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In this paper we show that the proof of the convexity of the set of lamination parameters given by J.L. Grenestedt and P. Gudmundson, which is extensively cited in the literature, is not correct. We give a proof of the convexity of this set when the class of layup functions is the set of step functions.

Moreover we give a proof of the non-convexity of this set when the class of layup functions is the set of step functions where the layers have the same thickness and the number of layers is not fixed.

Introduction

Lamination parameters are extensively used for the layup optimization of laminated composite structures instead of the ply thicknesses and the layup angles. These parameters are integrals through the thickness of functions of the layup angles of the different plies of the composite laminate and their number is small [START_REF] Viquerat | A continuation-based method for finding laminated composite stacking sequences[END_REF]. A key result for layup optimization is the convexity of the set of lamination parameters (more precisely the set of families of 12 lamination parameters, but for simplicity we shall use instead the expression "set of lamination parameters"). A fundamental remark is that when one speaks of the convexity of the set of lamination parameters, one must specify the class of layup functions (that is the functions which give the layup angle as a function of the through-the-thickness coordinate). For a composite laminate these functions should be step functions (that is to say piecewise constant functions).

The paper [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] gives a proof of the convexity of the set of lamination parameters and is extensively cited in the literature for this proof (see for example [START_REF] Bendsøe | Topology Optimization. Theory, Methods and Applications[END_REF], p.209, [START_REF] Vannucci | Anisotropic Elasticity[END_REF], p.265, [START_REF] Bloomfield | On feasible regions of lamination parameters for lay-up optimization of laminated composites[END_REF], p.1123, [START_REF] Diaconu | Feasible region in general design space of lamination parameters for laminated composites[END_REF], p.559, [START_REF] Bordogna | Surrogate-based aerodynamics for composite wing box sizing[END_REF], section 3.1.1, [START_REF] Albazzan | Optimization of cylinders with holes under bending using nonconventional laminates[END_REF], p.5, [START_REF] Macquart | Optimisation of composite structures-Enforcing the feasibility of lamination parameter constraints with computationallyefficient maps[END_REF], p.606, [START_REF] Duan | A two-step optimization scheme based on equivalent stiffness parameters for forcing convexity of fiber winding angle in composite frames[END_REF], p.2112, [START_REF] Serhat | Multi-objective optimization of composite plates using lamination parameters[END_REF], p.3, [START_REF] Serhat | Lamination parameter interpolation method for design of manufacturable variable-stiffness composite panels[END_REF], p.3, [START_REF] Viquerat | A continuation-based method for finding laminated composite stacking sequences[END_REF], p.2 to name just a few, see also the list of articles quoting [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] on Google Scholar). But the proof of this paper is not correct as will be shown in the present paper (section 2 and section 4 for a detailed proof of the result of [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF]).

In the present paper we give a proof of the convexity of the set of lamination parameters when the class of layup functions is the set of step functions (section 3, Proposition 3.1). This means in particular that in the class of composite laminates we consider the number of layers and their thicknesses are not fixed.

Moreover the proof is constructive: given two families of 12 lamination parameters corresponding to two layup functions, the proof gives formulas for a layup function corresponding to any convex combination of the two families of 12 lamination parameters.

In the literature most of the papers about lamination parameters deal with laminates composed of layers of the same thickness (it is the "uniform thickness approach"), although some of them concern laminates composed of layers of not necessarily the same thickness (it is the "variable thickness approach"), see for example [START_REF] Montemurro | Design of the elastic properties of laminates with a minimum number of plies[END_REF], [START_REF] Kulkarni | Variable thickness approach for finding minimum laminate thickness and investigating effect of different design variables on its performance[END_REF]. As in the paper [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF], the present paper considers laminates with layers of not necessarily the same thickness. The contribution of the present paper is to give a rigorous mathematical proof of the convexity of the set of lamination parameters within this framework. It is an improvement compared with the proof of [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] which is false, although largely cited in the literature.

In a very recent paper [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF], it is shown that the set of lamination parameters is non-convex when the aforementioned class of layup functions is the set of step functions where the number of layers is fixed (= N > 1) and the layers have the same thickness (see [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF], Proposition 3.4). The results of [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF] and of the present paper are not incompatible since the classes of layup functions, therefore also the set of lamination parameters, are different in the two studies (more precisely the set of lamination parameters in [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF] is included in the set of lamination parameters in the present paper).

In section 5 we give a proof of Proposition 3.4 of [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF] which is true for any number of layers N ≥ 1 (Proposition 5.1). Moreover we show that when the class of layup functions is the set of step functions where the layers have the same thickness but the number of layers is not fixed, the associated set of lamination parameters is non-convex (Proposition 5.2). This proves that when one considers the set of lamination parameters associated to a class of step functions, in order to get a convex set, the condition "the layers have the same thickness" must be discarded. This all shows once again that it is very important to precise the class of layup functions when one speaks of the convexity of the set of lamination parameters and the present paper clarifies the matter about this subject.

Finally in Appendix A, thanks to Lemma A.1, we give a little simpler proof of Proposition 3.2 of [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF], which shows the non-convexity of the set of polar parameters when the number of layers N is > 1.

2 Problem statement and inaccuracy of the proof in [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] In the sequel the set of natural numbers will be denoted by N (containing 0) and the set of positive natural numbers N \ {0} by N * . Recall that the word "iff" means "if and only if".

The lamination parameters are given by the formulas:

ξ A [1,2,3,4] [θ] = 1 2 1 -1
[cos 2θ(z), cos 4θ(z), sin 2θ(z), sin 4θ(z)]dz, (2.1)

ξ B [1,2,3,4] [θ] = 1 -1
[cos 2θ(z), cos 4θ(z), sin 2θ(z), sin 4θ(z)]zdz, (2.2)

ξ D [1,2,3,4] [θ] = 3 2 1 -1
[cos 2θ(z), cos 4θ(z), sin 2θ(z), sin 4θ(z)]z 2 dz,

( [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF], equation ( 13)), where z is the normalized through-the-thickness coordinate and θ: z 

∈ [-1, 1] → θ(z) ∈ R (
LP C = {ξ[θ] such that θ ∈ C}, (2.4) 
that is to say LP C is the set of the families of 12 lamination parameters associated to all the θ in the class C. For a given class of functions C the convexity of LP C reads as follows: if θ 1 and θ 2 ∈ C, and

if α ∈ [0, 1] (or α ∈ (0, 1)), then (1 -α)ξ[θ 1 ] + αξ[θ 2 ] ∈ LP C , that is to say (1 -α)ξ[θ 1 ] + αξ[θ 2 ] can be written under the form (1 -α)ξ[θ 1 ] + αξ[θ 2 ] = ξ[θ] (2.5) 
with θ ∈ C.

In [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF], p.317, given α ∈ [0, 1] and two functions θ 1 and θ 2 from [-1, 1] into R, whose regularity is not specified, a sequence of functions (θ n ) is constructed such that

ξ[θ n ] → (1 -α)ξ[θ 1 ] + αξ[θ 2 ] (2.6)
when n → +∞. The proof of (2.6) in [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] is right if θ 1 and θ 2 are in the class of piecewise continuous functions on [-1, 1] that have a continuous extension on each of the subintervals of their definition. This result of [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] for this class of functions is detailed in section 4.

But by no means (2.6) proves the convexity of the set of lamination parameters because it does not prove the existence of a function θ such that (2.5) is satisfied.

On the other hand in [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF], p.6 it is written: "In (Grenestedt and Gudmundson (1993)), it was claimed that the feasible domain in LPs space is convex. The thesis and the proof of this claim are erroneous.

The authors consider one of the twelve components of p at time."

But this is not at all the real reason why the proof of [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] is erroneous. The problem in [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] is not that "authors consider one of the twelve components of p at time". The proof of (33) in [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] is true for all the functions of the form z ∈ [-1, 1] → f (θ(z))z j , j = 0, 1, 2 (and even j ∈ N) where f is a continuous function on R, as shown in section 4. As already mentioned, in [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] a sequence of functions (θ n ) is constructed such that (2.6) is satisfied and this does not show the convexity of the set of lamination parameters. In [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF] if Obviously for N fixed C N is a subset of C SF therefore LP C N is a subset of LP C SF . But since LP C N (for N fixed) and LP C SF are different there is absolutely no contradiction between the result of [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF] and the result of the present paper (even if

Recall that a function

θ: z ∈ [-1, 1] → θ(z) ∈ R is a step function if there exists N ∈ N * and a sequence of real numbers (a i ) i=0,...,N , a 0 = -1, a N = 1, a i < a i+1 , i = 0, . . . , N -1 such that θ is constant on each of the intervals (a i , a i+1 ), i = 0, . . . , N -1 (
N ∈ N * ,
LP C N is a subset of LP C SF ).
The result of [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF] is understandable because in order to show the convexity in this case, if θ 1 and 

θ 2 ∈ C N , and if α ∈ [0, 1], one must show that (1 -α)ξ[θ 1 ] + αξ[θ 2 ] ∈ LP C N ,
C e = N ∈N * C N (2.7)
In section 5, we show that LP Ce is non-convex (Proposition 5.2).

In summary, the sets of lamination parameters associated to the set of step functions on [-1, 1]

(=LP C SF ), to the set of step functions on [-1, 1] such that the layers have the same thickness but the number of layers is not fixed (= LP Ce ) and to the set of step functions on [-1, 1] such that the layers have the same thickness and the number of layers is fixed to a value N ∈ N * (= LP C N ) are such that

LP C N ⊂ LP Ce ⊂ LP C SF (2.8)
and

LP C N is non-convex , LP Ce is non-convex , LP C SF is convex . (2.9)
3 Proof of the convexity of LP C SF

We shall prove the convexity of the set of lamination parameters when the functions θ are in the class of step functions.

Let θ 1 and θ 2 be two step functions on [-1, 1]. There exists N ∈ N * and a sequence of real numbers (a i ) i=0,...,N , a 0 = -1, a N = 1, a i < a i+1 , i = 0, . . . , N -1 such that the two step functions θ 1 and θ 2 are constant on each of the intervals (a i , a i+1 ), taking the values θ i 1 and θ i 2 , i = 0, . . . , N -1: the sequence (a i ) i=0,...,N is simply the union of the corresponding sequences associated to θ 1 and θ 2 .

The lamination parameters are all under the form

1 -1 f (θ(z))z j dz, j = 0, 1, 2 (3.1)
where f is a continuous function on R, more precisely f (θ) = cos 2θ, sin 2θ, cos 4θ or sin 4θ, θ ∈ R. For all continuous function f on R we have

1 -1 f (θ k (z))z j dz = N -1 i=0 f (θ i k ) ai+1 ai z j dz, k = 1, 2, j = 0, 1, 2. (3.2) Consequently if α ∈ [0, 1], j = 0, 1, 2, (1 -α) 1 -1 f (θ 1 (z))z j dz + α 1 -1 f (θ 2 (z))z j dz = N -1 i=0 [(1 -α)f (θ i 1 ) + αf (θ i 2 )] ai+1 ai z j dz. (3.3) 
In order to prove the convexity of the set of lamination parameters, it is sufficient to find a step function θ on [-1, 1] such that for all continuous function f on R and for all j = 0, 1, 2,

N -1 i=0 [(1 -α)f (θ i 1 ) + αf (θ i 2 )] ai+1 ai z j dz = 1 -1 f (θ(z))z j dz. (3.4) 
Let us search θ such that on each interval (a i , a i+1 ), θ takes the values θ i 1 (resp.

θ i 2 ) on a (disjoint) union of open intervals E i 1 (resp. E i 2 ): ∀i = 0, . . . , N -1, θ(z) = θ i 1 1 E i 1 (z) + θ i 2 1 E i 2 (z), z ∈ (a i , a i+1 ), (3.5) 
E i 1 ∪ E i 2 = [a i , a i+1 ], E i 1 ∩ E i 2 = ∅. (3.6)
In (3.5), we have used the following notation: if E is a subset of R, 1 E is the indicator function of the subset E, that is the function such that 1 E (x) = 1 if x ∈ E and 1 E (x) = 0 if x ∈ E. Equations (3.5) and

(3.6) imply that for all continuous function f on R, we have

ai+1 ai f (θ(z))z j dz = f (θ i 1 ) E i 1 z j dz + f (θ i 2 ) E i 2 z j dz, i = 0, . . . , N -1, j = 0, 1, 2. (3.7)
From (3.4) and (3.7), for all i = 0, . . . , N -1, it is sufficient to find E i 1 (E i 2 will be determined by (3.6)) such that for all continuous function f on R,

[(1 -α)f (θ i 1 ) + αf (θ i 2 )] ai+1 ai z j dz = f (θ i 1 ) E i 1 z j dz + f (θ i 2 ) E i 2 z j dz, j = 0, 1, 2. (3.8)
It is enough to satisfy

(1 -α) ai+1 ai z j dz = E i 1 z j dz, i = 0, . . . , N -1, j = 0, 1, 2 (3.9) 
and

α ai+1 ai z j dz = E i 2 z j dz, i = 0, . . . , N -1, j = 0, 1, 2. (3.10)
We stress that if we find θ of the form (3.5), (3.6) such that (3.9), (3.10) is satisfied, then θ will be independant of f and j = 0, 1, 2, so that θ will be the same for all the lamination parameters.

But if E i 1 and E i 1 satisfy (3.6) it results that for all i = 0, . . . , N -1, j = 0, 1, 2,

E i 1 z j dz + E i 2 z j dz = ai+1 ai z j dz = (1 -α) ai+1 ai z j dz + α ai+1 ai z j dz, (3.11) 
thus it suffices to find E i 1 satisfying (3.9) and (3.10) will be necessarily satisfied. The answer to this problem is given by the following lemma: Lemma 3.1 Let A, B ∈ R, A < B and let α ∈ (0, 1). Then there exists a union of intervals ⊂ (A, B)

(denoted E) such that α B A z j dz = E z j dz, j = 0, 1, 2.
(3.12)

Proof Since E must meet the three conditions (denoted e), so that E will depend on three parameters to be determined. The following conditions must be satisfied: 

α B A z j dz = b a z j dz + d c z j dz, j = 0, 1, 2, (3.13) that is α(B -A) = b -a + d -c = 2e, (3.14) α(B 2 -A 2 ) = b 2 -a 2 + d 2 -c 2 , (3.15) α(B 3 -A 3 ) = b 3 -a 3 + d 3 -c 3 . ( 3 
α(B 2 -A 2 ) = α(B -A)(B + A) = 2e(A + B), (3.18) b 2 -a 2 + d 2 -c 2 = (b -a)(a + b) + (d -c)(c + d) = 2e(X + Y ). ( 3 
X + Y = A + B. (3.20) 
On the other hand

b 3 -a 3 = (X + e/2) 3 -(X -e/2) 3 = 2[3X 2 (e/2) + (e/2) 3 ] = e(3X 2 + e 2 /4), (3.21) 
d 3 -c 3 = (Y + e/2) 3 -(Y -e/2) 3 = 2[3Y 2 (e/2) + (e/2) 3 ] = e(3Y 2 + e 2 /4), (3.22) 
A = (A + B)/2 -(B -A)/2 = (X + Y )/2 -e/α, (3.23) 
B = (A + B)/2 + (B -A)/2 = (X + Y )/2 + e/α, (3.24) 
B 3 -A 3 = [(X + Y )/2 + e/α] 3 -[(X + Y )/2 -e/α] 3 = 2[3((X + Y )/2) 2 (e/α) + (e/α) 3 ] = 2e/α[3/4(X + Y ) 2 + (e/α) 2 ]. (3.25) 
Therefore equation (3.16) can be written

2e[3/4(X + Y ) 2 + (e/α) 2 ] = e(3X 2 + e 2 /4) + e(3Y 2 + e 2 /4) (3.26) that is 2[3/4(X + Y ) 2 + (e/α) 2 ] = 3(X 2 + Y 2 ) + e 2 /2 (3.27) or 3[X 2 + Y 2 -(X + Y ) 2 /2] = e 2 (2/α 2 -1/2) (3.28) and (X -Y ) 2 = (e 2 /3)(4/α 2 -1). (3.29) Since 4/α 2 -1 > 0, let us set β = (e/ √ 3) 4/α 2 -1 > 0. (3.30)
Since X and Y must meet the condition Y > X, from (3.20) and (3.29) we get

Y -X = β, (3.31) 
X = [A + B -β]/2, (3.32) 
Y = [A + B + β]/2. (3.33) 
One must now verify that the solution a, b, c, d we have obtained (see formulas (3.17)) is suitable, that is

A < a < b < c < d < B. This amounts to show that Y -X > e and Y -X + e < B -A. Since 0 < α < 1 we obtain Y -X = β > e. On the other hand the relation Y -X + e < B -A is equivalent to (e/ √ 3) 4/α 2 -1 + e < 2e/α (3.34) that is 4/α 2 -1 < √ 3(2/α -1) (3.35) or 4/α 2 -1 < 3(2/α -1) 2 . (3.36) Equation (3.36) is equivalent to the condition α 2 -3α + 2 > 0 (3.37) which is satisfied since the condition 0 < α < 1 implies α 2 -3α + 2 = (1 -α)(2 -α) > 0.
We have proved

Proposition 3.1 The set LP C SF is convex.
4 Detailed proof of the result of [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] In [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF], (2.6) is shown for functions θ 1 and θ 1 whose regularity is not specified. The proof of [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF] is true for piecewise continuous functions on [-1, 1] that have a continuous extension on each of the subintervals of their definition and we shall detail this proof here. A function θ: z ∈ [-1, 1] → θ(z) ∈ R is a piecewise continuous function if there exists N ∈ N * and a sequence of real numbers (a i ) i=0,...,N , a 0 = -1, a N = 1, a i < a i+1 , i = 0, . . . , N -1 such that θ is continuous on each of the intervals (a i , a i+1 ), i = 0, . . . , N -1 (the value of θ at the points a i , i = 0, . . . , N does not matter). We shall consider the class of piecewise continuous functions θ on [-1, 1] such that on each of the open intervals (a i , a i+1 ), i = 1, . . . , N -1, θ has a continuous extension on the closed interval [a i , a i+1 ] and we shall denote by C P CE this class of functions. In this context when we shall speak of the value of θ ∈ C P CE on [a i , a i+1 ], i = 0, . . . , N -1, it will mean the value of the extension of θ on [a i , a i+1 ], i = 0, . . . , N -1.

Assume that θ 1 , θ 2 ∈ C P CE and α ∈ (0, 1). Let us recall the construction of the sequence (θ n ) in [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF].

If n ∈ N * , consider a sequence of real numbers (z n i ) i=0,...,n , z n 0 = -1, z n n = 1, z n i < z n i+1 , i = 0, . . . , n -1. The sequence (z n i ) i=0,...,n is chosen such that θ 1 and θ 2 are continuous on each of the intervals [z n i , z n i+1 ], i = 0, . . . , n -1. This can be done as follows (this is not explicit in the paper [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF]). First choose a sequence of real numbers (a i ) i=0,...,N , a 0 = -1, a N = 1 a i < a i+1 , i = 0, . . . , N -1 such that θ 1 and θ 2 are continuous on each of the intervals [a i , a i+1 ]. This can be achieved by choosing the union of the corresponding sequences in the characterization of θ 1 and θ 2 . Then the sequence (z n i ) i=0,...,n is chosen such that each of the points a i , i = 1, . . . , N -1 is one of the points z n j , j = 1, . . . , n -1. This assumes that n ≥ N . With this choice of the points z n j , j = 1, . . . , n -1, θ 1 and θ 2 are continuous on each of the intervals

[z n i , z n i+1 ], i = 0, . . . , n -1. Let α ∈ [0, 1]. For all n ∈ N * , with the notation ∆z n i = z n i+1 -z n i , i = 0, . . . , n -1, on each interval (z n i , z n i+1 ), θ n is defined by θ n (z) = θ 1 (z) if z ∈ (z n i , z n i +α∆z n i ) and θ n (z) = θ 2 (z) if z ∈ (z n i +α∆z n i , z n i+1 ), i = 0, . . . , n -1.
The function θ n is not defined for other points of the interval [-1, 1] (in finite number), that is the points z n i (i = 0, . . . , n) and z n i + α∆z n i (i = 0, . . . , n -1). The sequence (z n i ) i=0,...,n is chosen such that max ∆z n i i=0,...,n-1 → 0 when n → +∞.

As mentioned in section 3 the lamination parameters are all under the form (3.1) where f is a continuous function on R. If f is a continuous function on R, for all n ∈ N, n ≥ N , we can write

1 -1 f (θ n (z))z j dz = n-1 i=0 z n i+1 z n i f (θ n (z))z j dz = n-1 i=0 z n i +α∆z n i z n i f (θ 1 (z))z j dz + n-1 i=0 z n i+1 z n i +α∆z n i f (θ 2 (z))z j dz, j = 0, 1 , 2. (4.1) 
At that point, in [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF], p.318 the Mean Value Theorem is applied to each of the terms in the last line of The functions θ 1 and θ 2 are continuous on the intervals [z n i , z n i+1 ], i = 0, . . . , n -1, then the functions z

∈ [-1, 1] → g j k (z) = f (θ k (z))z j , k = 1, 2, j = 0, 1, 2 
are also continuous on the intervals [z n i , z n i+1 ], i = 0, . . . , n -1, and using the Mean Value Theorem we obtain (as in [START_REF] Grenestedt | Layup optimization of composite material structures[END_REF], p.318)

z n i +α∆z n i z n i f (θ 1 (z))z j dz = z n i +α∆z n i z n i g j 1 (z)dz = α∆z n i g j 1 (z n i + ζ j i α∆z n i ) (4.3)
where ζ j i ∈ (0, 1), i = 0, . . . , n -1, j = 0, 1, 2.

For each n ∈ N, n ≥ N and l = 0, . . . , N , there exists a unique k l ∈ N, 0 ≤ k l ≤ n such that z n k l = a l . Now consider the first term in the last line of (4.1). This term can be written under the form On the other hand

k l+1 -1 i=k l ∆z n i g j 1 (z n i + ζ j i α∆z n i
) is a Riemann sum on [a l , a l+1 ] of the function g j 1 which is continuous on [a l , a l+1 ] thus (see [START_REF] Knapp | Basic Real Analysis[END_REF], Theorem 1.35) 

k l+1 -1 i=k l ∆z n i g j 1 (z n i + ζ j i α∆z n i ) →

  the value of θ at the points a i , i = 0, . . . , N does not matter). Let us denote by C SF the class of step functions on [-1, 1]. In particular the number of layers (= N ) and the thicknesses (= a i+1 -a i , i = 0, . . . , N -1) corresponding to a step function are arbitrary and the values of a step function over two neighbouring layers may be identical. What is shown in the present paper (section 3, Proposition 3.1) is that when the class C is the set of step functions on [-1, 1] (= C SF ) then the set of the families of 12 lamination parameters associated to all the θ in the class C SF (= LP C SF ) is convex.In the proof given in the present paper, if a step function θ 1 corresponds to N 1 layers and a step function θ 2 corresponds to N 2 layers, first we construct a partition of the interval [-1, 1] such that the two functions θ 1 and θ 2 are constant on each of the intervals of this partition (by taking the union of the points of discontinuity of θ 1 and θ 2 ). Next each of these intervals is divided into five subintervals (depending on α ∈ [0, 1]) and the constructed step function θ satisfying (2.5) is such that θ = θ 1 on some of these subintervals and θ 2 on the other subintervals. This is possible thanks to Lemma 3.1.

1 (

 1 one considers the class of step functions on [-1, 1] where the number of layers is fixed and equal to N and the layers have the same thickness. Let us denote by C N this class of functions.With the definition (2.4) the set of the families of 12 lamination parameters associated to all the step functions θ in this class C N is thus LP C N . In[START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF], Proposition 3.4 it is shown that for N fixed > 1, LP C N is non-convex. In section 5 we give a proof of Proposition 3.4 of[START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF] which is true for all N ≥ Proposition 5.1).

  that is to say one must construct a step function θ ∈ C N such that equation (2.5) is satisfied. This means in particular that this θ must correspond to N layers with the same thickness (even if the values of θ over several neighbouring layers may be identical and the corresponding layers can be gathered to form a layer with a different thickness): this constraint is stronger than in the situation of the present paper where the step function θ to be constructed may correspond to any number of layers and to any thicknesses: that is the fundamental difference. Now let us consider the class of step functions on [-1, 1] such that the layers have the same thickness but the number of layers is not fixed. Mathematically this class denoted C e is defined by

( 3 .

 3 12), we seek E under the form E = (a, b) ∪ (c, d) with a, b, c, d ∈ R, A < a < b < c < d < B and from the begining we enforce the condition b -a = d -c

. 16 )

 16 Equation (3.14) makes it possible to determine e: e = α(B -A)/2. Setting X = (a + b)/2 and Y = (c + d)/2, we get a = X -e/2, b = X + e/2, c = Y -e/2, d = Y + e/2, (3.17)

( 4 . 1 )

 41 . This theorem asserts that if f is a continuous function on an interval [a, b] (a, b ∈ R, a < b), then there exists c ∈ (a, b) such that b a f (z)dz = (b -a)f (c). (4.2)

ff 1 - 1 f 1 - 1 f 1 - 1 f 1 - 1 fProposition 5 . 1

 1111111151 (θ 1 (z))z j dz, j = 0, 1, 2(4.6) when n → +∞ (since max ∆z n i i=0,...,n-1 → 0 when n → +∞). From (4.5) and (4.6), one obtains: for all l = 0, . . . , N -1, (θ 1 (z))z j dz (4.7)when n → +∞, so that by (4.4) and (4.7) n (z))z j dz → α (θ 1 (z))z j dz(4.8)when n → +∞. A similar result can be proved for the second term of the last line of (4.1). This shows that when θ 1 andθ 2 ∈ C P CE , (θ n (z))z j dz → α (θ 1 (z))z j dz + (1 -α) (θ 2 (z))z j dz, j = 0, 1, 2(4.9)when n → +∞. This shows (2.6) when θ 1 and θ 2 ∈ C P CE .5 Proof of the non-convexity of LP C N and LP C eLet N ∈ N * and for all j = 1, . . . , N , setI j = (-1 + 2(j -1)/N, -1 + 2j/N ). The elements of C N are 1 , . . . , θ N ) ∈ R N . For all N ∈ N * , the set LP C N is non-convex.Proof Let N ∈ N * . With the notation (5.1), for all θ ∈ C N ,ξ A 1 [θ] = N j=1 cos 2θ j N , ξ A 2 [θ] = N j=1 cos 4θ j N , ξ A 3 [θ] = N j=1 sin 2θ j N , ξ A 4 [θ] = N j=1 sin 4θ j N .(5.2)
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Let us choose the following elements of C N : θ a = 0, θ b = (π/2)1 I N .

(5.3)

We have

(5.4)

Let α ∈ [0, 1]. According to (5.4) we have

(5.5)

If LP C N is assumed to be convex, there exists

(5.6)

From equation (5.2) and the second equation (5.6), it follows that for all j = 1, . . . , N , cos 4θ c j = 1, that is θ c j ∈ (π/2)Z (where Z is the set of integers). Let us denote by M ∈ N, 0 ≤ M ≤ N the number of indices j, j = 1, . . . , N such that θ c j ∈ πZ (hence cos 2θ c j = 1), thus the other indices j, j = 1, . . . , N (in number N -M ) are such that θ c j ∈ πZ + (π/2)Z (hence cos 2θ c j = -1). From (5.2), we obtain

The condition

This gives a contradiction by taking α ∈ (0, 1). By a proof similar to that of Proposition 5.1, we obtain:

Proof The proof is the same as that of Proposition 5.1 except some minor modifications. It is exactly the same up to equation (5.5). Then if LP Ce is assumed to be convex, there exists

satisfies equation (5.6). The paragraph after equation (5.6) up to equation (5.7) is the same as that of Proposition 5.1 except that N and M must be replaced by N 1 and M 1 . We obtain

. This gives a contradiction by taking α ∈ R \ Q (where Q is the set of rational numbers).
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A Proof of the non-convexity of the set of polar parameters

In [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF], Proposition 3.2 it is shown that for N ∈ N, N ≥ 2 the set of polar parameters is non-convex.

We propose here a proof of this result which is a little simpler, thanks to Lemma A.1. Let us state Proposition 3.2 of [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF]:

Proof With the notations (5.1), (5.2), the terms ρ 0 and ρ 1 defined in equations ( 14) and ( 15) of [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF] (we shall denote them by ρ 0 (θ) and ρ 1 (θ)) read as follows: for all θ ∈ C N ,

and

Define the function g from R N into R by: for all (θ 1 , . . . , θ

With this definition of g and from (5.2), (A.8), (A.9), we have: for all θ ∈ C N , ρ 0 (θ) = g(4(θ 1 , θ 2 , . . . , θ N )), ρ 1 (θ) = g(2(θ 1 , θ 2 , . . . , θ N )). (A.11)

Choose the following elements of C N :

We have

and since N ≥ 2, we have 1 -2/N ≥ 0 and

If the set of polar parameters is assumed to be convex, there exists

(this is equation (24) of [START_REF] Scardaoni | Convex or non-convex? On the nature of the feasible domain of laminates[END_REF]). Due to (A. [START_REF] Knapp | Basic Real Analysis[END_REF]) and (A.15) we have ρ 0 (θ c ) = 1 and ρ 1 (θ c ) = 1 -2α/N .

Before proceeding further with the proof of the proposition, let us state the following lemma.

With the definition of g given by (A.10), for all (θ 1 , . . . , θ N ) ∈ R N , 0 ≤ g(θ 1 , . . . , θ N ) ≤ 1 (A.17) and g(θ 1 , . . . , θ N ) = 1 iff for all j = 2, . . . , N , θ j -θ 1 ∈ 2πZ.

Proof By the triangle inequality, for all (θ 1 , . . . , θ N ) ∈ R N ,

On the other hand the triangle inequality in (A.18) is an equality iff for all j = 2, . . . , N , there exists λ j ∈ R, λ j > 0 such that e iθj = λ j e iθ1 , that is for all j = 2, . . . , N , e iθj = e iθ1 . This shows the lemma.

Applying (A.11) and Lemma A.1, we have 0 This gives a contradiction by taking α ∈ (0, 1).