

More in general, fluorites look simple, but they are not.
Fluorites accommodate high concentration of lattice defects,
especially in terms of VOs (Kim, 1989; Malavasi et al., 2010).
Their wide temperature and stoichiometric stability can hinder
the real local atomic arrangement, which in complex materials is
often the one at the basis of the application (Egami and Billinge,
2003) Thismakes fluoritemore interesting, butmore challenging,
to control and investigate.

Doped System: Long Range Structure
Phases and Solid Solutions
As described above, doped ceria can serve as electrolyte thanks to
the ability of fluorite to host high concentration of mobile oxygen
vacancies. Then, it is useful to quantify the maximum amount of
dopant (xmax) that enters fluorite without changing its structure.

Before discussing xmax values, it is useful to introduce the
dopant oxide phases. Cubic C-type, monoclinic B and hexagonal
A are the three forms of sesquioxides (RE2O3) observed at
ambient conditions. In particular, Nd and La form A-type, all
other dopants lead to C-type, even though B-type was observed
at RT after high temperature annealing for Eu (Ainscough et al.,
1975), Gd (Grover and Tyagi, 2004), and Sm (Mandal et al.,
2006; Artini et al., 2015; Coduri et al., 2018) and even in Y2O3

nanoparticles (Guo et al., 2006). More details about sesquioxides’
structures are reported elsewhere (Adachi and Imanaka, 1998).
Among sesquioxides, C-type (s.g. Ia-3) is the one closest to
fluorite, the former being a structural distortion of the latter. In F
and C-type the cell origin is positioned onm-3m (Ce site) and -3
(empty site) sites, respectively, a rigid shift of atomic positions is
necessary to overlap the two structures. Atomic positions in the
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two phases are summarized in Table 1 and sketched in Figure 4,
where the full fluorite unit cell (a) is compared to one octant
of the C-type phase (b). As a consequence of VOs ordering,
when moving from fluorite to C-type the lattice parameter
doubles, one cation coordinate (x of the M2 site) and four
atomic coordinates of the O site move out of the special position.
Whereas cations in fluorite lie at the center of an ideally perfect
cube formed by 8 coordinated oxygen ions, in C-type they are 6-
fold coordinated and the cation on the 24d site moves away from
the center because of electrostatic repulsion with VOs. This affects
significantly the distribution of interatomic distances, especially
for M-M pairs (see Figure 4, bottom), which split into two well
separated sets of distances in C-type compared to a single M-M
distance in fluorite. Moving from F to C-type produces also the
disordering of M-O pairs.

The xmax values from literature are listed in Table 2, with
references, and plotted in Figure 5 to have an overview. We
define xmax as the intermediate value between the last fully
fluorite and the first non-fully fluorite dopant concentration

TABLE 1 | Crystallographic relationships between fluorite and C-type phases of

Gd-doped ceria compounds.

Fluorite Fluorite (C-type setting) C-type

M1 4a (0, 0, 0) 8b (¼, ¼, ¼) 8b (¼, ¼, ¼)

O1 8c (¼, ¼, ¼) 48e (3/8, 1/8, 3/8) 48e (x, y, z)

M2 =M1 24d (0, 0, ¼) 24d (x, 0, ¼)

O2 =O1 16c (3/8, 3/8, 3/8)* 16c (x, x, x)*

*Empty site in Gd2O3, site occupation proportional to Ce amount.

x, the esd being half of step between the two compositions.
Surprisingly, xmax changes significantly with the study, especially
for intermediate size dopants. For Gd+3, xmax ranges from 0.125
(Nakagawa et al., 2001) to 0.54 (Bevan and Summerville, 1979).
The latter (dashed red line in Figure 5) reports the highest xmax

values for each dopant. It was proposed (Grover and Tyagi, 2004)
that such high xmax values are a consequence of quenching from
1600◦C and therefore might not be representative of the material
at ambient. Also, above 1500◦C mixed oxides can undergo
a reversible transformation from solid solution to separated
oxides. See Wallenberg et al. (1989) and references therein for
details.

The similarity between the F and C phases can be at the
origin of the wide dispersion of xmax. The structure is routinely
defined trough XRD. Diffraction patterns of C-type differ from
fluorite by the appearance of additional superstructure peaks,
hard to resolve from background if data are noisy, especially
when the C-type distortion is small (x(M2) close to 0) and
superstructure peaks low in intensity. Moreover, approaching
the F to C-type transition, superstructure peaks are broader
(Coduri et al., 2013a), thus leading to overestimation of xmax.
This problem becomes even more important in nanoparticles for
the further peaks broadening. In these cases, a C-type cell can
be misinterpreted as a pseudo-fluorite cell, with lattice parameter
af = ac/2, where ac is the C-type lattice parameter.

Different xmax values might arise also from the usage of
different notations for dopant concentration, which sometimes
is defined as RE2O3 molar content (see Andrievskaya et al.,
2011) rather than REO1.5. We recommend to define explicitly
the relative cation stoichiometry, using formulas such as
Ce1−xRExO2−y.

FIGURE 4 | Sketch of fluorite (Left) and C-type (Right) structures, the latter displayed as octant of full cell to facilitate comparisons. The corresponding M-M

connectivity is displayed below.
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TABLE 2 | Ionic radius for different coordinations, x max with corresponding

reference, and average of the xmax values for each dopant.

i.r.(VI) i.r.(VII) i.r.(VIII) Xmax References Average

xmax

Lu 0.861 – 0.977 0.35(5) Grover et al., 2008 0.375(25)

0.375(25) Malecka et al., 2008

0.40(5) Artini et al., 2016

Yb 0.868 0.925 0.985 0.48(5) Bevan and Summerville,

1979

0.489(57)

0.55(5) Mandal et al., 2007

0.438(63) Coduri, 2013

Tm 0.99 - 0.994 0.45(5) Mandal et al., 2007 –

Er 0.89 0.945 1.004 0.34(5) Horlait et al., 2011 –

Y 0.90 0.96 1.019 0.58(5) Bevan and Summerville,

1979

0.421(130)

0.475(25) Chavan et al., 2004

0.28(3) Coduri, 2013

0.35(5) Satake et al., 2010

Dy 0.912 0.97 1.027 0.60(5) Bevan and Summerville,

1979

–

Gd 0.938 1.00 1.053 0.54(5) Bevan and Summerville,

1979

0.344(133)

0.125(25) Nakagawa et al., 2001

0.27(2) Scavini et al., 2015

0.225(25) Kossoy et al., 2013

0.425(25) Banerji et al., 2009

0.35(5) Artini et al., 2012

0.37(2) Chen and Navrotsky,

2006

0.45(5) Grover and Tyagi, 2004

Eu 0.947 1.01 1.066 0.275(25) Shuk et al., 2000 0.35(11)

0.425(25) Mandal et al., 2006

Sm 0.958 1.02 1.079 0.58(5) Bevan and Summerville,

1979

0.41(13)

0.45(5) Mandal et al., 2006

0.45(5) Nitani et al., 2004

0.32(2) Coduri et al., 2018

0.25(5) Artini et al., 2015

Nd 0.983 1.09 1.109 0.56(5) Bevan and Summerville,

1979

0.448(60)

0.513(13) Chavan et al., 2005

0.425(25) Ikuma et al., 2005

0.35(5) Hagiwara et al., 2009

0.438(63) Coduri, 2013

0.45(5) Zhang et al., 2016

0.405(15) Horlait et al., 2011

0.45(5) Nitani et al., 2004

La 1.032 1.10 1.16 0.68(5) Bevan and Summerville,

1979

0.61(11)

0.658(25) Andrievskaya et al.,

2011

0.45(5) Bellière et al., 2006

0.65(5) Wilkes et al., 2003

xmax is defined as the intermediate point between the last fluorite and first non-fluorite

composition observed. The esd in bracket is half of the composition step between two

consecutive points.

The effect of the dopant on xmax was firstly investigated
by Chavan and Tyagi (2005), who compared different dopants
with x = 0.50. They noticed that La and Nd maintain fluorite
structure, while the ionic size contraction of the dopant leads
to the formation first of C-type phase, then to biphasic systems.
Similar results were observed in Coduri (2013) and Horlait et al.
(2011). The dopant dimension affects the minimum values of
xmax. The solid red line in Figure 5 is a guide to the eye indicating
the minimum xmax values. The average xmax values are reported
in the inset. xmax varies smoothly with the dopant size, reaching
a minimum for Gd. Lu is out of the trend, even though three
independent reports gave similar results. This was explained in
Artini et al. (2016) by considering that the Lu+3 ions are so
small that they can actually fit the size of the host Ce+4 retaining
their full coordination. As a consequence, Lu+3 behaves as larger
lanthanoids and the VO is closer to Ce+4 rather than Lu+3. It
is suggestedt that xmax is ruled not only by the size mismatch
between Ce+4 and the dopant, but also by compressibility, i.e.,
the ability of the dopant to accommodate to a pressure change
(induced by size mismatch) by expanding or contracting the unit
cell. Compressibility scales monotonically with the ionic radius,
thus explaining the largest xmax for La+3 among lanthanides. A
size mismatch larger than 10% was proposed to be a condition to
inhibit the formation of homogeneous C-type phase (Artini et al.,
2017).

Eventually, one can expect a large xmax to come from a low
stability of the corresponding C-type phase. Nd and La, which
are often observed to have xmax ≥ 0.5, tend to form A-type
phase, rather than C-type, which is less akin to fluorite. The
transformation from C-type to other sesquioxides was proposed
(Horlait et al., 2011) to occur when the average ionic size exceeds
a threshold value, which can be reached only for the biggest
cations.

Lattice Parameters
Figure 6A shows the evolution of af for wide compositional
ranges with different dopants. It is clear that doping produces
expansion or contraction depending on the size of the dopant
ion, and that Vegard’s law is not followed. Excluding Tb and
Pr, characterized by a mixed valence state (Nitani et al., 2004;
Martinez-Arias et al., 2005; Coduri et al., 2014) and therefore
to be dealt with separately, expansion is observed from La to
Gd, while Y and other trivalent lanthanoids induce contraction.
Considering the ionic radii reported by Shannon, 1976, (see
Table 2) the volume change upon doping fluorite is consistent
with the insertion of a 7-fold coordinated trivalent dopant. As
an example, ionic radius (i.r.) for Y+3(VII) is 0.965 Å, slightly
smaller than Ce+4(VIII) (0.97 Å); therefore Y-doping for Ce
induces a feeble lattice contraction. Y+3(VIII), being 1.02 Å in
size, would instead expand the cell. As not all RE have a known i.r.
for coordination (VII), x-axis in Figure 5 reports coordination
VI.

The size effect of different dopants is generally
evaluated exploiting the lanthanide contraction.
Whether the chosen coordination number (CN) is 6 (Artini et al.,
2017), 7 (Coduri et al., 2012b, 2014; Shirbhate et al., 2016), or 8
(Eguchi et al., 1992; Balazs and Glass, 1995; Yoshida et al., 2001;
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FIGURE 5 | xmax values reported in the tabulated data from the literature. Red lines are guides to the eye, related to the largest and smallest xmax observed for each

composition. The inset reports the average xmax values obtained for each dopant with at least two entries.

FIGURE 6 | Evolution upon doping of (A) lattice parameter and (B) mean atomic volume for La (Andrievskaya et al., 2011), Nd (Horlait et al., 2011), Sm (Coduri et al.,

2018), Eu (Mandal et al., 2006), Gd (Scavini et al., 2015), Y (Coduri et al., 2013a), Er (Horlait et al., 2011), and Lu (Artini et al., 2016).

Yashima and Takizawa, 2010), lattice contraction is experienced
when moving from La to Lu.

Yet, the absolute value of the sizemismatch strictly depends on
the chosen coordination for the dopant. For example, Ce+4(VIII)
has ionic radius 0.97 Å, which nearly corresponds to Lu+3(VIII)

(0.977Å), Dy+3(VII) (0.97 Å) or Sm+3(VI) (0.96 Å). As different
dopants with the same concentration can have different CN, the
actual i.r. of the dopant can change non-monotonically within
the lanthanide series. This should be taken into account when
making comparison based on i.r.
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If the amount of dopant rather than its nature is varied,
deviations from Vegard’s law are evident. Their origin is
often source of debate. Horlait et al. fitted the compositional
dependence of lattice parameters using a quadratic function.
Parameters are tabulated in Horlait et al. (2011). Deviations from
the Vegard’s law were correlated to the presence of vacancies and
consequent variation in CN (Nakamura, 2010). In Giannici et al.
(2014) and Artini et al. (2016) the volume change upon doping
was considered as the balance between the contraction arising
from the formation of oxygen vacancies, size mismatch and local
scale interactions.

A possible explanation for this behavior is that the unit
cell’s total number of atoms varies upon doping because of the
formation of VOs. If the cell volume is normalized against the
total number of atom for each composition, given the atomic
mean volume Vn (Zen’s law, Zen, 1956), linear trends are
obtained within the range corresponding to the solid solution
(Artini et al., 2016), as shown in Figure 6B.

Because the application as ionic conductor limits the interest
in doped ceria to fluorite phases, in which all ions lie in special
positions, there are no structural degrees of freedom other than
lattice volume and Atomic Displacement Parameters (ADPs).
ADPs in fluorite increase significantly with doping (Scavini et al.,
2012; Coduri et al., 2013a, 2018) and scale with the size mismatch
with the dopant (Yashima and Takizawa, 2010; Coduri et al.,
2012b). As already observed in Argyriou (1994) and Scavini et al.
(2010), the thermal evolution of ADPs, compared to a reference
standard, is an effective tool to probe disorder. Disorder was
evidenced, but other approaches are required to map defect-
induced structural changes at the local scale.

Local Scale
One of the first local scale investigations came with a pioneering
neutron powder diffraction study (Anderson and Cox, 1983),
where different dopants-vacancy clusters were tested to model
diffuse scattering. Though limited by instrumental setup, they
demonstrated the existence of local ordering breaking the
symmetry of fluorite, proposing the formation of clusters of
dopant and VOs. Yet the structural information was rather
qualitative. In the last decades a number of local structure
investigations were carried out. This section will provide a survey,
technique by technique, for unveiling the defect structure in
doped ceria.

X-Ray Absorption Spectroscopy
The advent of new generation synchrotrons allowed EXAFS
studies to be performed routinely providing a direct approach
to inquire local scale in doped ceria compounds. Hormes et al.
(2000) investigated different dopants, confirming that Ce and RE
maintain their +4 and +3 state, respectively. Exceptions with
mixed +3/+4 valence state are Pr (Hormes et al., 2000; Nitani
et al., 2004) and Tb (Martinez-Arias et al., 2005). Ohashi et al.
(2005) used EXAFS to probe the local scale of Gd-doped ceria
up to x = 0.30. They observed that Gd-O distances are larger
than Ce-O, and that they shrink with doping even though the
unit cell expands. They proposed the formation of clusters made
of a VO and two dopant ions as well as the relaxation of oxygen

ions toward the induced VO to explain the M-O contraction. A
number of similar investigations followed (Yamazaki et al., 2000,
2002; Nitani et al., 2004; Deguchi et al., 2005; Wang et al., 2006;
Kossoy et al., 2013; Giannici et al., 2014). A common outcome
is that Ce-O and RE-O distances are different, the latter scaling
with the size of the dopant. In general, the coordination number
(CN) of Ce is higher than the dopant’s. An exception was reported
by Giannici et al. (2014), who observed fully 8-coordinated Sm
with VOs as nearest neighbor (NN) of Ce. A lower CN(Ce) was
noticed also in Shirbhate et al. (2016), but they only investigated
the Ce-edge. These results conflict with EXAFS results in Nitani
et al. (2004), which found a larger CN for Ce+4 than Sm+3 (see
Figure 7A. Interestingly, atomistic calculations show that Sm+3

is nearly as stable as NN or NNN of the VO (Nakayama and
Martin, 2009; Hooper et al., 2010).

All investigations agree that CN decreases with doping
together with the oxygen concentration. As the ionic size
mismatch between host Ce+4 and dopant has been retained to
affect transport properties (Eguchi et al., 1992; Balazs and Glass,
1995), codoping using two different RE ions with weighted ionic
size similar to Ce+4 has been proposed (Mori et al., 2002).
Yoshida et al. (2001) investigated double doping with La and
Y but found no synergic effect. Local distortions happen to
be more important than the global lattice strain. A correlation
between local structure and transport properties was observed:
the more the VOs are distributed randomly, the higher the ionic
conductivity.

Yamazaki et al. (2000) sought for more complex defect
clusters. Comparing different dopants, they found clusters
composed of 2–4 dopant ions, depending on the nature of the
dopant and its concentration. A similar approach was followed
in Giannici et al. (2014). Deguchi et al. (2005) tried to extract
EXAFS signal up to M-M distances, but esd on the coordination
number happened to be as large the CN itself. This poses a
limit on the structure information extracted from absorption
spectroscopy: are defect clusters composed of a few units of
dopants and vacancies, or is the signal intrinsically related to the
first neighbors?

NMR
Solid state NMR can resolve different coordination environments
from different chemical shifts. All doped ceria compounds can
be investigated through 17O resonance to inquire the O local
environment, exploiting 17O in natural O. Except for diluted
systems, in La-doped ceria NN La+3 are always bonded though
a VO (Heinmaa et al., 2010). Still, the study was limited up to
x= 0.116, and no evidence of bigger clusters was found. Kim and
Stebbins (2007) considered higher loadings using Y as a dopant.
Doping induces different local environments not consistent with
a random distribution of dopant ions and VOs. Interestingly, for
x = 0.15, a small fraction of O coordinated to 3 Y and 1 Ce and 4
Y ions is observed. 89Y evidenced different CNs for Y. Most of Y
ions are 7-fold coordinated. From x∼0.25 a significant portion of
Y(VI) was observed (see Figure 7B). This again suggests that VOs
are not randomly distributed and that the dopant might keep the
local environment as in the pure oxide. Anyhow, the structural
information extracted out of NMR is necessarily limited to the
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FIGURE 7 | (A) Interatomic M-O distances (left) and coordination numbers (right) obtained by EXAFS on Sm-doped ceria from different works, listed on the left side.

Full symbols stand for M = Ce, empty symbols for M = Sm. Black circles refer to data from Giannici et al. (2014); red circles from Nitani et al. (2004); black triangle

from Shirbhate et al. (2016). Interatomic distances are also compared with XRD and PDF, in full and empty blue symbols, respectively. (B) NMR spectra of Y-doped

compounds showing different coordinations to O. Labels stand for the 6-, 7-, and 8-fold coordinations. Reprinted with permissions from Kim and Stebbins (2007). ©
2012 American Chemical Society. (C) raman spectrum for x(Gd) = 0.375 with labels representing the coordinations involved. Data from Coduri et al. (2017). (D)

Experimental PDF for x(Sm) = 0.25 with corresponding atom pairs (left). Fit of the same curve using single fluorite (green) and mix of fluorite and C-type (blue) on the

right hand side. Data from Coduri et al. (2018).

NN shell. Information about longer range structure could be only
speculated on the basis of the observed CNs.

Raman Spectroscopy
Indications on the charge, size, and spatial correlation of defects
may be offered by Raman spectroscopy. The Raman spectra
of doped CeO2 have key signals sensitive to the distortions in
coordination cages arising from formation of both intrinsic or
extrinsic VOs. In addition, there are clearly distinct signals for
6-fold and 8-fold coordination environments (Nakajima et al.,
1994). A sketch of a typical Raman spectrum for heavily doped
ceria is given in Figure 7C.

The onset of the Gd-O vibration in 6-fold coordination was
shown to match well the phase boundary between long-range
F and C-type phases (Coduri et al., 2017). The appearance of
this signal is not only dependent on dopant concentration, but
also on crystallite size, pointing to different defect association
states at different sintering times and/or temperatures (Taniguchi
et al., 2009; Coduri et al., 2017). In fact, the same signal was
also attributed to local RE2O3 domains within a fluorite phase
(Banerji et al., 2009; Artini et al., 2015). To distinguish between
isolated RE defects, C-type nanodomains or a longer-range order

one can explore the dependence of mode frequency on ionic size
(Artini et al., 2017).

The distortion induced by dopants on the long-range scale was
shown among others by McBride et al. (1994) who studied the
changes to the main fluorite signal, the F2g symmetric vibration
mode of the Ce-O bond in 8-fold coordination (Nakajima
et al., 1994). With all the dopants they tested (La, Nd, Eu,
Gd, Tb, Pr) they attributed a red-shift of up to 5 cm−1 to
the separate contributions of lattice expansion and VOs. They
showed that after accounting for lattice expansion through the
Grüneisen parameter the strictly trivalent dopants (La, Nd, Eu,
Gd) actually produce a positive frequency shift related to their
extrinsic VOs. This positive shift was then found in Sm-doped
CeO2 (Artini et al., 2015) at the boundary between F and RE-
rich phases. In nanopowders, size distribution and consequently
inhomogeneous strain affects the asymmetric broadening of the
F2g signal, which can be described semiquantitatively using a
phonon confinement model (Dohčević-Mitrovi et al., 2006).

Besides markers of 6-fold and 8-fold coordination
environments, Raman spectra between 510 and 600 cm−1

yield information on the association of extrinsic RECe
′ and

V••O defects and their relative amount with respect to intrinsic
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VOs and Ce4+ reduction. In the case of Gd it was noted that
large crystallite size and a higher concentration of dopant favor
extrinsic defects (Taniguchi et al., 2009; Coduri et al., 2017). In
particular, it was proposed that as Gd concentration and sintering
temperature are increased REO8 clusters initially scattered in the
bulk diffuse and cluster and trap VOs. The high-frequency shift
of the band around 540 cm−1 (Taniguchi et al., 2009; Coduri
et al., 2017), moreover, suggests a further step from a 1:1 to a 2:1
ratio between Gd′Ce and V••O .

HRTEM
In 2002 Mori et al. (2002) used HRTEM to show that the
structure of Sm- and La-doped ceria is not homogeneous,
but rather composed of nanometric domains with a different
crystallographic phase (see Figure 8a). Further investigations by
the same group confirmed the nanodomain structure for Dy
(Mori et al., 2005), Gd (Mori and Drennan, 2006; Ye et al., 2008;
Li et al., 2011), Y (Ou et al., 2006a; Li et al., 2012), Yb (Ou
et al., 2006b) and Ho (Ou et al., 2008b). The domain size was
proposed to be directly related to conductivity: larger domains
trap more VOs thus affecting transport properties (Mori and
Drennan, 2006). The structure of the domains was found to
related be C-type (Ou et al., 2008a) using Selected Area Electron
Diffraction (SAED) (see inset of Figure 8a). The space group I213
was then proposed (Ye et al., 2009). Li et al. (2011) revealed that
dopant (and VOs) segregation occurs not only at grain interior,
but also, to a lesser extent, at the grain boundaries.

Further information on defect structure can be gained through
Electron Energy Loss Spectroscopy (EELS). Based on the work in
Travlos et al. (2003), Ou et al. (2006a) showed that EELS collected
at the O-K edge give a set of signals which can be correlated with
the local scale structure. In particular, the characteristic peak at
543 eV reflects the VOs ordering (see Figure 8b). The ratio over
the peak at 546 eV, whose intensity is not related to VOs, is a
parameter to quantify the extent of C-type ordering. The method
is now being used routinely (Chen et al., 2014; Lee et al., 2014).
The limit of electron microscopy, as usual, is that the observed
features may be non-representative of the full sample. This calls
for other bulk methods to confirm the nanodomains structure
and to quantify the size.

Total Scattering
As discussed above, diffraction evidences the presence of
disorder, but it is not able to describe it at the atomic scale.
Disorder appears in diffraction data in the form of diffuse
scattering which, coupled to the Bragg peaks in case of crystalline
solids, gives the total scattering. A natural approach would be
to study diffuse scattering in single-crystals, which unfortunately
are not easily available in doped ceria. In powdered materials,
diffuse scattering can be modeled directly in reciprocal space
(Anderson and Cox, 1983). Debye Function Analysis (DFA)
is another powerful tool to unveil the (disordered) structure
of small nanoparticles. In particular, using DFA an atomistic
model of the entire nanoparticle is fitted against the powder total
scattering data (Cervellino et al., 2015; Bertolotti et al., 2016).
To our knowledge, no papers exploiting DFA analysis of pure or
doped ceria have been published up to now.

Total scattering data can be otherwise analyzed in real space
after suitable corrections and Fast Fourier Transform through the
atomic Pair Distribution Function (PDF) (Egami and Billinge,
2003). In 2012, the local atomic structure of ceria doped with
different dopants (x = 0.25) was investigated using PDF (Coduri
et al., 2012a,b). Neutron diffraction data were consistent with
the simple relaxation of O ions toward the dopant-induced
VO (Coduri et al., 2012a), confirming the model proposed by
experimental studies (Ohashi et al., 2005) and simulations (Inaba
et al., 1999). The larger the size mismatch with Ce+4, the larger
the structural distortion on the O sites.

Yet, X-ray PDFs is mostly sensitive to distances involving
metals (M) ions rather than O and cannot be modeled by simple
VO-dopant relaxations. In particular, in the F structure, only
one M-M NN distance should appear, while in the C-type there
are two M-M distances. Still, the second peak occurs even in F
solid solutions evidencing C-type local ordering (see Figure 7D).
Hence, the first coordination shells up to ∼6 Å are consistent
with a mixture of fluorite and C-type environments. Different
dopants experience a similar local scale: Gd (Scavini et al., 2012),
La, Nd, Yb (Coduri et al., 2012b), Y (Coduri et al., 2013b), Sm
(Coduri et al., 2018), Zr (Gateshki et al., 2007), Bi (Sardar et al.,
2010), Pr and Tb (Coduri et al., 2014). Scavini et al. (2012) probed
a continuum of structure evolution throughout the full CeO2-
Gd2O3 system, consistently with the monotonic increase of C-
type at the local scale. Anomalous scattering confirmed that the
dopant ion is involved in that PDF peak (Allieta et al., 2011).

Except for the clear observation of a longer M-M distance
not compatible with a fluorite arrangement, the above results are
consistent with other local scale studies. The NN M-O distance
shrinks upon doping even though a global expansion is observed
(Figure 7A), as already evinced by EXAFS (Yamazaki et al., 2000,
2002; Deguchi et al., 2005). The same applies to the main M-
M distance (e.g., for Gd- Deguchi et al., 2005 and Sm-doping
Giannici et al., 2014). Still, a gap exists between the local scale
investigations and microscopy evidences of wider scale ordering.

When studying NN interactions, EXAFS can be preferred
to PDF as the latter is not element sensitive and because
termination ripples, implied by the finite energy of the incoming
radiation, affect mostly the NN peak. On the other hand,
PDF provides structural information on a wide length scale
(Figure 8c), depending on the instrument resolution (Qiu et al.,
2004). A PDF investigation of Y-doped ceria throughout the F to
C-type transformation (Coduri et al., 2013a) demonstrated that
disorder is not limited to the local scale, it rather evolves on a
larger scale. Monitoring the evolution of x(M2) with the radial
distance (Figure 8d and Table 1) allowed direct quantification
of the C-type distortion. In this model, C-type domains are
embedded in a fluorite matrix and their size increases with x
until complete transformation to C-type. Details on the data
analysis strategy were reported in Checchia et al. (2015). C-
type domains as large as 12 nm were observed already for
x = 0.25, when the structure is fluorite. The domain structure
was confirmed by the observation of antiphase boundary (APB)
in powder diffraction patterns of the first C-type samples formed
upon doping, probed as systematic hkl-dependent broadening of
superstructure reflections only. APBs occur when nucleation of
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FIGURE 8 | (a) Nanodomains within white dashed lines observed in x(Y) = 0.25 by HRTEM and corresponding SAED pattern. Reprinted with permissions from Li

et al. (2012). © 2012 American Chemical Society. (b) Characteristic signals of EELS spectra taken at O K-edge for different dopants. Reprinted with permissions from

Ou et al. (2008a). © 2008 American Physical Society. (c) Experimental PDF for x(Gd) = 0.344, and (d) corresponding evolution of x(M2) coordinate with interatomic

distance r. Data from Coduri et al. (2017). (e) Sketch of cation arrangement as in Figure 4 within the basal plane (z = 0) representing C-type domains, enclosed by

black solid line, embedded in a fluorite matrix. Green dashed lines stand for APBs. The concept is discussed in Coduri et al. (2013a).

low symmetry phase starts randomly on different lattice sites,
with possible faults where domains meet. A similar picture
applies to Gd- (Scavini et al., 2015; Coduri et al., 2017) and
Sm-doping (Coduri et al., 2018). A mechanism involving the
progressive orientation of small C-type droplets percolating into
coherent nanodomains was proposed in Scavini et al. (2015). A
sketch of percolated C-type domains in fluorite, with formation
of APBs, is given in Figure 8E.

Final Remarks
To conclude, the above techniques provide a set of
complementary tools to gain a complete description of structure
and defects. Diffraction tells whether the long range structure
is fluorite or C-type, or both. If single phase, the presence (or
not) of superstructure peaks defines a C-type (or fluorite) phase.
Thus, XRD data have to be collected with proper counting
statistics, paying attention to the region between the 2nd (200)
and 3rd (220) diffraction peaks, where superstructure peaks
might appear. Full scale patterns, often displayed in papers,
are not useful to tell whether the structure is F or C. Powder

diffraction is very powerful but it can be misleading. Noisy
data would indicate that structure is fluorite rather C-type
just because superstructure peaks might be hidden in the
background. Finally, powder diffraction probes the long range
structure but is nearly blind with respect to local orderings.

Raman spectroscopy is a powerful technique to probe local
scale ordering as different bands can be assigned to different
chemical coordinations. But the structural information provided
by Raman is strictly local. The coexistence of fluorite-like (MO8)
and C-type-like (MO6) signals is not a proof of full-scale
segregation of the two phases. On the other hand, if only C-type
signals are probed by Raman, the long range structure will be
hardly fluorite.

As XRD and Raman are complementary structural probes
widely available in research centers, it is recommendable to
combine them as much as possible.

EXAFS is the technique to use to probe NN local interatomic
distances for Ce and dopant. It has two main disadvantages.
It requires synchrotron radiation, the access to which is
generally awarded through a peer review process and not
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immediate. Expertise in EXAFS data analysis is necessary as large
parameter correlations often make the significance of the results
questionable. When studying NN distances EXAFS has still an
edge on PDF, whose NN peak is not element resolved and often
affected by termination ripples (Peterson et al., 2003).

EXAFS is also used to extract CNs. Proper CNs require
spectra to be collected at both Ce and RE edges, and CNs to
be constrained to the known stoichiometry in order to reduce
correlations (Giannici et al., 2014). This could be the origin
of the spread set of CN values in the literature. NMR is a
very powerful tool to confirm CNs extracted from EXAFS, as it
provides the relative abundance of the different coordinations.
Unfortunately, to our knowledge, no combined NMR/EXAFS
experimental report has ever been published.

HRTEM and PDF are the techniques providing information
on larger length scales. The advantage of microscopy is that it
can “see” domains, rather than extracting information out of a fit.
Electron microscopes are also more accessible than synchrotron
radiation. Yet, domains from HRTEM were investigated always
by the same group. The observation of domains is not
representative of the full material. Also, sample preparation
is demanding, prevents the study of small particles and is
commonly limited to ambient condition. On the contrary, being
a bulk technique, PDF provides domain sizes representative
of the full material. It is particularly suitable for doped ceria
compounds as signal is proportional to the number of electrons z.
Then, it is particularly sensitive to M-M pairs. Like EXAFS, PDF
requires the use of synchrotron radiation, even though laboratory
diffractometers for PDF are becoming increasingly common.

From the overview given in section Phases and Solid
Solutions, it appears that some results are in contradiction. The
compositional range for F and C-type as well as the existence
of miscibility gap between the two phases change according to
the study. CNs also are not fully reproducible. When moving
from the routine characterization of a material to a more detailed
study, it would be advisable to combine as many techniques
as possible. That would be also helpful to comprehend the
limitations of the techniques involved, as they would be applied
exactly to same material.

Defects Arrangement From F to C-Type
Nowadays different notations are used to describe the
compositional region corresponding to the transition from
fluorite to C-type. In Coduri et al. (2013a, 2018), Checchia et al.
(2015), and Scavini et al. (2015) the authors defined as C∗ the
compositional region (x∼0.3–0.5 depending on composition)
characterized by the percolation of C-type domains. From a
powder diffraction point of view, the C∗ region is characterized
by (i) non negligible concentration of APBs, i.e., anomalous
broadening of superstructure peaks; (ii) a different linear
dependence of atomic coordinate x(M2) with doping than the
x(M2) trend in the “mature” C-type phase. This means that
the structure is actually long range C-type, resulting from the
percolation of C-type nanodomains in a fluorite matrix while
large fluorite regions still exist.

Artini et al. (2015, 2016, 2017) described intermediate
compositions for RE=Gd, Sm, Lu as a hybrid (H) phase between

fluorite and C-type. The structure is generally C-type, but the
coexistence of Raman modes typical of fluorite and C-type leads
tothe picture of a hybrid structure, i.e., a sort biphasic system
occurring at the local, or intermediate scale. This is similar to the
C∗ formalism, even though the H structure can be found in long
range fluorite samples—the case of uncorrelated nanodomains
in a long range fluorite structure does not apply to C∗—and
extend to a larger region in the C-type compositional range.
The existence of H was found to depend on the size mismatch
between dopant and host. If the size mismatch is too big, a single
hybrid (C-type) phase is not stable, i.e., it cannot accommodate
for both Ce and RE, and a long range phase separation into F
and C-type is observed. Producing samples following the same
protocol, Artini et al. (2016) observed long range F-C separation
only for Tm, Yb, and Lu. Phase separations are observed for
other dopants as well (Bevan and Kordis, 1964; Shuk et al., 2000).
The reaction procedure does play a role in that, as either single
fluorite or biphasic systems were obtained on the same material,
respectively, after oxidizing and reducing annealings (Małecka
et al., 2009).

Size Effect
Doped ceria can be successfully produced through a number of
different synthetic routes. Most of early studies used solid state
synthesis, involving reaction of CeO2 and RE2O3 mixed powders
at high temperature with intermediate regrinding steps. Still, the
observed local ordering with dopant oxide structure can either
be an intrinsic characteristic or a consequence of an incomplete
reaction.

The interest for surface effects called for the development of
different synthetic routes to tune themorphology of the products.
Manifold wet procedures were proposed (Van Herle et al., 1998;
Reddy et al., 2009; Rezaei et al., 2009; Wang et al., 2010). These
lead to nanoparticles that can be sintered afterwards to increase
grain size and density. Moreover, wet methods are considered to
lead to more homogeneous materials (Horlait et al., 2011).

The role of the synthesis is generally studied with respect to
transport properties. Its relationship with defect structures or
structure in general received less attention, with the exception of
defects in nanometric samples, where surface effects become not
negligible.

Tsunekawa et al. (2000) attributed the inverse relation of
lattice expansion of CeO2 and crystal size to the stabilization of
Ce+3 ions. In doped samples Ce+3 is often found to segregate
at the surface of nanoparticles. Lee et al. (2014) observed
that Y-doping for x > 0.09 induced ferromagnetic ordering of
surface Ce+3 clustered together with Y+3 ions. Hence, Ce+3 ions
stabilized at the surface replace some Y+3 ions in the M+3-
VO clusters already observed in bulk. Similarly, Sm3+-VO-Ce3+

complexes were observed for x> 0.07 on the surface of Sm-doped
nanoparticles (Chen et al., 2014), suggesting a core-shell defect
structure, already proposed in Malecka et al. (2008); Małecka
et al. (2009) in terms of surface RE segregation.

Recently, 3D electron microscopy revealed the 3D surface of
La-doped ceria with subnanometric resolution (Collins et al.,
2017). Additional VOs were seen within the first 1.5 nm of
the particle surface together with associated changes in Ce(4f)
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hybridization as well as surface enrichment in La. Acharya
et al. (2014) observed through Raman and EXAFS that in
nanoparticles Gd induces more intrinsic VOs than Sm. For a
fixed doping amount, reducing the particle size damped the
Raman signal at 370 cm−1, which is the fingerprint of C-type
ordering (6-fold coordination). Accordingly, the C-type domains
observed in bulk samples disappear, or reduce in intensity,
when decreasing particle size. No PDF peak of C-ordering
is observed for x = 0.313 Gd-doped samples (Coduri et al.,
2017) when particle size is below 10–15 nm. Similarly, lower
sintering temperatures in Y-doped samples (x = 0.10 and 0.25)
led to smaller nanodomains (Ou et al., 2006a). Eventually, Sen
et al. (2008) observed that nanometric particle size doubles the
population of Y(VIII), increasing the probability of VOs to be
NN as Ce, which can thus be reduced to +3. This can enhance
the migration of VOs, which are less strongly bound to Ce+3 than
to Y+3 (Mogensen et al., 2000).

In conclusion, reducing particle size to the nanometric scale
increases the fraction of Ce+3, mostly located at the surface and
strongly associated with VOs. Ce+3 acts as a dopant even larger
than Nd+3 and La+3, which are known to shift the long range F
to C phase transformation to higher dopant concentrations. Ce3+

thus stabilizes fluorite. XRD, PDF and Raman provided evidence
in this direction.

From Low Temperature to Operating
Conditions
The above investigations were performed at low temperature,
which is the best condition for structural analysis. Yet, this is
far from real operating conditions, i.e., high temperature and
controlled (oxidizing and reducing) atmosphere. Only a few
investigations reported in the literature were not performed at
ambient condition, and generally they are carried out under
air. This is due firstly to instrumental difficulties, such as
the case of electron microscopy. Secondly, increasing atomic
vibrations broaden the signals of local probes, undermining
the significance of local scale investigations. High temperature
does not affect diffraction studies, other than making intensity
decaying faster with momentum transfer. Since doped ceria
retains its fluorite structure on a wide temperature range, no
structural discontinuity has ever been reported. Yashima used
high temperature powder diffraction to probe static disorder by
analyzing APDs (Yashima and Takizawa, 2010). No deviation
from linearity with temperature of lattice parameters and APDs
using neutron diffraction on x(La) = 0.25 up to 800◦C (Coduri
et al., 2013b) was observed, nor it was for different compositions
of Sm (Artini et al., 2018) and Gd (Artini et al., 2014). This
evidences once more the need for a local probe. To the authors’
knowledge, only Wang et al. (2006) used EXAFS on x(Y) = 0.10
doped ceria at high temperature (600◦C). Although Y- and Ce-
environments appearedmore homogeneous at high temperature,
they claimed that structural features become ambiguous because
of excessive signal broadening.

Raman suffers as well from high temperature effects. Still, the
Raman band assigned to dopant-VO clusters was found to vanish
at 450◦C for x(Gd) = 0.15, consistently with the dissociation

of VOs from clusters involving dopant ions. These clusters are
preserved for higher dopant amount. A similar behavior was
found for other dopants (Shirbhate et al., 2016). PDF showed that
local C-type orderings are retained up to 750◦C, even though to
a lesser extent than at RT. Further distortions, compatible with
Ce reduction, were observed under reducing atmosphere (Coduri
et al., 2013b).

HRTEM was used to compare materials before and after
being subject to operating conditions, revealing that reducing
atmosphere induces further VOs ordering consequent to Ce
reduction (Li et al., 2013). Increasing sintering temperature
promotes a melting, at least a partial one, of the clusters/domains
rich in VOs. Surprisingly, among the vast set of reports in
the literature, very little effort has been dedicated so far to
move defect structures investigations toward real operating
conditions.

ATOMISTIC MODELING METHODS OF
DOPED CERIA

AB Initio Calculations
Density Functional Theory (DFT) is currently the computational
workhorse for the first principles modeling of doped ceria,
surfaces and catalytic reactivity. However, solving the
Schrödinger equation with standard DFT methods presents
one problem, that is, the spurious self-interaction between
electrons. The substitution of Ce4+ with a trivalent ion leaves an
unpaired hole in the system. It turns out that in many oxides,
such as MgO, TiO2, SiO2, CeO2, both local (LDA) and semilocal
(GGA: BLYP, PW91, PBE, PBEsol) functionals yield a hole
wavefunction which is delocalized on several ionic sites. Indeed,
reduced CeO2 is predicted to be metallic by GGA functionals,
in stark contrast with experiments. Moreover, EPR experiments,
through the hyperfine couplings, reveal that the spin-density is
very much localized and UPS experiments show that new states,
associated with Ce 4f orbitals, appear at ∼1.2 eV above the top
of the valence band. This drawback carries several additional
consequences and leads to wrong predictions about lattice
spacing, vacancy formation and migration energies, surface
energies, catalytic activity (Pacchioni, 2008).

Two practical approaches emerged to partially correct for
the self-interaction issue: DFT+Hubbard U (Dudarev et al.,
1998; Cococcioni and de Gironcoli, 2005) and hybrid functionals
(Dovesi et al., 2005, 2014). Both methods are rooted in
the principle that Hartree-Fock (HF) is almost free of self-
interaction. In fact, DFT+U can be viewed as a local-HF
correction, acting on the subspace of localized d and f electrons.
Similarly, hybrid functionals evaluate the exchange potential by
mixing pure orbital-dependent HF and density-based exchange.
Hybrid functionals like B3LYP and PBE0 retain the long range
Coulomb interaction while the HSE (Heyd et al., 2003) uses
a screened Coulomb interaction, which appears to be more
appropriate to deal with periodic solids. However, both methods
depend on empirical parameters: the value of U and the
fraction of HF, respectively, which makes them not fully ab-
initio.
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There are procedures to determine the U-values (Cococcioni
and de Gironcoli, 2005) and the fraction of HF from the dielectric
constant (Skone et al., 2014) but they are not widespread
in calculations. Rather, it is common practice to adjust these
parameters to reproduce some experimental quantities, such as
lattice spacing or vacancy formation energy (Fabris et al., 2005a;
Pacchioni, 2008). Lu and Liu (2014), presented a rationalization
of the Hubbard U parameter for Ce oxides, calculated within
different approaches (linear response, constrained RPA). They
found that the U parameter ranges from ∼4.3 to 6.7 eV and
depends strongly on the Ce-O coordination number and bond
length. A similar conclusion was reported in Loschen et al.
(2007). Recently it has been found that adding a Hubbard U term
on oxygen 2p orbital (despite the fact that is not as localized
like the 4f orbitals), does improve the electronic structure and
the energetics of defective ceria (Yeriskin and Nolan, 2010;
Plata et al., 2012). In particular, Figure 9 shows the spin density
around a VO. By employing DFT+U spin density remains strictly
localized on two Ce3+ ions. Without U corrections, it would
spread over many more sites.

Hybrid functionals constitute a valid alternative to DFT+U, at
the price of a higher computational cost, especially in the plane-
waves. Among all hybrid functionals, the screened-exchange
HSE06 functional is the most used to describe bulk CeO2 and
Ce2O3 (Hay et al., 2006; Da Silva et al., 2007; Ganduglia-Pirovano
et al., 2007; Du et al., 2018), oxygen vacancies at surfaces (Nolan,
2010, 2011; Han et al., 2016), polarons (Sun et al., 2017) and
dopants (Shi et al., 2016). Other non-screened functionals, such
as B3LYP and B3PW91 were employed successfully to calculate
the optical properties of bulk CeO2 (El Khalifi et al., 2016). In
general, hybrid functionals provide a better description of both

FIGURE 9 | Spin density of bulk CeO2 in presence of an oxygen vacancy,

showing the formation of two Ce3+ centers localized around the vacancy.

Reprinted with permission from Plata et al. (2012). © 2012 American Institute

of Physics.

Ce3+ and Ce4+ ions, larger band gaps, larger vacancy formation
energies and more localized hole wavefunctions, with respect to
pure DFT and DFT+U. Finally, there have been only few but
promising investigations on bulk CeO2 employing meta-GGA
functionals (Tran et al., 2006).

Most calculations reported in literature employ the plane-
wave pseudopotential method (Kresse and Joubert, 1999;
Giannozzi et al., 2009) and all-electron local-basis calculations
(Dovesi et al.) are less frequent due to the large number
of electrons of the lanthanides. Pseudopotentials instead treat
explicitly only valence electrons and they often discard the 4f
electrons (putting them in the core) in order to reduce the
computational cost and complexity (i.e., discarding magnetism;
Dholabhai et al., 2010).

To describe different doping concentrations, one typically
builds periodic supercells consisting of 96 sites (2 × 2 × 2 of the
conventional cubic CeO2). In the presence of multiple vacancies,
one must pay attention to spin multiplicity and to the fact that
DFT+U can present multiple local minima depending on the
starting guess of the orbital occupations. It was found that the
energy difference between parallel and anti-parallel spins is very
small (hence, a ferromagnetic solution can be imposed, Murgida
et al., 2014) and that the full randomization of the starting guess
can confidently provide the true electronic ground state.

To determine the optimal dopants and vacancies
configuration is a formidable task even for a 96-atoms supercell,
where the number of combinations can be very large. To solve
this problem, genetic optimization algorithms proved to be
efficient (Jung et al., 2018). However, such periodic supercells are
too small to calculate accurately the thermodynamics, vacancy
ordering and clustering effects. To overcome the finite-size
effects, several authors employed cluster expansion techniques
(van de Walle et al., 2002). In short, the idea is to map the
local atomic configurations of dopants and vacancies on a
Heisenberg lattice model. The “J” parameters of Heisenberg
Hamiltionian are obtained by total energy differences between
different configurations. Next, Monte Carlo methods are used
to include temperature effects and to provide useful insights on
vacancy order/disorder and on the microscopic structure at the
nanometer scale (Gopal and Van De Walle, 2010; Murgida et al.,
2014; Žguns et al., 2017, 2018).

Despite the tremendous progress of first-principles techniques
and code in the past few years, both DFT+U and hybrid
functionals still need to be improved in their formulation or
in their parametrization. This would reduce the dependence
on experimental inputs and provide more accurate, ab-initio
predictions. The development of DFT-based tight-binding
methods (i.e., DFTB) allows to simulate larger supercells that can
represent closely the local structure, the clustering and ordering
of defects, minimizing the spurious interaction between their
periodic replicas (Kullgren et al., 2017).

Interatomic Potentials
As shown above, the combination of DFT methods and
cluster expansion techniques is extremely powerful but also
computationally involved. In addition to first-principle methods,
doped ceria have also been studied byMolecular Dynamics (MD)
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and Monte Carlo (MC) methods, using empirical potentials. The
most common potentials are pairwise Born and Mayer (1932)
rigid-ion potentials. In particular Vives and Meunier (2015)
studied the defect structure and defect migration paths with six
different parametrizations of the BM potentials. By comparing
to experimental data they found that only two parameter sets
can be used confidently to study Gd-doped CeO2. For a recent
review of atomistic simulations of oxide interfaces, surfaces and
nanoparticles (see Sayle and Sayle, 2007).

Calculated Properties
In this section we selected from the vast literature recent
results on ab-initio modeling of doped ceria. Vanpoucke et al.
(2014) studied extensively the aliovalent doping of CeO2 with
lanthanide, transition metal, and alkali atoms with DFT+U
and determined the parameters of the Vegard’s law, the defect
formation energy, bulk modulii, thermal expansion parameters
as a function of dopant concentration. Apostolov et al. (2018) and
Jung et al. (2018) report phonon calculations and Raman shifts of
the F2g mode of pure CeO2, as a function of doping. In particular,
doping with lanthanide +3 ions (whose Shannon radius is larger
than that of Ce4+) causes a decrease in the frequency of the
F2g Raman mode and considerable local structure relaxations.
Dholabhai et al. (2010) and Ahn et al. (2012) and their coworkers
studied the oxygen vacancy migration barriers in Pr-doped ceria.
Surfaces of pure and doped ceria have been studied in Yeriskin
and Nolan (2010) and Farra et al. (2013) where they have
found the appearance of Ce3+ and one compensated oxygen
vacancy. The electronic structure of planar and stepped surface
was studied by Fabris et al. (2005b) and Esch et al. (2005).

Ionic Conductivity
The ionic conductivity of doped and co-doped ceria has been
studied by MD with empirical potential by Burbano et al. (2014)
using a sophisticated polarizable ion model fitted to ab-initio
results. Their main finding is that oxygen conductivity in co-
doped ceria can be well approximated by the weighted average
of the conductivity of the single-doped parent compounds.
According to their analysis the oxygen conductivity is determined
by the local lattice strain generated by the single defect rather than
by synergistic effects between different dopants. This confirms
EXAFS investigations (Yoshida et al., 2001).

Purton et al. (2017) simulated the ionic conductivity of Ca-
and Gd-doped CeO2 using large simulation cells. They employed
a hybrid-MC technique consisting of a short (1 fs) MD run
followed by a MC exchange move between a Ce and a dopant
ion. The purpose of the MC move is to provide an escape
path from local-minima configurations in order to approach the
equilibrium in a faster way. They found that for x(Gd)>0.2,
Gd-rich domains are formed. They also calculated the oxygen
conductivity for randomized Gd positions andGd-nanodomains.
They found, in accordance with percolation theory, that Gd-rich
domains limit oxygen mobility. They also studied the segregation
of the dopants at grain boundaries of CeO2.

Koettgen et al. (2018) reported an ab-initio study of the
oxygen conductivity, employing DFT and Kinetic Monte Carlo
(KMC). As already mentioned above, they considered only

jumps in the <100> direction by half of the unit cell,
and only three local configurations (Ce-Ce, Ce-RE, RE-RE).
Despite the small database of moves, their KMC results
are in very good agreement with experiments. Contrary to
observations of Burbano et al. (2014), they found that the ionic
conductivity is influenced by trapping, blocking and vacancy–
vacancy synergistic interactions: blocking limits the dopant
fraction at the ionic conductivity maximum while trapping
limits the maximum ionic conductivity. They also found a non-
linear Arrhenius behavior of the conductivity, with a reduced
activation energy at high temperature, which they ascribe to
the “association” between an oxygen ion and a rare-earth
dopant.

Local Structure
The thermodynamics of defective ceria was studied by cluster
expansion methods by Gopal and Van De Walle (2010); Žguns
et al. (2017, 2018). In particular, Gopal et al. addressed the
thermodynamics of intrinsic oxygen vacancies. In addition to
configurational entropy they also included the lattice vibrational
contribution to the free energy. Their lattice Monte Carlo
simulations showed that vacancies have a tendency to cluster
and to order along preferred directions. DFT calculations showed
for instance that for small radius dopants (La to Nd), the
oxygen vacancy tend to occupy the nearest-neighbor (NN)
position, whereas large radius dopants (Sm to Er) the oxygen
vacancy occupies the next-nearest-neighbor (NNN) site, in
order to minimize the elastic energy (Andersson et al., 2006;
Gupta et al., 2010). This is good agreement with EXAFS
experiments (see Section X-Ray Absorption Spectroscopy). Using
empirical potentials, Hayashi et al. (2000) showed that by
doping with La, Gd, and Y, the local structure of the dopant-
vacancy complex is characterized by oxygen relaxation along
the [100] direction. As a consequence the Ce-O distance
decreases even if the average volume of the fluorite cell is
increased.

The ordering of Gd dopants was studied extensively by Žguns
and coworkers in two recent papers (Žguns et al., 2017, 2018).
Their Monte Carlo simulations of both thermal equilibrium
and rapid quenching showed a critical temperature just below
1,000K. Their simulation showed that below Tc Gd tends to
phase-separate from CeO2, forming nano-domains of C-type
Gd2O3 (see Figure 8 of Žguns et al., 2017). At high temperature
the Gd ions take a completely random distribution but oxygen
vacancies tend to cluster in the coordination shell of the dopant.
They further studied the entire CeO2-Gd2O3 phase diagram, in
the full concentration range, as a function of temperature (Žguns
et al., 2018).

CONCLUDING REMARKS

Ce1−xRExO2−x/2 systems are very simple in appearance. Only
three elements are involved in each solid solution among
which RE in most cases exploit one oxidation state (+3) thus
reducing the possible point defects to RE′Ce, V••O and electrons
in the conduction band. Their crystallographic structure is
even simpler: in F solid solution cations and oxygen ions
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occupy one special positions each; even structural transitions
to the C-type structure add only few positional degrees of
freedom. Nevertheless, they show complex transport properties
in dependence to RE nature and concentration.

In some sense, their behavior resembles the chess endgame
when a small number of pieces generate a gigantic number
of possible positions and move sequences (Matanović, 2012).
Likewise, the few chemical elements involved in Ce1−xRExO2−x/2

phases generate extremely complex defect architectures.
In this paper, we have reviewed some recent conductivity,

diffraction, spectroscopy, microscopy and computation results
on Ce1−xRExO2−x/2 materials, underlying the interplay of
different techniques. In particular, an accurate structural
characterization at different scale length is found to be
fundamental to rationalize their physical properties.
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