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A B S T R A C T

Copper bismuth oxide (CuBi2O4 or Bi2CuO4) thin films have been elaborated for the first time by radio-frequency
magnetron sputtering using a homemade CuBi2O4 ceramic target. X-ray diffraction characterizations revealed an
amourphous phase for as-deposited films. After air annealing at 450 °C for 12 h, a pure polycristalline CuBi2O4

phase can been obtained. Raman spectroscopy confirmed the film phase purity. The influence of the thickness on
the structural properties of the films has been studied and we observed that all films treated above 450 °C are
crystallized. The thinner films show preferred orientation while there are less crystal defects for the thickest films
(∼700 nm). Atomic force microscopy shows a homogeneous polycristalline microstructure at the surface of the
film. Optical measurements performed by UV–vis-IR spectrophotometry indicate that these films have one of
their optical band gaps in the visible region (Eg∼1.5 eV) which makes them suitable as thin films solar ab-
sorption materials.

1. Introduction

The ternary compound CuBi2O4 possesses an unusual crystal struc-
ture with stacks of square planar CuO4 groups linked to distorted tri-
gonal BiO6 polyhedra, associated with very interesting electrical and
antiferromagnetic properties [1,2]. In recent years, this p-type semi-
conductor has been identified as a promising material for its use in
photocatalystis, photoelectrochemistry and the generation of hydrogen
from water [3–5]. Indeed, it was reported that CuBi2O4 has an optical
absorption onset of 1.4–1.8 eV although it is not yet clear whether the
band gap is direct or indirect [6]. Moreover, its conduction band
minimum is located on a more negative position than the water re-
duction potential, enabling solar H2 production [7–9].

Up to now, all CuBi2O4 thin films reported were synthesized by
electrodeposition [10,11], hydrothermal synthesis [8], sol gel method
[12], or spray pyrolysis [13], essentially. Among all deposition
methods, sputtering deposition (Physical Vapor Deposition or PVD) is a
simple, industrial and environmentally friendly technique that can
provide dense and homogenous oxide thin films with a good control of
their thicknesses and excellent adhesion. A post-thermal annealing has
often to be carried out in order to get a fully crystalline material. In the
case of stable oxides, this thermal annealing can be a simple and con-
ventional annealing treatment performed in air, which is less expensive
than thermal annealing under vacuum, neutral gas, or complex atmo-
sphere. By easily controlling the sputtering parameters, playing on the

pressure to vary the porosity for example [14], the properties of the
films can be optimized for various applications.

However, to the best of our knowledge there is no publication yet
about the use of the radio-frequency (RF) sputtering technique for its
deposition.

In this work, we thus report for the first time the preparation of
CuBi2O4 thin films by the PVD technique and their structural, micro-
structural and optical characterizations.

2. Experimental

2.1. Film preparation

Thin films were deposited by RF magnetron sputtering using a
homemade CuBi2O4 ceramic target. Indeed, a stoichiometric mixture of
CuO and Bi2O3 commercial powders was first heated at 770 °C (below
the eutectic point) for 48 h in air to get a pure CuBi2O4 phase (checked
by X-ray diffraction). The polycrystalline CuBi2O4 powder (150 g) was
then pressed in a die of 10 cm in diameter and sintered at 770 °C for 12
h under air atmosphere. The relative density of the target was about 75
%. X-Ray Diffraction (XRD) measurements carried out on a small re-
presentative pellet showed no impurity phase.

The sputtering apparatus is an ALCATEL A450 with a radio-fre-
quency generator (13.56 MHz) and a pumping system (limit pressure P
= 5.10−5 Pa inside the deposition chamber before deposition). The RF
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power was fixed at 20 W. Pre-sputtering by argon plasma was per-
formed during 15 min to clean the target surface of any impurity prior
to the film deposition. Pre-cleaned 1 mm thick microscopy slides,
convenient due to their high transparency, intermediate thermal dila-
tation coefficient and low cost, were used as substrates.

The deposition parameters are summarized in Table 1. The analysis
of the chemical composition of the films made by electron probe micro-
analysis (using a Cameca SX 50 apparatus) confirmed the conservation
of the target composition into the film. The sample showed a Cu/Bi
ratio close to 0.5 and a general formula of Cu1.02(4)Bi1.9(2)O4.10(4)
was determined for all samples analyzed.

Thickness measurements were performed by surface profilometry,
using a DEKTAK 3030ST mechanical profilometer, and by X-Ray
Reflectivity (XRR), using a Bruker D8 Advance diffractometer equipped
with a Göbel mirror. The experimental XRR data were fitted using a
modified Fresnel recursive formula, generally referred as the Parratt
formalism [15]. All measurements we made on as-deposited samples.

2.2. Characterizations

Structural characterizations of films were performed using a Bruker
D8 diffractometer in the Bragg-Brentano configuration. Data were re-
corded using a CuKα wavelength radiation (40 kV, 40 mA) and col-
lected over the 10°< 2Θ<100° range at room temperature with a 0.02
step scan and 20 s/step. Nickel filter was used to eliminate the Kβ-ray
and reduce fluorescence.

Raman spectra were collected under ambient conditions using a
LabRAM HR 800 Jobin Yvon spectrometer with a laser excitation wa-
velength of 532 nm. Spectra acquisitions were carried out for 300 s
using x100 objective lens and 600 g/mm grating. Examination of
multiple spots showed that the deposited sample were homogeneous.

To study the microstructure of the films, Atomic Force Microscopy
(AFM) Veeco Dimension 3000 equipped with a super sharp TESP-SS
Nanoworld tip was used. AFM surface images were analysed using the
Gwyddion Software.

The electrical measurements were made with a QuadPro four-point
probe device from Signatone equipped with a Keithley SMU 237. This
type of system can measure a maximum resistance of 1010 Ω.

The optical characteristics of thin films were investigated in the
300–1100 nm wavelength range using a Bentham PVE300 integrated
spectrophotometer. The optical transmittance of the glass substrate was
systematically subtracted from the final data before calculation. Spectra
were then modeled using the SCOUT software [16].

3. Results and discussion

3.1. Thickness determination

To calibrate the thicknesses of the layers, we used two different
techniques. First, an uniform deposition rate equal to 6.25 nm.min−1 in
the 25–700 nm range has been determined by measuring walking

heights with a mechanical profilometer. We then proceeded to XRR
measurements for showing that our deposition technique can be used
for the preparation of a dense, controlled in thickness and homogenous
thin layer of CuBi2O4.

From the Parratt’s formalism and in the case of one simple layer, the
specular reflection coefficient R is expressed as:
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Where r1 an r2 are the Fresnel reflection coefficient for respectively the
air/layer (r1) and the layer/substrate (r2) interfaces, k2 the wave vec-
tor’s normal component of the electromagnetic wave propagating in the
layer and d the thickness.

The Fresnel reflection coefficient depends upon the incident angle in
between the beam and the sample surface as well as the refractive index
of the considered material. When the chemical composition is well-
known, the refractive index is expressed depending on the density. So
the fit of the experimental data has been done by considering both
thickness and density as adjustable parameters.

Fig. 1 shows the X-Ray Reflectivity curves for samples with theo-
retical thicknesses of 25 nm, 50 nm, 75 nm and 100 nm. These curves
exhibit well marked oscillations, known as Kiessig fringes [17], which
are characteristics of continuous, homogenous and uniform layers with
low surface and interface roughness. Full lines correspond to the best
fitting curves from which the thickness and the density are deduced.
The values obtained (26 nm, 53 nm, 80 nm and 105 nm for thicknesses;
8.4 g.cm−3 for density) are very close to the theoretical ones. This
confirms that it is possible to produce thin films with a precise and
homogeneous thickness and a high density using the sputtering tech-
nique, which is an important advantage over other deposition techni-
ques.

3.2. Structural and microstructural characterizations

Thicker samples have been studied in order to have a better dif-
fraction signal and to better characterize the purity of the thin film.

The substrates used in this work were microscopy slices, made out
of 1 mm thick soda-lime glass (∼ 5 cm2 square substrates). Although
the softness temperature is usually around 750 °C, according to some
supplier references, it can be around 550 °C, close to the treatment
temperature chosen in this paper. In addition, this choice was also
justified by the fact that most of the n-type TCOs on which our material
could be superimposed for future electronic and energy applications are
stable in this temperature range.

A first sample of 700 nm has been first deposited and studied. Fig. 2

Deposition parameters

Target Diameter (cm) 10
Target-to-substrate distance (cm) 5
RF power (W) 20
Magnetron yes
Sputtering gas Ar
Background pressure (Pa) 5.10−5

Working pressure (Pa) 0.5
Argon flow rate (sccm) 11
Deposition rate (nm. min−1) 6.25
Film thickness (nm) 100−300-700
Substrate holder water cooled

Fig. 1. X-Ray reflectivity curves for a CuBi2O4 thin film. Full line is the best fit
calculated from the recursive Parratt formalism.

Table 1
Deposition parameters.



shows the XRD patterns of CuBi2O4 thin films studied (as-deposited and
annealed under air at 400 °C and 450 °C for 12 h). The as-deposited
sample shows no diffraction peak which indicates an amorphous or
nanocrystallized sample.

From 400 °C, the film begins to crystallize. Peaks of low intensity
correspond to the crystalline structure of CuBi2O4, whereas the broad
hump in the background shows that there is still some amorphous phase
that remains, thus evidencing that this temperature is not sufficient to
have a good crystallization for this lap of time.

It is from twelve hours of annealing at 450 °C in air (suitable tem-
perature for a glass substrate) that the sample has the best crystallized
state and the XRD diffraction pattern corresponds to the reference
pattern # 00-042-0334 of the ICDD Powder Diffraction File (PDF®)da-
tabase. This result shows that the film consists of a pure polycrystalline
CuBi2O4 with a tetragonal crystal structure (P4/nnc space group). Our
cell parameters determined at room temperature by profile matching
using the Fullprof Sofware are a = 8.4945(7) Å and c = 5.8199(5) Å
[18]. An apparent crystallite size of 70 nm has been estimated from the
total Full Width at Half Maximum (FWHM) considering only the main
(211) Bragg peak corrected from the instrumental contribution (i.e.
assuming that the microstrain are negligible), applying a pseudo-dis-
tribution for the peak broadening, and using Scherrer’s formula:

=D λ
FWHM θ

0.9
cossample

where D is the crystallite size, FWHMsample is the full width at half-
maximum corrected from experimental broadening, λ is the X-ray wa-
velength (1.54056 Å) and θ is the Bragg angle.

This 700 nm thin film annealed at 450 °C has been also investigated
by Raman spectroscopy. A comparison with our reference powder used
for the target was made and the spectra are depicted in Fig. 3. The
sputter-deposited film shows exactly the same spectrum than the
CuBi2O4 target. This demonstrates that the sputtering technique did not
modify the stoichiometry of the compound. These results are also in
agreement with the literature. Indeed our samples show the same fea-
tures than for a bulk sample of CuBi2O4 synthesized by the traditional
solid-state reaction method in air and reported by Popovic et al. [19].
Eight Raman bands are observed and centered at 80, 130, 189, 263,
283, 406, 466 and 589 cm−1. The band at 80 cm−1 corresponds to the
B2g mode and is attribued to in-plane bond bending vibration of the
rhombohedra. The strong peak at 130 cm−1 represents the A1g mode
which originates from translational vibrations of the CuO4 planes along
the z axis. The small peak at 189 cm−1 is the Eg mode and indicates the
vibration of Cu-Cu links. The A1g mode at 263 cm−1 corresponds to the
rotation of two staked CuO4 squares in opposite directions. The peaks at
280 cm−1 and 466 cm−1, corresponding to B2g modes, are assigned
mainly from the oxygen motion. The band observed at 406 cm−1 is the

A1g mode of the Bi-O stretching vibration while the peak at 589 cm−1 is
an in-plane breathing of CuO4 squares.

These two complementary structural characterization techniques
(XRD and Raman) show that it is possible to produce 700 nm films of
CuBi2O4 using the sputtering technique. With a simple annealing stage
at 450 °C in air, we can obtain well crystallized films with very high
purity.

After optimization of the crystallization temperature, the influence
of the thickness on the structural properties of the films was studied.
XRD patterns of the CuBi2O4 films with 3 different film thicknesses are
shown in Fig. 4.

All films are polycrystalline, and the major peaks corresponding to
the tetragonal CuBi2O4 (PDF®. # 00-042-0334) are observed. The cell
parameters a and c, determined at room temperature by profile
matching, are reported in Table 2. The values are in good agreement
with the reference PDF® pattern and no signifiant effect of the thickness
on the cell parameters is observed.

In order to have information about the level of crystallinity in these
films, one can look at the evolution of the crystallite size (D) and the
dislocation density (δ) according to the thickness.

The dislocation density, defined as the length of dislocation lines per
unit volume of the crystal, was evaluated from the formula [20] :

=δ
D
1

2

All of these values, calculated for the most intense (211) diffraction
peak, are given in Table 2.

Fig. 2. X-Ray diffraction patterns of thin films as deposited and annealed at
different temperatures.

Fig. 3. Raman spectra of CuBi2O4 powder and thin film (700 nm after annealing
at 450 °C).

Fig. 4. X-Ray diffraction patterns of CuBi2O4 thin films for various thicknesses.
Insert shows the variation of the texture coefficient for different (hkl) planes.



The crystallite size of the films increased from 35 to 70 nm with
increasing thickness. The low dislocation density value for a thickness
of 700 nm confirms the good level of crystallization, with less crystal
defects in each film.

Fig. 4 also shows a significant effect of the film thickness on the
diffraction peak intensity ratios. Indeed, all the peak intensities increase
proportionally with the thickness except for the (211) and (422) or-
ientations. Harris’ relation can be used to understand the quantitative
relation between the peak intensity and orientation [21]:

=
∑−
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N
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where TC(hkl), known as the texture coefficient, qualitatively defines
the preferential orientation of the thin film. I(hkl) is the intensity of a
particular plane from the recorded XRD pattern and I0(hkl) is the in-
tensity of the corresponding plane from a standard ICDD pattern. N is
the number of diffraction peaks used in the calculation.

Insert in Fig. 4 shows the variation of the texture coefficient for
different (hkl) planes. We can observe a strong preferred orientation for
the (211) plane that decreases when the thickness increases from 100
nm to 700 nm. In other words, if the film grains are preferentially or-
iented, an anisotropy of the material properties could then be observed.

AFM images of CuBi2O4 thin films have been taken in order to
complete the microstructural information and confirm these results
(Fig. 5). A 700 nm as-deposited sample and three others of 100 nm, 300
nm and 700 nm annealed at 450 °C are here compared.

From these images, we can first see the significant effect of an-
nealing on the microstructure of the samples. Indeed, for the 700 nm
sample, the surface grain diameter increased after annealing at 450 °C,
in comparaison to the as-deposited sample. The in-plane average grain
size was estimed by an immersion threshold method thanks to the
Gwyddion software [22]. The mean diameter increased from 20 nm for
the as-deposited sample to 60 nm for the annealed sample. This grain
size is close to the value of the crystallite size determined by XRD.

It is also noted that the thickness influences the homogeneity and
the density of the film. In fact, the thinnest films seem to be composed
of aggregates with a fairly large dispersion. The roughness decreases
with thickness. With a Ra value of 9 nm for the 100 nm film to 5 nm for
the thickest film (700 nm). The images also seem to show much more
grain boundaries and pinholes for the 100 nm and 300 nm samples than
for the 700 nm film. These observations are in agreement with the
values of dislocation density calculated previously.

3.3. Electrical and optical properties measurements

3.3.1. Electrical resistivity
The plots of the I–V characteristics are shown in Fig. 6. Measure-

ments have been made at room temperature, 100 °C and 150 °C for
films of different thicknesses. However, it can be noted that for the 100
nm film the measurements are only possible from 150 °C and for that of
300 nm from 100 °C. The resistance values are otherwise too high for
the system. The linear nature of the I–V charateristics confirms an

Thickness (nm) FWHM (degrees) Crystallite size
D (nm)

Dislocation density δ (nm−2) Cell parameters
a (Å) c (Å)

100 0.278 35 8 × 10−4 8.5129(5) 5.8155(8)
300 0.177 60 3 × 10−4 8.4989(6) 5.8127(6)
700 0.166 70 2 × 10−4 8.4945(7) 5.8199(5)

Fig. 5. AFM images of CuBi2O4 thin films: (a) 700 nm as deposited, (b) 700 nm (c) 100 nm (d) 300 nm after annealing at 450 °C.

Table 2
Structural parameters of CuBi2O4 thin films at different thicknesses from (211) peaks.



ohmic character of all CuBi2O4 films. From these measurements, a re-
sistivity value can be calculated for each thickness and each tempera-
ture (given in Fig. 6). The observed behavior of the electrical resistivity,
with respect to the variation in resistivity, is representive of a con-
ventional semiconductor material. Indeed, the resistivity decreases with
the increasing temperature. Note that the resistivity is lower for the
thickest films, which is probably due to the presence of lower grain
boundaries concentration. From this data and for the 700 nm film, an
activation energy (Ea = 0.24 eV) was obtained, which corresponds to
the separation between the Fermi level and the valence band.

3.3.2. Optical properties
Fig. 7a and b show the integrated Total Transmittance (TT) and

Total Reflectance (TR) optical spectra variations of a 700 nm thick film
annealed at 450 °C and the corresponding simulated TT and TR spectra.

TT and TR spectra were fitted simultaneously thanks to dielectric
models, which integrate a Kramer Kronig relationship for interband
transition [23] and Kim oscillators [24]. A good match between ex-
perimental and simulated TT and TR spectra has been found (standard
deviation of 1.6 × 10−4 and 5.8 × 10-5 for TT and TR, respectively)
and the model allowed to obtain a good estimation of the film thickness
of 685 nm, in agreement with the measurements done by profilometry
(690 nm).

The variations of the optical index n and k in the 300−1000 nm
range, which have been deduced from this model, are presented in
Fig. 7c.The values are similar to those obtained by Manley et al. [25]
with a spectroscopy ellipsometer on a single crystal of CuBi2O4.

Using the absorption coefficient deduced from the optical simula-
tion, we generated the Tauc plots over the same spectral range (shown
in Fig. 8) and determined both direct and indirect bandgap by linear
extrapolations to the energy axis.

A direct band gap Egd close to 3.5 eV can be determined. It would
correspond to the transition between the O2p and Cu3d orbitals.
However, two indirect band gap can also be determined at lower en-
ergies with an exponent of 1/2 for the (α.h.ν) vs E by drawing the Tauc
plots. The highest band at Egi,1 = 2.6 eV would also correspond to a O2p

and Cu3d transition, while the value of the lowest band energy transi-
tion Egi,2 = 1.5 eV would be associated to Bi6s and Cu3d transitions. The
lowest energy values determined here are in agreement with the p-DOS
diagram found in the litterature and calculated by Sharma et al. [8].

This lower bandgap value in the visible range makes those CuBi2O4

thin films deposited by RF sputtering also very interesting for solar
energy applications.

4. Conclusion

CuBi2O4 thin films were deposited for the first time by RF

magnetron sputtering and characterized by XRD, Raman, AFM, and
UV–vis-IR spectrophotometry measurements. These films, after heat
treatment at 450 °C in air, show a pure CuBi2O4 phase with good
cristallinity. The microstructure is homogeneous and dense with a na-
nometric grain size. Two indirect optical band gaps were measured at
2.6 and 1.5 eV in accordance with the bulk material. Due to the fact that
the post-deposition annealing stage can be carried out at moderate
temperature, the RF magnetron sputtering technique can provide an
easy access route to cristalline thin films of CuBi2O4 on glass substrate.

Fig. 6. Current–voltage (I–V) curves for CuBi2O4 films.

Fig. 7. (a) TT (b) TR optical spectra of 700 nm thin films annealed at 450 °C. (c)
Optical index n and k plotted as a function of wavelength for the CuBi2O4 thin
film.

Fig. 8. Plots of (αhν)2 and (αhν)1/2 as a function of photon energy for the
CuBi2O4 thin films.
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