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Abstract
The aim of the bi-objective multimodal car-sharing problem (BiO-MMCP) is to 
determine the optimal mode of transport assignment for trips and to schedule the 
routes of available cars and users whilst minimizing cost and maximizing user sat-
isfaction. We investigate the BiO-MMCP from a user-centred point of view. As user 
satisfaction is a crucial aspect in shared mobility systems, we consider user prefer-
ences in a second objective. Users may choose and rank their preferred modes of 
transport for different times of the day. In this way, we account for, e.g., different 
traffic conditions throughout the planning horizon. We study different variants of 
the problem. In the base problem, the sequence of tasks a user has to fulfil is fixed 
in advance and travel times as well as preferences are constant over the planning 
horizon. In variant 2, time-dependent travel times and preferences are introduced. 
In variant 3, we examine the challenges when allowing additional routing decisions. 
Variant 4 integrates variants 2 and 3. For this last variant, we develop a branch-and-
cut algorithm which is embedded in two bi-objective frameworks, namely the �-con-
straint method and a weighting binary search method. Computational experiments 
show that the branch-and cut algorithm outperforms the MIP formulation and we 
discuss changing solutions along the Pareto frontier.
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1  Introduction

Today, most of the world’s population lives in urban environments and cities con-
tinue to grow (United Nations-Department of Economic and Social Affairs 2018). 
Urban mobility is therefore a key topic for a sustainable future. When considering a 
city’s infrastructure, the available mobility offers are plentiful. Public transportation 
provides efficient connections; some commuters use their car; others prefer bikes, 
scooters or even taxi. Besides, a trend towards sharing is clearly visible in mobility 
(DriveNow, Uber, etc.). In short, mobility as we use it and see it is changing. This 
comes with a whole new stream of optimization problems. Only recently, Mourad 
et al. (2019) provided a survey on the vast topic of optimizing shared mobility.

The (privately owned) car is diminishing as the prevailing mode of transport in 
urban areas (VCÖ - Mobilität der Zukunft 2020). In Vienna (Austria), the number of 
cars per capita is constantly decreasing (Martin 2020; Statistik Wien 2020). People 
prefer other modes of transport (MOT). The modal split of cars shrank from 31% 
to 25% within the last decade. Within the same time period, bikes, public transpor-
tation and walking increased their modal split by 2 percentage points to 7%, 38% 
and 30%, respectively (Wiener 2010, 2019). Thus, people move to alternative, more 
environmentally friendly MOTs.

Additionally, citizens increasingly use sharing systems (VCÖ - Mobilität der 
Zukunft 2020). In Germany, the number of shared cars has increased fivefold within 
ten years; there are almost twelve times more users than a decade ago (Bundesver-
band CarSharing eV 2020). In Vienna (Austria), one shared car eliminates the need 
of five privately owned ones (MA 18 - Stadtentwicklung und Stadtplanung Wien 
2015). At maximum 10% of the cars in Austrian households simultaneously drive 
on the roads. Many car owners use their vehicles only a couple of times per year. In 
Lisbon (Portugal), only 3% of the cars will be needed if all trips are covered by car- 
and ride-sharing. 95% parking space can be freed up (VCÖ - Mobilität der Zukunft 
2020). Moreover, car-sharing saves up to 44 million car-kilometres in Vienna annu-
ally. This equals to approximately 7000 tons of CO2 (MA 18 - Stadtentwicklung und 
Stadtplanung Wien 2015). Hence, by using car-sharing, resources can be employed 
more efficiently, it is more environmentally friendly, and newly available space can 
be gained as, e.g., green space in urban areas (VCÖ - Mobilität der Zukunft 2020).

The importance of rethinking mobility is clearly visible in the presence of 
prominent concepts in various cities. Vienna targets a split of 80:20 where 20% of 
the trips are covered by cars, the others by public transportation, bikes or walking. 
The idea is to extend the mobility offers with profound sharing concepts and to 
move towards the vision of a ’Smart City’ (Stadtentwicklung Wien 2020). Madrid 
is aiming to establish a holistic ’Mobility as a Service’ concept offering real-time 
information and including over 30 shared mobility options (CIVITAS 202 2020). 
Within novel mobility concepts, bikes are receiving exceptional attention. Vienna 
almost doubled the cycling network in the last decade and accomplished a similar 
increase in kilometres driven on specific legs (Fahrrad 2020; MA 46 2020). Paris 
presents the ’Plan Vélo’ where the target is to emerge to the world’s bike capital. 
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The ambition is to minimize the space for cars and make space for bike usage and 
pedestrians (Paris en Selle 2020).

Novel mobility concepts and reconsidering mobility play an important role 
not only in a private environment, but also in a corporate setting. Companies 
increasingly aim to provide mobility concepts for their employees. This work is 
part of an applied research project SEAMLESS (http://www.seamless-project.
at), in which project partners, such as the Austrian Post AG or T-Systems Austria 
GesmbH, strive for the implementation of the discussed ideas. The target is to 
reduce a one-to-one assignment of company cars, employ more environmentally 
friendly MOTs and strive for shared mobility where each employee gets her pref-
erence. This goes hand in hand with companies aiming for a greener carbon foot-
print and enhancing employee satisfaction (SEAMLESS 2020).

Traveller experience needs to be taken into account in the design of novel 
mobility systems and is key to its success with users (Al Maghraoui et al. 2019). 
Thus, when studying mobility, convenience and user preferences are crucial. 
However, from an operator perspective the cost factor plays an important role as 
well and usually cost-efficiency is in conflict with a MOT’s convenience. This 
’convenience’ is difficult to measure and must be tackled on an individual user 
level. As we observe, and also other authors studying mobility have outlined 
(Ferrero et al. 2018), including user preferences can decide on the ’win or lose’ 
of a system. Therefore, we investigate the trade-off between minimizing cost and 
enhancing the individual satisfaction of a user in a mobility system. Combining 
these parameters and providing the decision maker with a set of efficient solu-
tions will lead to an enhanced acceptance of such a system.

Motivated by this, we study the bi-objective multimodal car-sharing problem 
where we assign MOTs to trips and find car and, depending on the variant, also 
user routes throughout a day. We formulate two objectives to minimize cost and 
maximize user satisfaction. We further take into account the possibility of var-
iation in user preferences and travel times throughout the day, becoming time-
dependent input parameters. We refer to car-sharing throughout the paper as to 
where a group of users is mutually using a pool of cars. Note that the output aims 
to provide an optimal assignment of MOTs throughout a day using time-depend-
ent travel times.

Our main contributions are:

•	 We introduce the bi-objective multimodal car-sharing problem (BiO-MMCP). 
We present four variants of the problem, discussing increased flexibility of the 
timings of the visits: we present the model (i) with fixed task sequences and 
without time-dependent travel times and user preferences, (ii) with fixed time 
sequences and including time-dependent travel times and user preferences, (iii) 
no fixed sequences and no time-dependent travel times or preferences and lastly 
(iv) open sequences of tasks and time-dependent travel times and user prefer-
ences.

•	 We propose a branch-and-cut algorithm for the most complex problem variant 
examined in this paper. The algorithm is embedded into two bi-objective frame-
works, namely the �-constraint method and a weighting binary search method. 
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We show that for both frameworks it is highly beneficial to add cuts in the form 
of constraints from prior iterations to the following iterations.

•	 We provide a thorough analysis where we (i) compare different solution 
approaches for the models and (ii) give insights into the trade-offs between cost-
minimization and enhancing user-centred MOT preferences.

The paper is organized as follows: In Sect.  2, we review related work. Section  3 
introduces the BiO-MMCP where Sect. 3.1 gives a problem formulation, followed 
by the formal description in Sect. 3.2 for all four variants. In Sect. 4, we describe the 
implemented solution approach. As most of the variants are solved as a mixed inte-
ger program (MIP) with the generic MIP solver CPLEX, we focus on the branch-
and-cut developed for the last variant of the model, described in Sect. 4.2. Moreover, 
we introduce a set of valid inequalities in Sect.  4.1 and describe the bi-objective 
frameworks used in this paper in Sect. 4.3. Section 5 summarizes our computational 
study. Finally, we draw conclusions and we give an outlook to future work in Sect. 6.

2 � Related work

Research addressing the design and implementation of car-sharing systems has risen 
over the past years. Many existing papers focus on strategic decision making, such 
as the design of services, infrastructure (e.g. design/location of facilities or charging 
stations) or fleet management. Nevertheless, various papers stress the importance of 
integrating the user related attributes in optimization problems tackling sharing sys-
tems. A comprehensive literature review has been presented by Ferrero et al. (2018).

A large amount of research has been performed on data collection, data analysis 
and simulation-based studies in order to assess the potential impacts of car-sharing 
systems. Most of these studies have been conducted on city-wide public systems. 
Demand for car-sharing systems and impacts on mobility behaviour are typically 
assessed through questionnaires (Zhou and Kockelman 2011; Sioui et al. 2013). The 
potential and effects of such systems are then often determined through simulation-
based approaches  (Ciari et  al. 2014). From an operational perspective, problems 
considered in the car-sharing-related literature are mainly concerned with relocat-
ing, recharging and servicing vehicles  (de Almeida Correia and Antunes 2012; 
Nair and Miller-Hooks 2014; Weikl and Bogenberger 2013). The problem we are 
introducing in this article, however, is an operational problem for planning trips and 
allocating means of transport in a closed system where travel demand is known in 
advance. Embedding car-sharing in a multimodal system, and especially treating it 
in a bi-objective formulation, is a novel way of addressing car-sharing from a user-
centered perspective.

In a different line of research, ride-sharing has attracted an increased amount of 
interest in the last years. Major research efforts have been made in analysing and 
designing such services. Strategic and tactical decisions as well as the development 
of new algorithms for daily operations have also been in focus of recent work. A 
comprehensive survey on such approaches can be found in Mourad et al. (2019). A 
large number of case studies mainly based on simulation and data analysis have been 
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published on the potential impact and feasibility of various sharing schemes with 
a focus on ride-sharing (Calvo et al. 2004; d’Orey and Ferreira 2014; Maciejewski 
et al. 2016; Tachet et al. 2017).

For the first two variants of our proposed problem, where the task sequence is 
fixed, we refer to the Fixed Sequence Arc Selection Problem (FSASP) which was 
introduced by Garaix et al. (2010) and proven to be NP-hard. The FSASP considers 
a fixed sequence of nodes that are linked by multiple arcs. Choosing an arc between 
two nodes is the subject of determination. This problem applies to the first two vari-
ants of our problem in this paper. Note that only recently Huang et al. (2017) shortly 
stressed that this research direction can be a good basis for further algorithmic 
work, naming home appliance delivery companies as an example. As we addition-
ally determine the sequence of visited nodes, we can detect similarities to the VRP 
(Toth and Vigo 2002; Eksioglu et al. 2009) in our work. Our paper introduces a kind 
of multi-trip VRP (Cattaruzza et al. 2016) with heterogeneous vehicles and multi-
ple depots on a multi graph. Garaix et al. (2010) were among the first who studied 
VRPs with alternative arcs between each pair of nodes. VRPs with multiple attrib-
utes (Garaix et al. 2010) or multi-graphs in the VRP stream have gained increasing 
attention in the past years (Doppstadt et al. 2016; Ben Ticha et al. 2017, 2018, 2019; 
Huang et al. 2017), whereas, of course, mutlimodality significantly enlarges the set 
of possible solutions (Caramia and Guerriero 2009). Research considering various 
attributes on arcs is fairly recent, yet highly important to consider as one connec-
tion of nodes usually implies specific trade-offs (usually time vs. cost) which are not 
considered on a classical graph. We consider the characteristics of different modes 
of transport as well as time-dependent preferences and costs jointly on one arc. We 
refer to Gendreau et al. (2015), for a review on time-dependent routing problems. 
However, we could not find any work introducing time-dependent preferences on 
modes of transport in a car-sharing context.

Integrating customer-oriented aspects into optimization problems, or more 
specific vehicle routing problems, is a topic of increasing interest. In Vidal et al. 
(2019), a detailed analysis through VRP variants also tackling customer-centred 
objectives is provided. As an example, the cumulative VRP (Ngueveu et  al. 
2010; Silva et al. 2012) replaces the classical minimum cost objective function 
with the minimization of individual customer arrival times. Martínez-Salazar 
et al. (2015) introduce a customer-centric multi-trip VRP with a single vehicle 
minimizing the sum of customer waiting times to receive a specific service. On a 
somewhat different but related topic, Braekers et al. (2016) introduce a bi-objec-
tive routing and scheduling problem for home care where the second objective 
minimizes client inconvenience. In our work, we optimize user preferences for 
MOTs as a second objective function. Jozefowiez et al. (2008) review numerous 
papers tackling multiple objectives in the context of VRPs. They name the most 
common objectives to be cost, length of the tour, balance or problem specific 
objectives. Since then, various papers have been published. Recently, it seems 
that there is a vast amount of published research with environmental (Abad et al. 
2018; Alexiou and Katsavounis 2015; Androutsopoulos and Zografos 2017; 
Demir et  al. 2014; Eskandarpour et  al. 2019; Ghannadpour and Zarrabi 2019; 
Toro et  al. 2017; Tricoire and Parragh 2017; Govindan et  al. 2019; Anderluh 
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et al. 2019; Grabenschweiger et al. 2018) or external social criteria (Ghannad-
pour and Zarrabi 2019; Govindan et al. 2019; Nolz et al. 2014; Anderluh et al. 
2019; Grabenschweiger et al. 2018) as alternative objectives.

Multi-objective optimization gives a deeper insight into the solution pool of a 
problem. However, there might exist a large number of trade-off solutions. The 
target is to find an efficient set of solutions that cannot be optimized in one objec-
tive without worsening another one. Those efficient solutions are then called 
Pareto optimal solutions. There is a vast amount of works on exact as well as 
heuristic approaches to solve for multicriteria optimization problems. Prevailing 
metaheuristics in this field are evolutionary algorithms such as the NSGA-II (Deb 
et  al. 2000) or the SPEA-II (Gharari et  al. 2016). However, only recently Matl 
et  al. (2019) have shown that single-objective VRP heuristics can be efficiently 
used in an �-constrained-based method. The �-constraint method (Yh et al. 1971; 
Srinivasan and Thompson 1976) is one of the prevailing methods to solve multi-
objective optimization problems. It repeatedly solves a single-objective optimiza-
tion problem by considering the other objectives in terms of constraints. Further 
widely applied frameworks to solve multi-objective problems are the two-phase 
method (Visée et  al. 1998), the weighted sum approach (Aneja and Nair 1979) 
or, more recently, the balanced box method (Boland et al. 2015) and the weight-
ing binary search method (Riera-Ledesma and Salazar-González 2005). These 
so-called criterion space methods embed a single-objective optimization problem 
and systematically enumerate the Pareto frontier. However, recent works focus 
on adapting the branch-and-bound algorithm to solve the multi-objective case 
in a single run (Stidsen et  al. 2014; Vincent et  al. 2013; Parragh and Tricoire 
2019; Adelgren and Gupte 2017). A recent overview of exact methods for multi-
objective optimization is provided in Ehrgott et  al. (2017). A detailed overview 
of general multi-objective combinatorial optimization is provided by Ehrgott and 
Gandibleux (2003). For our study, we choose the �-constraint method as well as 
a weighting binary search as they are relatively simple to implement and have 
shown to be very efficient. The latter one is based on the algorithm proposed by 
Riera-Ledesma and Salazar-González (2005), who developed a weighting method 
and conduct a binary search in the objective space. Moreover, similar to Bérubé 
et al. (2009), we use a branch-and-cut approach relying on previous information 
for subsequent problems by adding cuts to the subproblem. Similarly in Riera-
Ledesma and Salazar-González (2005), cuts from prior iterations are added to the 
cut pool for further iterations. Contrary to Riera-Ledesma and Salazar-González 
(2005) and Bérubé et al. (2009), we add detected cuts as hard constraints, show-
ing better results for our problem setting.

3 � The bi‑objective multimodal car‑sharing problem

In the following, we describe the BiO-MMCP and give a formal description of 
the variants of the problem studied in this paper.
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3.1 � Problem description

The BiO-MMCP aims to assign modes of transport to user trips and determining 
car routes during a day whilst minimizing cost and maximizing user satisfaction 
by accounting for MOT preferences.

Each user trip starts in a depot, covers a set of tasks and ends in a depot again. 
A user may have more than one trip during a day. A route is a sequence of trips 
during a day. Note that we introduce car routes and user routes: A car route sched-
ules the trips covered by one car during a day, whereas the car is handed over at 
the depot from one user to another. A user route consists of all the trips assigned 
to one user during a day, whereas the user may change MOTs between trips (i.e. 
at the depot).

We consider a closed group of users and a set of possible MOTs. A pool of cars is 
given and all other MOTs are considered to have infinite capacity. With this assump-
tion, we are able to cover all demanded trips. This also has practical implications as, 
e.g., there is usually no spatial or temporal limit on the availability of public trans-
port in a city during a day. This also holds for bikes, as due to several bike-sharing 
offers, we can assume that bikes are available at any time in a city. Each user may 
give preference scores to the available MOTs where we assume the lower the score 
the better the MOT is rated (scale 1-10 where 1 is best). Moreover, depending on 
the variant of the problem, users may determine preferences for different times of 
the day, resulting in time-dependent user-based MOT preferences. Furthermore, we 
introduce time-dependent travel times as, e.g., the car drive will take longer through 
rush-hour than at noon. As our cost function also comprises cost of time, the adapted 
travel times will have an impact on the cost function. Note that even though travel 
times may be stochastic, we can plan within a deterministic setting as we use time-
dependent travel times for all modes of transport.

The goal of the BiO-MMCP is to cover a set of trips for a given planning horizon 
by assigning MOTs to trips and determine car routes (optionally also user routes) for 
a closed community. The locations of the start and end points as well as the tasks of 
a trip are fixed. This means, it is known in advance which user will visit which task. 
Depending on the considered variant of the problem, the sequence of the tasks may 
vary.

We investigate four variants of the introduced problem:

Model 1 (m1)	�  In the first variant we assume that each user follows a fixed 
sequence of tasks, starting and ending at a fixed (but possibly dif-
ferent) depot. Preferences are given for each MOT for each user. We 
aim to find the best MOT to trip assignment and to determine the 
car routes. The objectives are to minimize costs and MOT prefer-
ences. In this variant, user routes are assumed to be given.

Model 2 (m2)	�  In this variant, we assume the same setting as in model m1 but 
include time-dependent MOT preferences and travel times. The tar-
get is to find the best MOT to trip assignment and schedule the car 
routes from a pool of cars whilst minimizing time-dependent costs 
and user preferences. Again, user routes are input to the problem.
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Model 3 (m3)	�  In the third variant, we consider a fixed user to tasks assignment, 
and start and end locations. However, the sequence of tasks within 
a trip as well as the sequence of user trips are subject of determina-
tion. This means that we have to, in addition to car routes, find user 
routes throughout a day. The objectives are again to minimize costs 
and user preferences.

Model 4 (m4)	�  This model is a combination of model m2 and m3: we consider 
time-dependent user preferences and travel times as well as vari-
able task and trip sequences. Thus, we intend to determine the MOT 
assignment, schedule car as well as user routes whilst minimizing 
both time-dependent MOT preferences of users and costs.

3.2 � Formal description

We now formally introduce different variants and their respective mathematical for-
mulations, using the following notation (also summarized in Table 1):

Given is a set of users P and a set of trips R, where each trip r ∈ R has a set of 
tasks Qr assigned. A trip starts in a depot ar , ends in depot br and covers in between 
one or more tasks q. We store all nodes assigned to a trip r in the set Gr , where 
r = {ar, q

r
1
, qr

2
, ..., br} . Note that a user p might cover more than one trip during a 

day. The set of tasks Qr is known in advance, whereas each task q is unique and may 
only be in one set Qr ⊆ Q , where Q denotes the set of all tasks. We model the con-
nections between two subsequent tasks as a leg l.

Furthermore, we consider a set of depots D, which are artificial nodes represent-
ing start/end points of car routes during a day, i.e. each route starts and ends here. 
The start depot d is connected to all starting nodes a, and conversely each end node 
b is connected to the end depot d′.

We consider a set of modes of transport K = car,public,bike, where public com-
prises public transportation including walking. If a trip starts by a MOT, then the 
MOT will be used for the full trip. We assume at each depot d ∈ D an available 
number of MOTs k at the beginning and end of the planning horizon, denoted as Wdk 
and Wd′k , respectively.

We denote the set of all nodes by V and V ′ be the set of nodes without the set D, 
such that V � = V ⧵ D . For every node v ∈ V  , we have the set of outgoing legs L+

vk
 

and ingoing legs L−
vk

 by MOT k. All legs are stored in the set of all legs L. We store 
any relevant information on the legs.

Each user p assigns a preference value �pk to each of the given modes of transport 
k ∈ K . Note that, as we also minimize the preference objective, we assume that the 
lower the score, the better the user values the mode of transport. As a leg l refers to 
exactly one mode of transport k and one user p, we assign the value �pk to the respec-
tive leg l, denoted as �l . The cost value cl of a leg l consists of variable distance cost, 
cost of time and cost of emissions. For more information, we refer to Sect. 5.1.

For time-dependent user preferences, we define a set of time periods t ∈ T  during 
the day. A time period replicates, e.g., rush-hours. Each user p determines a prefer-
ence value �t

pk
 for each of the given time periods t and MOT k. In the case when a 
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Table 1   Mathematical notation used in the formal description of the BiO-MMCP

Sets and nodes
P Set of users
R Set of trips
Qr ⊆ Q Set of tasks of trip r as a subset of the set of tasks
ar Start node of a trip r
br End node of a trip r
Gr Set of nodes on a trip r
D Set of depots
K Set of modes of transport
L Set of legs
L−,L+ Set of ingoing/outgoing legs
L−
v
,L+

v
Set of ingoing/outgoing legs of node v

L−
d
,L+

d
Set of ingoing/outgoing legs of depot d

Lp Set of legs assigned to user p
Lr Set of legs on a trip r
Lvp Set of legs of a user p going in/out of a node v
L−
vk
,L+

vk
Set of ingoing/outgoing legs of node v by MOT k

L−
vp
,L+

vp
Set of ingoing/outgoing legs of node v by user p

T Set of time periods
S Subset of the set of nodes Gr of a trip r
Ap ⊆ A Set of trip start nodes of a user p as a subset of the set of trip start nodes
Bp ⊆ B Set of trip end nodes of a user p as a subset of the set of trip end nodes
V Set of all nodes
V ′ Set of nodes without depots, V ⧵ D
T Set of time periods
R Set of infeasible paths
Rcar Set of infeasible car routes
Rp Set of infeasible user routes
�p Start node of person p
�p End node of person p
Input parameter

Wdk,Wdk
Number of MOTs k in depot d at beginning/end of the planning horizon

 �pk, �t
pk

Preference value of a person p
for MOT k (for time period t)

�l Preference of leg l
yl Origin of leg l
zl End of leg l
cl Cost of leg l
ul User of leg l
ml MOT of leg l
h Maximal waiting time
H End of planning horizon
M Big M
tl Driving time of leg l
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leg l completely lies within a period t the preference value of the leg �l equals �t
pk

 . In 
the case where the leg covers more than one period, we calculate a weighted average 
of the preference values. As our cost also depends on time, we also adapt the cost 
term considering time dependencies in the same way.

Figure 1a shows an example of a simple trip r. It starts in node a and ends in 
b whilst visiting q0 and q1 . We insert legs for each mode of transport (denoted by 

Table 1   (continued)

sv Service time at node v
ol Interval start of leg l
el Interval end of leg l
W Accumulated waiting time
Δ Value stating how much a route can be moved forward
F Forward slack, F = W + Δ

Decision variables
xl 1 if leg l is chosen, 0 otherwise
�l Departure time of leg l

Fig. 1   Example of one trip with its associated legs l starting in node a, visiting tasks q
0

 , q
1

 and ending 
in node b. Between the nodes, we insert different legs for each mode of transport, which are car, pub-
lic transportation and bike in our case. A label of a leg is defined with two attributes: cost and prefer-
ences. Figure a shows a simple trip, where no time dependencies are considered. Figure b includes time-
dependent information for the respective periods t 
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different lines) between each node and assign the respective cost and preference 
value, given in brackets as ( cl,�l ). We do not consider time-dependent travel times 
or user preferences here. Figure  1b shows the same trip as Fig.  1a, but considers 
time dependencies. Therefore, three time periods are indicated as t0, t1, t2 . For each 
leg, we have cost and preference values for each of the respective periods. The legs 
between q0 and q1 lie completely within one time period and can therefore be taken 
as they are. For the others, we compute the share of each time period on the leg and 
get the respective preference value and cost by computing the weighted average.

3.2.1 � Model 1 (m1)

In model m1, the sequence of tasks is fixed, resulting in predetermined trips r ∈ R . 
We connect each a with its fixed successor q, each task q with its fixed successor 
q′ or, if the trip only covers one task, the trip end node b. For every pair of end and 
start nodes (b, a) where a is ahead in time, we insert an additional artificial leg with 
costs and preferences 0, in order to allow for the connection of car routes covering 
more than one trip throughout the day.

Each leg in the graph results in a tuple {(ul, yl, zl,ml, cl, �l)} where ul is the 
assigned user, yl and zl are the origin and end of the leg, ml the assigned MOT, cl the 
cost and �l the preference value.

The introduced binary decision variable xl takes on value 1 if leg l is chosen and 
0 otherwise.

With this, we can introduce a compact formulation for the first version of the 
BiO-MMCP.

(1)min
∑

l∈L

clxl

(2)min
∑

l∈L

�lxl

(3)s.t
∑

k∈K

∑

l∈L+
vk

xl = 1 ∀v ∈ V �

(4)
∑

l∈L−
vk

xl =
∑

l∈L+
vk

xl ∀v ∈ V �, k ∈ K

(5)
∑

l∈L+
dk

xl ≤ Wdk ∀d ∈ D, k ∈ K

(6)
∑

l∈L−
d�k

xl ≤ Wd�k ∀d� ∈ D, k ∈ K
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The objective (1) minimizes total cost and objective (2) minimizes user-centred 
MOT preferences. Constraints (3) make sure that each node v is covered by exactly 
one leg l. Constraints (4) ensure flow conservation at nodes v ∈ V � for every MOT 
k. Constraints  (5) and (6) restrict the number of available MOTs Wdk,Wd′k at the 
start and end of the time horizon. Constraints (7) define the domains of the decision 
variables.

3.2.2 � Model 2 (m2)

We extend the previous model by introducing time-dependent MOT preferences and 
costs. We assume fixed times of tasks q. With this, and as we know the driving time 
of a leg, we can exactly determine start and end times of the leg and thus assign a 
preference value.

As we store all relevant information directly on the leg l, we do not have to model 
time explicitly. This results in the same tuple {(ul, yl, zl,ml, cl, �l)} as before, with 
a modified value of �l and cl . As we only have a change in the data, but the model 
remains unchanged, we use model m1 again.

3.2.3 � Model 3 (m3)

In model m3, we have to determine the sequence of tasks per user (ensuring no sub-
tours) as well as consider the scheduling of trips each user is taking. Therefore, the 
underlying graph has to be adapted. We again consider the set of all nodes V, the 
set of intermediate nodes V ′ , the set of depots D, the set of MOTs K, the set of legs 
L, and the set of users P. We define sets Ap and Bp containing all start nodes a and 
end nodes b of a user p, respectively. These sets will consist of exactly one node, if 
a user is taking only one trip, two if the user has two trips, etc. Previously, to assure 
car routes, we only connected an end node b of a trip to a start node a of another trip 
if a was ahead in time of b. As we are not considering any fixed times/sequences 
anymore, we connect every b to every a if they are in the same physical depot. Simi-
larly, we connect all nodes belonging to one set Gr , yet not changing the predeter-
mined start and end nodes of one trip. For now, we do not consider time-dependent 
preferences on legs. Note that the tasks lying on a specific trip are fixed, meaning 
that if a user previously had two trips, the user will again cover two trips.

In order to prevent parallel trips of one user, the user routes are modelled into the 
graph. Doing so, we add new artificial nodes �p and �p for each user p where the user 
starts and ends the respective route during a day (similar to the idea of the d ∈ D 
where all MOT flows start). We connect the respective �p to all start nodes a ∈ Ap of 
one user p and conversely the respective �p to all b ∈ Bp . We connect user trips by 
inserting a leg l between b, a of the same user. Note that, instead of modifying the 
underlying graph, we also used additional constraints in the model. However, this 
formulation turned out to be very weak.

As the sequence of tasks of a trip is not fixed, we determine the departure time �l 
of a leg l. By assuring increasing times of legs, we also avoid subtours. Additionally, 

(7)xl ∈ {0, 1} ∀l ∈ L
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in order to avoid unrealistic long waiting times at nodes, we assume that a user 
can wait for a maximum amount of time before she continues her trip, e.g. 30 min, 
denoted as h.

Model m3 can now be stated as follows, where decision variables �l give the 
departure time of leg l, H depicts the end of the planning horizon, M denotes a big 
M, tl is the travel time of a leg l and sv the duration of the task.

Constraints  (8) set the time variables and take care of subtour elimination within 
trips. Constraints (9) ensure that a user is leaving at the latest h minutes after the end 
of the task. Constraints (10) restrict the latest departure time at any task to be at the 
end of the time horizon. Constraints (11) and (12) make sure that each user is start-
ing her route in node �p and ending in node �p . Constraints (13) and (14) balance 
the flows of start and end nodes of user p. Constraints (15) eliminate parallel trips. 
Finally, constraints (16) make sure that decision variables � are non-negative.

(8)

min (1)

min (2)

s.t (3) − (7)

�l + tl + sv − �n ≤ M(2 − xl − xn) ∀l ∈ L−
vk
, n ∈ L+

vk
, v ∈ V �, k ∈ K

(9)
∑

l∈L−
v

(�l + tlxl) + sv ≥
∑

l∈L+
v

�l − h ∀v ∈ V �

(10)�l ≤ Hxl ∀l ∈ L

(11)
∑

l∈L+
�p

xl = 1 ∀p ∈ P

(12)
∑

l∈L−
�p

xl = 1 ∀p ∈ P

(13)
∑

l∈L−
vp

xl =
∑

l∈L+
v

xl ∀v ∈ Ap, p ∈ P

(14)
∑

l∈L−
v

xl =
∑

l∈L+
vp

xl ∀v ∈ Bp, p ∈ P

(15)
�l + tl+sv − �n ≤ M(2 − xl − xn) ∀l ∈ L−

vp
, n ∈ L+

vp
, v ∈ V � ∪ {�p,�p}, p ∈ P

(16)�l ≥ 0 ∀l ∈ L
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3.2.4 � Model 4 (m4)

Lastly, in addition to a flexible sequence of tasks, in model m4  we add time-dependent 
MOT preferences to the model. This is mainly done by adapting the graph and by add-
ing one constraint to the model m3.

We discretize time in intervals of � minutes and duplicate each leg l ∈ L for each 
interval. Note that time-dependent MOT preferences are derived from the user prefer-
ence values �t

pk
.

We extend the leg information by adding the start and end times of the interval lying 
on the leg; this results in the tuple {(ul, yl, zl,ml, cl, �l, ol, el)} where ol gives the start 
time and el the respective end time of the interval.

Finally, we append the following constraints to model m3:

Constraints (17) make sure that �l of leg l lies within the predetermined times.
The resulting model relies on both binary and continuous variables. We adapt 

this and use a re-formulation that is of exponential size but relies on binary variables 
only. We replace constraints (8), (9), (10), (15), (16), and (17) by infeasible path con-
straints (Ascheuer et al. 2000) (for car routes and user routes) and subtour elimination 
constraints.

Let Rcar denote the set of infeasible car routes and Rp be the set of infeasible user 
routes. V(S) gives the nodes of the set S, where S is a subset of the set of nodes on a 
trip Gr . Legs of an infeasible path � are denoted as L(�) . Model m4b can be stated as 
follows:

Constraints (18)–(19) eliminate the infeasible paths of cars and users. We sum over 
all legs l of the respective infeasible path � and set it infeasible by denoting that at 
least one leg cannot be on the route. Constraints (20) are subtour elimination con-
straints. We set the constraints for all trips r where we store the nodes of each trip in 
the set Gr.

(17)olxl ≤ �l ≤ el ∀l ∈ L

(18)

min (1)

min (2)

s.t (3) − (7), (11) − (14)
∑

l∈L(�)

xl ≤ |L(�)| − 1 ∀� ∈ Rcar

(19)
∑

l∈L(�)

xl ≤ |L(�)| − 1 ∀� ∈ Rp

(20)
∑

l∈L(S)

xl ≤ |S| − 1 ∀S ⊆ Gr, r ∈ R, S ≠ �
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4 � Solution approach

In the following, we first introduce valid inequalities in Sect. 4.1. By embedding the 
models into bi-objective optimization frameworks, described in Sect. 4.3, the scalar-
ized models m1, m2, and m3 are solved with CPLEX. We can solve real-world sized 
instances within seconds, as we will show in our computational results. However, as 
expected, m4 is more challenging to solve. Therefore, we develop a branch-and-cut 
algorithm in Sect. 4.2 for model m4b.

4.1 � Valid inequalities

In order to strengthen the models m3, m4, and m4b, the following set of valid inequali-
ties is used.

We know that all legs of a trip must be covered by a single MOT. Therefore, we can 
say that either MOT k is going into node v, or any other MOT g ≠ k out of a node v, 
but not both. Assuming that the ingoing legs of a node v are stored in the set L−

vg
 and all 

outgoing legs of a node v are stored in the set L+
vk

 , we can state:

In m3, m4, and m4b, we only require that the sum over all outgoing legs of a node 
must be equal to 1. In the following valid inequality, the sum over all ingoing legs 
l ∈ L−

vk
 using MOTs k of a node v has to be equal to 1:

Since a car may cover more than one trip, but has to take at least one if it departs 
from the depot d, the number of trips started with a car (leaving from any node 
a ∈ A ) has to be greater or equal to the sum of cars leaving any depot d ∈ D . Ingo-
ing legs of the start nodes a using MOT k are given in the set L−

ak
 ; outgoing legs of 

the depot d are given in the set L+
dk

 . The constraint is valid for cars only. Thus, we 
sum over all the ingoing legs of any node a, which then has to be greater or equal to 
the sum over all outgoing legs of any depot d:

Assuming that a user p has been assigned a single task only, then a full user route 
will be: �p − ap − q − bp − �p . This means the shortest possible user route consists 
of four legs. Assuming that all legs assigned to a user p are stored in the set Lp , we 
can formulate:

(21)
∑

l∈L+
vk

xl +
∑

g∈K∶g≠k

∑

l∈L−
vg

xl = 1 ∀v ∈ V �, k ∈ K

(22)
∑

k∈K

∑

l∈L−
vk

xl = 1 ∀v ∈ V �

(23)
∑

a∈A

∑

l∈L−
ak

xl ≥
∑

d∈D

∑

g∈L+
dk

xg with k = car

(24)
∑

l∈Lp

xl ≥ 4 ∀p ∈ P
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Assuming that a trip has at least one task, then each trip will consist of at least three 
nodes ( a − q − b ) and thus two legs. The sum over all legs of a trip r is at least the 
number of nodes assigned to the respective trip, given in the set Gr , minus 1. :

As we know the number of tasks a person is covering, we also know the number of 
legs the person will cover in the solution. Therefore, we can introduce the following 
constraint where Lp is the set of legs of a person p and Vp gives the nodes assigned 
to person p:

We add cycle constraints, meaning that we can only go either from v to v′ or from 
v′ to v, but not both. We store all legs that start in v and end in v′ in the set L(v,v�) and 
vice versa in L(v�,v) . With this, we formulate the following valid inequality:

The above valid inequalities are used to strengthen m3, m4, and m4b. We now pro-
pose additional valid inequalities which are used to strengthen only m4 and m4b.

Let us consider a node v, a leg l leaving the node v, and an ingoing leg g. As 
described in Section 3.2.4, for the time-dependent setting of the model, the legs con-
tain intervals with the possible start and end time information (o, e). With this, we 
know that the start and end times of the outgoing leg l have to be greater than the 
times of the ingoing leg g. Therefore, if the start and end times of the ingoing leg g 
are greater than the times of the outgoing leg l, meaning that the ingoing leg would 
happen later in time, only one of them can be used:

As any outgoing leg of a node v has to be later than the ingoing leg of the respective 
node, we can further eliminate all outgoing legs of a node v that are timed before a 
chosen ingoing leg of the respective node. Therefore, we adapt equation (28), where 
we assume an ingoing leg g ∈ L−

v
 of a node v and sum over all outgoing legs l ∈ L+

v
 

with smaller start and end times as the ingoing leg; thus, ol < og and el < eg . Then, 
at most one of the respective legs can be chosen. Conversely, considering an outgo-
ing leg l and summing over all ingoing legs g ∈ L−

v
 with an interval greater than the 

one of the outgoing legs ( og > ol,eg > el ), we can again say that at most one leg can 
be chosen. Both valid inequalities can be formulated as follows:

(25)
∑

l∈L−
v
∶v∈Gr

xl ≥ |Gr| − 1 ∀r ∈ R

(26)
∑

l∈Lp

xl = |Vp| − 1 ∀p ∈ P

(27)
∑

l∈L(v,v
�)

xl +
∑

l∈L(v
� ,v)

xl ≤ 1 ∀(v, v�) ∈ L

(28)ol < og∧el < eg ⟺ xl + xg ≤ 1 ∀l ∈ L+
v
, g ∈ L−

v
, v ∈ V �

(29)xg +
∑

l∈L+
v
∶ol<og∧el<eg

xl ≤ 1 ∀g ∈ L−
v
, v ∈ V �
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If the beginning of the interval ol of the outgoing leg l is greater than the end of the 
interval eg of the ingoing leg g plus the time of the ingoing leg tg plus the service 
time at the node sv plus the maximum waiting time h, then these legs are not com-
patible in time. Again, considering a node v with outgoing legs L+

v
 and ingoing legs 

L−
v
 , we can state the following valid inequalities:

If the beginning interval og of the ingoing leg g plus the travel time of the ingoing 
leg tg plus the service time of the node sv is greater than the end of the interval el of 
the outgoing leg l, then these legs cannot be used together. We can again put this 
into two valid inequalities as follows:

4.2 � Branch‑and‑cut for m4b

In order to solve model m4b, we develop a branch-and-cut algorithm. Branch-and-
cut algorithms make use of a subset of constraints and iteratively add further con-
straints in a cutting-plane fashion. Usually, constraint sets of exponential size are 
excluded which reduces the model to a reasonable size. In our case, we separate 
the infeasible path constraints (18)–(19), but we enumerate all subtour elimination 
constraints, since trips are usually very short. Separation algorithms are then called 
to determine whether the current solution is feasible by checking the omitted con-
straints. Note that the separation algorithms can be called on any relaxed solution 
or only on incumbent ones. Our strategy is based on the latter case, where we only 
call the algorithms if a new incumbent solution is found. If the separation algorithm 
detects a violation, the respective constraint is added as a cut to the model and the 
model is consecutively resolved. This is repeated until no violating constraints are 
detected and an optimal solution is found.

In our model, a route (path) may be infeasible due to (i) user related constraints, 
(ii) shared cars related constraints, and (iii) synchronization requirements between 
user and car routes. Therefore, we first check if all user routes are feasible, then if 

(30)xl +
∑

g∈L−
v
∶og>ol∧eg>el

xg ≤ 1 ∀l ∈ L+
v
, v ∈ V �

(31)xg +
∑

l∈L+
v
∶ol>eg+tg+sv+h

xl ≤ 1 ∀g ∈ L−
v
, v ∈ V �

(32)xl +
∑

g∈L−
v
∶ol>eg+tg+sv+h

xg ≤ 1 ∀l ∈ L+
v
, v ∈ V �

(33)xg +
∑

l∈L+
v
∶og+tg+sv>el

xl ≤ 1 ∀g ∈ L−
v
, v ∈ V �

(34)xl +
∑

g∈L−
v
∶og+tg+sv>el

xg ≤ 1 ∀l ∈ L+
v
, v ∈ V �
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all car routes are feasible and finally if they are both simultaneously feasible. The 
respective separation procedures are described in the following.

4.2.1 � Separation of infeasible user routes

We separate infeasible user routes for each user p ∈ P . Let x denote the solution at 
the current node in the branch-and-bound tree. We start the construction of the route 
� at node �p . We denote the currently considered node as node v. From the starting 
point, we append the outgoing leg l at node v (v.outgoing) if xl = 1 to the route � and 
update v to be the end node of leg l (l.endNode). We do this until we hit the user end 
depot �p.

In the following, we consider a forward slack F, consisting of an accumulated 
waiting time W and a value stating how much we could move the whole route such 
that the solution would still be feasible, given as Δ and F = W + Δ . The current 
time stamp is given as � . Before checking the route � for time feasibility, we initial-
ize F, W , � to 0, and Δ = ∞.

We iterate through the route as long as all time constraints are respected. We start 
by checking the second leg l on route � and systematically take the consecutive one. 
Thus, considering the current leg l leaving node v, we set � = � + sv + tl−1 and update 
W and Δ . The accumulated waiting time is calculated as the current waiting time 
plus either the maximum possible waiting time h or the remaining time to the end 
of the interval el , such that W = W +min{max{0, el − �}, h} . We can further push 
the whole route to the end of the given interval el or by the previously stored Δ . We 
update Δ = min{Δ, max{0, el − (� +W)}} and compose F = W + Δ . If the current 
time � lies within the respective interval of leg l ( ol, el ), we can proceed to the next 
leg. If not, we try to push the route to the starting interval ol of the current leg l, but 
at maximum by adding F, such that � = � +min{max{0, ol − �},F} . If the adapted 
� violates the timing restrictions, the corresponding infeasible path constraint is gen-
erated. If � is feasible ( ol ≤ 𝜏 < el ), we can update W and Δ and proceed with the 
next leg. To update the values, we have to deduct the respective time used up of the 
forward slack. For this, we first adapt Δ by stating Δ = Δ +min{W − (� − �

�), 0} , 
where �′ denotes the time stamp before adding the time slack F. The waiting time is 
updated as W = max{W − (� − �

�), 0} . The pseudocode is outlined in Appendix in 
Algorithm 1.

4.2.2 � Separation of infeasible car routes

We further aim to detect infeasible paths regarding cars violating time constraints. We 
adopt the same idea as above, except following car routes. Starting depots of cars are 
d ∈ D . Note that, as we might have more than one trip originating from one node d, we 
slightly adapt the construction of the route � by considering node d multiple times as a 
starting node for the construction of the route � . We store the outgoing leg l of node v 
with xl = 1 and the MOT k = car in the route � . Whilst constructing, we save the num-
ber of trips on the current route, as we only consider routes with more than one trip. 
Timing restrictions for a single trip are already covered in the user route separation. If 
the route � consists of multiple trips, we follow the same steps as previously described 



325

1 3

The bi‑objective multimodal car‑sharing problem﻿	

in the separation algorithm of user routes. The pseudocode is given in Algorithm 2 in 
Appendix.

4.2.3 � Synchronization of routes

It is not sufficient to check user and car routes separately for infeasibility. We also have 
to check if the user and car routes are synchronized, i.e. if the user who has taken over 
a car is at the depot at the respective time. In order to do so, we consider the whole 
solution and we store the used legs in the subset L′ and obtain the sets L�−

vk
, L�+

vk
, L�−

vp
, L�+

vp
 

( xl = 1 in the current solution), and we solve the following small LP derived from con-
straints (8), (9) and (15):

Constraints (35) and (36) synchronize the car and user route with the decision vari-
able � . Furthermore, constraints (37) make sure that the waiting time at a node is not 
exceeded.

The above constraints are infeasible if the respective user and car are not at the same 
time at the same place. Therefore, we can assume that either a car trip or an arc con-
necting the user trips is infeasible. Thus, we insert into the set L′′ all legs from the set L′ 
that are taken by car or are connecting user trips in the current incumbent solution, and 
we add the following constraint:

4.2.4 � Strengthened infeasible path constraints

The infeasible paths introduced before in the form of constraint (18) and constraint (19) 
are very weak. We strengthen them as follows:

Let L′ contain all legs with the same start node y, end node z, and MOT k but ear-
lier or later intervals (o, e) than the last checked leg of the separation algorithm, i.e. 
where the infeasiblity was detected. Let l′ be the last checked leg and � the current 
departure time. If 𝜏 > el′ , meaning that we have jumped over the interval; then, the 
set L′ contains all legs with the same respective y, z, k but o < ol′ . This means that 
if we missed the interval, then also all prior ones will be too early. Conversely, if 
the interval of leg l′ could not be reached, thus 𝜏 < ol′ , we put all legs with the same 

(35)�l + tl + sv ≤ �n ∀l ∈ L�−
vk
, n ∈ L�+

vk
, v ∈ V �, k ∈ K

(36)�l + tl + sv ≤ �n ∀l ∈ L�−
vp
, n ∈ L�+

vp
, v ∈ V � ∪ U, p ∈ P

(37)�l + tl + sv ≥ �n − h ∀l ∈ L�−
vk
, n ∈ L�+

vk
, v ∈ V �, k ∈ K

(38)
∑

l∈L��

xl ≤ |L��| − 1

(39)
∑

l∈�

xl +
∑

l∈L�

xl +
∑

l∈L��

xl ≤ |�| − 1
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y, z, k as leg l′ but o > ol′ into the set L′ . Hence, if we were not able to reach the 
respective interval, then also all later legs will not be reachable.

The set L′′ also depends on whether we are not able to reach the leg’s interval or 
we miss it. We consider all legs on the route � except the last checked leg l′ , denoted 
as �′ . Considering 𝜏 < ol′ , thus the time stamp lies before the start of the interval, 
then the set L′′ contains the respective counterparts of all legs in �′ with the same 
y, z, k but with an interval that lies behind the last saved � . If we miss the interval 
of l′ , such that 𝜏 > el′ , we assume that we cannot push any prior leg any further. In 
this case, we detect the respective duplications of the legs in �′ with a higher interval 
such that the interval of any leg l is greater than ol′′ , where l′′ depicts the leg assigned 
to �.

Moreover, we store all checked legs to the vector �short . We know that the last leg 
is incompatible with the prior ones and can therefore add the following constraint:

4.3 � Bi‑objective frameworks

We embed our models into two bi-objective frameworks. For m1, m2, and m3 we use the 
�-constraint method. The branch-and-cut algorithm to solve m4b is embedded into both 
frameworks, namely the �-constraint method and a weighting binary search method.

4.3.1 � The �‑constraint method

The �-constraint method iteratively solves single-objective problems where one 
objective is kept in the objective function and the other one is moved to the set 
of constraints. After each iteration, the respective constraint in the constraint set 
is reduced by a certain � . As we only consider integer variables and coefficients, 
we define the �-value to be 1. For example, let us consider the cost function (1) as 
the main objective, and the preferences objective (2) is moved to the constraint as: ∑

l∈L �lxl ≤ Ω − � . Ω is iteratively adapted, inserting the preference value from the 
previous subproblem, and is initially set to ∞ . We solve the problems in a lexico-
graphic order, meaning that in each iteration two MIPs are solved. The algorithm 
stops once the second extreme point of the Pareto frontier (with the minimal second 
objective) is reached.

4.3.2 � A weighting binary search method

As a second framework, we use a binary search in the objective space that is based on 
the algorithm introduced by Riera-Ledesma and Salazar-González (2005). The idea 
is to use a weighting method and iteratively enumerate the Pareto frontier. To start the 
algorithm, the extreme points of the Pareto frontier are calculated and stored as (
f
(1)

1
, f

(1)

2

)
 and 

(
f
(2)

1
, f

(2)

2

)
 . f (1)

1
 and f (2)

1
 give the first, e.g. cost, solutions, of the respec-

(40)
∑

l∈�short

xl +
∑

l∈L�

xl +
∑

l∈L��

xl ≤ |�short| − 1
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tive extreme points, and conversely, f (1)
2

 and f (2)
2

 give the value of the second objec-
tives, in our case: preferences. Thus, the objective value is set as �f ∗

1
+ (1 − �)f ∗

2
 , 

where f ∗ denotes the cost and preference function of the new solution. The weight � 
is calculated as �

�+1
 , where � =

f 2
2
−f 1

2

f 1
1
−f 2

1

 . At each iteration, we add three constraints: (1) 
f ∗
1
< f 2

1
 , (2) f ∗

2
< f 1

2
 , and (3) �f ∗

1
+ (1 − �)f ∗

2
≤ �f

(1)

1
+ (1 − �)f

(2)

2
− 1 . The latter 

one makes sure that only non-dominated points are generated. The values of the new 
solutions are then used for the following iterations where the next weights will be 
calculated with the values 

(
f
(1)

1
, f

(1)

2

)
 and 

(
f ∗
1
, f ∗
2

)
 , as well as with 

(
f ∗
1
, f ∗
2

)
 and (

f
(2)

1
, f

(2)

2

)
 . The algorithm terminates once no more values can be taken to calculate 

new weights.
Enhancements For both methods, we seize the bi-objective characteristics of 

our problem: we store the cuts generated in the prior iterations and add them as 
constraints to the next models. Considering the �-constraint method, we do this 
within one iteration (the min cost problem receives the cuts from the min preference 
model), as well as from one iteration to another. As for the binary search, we only 
solve one MIP with the respective objective function within each iteration. There-
fore, we only pass on cuts from one solution to another.

5 � Computational study

The models and the branch-and-cut algorithm are implemented in C++ and solved 
with CPLEX 12.9. Tests are carried out using one core of an Intel Xeon Processor 
E5-2670 v2 machine with 2.50 GHz running Linux CentOS 6.5. Unless otherwise 
stated, a time limit of 12  is used.

5.1 � Test instances

For our computational study, we use realistic benchmark instances based on avail-
able demographic, spatial and economic data of Vienna, Austria. They are based 
on those used in Enzi et al. (2020a) and Enzi et al. (2020b). Note that the instances 
represent a company within a city; thus, the data do not aim to replicate the popula-
tion of the whole city.

One instance set represents a distinct company consisting of one or more offices 
(or depots) D and users, i.e. employees, P. The number of tasks and their location 
are randomly generated.

In the original instances, each user may use a subset of the available MOTs 
Kp

⊆ K . Based on this binary assignment of MOTs to users, we generate prefer-
ence scores on a scale from 1-10, where 1 is best and 10 is worst. For example, if 
a user has cars in her set of MOTs but no public transportation, then this user will 
get a lower (better) score on cars and a higher (worse) one on public transportation. 
The detailed assignments used for the following study are included in Table 10 in 
Appendix. In the time-dependent setting, we consider seven different time periods 
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t: pre-rush-hour, rush-hour, after rush-hour, normal day-time traffic, pre-rush-hour, 
rush-hour and after rush-hour. Here we deduct/add for each preference score a cer-
tain number (see Table 11 in Appendix). Furthermore, we implement an increase/
decrease in cost and time for the respective time periods (see Table 11 in Appen-
dix). For this, we assume a factor � which is then multiplied with the base cost. For 
example, we assume that taking the car during rush-hour takes longer than at noon. 
We assume � = 1.4 , which is then multiplied with the base cost, e.g. 5. This gives us 
cost of 7 for the rush-hour for the respective leg. Naturally also the driving times of 
the legs are adapted accordingly. We calculate a weighted average of cost and prefer-
ences if a leg covers more than one periods.

Three different MOTs are considered: car, public transportation including walk 
and bike. For our study, we assume that all MOTs have an unrestricted capacity. 
Note that the original setting assumes a limited and fixed pool of cars, which is rea-
sonable for the discussed problem. However, for our first results for the BiO-MMCP 
we decided to let the number of cars be unlimited, to explore the computational effi-
ciency without restricting the number of shared cars. Distances, time and cost are 
calculated between all nodes for all modes of transport. Emissions are translated into 
costs and, together with variable distance cost and cost of time, included into the 
overall cost calculations and summarized in cl . The respective preference value �l is 
taken from the above presented values.

Instances are named as E_|P|_I, where |P| is the number of users, and the instance 
number I is between 0 and 9. For example, the first instance in the set of instances 
with 20 users ( |P| = 20 ) is denoted E_20_0. For instance group with |P| users, we 
solve a set of 10 instances (E_u_0 to E_u_9) and report the average values.

5.2 � Enhancements and preprocessing

In the following paragraphs, we shortly list the enhancements and preprocessing that 
we conducted.

Relative MIP-gap In our first tests, CPLEX provided weakly dominated solutions 
or skipped some of the solutions from the Pareto set due to the default relative MIP-
gap. Therefore, we put a strict MIP gap tolerance of 0.0000. We compared the output 
with different tolerances regarding computational efficiency and could not notice a 
remarkable difference. Therefore, unless otherwise stated, the computational results 
are based on a MIP-gap tolerance of 0.0000.

Warm start For models m3 and m4, we provide CPLEX with a starting solution. 
The starting solution is constructed by simply reading the sequence of the tasks as 
given in the instance file. For model m4, we also track the according times and make 
sure that the times and intervals match. In the starting solution, public transportation 
is used on all trips. Moreover, after each iteration we store the solution and provide 
CPLEX with a MIP start. The MIP start will be infeasible but values can be stored 
for a possible repair.

Graph reduction Initially for model m4, we duplicate each leg every � minutes. 
Assuming that we have a planning horizon of 12 hours and discretize time in steps 
of 15 minutes, we end up with 48 duplicates of one leg. However, these legs are 
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very similar to each other or even equal as the time periods t may cover various 
hours. Therefore, in order to reduce the size of the graph, we merge legs with equal 
weights.

Table 2 gives an overview of the size of the graphs. The table gives information 
on the introduced models for an increasing number of users (|P| = 20, 50, 100, 150, 
200, 250, 300). For m1 and m2, the underlying graph has the same size as only the 
preference and cost values on the legs are changing. Row ’ |V ′| ’ gives the average 
number of nodes, ’ |R| ’ the average number of trips, and row ’ |L| ’ the average number 
of legs in the respective graphs. We observe that the underlying graphs of the first 
two models have a moderate number of legs as the sequences are predetermined. In 
models m3, m4, and m4b, the sequence is subject of determination which leads to 
an increasing number of connecting legs, which is increased even further when time 
dependency is considered in models m4 and m4b. Row ’m4,m4b+GR’ shows the 
number of the legs in the graph after the graph reduction.

5.3 � Algorithmic tests

In this section, we study the computational efficiency of the introduced variants of 
the model. We start by comparing the four models (m1, m2, m3, m4) in their basic 
form, i.e. without adding valid inequalities or using the branch-and-cut algorithm. 
Afterwards, we analyse the impact of valid inequalities on model m3. Finally, we 
focus on solving the most challenging model m4. We compare the reformulation of 
m4 to m4b, i.e. if the branch-and-cut algorithm comes with any improvements in 
computational efficiency. We aim to detect the enhancements by adding valid ine-
qualities, using the branch-and-cut algorithm and choose the best framework (out of 
the two introduced) to solve model m4b.

5.3.1 � Comparison of models m1, m2, m3, and m4

In a first step, we compare the four models regarding their run times. Table 3 shows 
the average computational time in seconds needed to solve an instance group. We 
first look into results without any valid inequalities or cut generation, given in the 
rows m1, m2, m3, and m4. The models are embedded in the �-constraint method and 

Table 2   Average number of nodes ( |V ′| ), trips ( |R| ) and legs ( |L| ) for models m1, m2, m3, m4, m4b and an 
increasing number of users |P| = 20, 50, 100, 150, 200, 250, 300

Row ’m4,m4b+GR’ gives the average number of legs after the graph reduction

|P| = 20 50 100 150 200 250 300

|V ′| 95 242 476 714 951 1179 1422

|R| 31 76 147 218 287 358 427

|L| m1, m2 416 1188 2612 4340 6315 8734 11,038

m3 947 4190 13,394 27,756 46,503 70,492 99,462
m4,m4b 13,479 41,077 93,079 150,877 216,989 276,626 356,713
m4,m4b+GR 3984 13,995 34,780 61,310 92,790 127,155 167,645
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enumerated by setting either the cost function as the objective (cost) or the user 
preferences as the objective (pref). Results are given for instance sets for which 
we were able to solve all 10 instances. Run times for m1 and m2 are very short. We 
can solve real-world-sized instances with 300 users in less than 5 minutes. For m1, 
the direction of the �-constraint method has no impact. In the case of m2, setting 
pref as first objective results in shorter run times. Models m3 and m4 are ’harder’ 
to solve. For model m3, we can see a significant increase in the average run times for 
the instance group with |P| = 50 . The largest instance set we can solve comprises 
100 users in the case of m3. Adding valid inequalities reduces computational times 
by a factor of 3 for this instance size (m3-VI) and |P| = 100 . With m4 we cannot 
solve any complete instance set. We will go into more detail on m4, its possible 
extensions and the respective results later. Using the best setting of the proposed 
branch-and-cut-based algorithm, we are able to enumerate the whole Pareto frontier 
within about 3,000 seconds, on average.

Table 4 summarizes the average number of Pareto optimal solutions per instance 
set. The number of solutions is moderately increasing with number of users |P|. 
Comparing m1 and m3, we see almost the same number of Pareto optimal solutions 

Table 3   Average computational times in seconds for models m1, m2, m3, m3-VI, m4, m4bVIBnCBiO 
and an increasing number of users |P| = 20, 50, 100, 150, 200, 250, 300 for both directions (cost, pref) 
in the �-constraint method

m3-VI gives results for the respective model with valid inequalities. m4bVIBnCBiOshows results for the 
model m4b solved by branch-and-cut and passing cuts to subsequent iterations

|P| = 20 50 100 150 200 250 300

m1 cost 0.3 3.0 15.8 45.2 88.1 163.4 247.3
pref 0.3 3.0 15.8 43.6 85.1 160.9 238.5

m2 cost 0.7 5.5 35.4 92.0 188.2 319.8 428.5
pref 0.5 4.4 29.8 79.8 165.3 288.2 399.9

m3 cost 7.4 498.5 17,707.6 – – – –
pref 7.7 1037.3 – – – – –

m3-VI cost 8.0 480.4 5743.2 – – – –
pref 8.5 874.5 5577.5 – – – –

m4 cost – – – – – – –
pref – – – – – – –

m4bVIBnCBiO cost 3511.9 – – – – – –
pref 2730.7 – – – – – –

Table 4   Average number 
of Pareto optimal solutions 
for models m1, m2, m3, m4 
for an increasing number of 
users |P| = 20, 50, 100, 150,

200, 250, 300

|P| = 20 50 100 150 200 250 300

m1 18 73 159 250 349 464 518
m2 34 164 346 555 767 993 1073
m3 18 72 158 – – – –
m4 141 – – – – – –
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on average per instance set. If we compare the increased cost in computational com-
plexity coming with m3, we could argue that dissolving the sequences where no 
time-dependent information is given is not worthwile. We will investigate the shape 
of the Parento frontiers in a subsequent section in order to obtain a better under-
standing of the resulting solutions. Comparing m1 with m2, we can see a distinct 
increase in optimal solutions on the frontier, even though we only introduced time-
dependent cost and preferences. Finally, m4 gives by far the highest number of opti-
mal solutions for the small instance set of |P| = 20.

5.3.2 � Introducing valid inequalities for model m3

We now analyse the impact of the proposed valid inequalities (VI) in more detail. 
Table 5 presents the computational times in seconds solving m3 without additional 
information (m3) and by adding valid inequalities (21)–(27) as well as subtour 
elimination constraints  (20) as user cuts (m3-VI). We use both, costs (cost) and 
preferences (pref), respectively, as the ’main’ objective function in the �-constraint 
method. Results are given for |P| = 100, 150 and listed for each instance. Row ’# 
solved’ shows the number of instances solved with the respective model. We can 
observe that for some of the instances, e.g. E_100_8, for both cost and pref, 
the execution time is higher with the valid inequalities than without them. However, 
on average adding additional information in the form of valid inequalities improves 
computation times by a factor of approximately 4. Even for instance E_100_2, where 
we were not able to enumerate the whole Pareto frontier within 12 hours with the 
base model, we are now able to get the frontiers from either side in less than 3 hours. 
For the case where |P| = 150 and pref, we are able to solve all but two instances, 

Table 5   Average computational times in seconds for |P| = 100, 150 solving m3 without valid inequalities 
(m3) and the same model including valid inequalities (m3-VI) and having either cost (cost) or prefer-
ences (pref) set as the objective function in the �-constraint method

Bold values represent the best run time for the respective instance
’# solved’ shows the number of instances solved. TO = time out

cost pref cost pref

m3 m3-VI m3 m3-VI m3 m3-VI m3 m3-VI

E_100_0  2419 2852 3212 2628 E_150_0 TO TO TO TO
E_100_1 3329 3104  2513 2777 E_150_1 TO TO TO  39,507
E_100_2 35,758  7275 TO 8504 E_150_2 TO TO TO  41,675
E_100_3 3382 3544  3281 3892 E_150_3 TO 37,060 TO  20,507
E_100_4 24,162  4177 25,159 4553 E_150_4 TO TO TO TO
E_100_5 27,186 6655 25,587  6062 E_150_5 TO 19,766 TO  14,098
E_100_6 11,152 9814 11,403  9092 E_150_6 TO 18,352 TO  13,640
E_100_7 24,112 9245 22,085  6880 E_150_7 TO 38,193 TO  21,112
E_100_8 3398 5204  2685 3678 E_150_8 TO 30,083 TO  23,643
E_100_9 22,771  5561 28,090 7708 E_150_9 TO TO TO  35,617
# solved 10 10 9 10 0 5 0 8
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however, all with relatively long computational times. Direction cost shows longer 
run times for all solved instances, whereas for two more cases, in total four, the total 
Pareto frontier cannot be enumerated. None of the instances with |P| = 150 has been 
solved without the valid inequalities. Furthermore, we were not able to solve any of 
the instances with |P| = 200 using m3 or m3-VI.

5.3.3 � Solving model m4

We now compare different approaches for solving m4. Table 6 shows the run times 
for (i) model m4 (m4(�)), (ii) m4 with valid inequalities (m4-VI(�)), (iii) model m4b 
with valid inequalities, and infeasible path constraints in the form of (39)-(40) added 
through cut generation and embedded into the �-constraint method (m4bVIBnC(�
)), (iv) the bi-objective branch-and-cut, which is similar to the previous variant but 
we pass the cuts generated as constraints from one solution to another (m4bVIB-
nCBiO(�)), (v) model m4b solved by branch-and-cut embedded in the weighting 
binary search method (m4bVIBnC(�)), and (vi) the branch-and-cut used to solve 
m4b using the weighting binary search method and passing cuts to subsequent itera-
tions (m4bVIBnCBiO(�)). Again all results are given for both directions, cost 
and pref in the case of the �-constraint scheme. In the case of the binary search, 
both objectives are combined in one weighting objective function. Times are in sec-
onds. Row ’# solved’ gives the number of instances solved. Results are given for 
each instance for |P| = 20.

Using model m4(� ) and the direction cost, only one instance is solved, using 
pref as the main objective, two instances can be solved within 12 hours of compu-
tation time. Adding valid inequalities (m4-VI(�)), we are able to increase the num-
ber of instances solved to 6 for the direction cost and to 7 for the direction pref. 
Still for most of the instances the run times exceed 10,000 seconds.

Moving from the model with the time variables (m4) to the entirely integer model 
(m4b) with cut generation, we can improve run times considerably by at least a fac-
tor of 10 (column m4bVIBnC(�)). Yet, we are still not able to enumerate the whole 
frontier for instance E_20_9. By seizing the bi-objective character of the model and 
handing over detected infeasible paths as constraints from one iteration of the �-con-
straint scheme to the next, we further increase in the algorithms’ computational effi-
ciency (m4bVIBnCBiO(�)). Note that different to most works, we add the detected 
infeasible paths not to a cut pool but explicitly to the set of constraints. All instances 
with |P| = 20 can now be solved for m4. The last two columns of Table 6 show the 
results obtained by applying the weighting method and conducting a binary search 
in the objective space. It is again clearly visible, that the approach where cuts are 
passed on from iteration to another, enhances computation times and thus seizing 
the bi-objective character of the models is beneficial. Nevertheless, the run times are 
not comparable to ’m4bVIBnCBiO(�)’. The reason is that the binary search algo-
rithm calls the solver approximately twice as often as the �-constraint.

As noted, instance E_20_9 requires significantly more time for computing the 
Pareto frontier than all the others. The reason is that it is the only instance with 
|P| = 20 which has one user with three trips. The total number of trips or average 
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number of trips per person are in line with the other instances. Thus, the maxi-
mum number of trips per user has a significant impact.

Note that we add all found infeasible paths to the set of constraints instead of 
adding them to a cut pool. As the number of cuts generated is relatively small and 
is also decreasing over time, the additional constraints are of a manageable size. 
However, we have tried both approaches and computational times confirmed the 
efficiency of our approach.

The above results show that ’m4bVIBnCBiO(� )’ (with direction pref) is, 
for our problem setting, more efficient than ’m4bVIBnCBiO(�)’. As discussed, 
this is mainly due to the increase in the number of MIPs that have to be solved. 
Table  7 compares the run times of the two approaches for |P| = 50 . The table 
shows similar results as above. The �-constraint method is able to solve more 
instances and also, if the instance is solved by both approaches, results in shorter 
computation times.

As we have seen, it is beneficial to exploit the bi-objective nature of the underly-
ing optimization problem by using previously generated cuts in subsequent itera-
tions. In Fig. 2, we show the number of cuts added at each iteration for one cho-
sen instance, namely E_20_0. Figure 2a and b shows the results for the �-constraint 
method, first without adding the cuts as constraints at each iteration and then by 
using the generated cuts in the respective submodels. Figure 2c and d gives the num-
ber of cuts added at each iteration for the weighting method conducting a binary 
search. As we can see, solving each subproblem individually generates a much 
higher number of cuts at each iteration, whereas in the other case, where we propa-
gate cuts from iteration to iteration, we drastically reduce the cuts added at each 
subproblem. This is valid for both methods. Moreover, by comparing Fig. 2b and d, 
we see that the binary search method actually produces fewer cuts in later iterations. 
The reason is that the binary search method detects solutions, where infeasibility 
needs to be proven. This also results in two times more iterations for this method. 
Nevertheless, we can clearly observe that for either approach, the additional infor-
mation from prior iterations has a remarkable impact on cut generation iterations.

Table 7   Average computational 
times for each instance for 
|P| = 50 solving m4b by 
branch-and-cut embedded 
in the �-constraint method 
(m4bVIBnCBiO(� )) and in 
the weighting binary search 
algorithm (m4bVIBnCBiO(�))

Both approaches add prior detected infeasible paths as constraints to 
model

m4bVIBnCBiO(�) m4bVIBnCBiO(�)

E_50_0 16,712 31,100
E_50_1 TO TO
E_50_2 TO TO
E_50_3 13,759 22,657
E_50_4 5876 13,954
E_50_5 41,764 TO
E_50_6 TO TO
E_50_7 TO TO
E_50_8 4746 7907
E_50_9 TO TO
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Table 8 gives the number of cuts added per iteration on average for both the �
-constraint method as well as the binary search approach for each instance in the set 
with |P| = 20 . We show the case where each iteration is using only the current infor-
mation (m4bVIBnC(� ), m4bVIBnC(� )) and where we use information in the form 
of cuts added as constraints from prior iterations (m4bVIBnCBiO(� ), m4bVIB-
nCBiO(�)). We can clearly see that without additional information we use up to 100 
times more cuts. As discussed prior, the binary search method has a lower average 
number, but more iterations are conducted.

5.4 � Managerial insights

We briefly discuss managerial implications. We start by looking at the respective 
Pareto frontiers for a chosen set of instances. Then we continue by studying differ-
ent MOT compositions when solving different variants of the model. Note that the 
models provide the decision maker with a range of trade-off solutions. Based on this 

Fig. 2   Number of cuts added at each iteration for instance E_20_0. m4bVIBnC(� ) solves model m4b 
by branch-and-cut embedded in the �-constraint method, and m4bVIBnCBiO(� ) additionally stores the 
detected infeasible paths to the set of constraints. m4bVIBnC(� ) solves model m4b by branch-and-cut 
and the weighting binary search method, and m4bVIBnCBiO(� ) additionally passes infeasible path con-
straints to subsequent iterations
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solution pool, the decision maker derives actions and takes the best solution fitting 
to their requirements.

5.4.1 � Comparison of Pareto frontiers for models m1, m2, m3, and m4

Figure 3 shows the Pareto frontiers for instances E_20_0 and E_20_9. The x-axis 
represents preferences, y-axis cost. Note that for both instances only three frontiers 
are visible. This is because the frontier of m1 is hidden behind m3. For these small 
instances, the additional freedom to choose sequences of tasks and trips is not giving 
any improvement to the model. Frontiers for m2 are similar in their shape for both 
instances and, however, slightly differ in their relation to the other curves, especially 
to m3(m1). Introducing time-dependent values for m2, lower (better) overall prefer-
ences but higher cost are obtained, visible as a shift to the left on the x-axis and 
a shift upwards on the y-axis. The increased cost comes from the additional time 
needed during specific day-times. Note that we usually have a 𝛽 > 1 , meaning that 

Fig. 3   Pareto frontiers for models m1, m2, m3, m4 solving instances E_20_0 and E_20_9. The y-axis rep-
resents cost, preferences are on the x-axis
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we rarely decrease the driving time compared to the base scenario (except for public 
transportation, where we assume shorter cycle times for, e.g., rush-hours). For m4, 
the length of the frontier exceeds all the other curves. It is clearly visible that with 
time-dependent preferences and cost as well as flexible sequences, we have a greater 
set of Pareto optimal solutions. Also, the curve is shifting to the left corner, meaning 
that we have better overall cost as well as preferences. The average cost and prefer-
ence values for instances with u = 20 are: 505 and 2,878 for m1, 548 and 2,272 for 
m2, 505 and 2,878 for m3, 476 and 1,591 for m4, respectively. Concluding, we can 
say that time dependencies do have a great impact when solving the bi-objective 
multimodal car-sharing problem. Furthermore, we observe that only dissolving the 
fixed sequence does not come with high improvements, but in combination with 
time dependencies a greater amount of solutions as well as lower cost and better 
user satisfaction are obtained.

5.4.2 � MOT assignment for models m1, m2, m3, and m4

Finally, let us have a closer look at the MOTs assigned. We analyse the number 
of trips covered by each MOT (car, bike, public transportation), for two instances, 
namely E_20_0 and E_20_9, for all four models m1, m2, m3, m4. In Fig. 4, we show 
the respective Pareto frontier for the four models and include the number of trips 
taken by each MOT for the respective Pareto optimal solution. Note that the number 
of trips that are covered by a car does not have to be equal to the number of cars 
used in total as a car might take more than one trip during a day.

Starting with m4, we observe a similar development for both instances for all 
MOTs. With increasing (worse) preferences, and decreasing cost, we gradually 
assign more cars and less bikes. The number of trips taken by public transportation 
is more or less constant. Thus, most cost-efficient, considering time dependencies, 
are car trips; best preferences give bike trips. A car is, in our instance set, the fast-
est mode of transport. As we include time in the cost function, this also makes cars 
often the cheapest option. Moreover, our study gives relatively good time-dependent 
preference scores to bikes, as it is, e.g., good in rush-hours to avoid congestion or 
overcrowded public transportation. This of course has a great impact on the result-
ing tendencies in the final results.

For the other models, the picture is slightly different and instance dependent. Gen-
erally, we can say for m1, m2, and m3 the number of trips taken by bike is decreasing 
with lower cost and higher (worse) preferences. The number of trips taken by public 
transportation is increasing with higher (worse) preferences and lower cost.

Comparing the extreme points of all Pareto frontiers for all models regarding 
their composition, we can conclude: for m1 and m3 we always assign more cars and 
public transportation to the cost optimal solution (except for one instance for m3); 
the number of trips taken by public transportation and cars decreases with higher 
cost but better preferences. Bikes are preferred by the preference optimal solutions, 
and increase with less cost. Also for m2 we can observe that the number of bikes 
assigned is decreasing with increasing cost and lower (better) preferences. The oppo-
site holds for public transportation. We can figure an unchanged level of trips being 
assigned to public transportation for m4. For m4,   lower cost and higher (worse) 
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preferences lead to more cars assigned and, conversely, more bikes are assigned with 
an increase in cost, and decrease in preferences.

Table  9 provides a better overview of the MOTs assigned to trips for each 
instance set and model. The numbers are given as averages over all instances within 
an instance set. Rows ’av’ provide the average of the average number of trips by the 

Fig. 4   Number of trips assigned for each Pareto optimal solution by the respective mode of transport 
(car, bike, public transportation) for models m1, m2, m3, m4 solving instances E_20_0 and E_20_9
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respective MOT (car, bike, public). ’min’ gives the average of the minimum number 
of trips conducted by the respective MOT, and ’max’ gives the average maximum 
number. The results are organized by model (m1, m2, m3, m4), MOTs, and number 
of users |P| = 20, 50, 100, 150, 200, 250, 300.

Generally, we observe that bikes are very often assigned and used for the highest 
number of trips on average. m3 assigns about the same amount of cars and pub-
lic transportation. m2 always shows the highest number of trips taken by public 
transportation. Thus, by having the choice between MOTs for a trip with a fixed 
sequence, public transportation is preferred. m4 has a very high number of trips 
taken by bikes.

Note that the composition of the mobility offers varies a lot among the mod-
els. Furthermore, the difference between the minimums and maximums of the 
assigned MOTs is usually very high, which means that the solutions are chang-
ing considerably over the course of the Pareto frontier. This means that, from a 
decision makers perspective, considering the proposed trade-offs and variants of 

Table 9   Average values of average number of MOT assigned to trips (av), minimum (min) or maximum 
(max) for models m1, m2, m3, m4 for an increasing number of users |P| = 20, 50, 100, 150, 200, 250, 300 . 
Considered modes of transport are car, bike and public transportation

|P| m1 m2 m3 m4

Car Bike Public Car Bike Public Car Bike Public Car Bike Public

av 20 7.7 11.7 11.4 2.2 11.6 17.1 8.1 10.5 12.1 6.3 20.0 4.5
min 4.5 4.7 6.8 0.8 5.0 11.5 4.7 3.9 7.5 1.8 12.1 2.5
max 10.6 19.3 15.9 4.5 16.8 23.6 10.9 18.3 16.4 14.6 26.3 6.8
av 50 23.4 29.9 23.0 3.1 27.9 45.3 23.3 27.6 25.3 21.6 45.0 10.0
min 11.0 11.5 14.4 1.8 11.2 29.1 11.8 9.1 16.4 5.3 29.8 5.1
max 33.9 50.6 32.3 6.5 43.6 61.1 34.9 46.2 34.9 41.0 62.0 14.5
av 100 47.1 54.2 45.3 5.9 54.2 86.5 47.3 54.0 45.4 – – –
min 22.5 20.8 30.1 2.9 19.9 54.1 23.8 19.9 31.0 – – –
max 71.7 93.9 57.0 13.2 82.8 120.0 72.0 87.9 61.4 – – –
av 150 72.7 82.7 62.2 10.8 81.4 125.4 66.4 86.9 64.8 – – –
min 37.5 34.3 41.8 6.4 32.7 82.3 33.5 35.5 45.6 – – –
max 106.1 138.2 79.4 21.0 121.0 171.4 102.4 136.5 86.4 – – –
av 200 94.6 108.6 83.9 15.4 107.4 164.3 – – – – – –
min 48.5 39.5 55.1 10.3 40.1 105.4 – – – – – –
max 142.1 183.3 107.0 25.3 163.1 227.3 – – – – – –
av 250 120.0 137.0 101.2 20.9 137.1 200.3 – – – – – –
min 62.2 53.0 65.3 14.3 51.5 129.5 – – – – – –
max 177.7 230.4 130.4 37.7 201.8 279.6 – – – – – –
av 300 131.2 163.8 132.5 19.6 163.2 244.7 – – – – – –
min 70.3 62.7 88.4 13.8 57.8 158.5 – – – – – –
max 194.7 268.7 171.9 36.6 239.7 347.3 – – – – – –
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the problem has a big impact on the MOTs used in a mobility system. Assigning 
different MOTs influences the user-centred objective to a great extent. With this 
results we can confirm the relevance of this study and conclude that it is highly 
beneficial to consider not only cost but also user-preferences when operating a 
shared mobility system.

6 � Conclusion and future work

Inspired by the change in mobility patterns, we study the bi-objective multimodal 
car-sharing problem where we assign modes of transport to trips as well as cars 
and user routes. As objectives, we consider costs and user-centred preferences. 
Both objectives are, depending on the variant of the model, studied with time 
dependencies. We model different cost/times as well as preferences during a day, 
as people might want to avoid driving through rush-hour by car. We introduce 
four different variants of the model where we gradually dissolve a fixed sequence 
of tasks and trips as well as introduce the effect of the time-dependent values. 
The increase in flexibility in the model comes with an increase in the complexity 
as well as an increase in the number of Pareto optimal solutions. Therefore, we 
reformulate the last variant, without fixed sequences and time dependencies, to a 
purely integer model and propose a branch-and-cut algorithm. We show that our 
branch-and-cut algorithm can enumerate the Pareto frontier for prior non-tractable 
instances within seconds. We embed the algorithm into two bi-objective frame-
works, namely the �-constraint method and a weighting binary search method. We 
show that adding previously detected infeasible path constraints to subsequent iter-
ations reduces computational times considerably. In our computational study, we 
observe that only dissolving the fixed sequence does not come with high improve-
ments. However, in combination with time dependencies, a greater amount of 
solutions as well as lower cost and better user satisfaction is obtained. Moreover, 
we observe that the solutions change significantly along the Pareto frontier. This 
confirms the relevance of this study. We conclude that it is highly beneficial to 
consider not only cost but also user-preferences when operating a shared mobility 
system.

Even though we are able to show a significant enhancement in computational effi-
ciency for a set of instances, our approach has limitations. Enumerating the whole 
Pareto frontier for instances with users having more than two trips throughout a day 
seems challenging. Thus, future work should tackle this issue by focusing on the devel-
opment of a separation algorithm adjusted to these specific characteristics. Moreover, 
specific matheuristics where the relative MIP-gap is increased or the � value adapted 
may lead to promising further improvement in run times. Furthermore, the develop-
ment of metaheuristics should enable an increase in computational efficiency for the 
proposed problem. Finally, as this work only optimizes average scores of preferences, 
a min-max approach is planned for future work in order to improve the integration of 
preferences on a user level.
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Table 10   Preference scores 
assigned based on the binary 
assignment from the instance 
generation

Binary assignment of MOTs Preference scores

Walk Bike Car e-car Public Walk/public Bike Car

1 0 0 0 0 4 6 7
0 1 0 0 0 6 4 7
0 0 0 0 1 4 6 7
0 0 1 0 0 6 7 4
0 0 0 1 0 6 7 5
1 1 0 0 0 4 4 7
0 1 0 0 1 4 4 7
0 0 1 0 1 4 5 4
0 0 1 1 0 7 7 4
1 0 0 0 1 4 6 7
0 1 1 0 0 6 4 4
0 0 0 1 1 4 7 5
1 0 1 0 0 4 5 4
0 1 0 1 0 6 5 6
1 1 0 0 1 4 4 7
1 0 0 1 0 4 7 5
0 1 1 0 1 4 4 4
0 0 1 1 1 7 7 4
1 1 1 0 1 4 4 4
0 1 1 1 1 7 4 4
1 0 1 1 1 4 7 4
1 1 1 1 0 4 4 4
1 1 0 1 1 4 4 7
1 1 1 1 1 4 4 4
0 0 0 0 0 4 5 5

Table 11   On the left: Adaption of the user preferences for the time-dependent values for each time 
period t. The base values are taken from Table 10 and accordingly deducted/added. On the right: �-val-
ues to multiply the respective cost and time value of the respective MOT for the respective time periods t 

t Walk/public Bike Car Car Walk/public Bike

0 −3 −2 +1 1.2 1.1 1
1 +2 −2 +3 1.4 0.8 1.1
2 −2 −1 −3 1.3 0.9 1
3 + 0 + 0 + 0 1 1 1
4 −2 −3 +1 1 .3 1 1
5 +2 −2 +3 1.4 0.9 1.1
6 −1 +2 −2 1.1 1.3 1
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