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Abstract. Recent evolution of networks introduce new challenges for
the allocation of resources. Slicing in 5G networks allows multiple users
to share a common infrastructure and the chaining of Network Function
(NF)s introduces constraints on the order in which NFs are allocated.
We first model the allocation of resources for Chains of NFs in 5G Slices.
Then we introduce a distributed mutual exclusion algorithm to address
the problem of the allocation of resources. We show with selected metrics
that choosing an order of allocation of the resources that differs from the
order in which resources are used can give better performances. We then
show experimental results where we improve the usage rate of resources
by more than 20% compared to the baseline algorithm in some cases.
The experiments run on our own simulator based on SimGrid.

Keywords: Computer network management · Distributed algorithms · Network
Slicing · Distributed Systems · k-mutex · drinking philosophers · deadlock.

1 Introduction

The flexibility of 5G networks allows the apparition of new services. Complex
services rely on Slices split across multiple Network Service Provider (NSP)s.
The allocation of a service is now not only the allocation of a single NF but the
chaining of multiple NFs. Chains of NFs introduce a constraint on the order of
the allocation.

We argue that in such use cases the system can be modeled as a distributed
system. The various NFs from the different NSPs can be abstracted as re-
sources. One or more instances of these resources can be available for each of
these resources. We define the allocation of a chain of NFs as a request of a set
of resources with an associated request order. The allocation of a request
means allocating all the resources in the set while respecting this request order.

In distributed systems, allocation of resources is seen as a Mutual Exclu-
sion problem. Several variants of the problem have been defined considering a



single resource [14, 27] or multiple instances of a single type of resource [25, 26].
Very few solutions have been proposed for the problem of Mutual Exclusion for
systems with multiple instances of multiple resources [2, 15].

We propose here a distributed algorithm to solve the problem of the allocation
of resources to create chains of NFs in 5G Slices for Multi-Domain use cases.
We address this as a distributed Mutual Exclusion problem. We show that for
systems with multiple instances of resources the selection of the instances to
allocate has an influence on performances. Our algorithm extends the LASS
algorithm [15] for systems with N instances of M resources. We introduce a
subroutine to select the instance of the resource based on the orders of the
requests as the LASS algorithm does not address this constraint. The algorithm
is based on the transmission of a token that contains the permissions to use the
resources. In a Network Functions Virtualization (NFV) network the resources
are the nodes themselves, and they can’t be transferred from one node to another.
In such system each node is the manager of its own resource. We propose an
extension to manage systems where the decisions to allocate the resources are
made locally by each node.

We introduce a broader description of these use cases as well as some related
work and background in Section 2. We describe our problem in Section 3. In
Section 4 we introduce our algorithm, and define the allocation order as distinct
from the order in the requests. We then introduce the methodology used to
evaluate the algorithm with the SimGrid [3] simulator and show the experimental
results in Section 5. We finally present our conclusions and future works in
Section 6.

2 Related work

The architecture of Telecom Networks is rapidly evolving. Operators have launched
the NFV [10] initiative at the European Telecommunications Standards Institute
(ETSI) to move the NFs from dedicated hardware to virtualized infrastructures
based on Cloud and Software-Defined Networking (SDN) technologies.

Allocation of a single NF is rarely sufficient. More complex services require
multiple NFs to inter-operate while respecting an order. To this end ETSI de-
fined the VNF Forwarding Graph (VNF FG)s [9] as the analogue to the
connection of physical appliances with cables. Following the description of the
VNF FG use case in 2013, RFC7665 [22] introduced in 2015 Service Function
Chaining (SFC) to allow the allocation of a chain of NFs. In 2017, RFC8402 [23]
introduced Segment Routing to allow a node to send a list of instructions to be
run by subsequent nodes. problem of resources allocation for multiple NFs in
the correct order.

5G is the first generation of mobile networks to include NFV as an enabler
for new types of services. 3GPP has introduced Network Slices [29, 28] that
enables multiple virtual end-to-end networks to share the same NFV infrastruc-
tures. A service offered by a Slice can rely on the infrastructures of multiple
NSPs, it is then called Multi-Domain. This can be the case when a large op-
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erator has split its network in multiple subdomains (e.g. datacenters) or when a
use case may require the infrastructures of multiple operators.The European 5G
Public Private Partnership (5G PPP) initiative launched projects that defined
several use cases based on Slices and Multi-Domain. The SLICENET project’s
eHealth use case [29] requires multiple NSPs to provide Slices that are chained
together to provide the service.

Multiple centralized solutions exist for the allocation of resources such as Vir-
tual Network Function (VNF) in networks or the placement of Virtual Machines
in Cloud infrastructure [20, 24, 11, 31]. These approaches focus on finding an op-
timal placement depending on a set of constraints. Some papers focus on finding
heuristics to respect Service Level Agreement (SLA)s [17] or security rules [12].
These problems are mostly addressed with Integer Linear Programming (ILP)
formulations. This centralized method may not be adequate for Multi-Domain
use cases when it is not be possible to have a centralized manager or when the
cost of building a global view of the system has a high cost. A centralized method
also often requires an a priori knowledge of the requests.

We propose to address such systems as distributed systems, and propose a
solution where there is no centralized manager. In such systems resources all
execute the algorithms locally and get (resp. send) information from (resp. to)
other resources by the passing of messages.

The allocation of resources in distributed systems can be handled as a Mutual
Exclusion problem on these resources. The Mutual Exclusion is a fundamental
problem in distributed systems and was first described by E. W. Dijkstra in
1965 [7] for systems where multiple processes try to allocate concurrently a
single shared resource. Allocating this resource allows them to execute a portion
of code known as Critical Section (CS) allowing processes to use the resource
exclusively. Multiple solutions [14, 27, 30, 21] have been proposed.

The mutual exclusion problem was later generalized in two ways:

– for systems with one instance of M resources known as the dining
philosophers problem, when the requests are static, and drinking philoso-
phers problem, when the requests are dynamic. It was defined by K. M.
Chandy and J. Misra in 1984 [4].

– for systems with k instances of a single resource, known as the k-mutex
problem [25]. A variant of this problem is known as the k-out of-M resources
allocation problem [26] when one process tries to allocate multiple instances
of a single type of resource.

Algorithms to solve drinking philosophers problems, need to address potential
conflicts between two requests. A conflict occurs when two requests try to
allocate a common resource. If two requests don’t conflict, they are allowed to
enter their CS simultaneously.

The Dining/Drinking philosophers problem was generalized in 1990 by Awer-
buch and Saks [1] as the Dynamic Job Scheduling problem where processes re-
quire resources that can be used by a single process at a time. A job can only
be executed when all its required resources are available for exclusive use by
the process. The problem is also related to the job-shop scheduling optimiza-
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tion problem, in which n jobs have to be scheduled on m machines with the
shortest-length schedule. This problem is NP-hard [16].

Algorithms addressing the mutual exclusion for systems with M resources can
be divided into two groups: incremental algorithms and simultaneous algo-
rithms. Algorithms in the first group incrementally allocate resources according
to a static total order on the resources. They are using consecutive mutexes on
each of the M resources. E. W. Dijkstra’s algorithm from this group [6] is the
baseline algorithm for our comparison and is detailed in Section 5.2. Algorithms
in the second group do not set a predefined total order on the resources but try to
simultaneously allocate resources for multiple requests. To achieve this multiple
mechanisms have been proposed. Some require a knowledge of the conflict graph
[4, 8]. Others rely on a broadcast mechanism with high messages complexity [18]
or a global lock that is not efficient when the concurrency of requests is high [2].
All the simultaneous algorithms have in common to build a total order of the
requests to schedule them.

Finally, it is possible to extend drinking philosopher and k-mutex problems
by considering systems with N instances of M types of resources and requests
for k instances of 1 or more types, we call it the k −M −N problem.

In a system with N instances of M resources, it is necessary to decide which
instance to allocate for a given request. Once an instance has been selected, we
have a simplification of the k −M − N problem to the drinking philosophers
problem, where each instance is uniquely identified by its location. To the best
of our knowledge this problem has not been specifically addressed. Some papers
address the drinking philosophers problems and mentioned possible extension of
their algorithms to systems with N instances [2, 15] but did not consider the
selection of the instances as a specific constraint.

Algorithms from the state of the art don’t consider the latency of the network
links. They also do not address that the nodes selected for a chain of NFs need
to respect a specific request order. In our model we add a weight to the edges of
the graph to take this latency into consideration and be able to compute a path
that respects the order in which resources are used. They also do not take into
consideration that network links are not First In First Out (FIFO) channels. Our
algorithm makes no assumption on the order in which messages are received.

The LASS algorithm [15] is a simultaneous algorithm that addresses systems
with a single instance of M resources. It has been shown that its performance are
better than those of incremental algorithms. It builds allocation vectors for
all requests. These vectors are then used to compute a total order on requests,
as detailed in section 3. Our algorithm extends it and includes a preemption
mechanism that is used when messages are received in an order that is different
from the total order of the requests.

3 Problem Statement

The allocation of resources for VNF Forwarding Graph (VNF FG) in Multi-
Domain 5G slices is addressed as a Mutual Exclusion problem for systems with
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N instances of M resources. In an example of VNF FG described in [9], packets
need to traverse an Intrusion Detection Systems (IDS), a Firewall (FW) and a
Load-Balancer (LB). The left part of Figure 1 shows this example with three
NSPs.The figure shows the cases where there are three instances of each resource
distributed across the three NSPs.
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Fig. 1. A system with 3 types of resources: c1 (IDS), c2 (FW), and c3 (LB)

We model our system as a non-directed connected static graph G=(N , E)
where N is the set of nodes and E the set of edges. A node contains at most
one resource. Edges have positive weights that allow to model the latency of
the links between nodes. A weight of 0 on an edge allows to model a system with
multiple resources on a single node. A node with 2 resources can be modeled in
the graph as two nodes holding one resource each and connected by a zero-weight
edge. We note C the set of types of resources.

Each node in the graph can issue an allocation request. A request is modeled
as a couple Req(n, {c1, . . ., cs}) where :
– n is the requesting node,
– {c1, . . . , cs} where cr ∈ C,∀r is an ordered set of types of resources needed.

The request order gives the order of the resources in the request. The order
of resources can be different across requests.
The right side of Figure 1 shows a model of the use case introduced above.

We pose a request Req1 = Req(n1, {c3, c2, c1}) in this system.
n1 is the requesting node, 3 types of resources c1, c2 and c3 are requested.

The request order is c3 ≤ c2 ≤ c1, i.e. first c3, then c2 and finally c1.
Our algorithm does not require a knowledge of the conflict graph like [4, 8].

It requires that each node has knowledge of its neighbors and knows where to
find each type of resource so that each node can send messages to others.

The first subroutine of the algorithm presented in Section 4 computes a path
in the graph. A path contains all the nodes from, and including, the requesting
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node, to the last resource requested, respecting the request order. The path con-
tains the nodes holding the requested resources as well as the nodes connecting
those, e.g. a valid path for Req1 is the ordered set of nodes (n1, n5, n7, n8, n7, n5).
The originating node is n1, the first type of resource requested is c3 and n8 holds
an instance of it. It is necessary to go through n5 and n7 to reach n8 from n1.
Then n7 and n5 hold the two other requested resources.

A request is satisfied when the path contains nodes that hold all the types
of resources in the correct request order and all the requested resources are
allocated to it, allowing the requesting node to enter its CS.

The algorithm builds an allocation vector for each request. Each entry
of an allocation vector is a pair (n, value), called a counter, where n ∈ N is
the node having the requested resource and value is a positive integer incre-
mented by the node upon reception of the request, as detailed in Section 4.
It is not possible for two requests to get the same counter value for a node
n in their allocation vectors. The allocation vector for request Reqr is noted
VReqr = ((nr

1, counter
r
n1

), . . . , (nr
s, counter

r
ns

)) where r is the identifier of the re-
quest and s is the size of request Reqr, e.g. a valid allocation vector for Req1 is
VReq1 = ((n8, 3), (n7, 2), (n5, 4)). The allocation vectors allow the algorithm to
compute a total order of the requests.

To sort the requests according to the global order we define the precedence
of a request Req as its rank in the total order. Reqi precedes Reqj if the average of
the counters of the allocation vector VReqi is less than the average of the counters
of the allocation vector VReqj . For instance, if we consider Req2= Req(n4, {c3,
c2, c1}) and Req3 = Req(n6, {c1, c2, c3}) with VReq2 = ((n6, 3), (n3, 3), (n4, 1))
and VReq3 = ((n4, 2), (n3, 2), (n6, 1)) their respective allocation vectors, Req3 will
be allocated before Req2 since 3+3+1

3 > 2+2+1
3 .

If two allocation vectors have the same average value, it is necessary to add
a way to break the tie. No generic method is proposed here since it can be
implementation-specific, but the method used in our experimental platform is
detailed in section 5.3.

4 Algorithms

Our algorithm consists of two consecutive subroutines:
– the path computation subroutine, in which the algorithm selects the re-

sources instances to be allocated and computes a routing path between them
that respects the allocation order present in the request,

– the allocation subroutine in which the algorithm allocates the resources
selected during the path computation subroutine.

4.1 Path computation subroutine

This subroutine assumes that each node of the system has some local knowledge
on how to reach each type of resource. Each node keeps an up-to-date local
routing table containing the name of the neighbor node that is the closest to
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each type of resource as well as the distance to this node. The entry in the
routing table can be the node itself for the type of resource it is holding. How
these routing tables are built is out of scope of this paper. The solution used in
our simulation is described in Section 5. Table 1 gives some routing tables for
the system in Figure 1.

Type Node D

c1 n2 1

c2 n1 0

c3 n5 9

(a) n1

Type Node D

c1 n5 0

c2 n1 1

c3 n8 8

(b) n5

Type Node D

c1 n5 7

c2 n7 0

c3 n7 1

(c) n7

Table 1. Routing tables for n1, n5 and n7. D is for Distance.

In this example, node n1’s shortest path to the type of resource c3 is of length
9 and starts at n5: (n1, n5, n7, n8), and node n5’s shortest path to the type of
resource c3 is of length 8 and starts at n7: (n5, n7, n8).
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Fig. 2. Algorithm execution for Req1

Path computation relies on the ROUTING message. A first ROUTING mes-
sage is sent by the requesting node to the node holding the first resource re-
quested, according to its routing table. This node then sends a ROUTING mes-
sage to the next node on the path to the node holding the next resource. The
operation is repeated on each node until a complete path with all the requested
resources in the correct order has been found. Figure 2 shows the messages sent
during the execution of the algorithm in the sample system.

This subroutine computes a valid path with the selected instances of all the
requested resources in the order given in the request. It does not check that
the resources are available nor does it guarantee that the path computed is the
shortest path containing all the resources.

Once the algorithm has reached the node holding the last resource requested,
the allocation subroutine described below starts from the last node of the path.

Building the allocation vector We compute a total order of the requests to
preserve the liveness property, i.e. it guarantees that all requests are satisfied
in a finite time. We use the method from the LASS algorithm to compute this
order based on vectors build for each request.
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The first step is to build the allocation vector for the request. The vector is
built by each of the node on the computed path. Each node has a local counter
that is initialized to 0. This counter acts as a logical clock, but contrary to
Lamport’s logical clocks [14] it is local and only incremented by the node when
it receives a new request. As such it is then not possible for two requests to get the
same counter value for a node in their allocation vector. The first request receives
the value 1, the second receives the value 2, and so on. Upon reception of a request
a node increments its local counter. It then updates the allocation vector with
the value of its counter. The updated allocation vector is inserted in the request
message when it is forwarded to the next node in the path. As a simplification this
has been merged in our implementation with the ROUTING messages. Thus,
the allocation vector is built during the forwarding of the ROUTING messages
as shown in Figure 2.

4.2 The allocation subroutine

The allocation subroutine allocates the instances of resources selected during
the path computation subroutine. Nodes receive allocations messages in an arbi-
trary order, and it can be completely different from the order computed on the
requests. To deal with this situation, the subroutine has a preemption mechanism
to enforce the total order of the requests. Simulations show that the allocation
order within a request has a strong impact on the performance of the algorithm,
we compare here two allocation orders. All this is detailed below.

The allocation The core of the allocation subroutine is based on the ALLOC
messages. In a system where all the resources are initially in the IDLE state,
this message is sent to the first node in the allocation order, detailed below. This
node enters the ALLOCATED state and sends an ALLOC message to the next
node. The operation is then repeated until the last node in the allocation order
is reached. Then the last node send an ALLOC ACK message to the requesting
node to inform it that the allocation of all resources has been made. It then
enters its CS and starts using the resources. Upon leaving its CS it sends a
END CS message that is forwarded along the path to all the nodes holding the
requested resources. The messages sent for the allocation of Req1 are shown on
Figure 2.

The allocation order Each request has an associated partial request order
for the resources within the request, i.e. the order in which the resources are
used, cf. Section 3. We define the allocation order as the order used by the
algorithm to allocate the resources. There is no relation between the request
order and the allocation order and they can be different for a same request. As a
mean of comparison, we introduce two different allocation orders that are then
evaluated in section 5.

The by values allocation order sends the ALLOC messages according to
the values of the counters in the allocation vector. The last node of the path
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(a) ALLOC messages (b) PREEMPT messages

Fig. 3. State diagrams for ALLOC and PREEMPT messages

sends a ROUTING ACK message to the requesting node. Upon reception of
this message the requesting node sends an ALLOC message to the node with
the highest counter value in the allocation vector. The allocation then follows
the order of the counters in the allocation vector. As an allocation based on this
order starts by allocating the node with the highest counter value, it reduces the
probability that requests with higher precedence will arrive during the rest of
the allocation of the request.

The reverse order allocation order sends the ALLOC messages in the re-
verse order of the routing path. The first subroutine follows the path as it selects
it. With this reverse order, the allocation follows the path backwards to go back
to the requesting node.

For Req1 with the computed path (n1, n5, n7, n8, n7, n5) if the allocation
vector is VReq1 = ((n8, 3), (n7, 2), (n5, 4)), the allocation for reverse order follows
the order n5, n7, n8. For by values the order is n5, n8,n7.

Preemption of resources Since the system is distributed a request can arrive
on a node already in the ALLOCATED state for a request that has a lower
precedence. This can lead to deadlocks. To manage these situations the algo-
rithm preempts the resources to enforce the global order on the requests. This
requires an additional state for the nodes, PREEMPTING, and two additional
messages: PREEMPT and PREEMPT ACK .

9



n3

n4

n6

t
Req2 Req3 ALLOCATED CSPREEMPTING

A
L
L
O
C

A
L
L
O
C

A
L
L
O
C

P
R
E
E
M
P
T

P
R
E
E
M
P
T

A
C
K

A
L
L
O
C A

L
L
O
C

A
C
K E

N
D

C
S

E
N
D

C
S

E
N
D

C
S

A
L
L
O
C

A
C
K E

N
D

C
S

E
N
D

C
S

E
N
D

C
S

Fig. 4. Allocations for Req2 and Req3, preemption of n6 by Req2

The state diagram in Figure 3a shows how ALLOC messages are handled,
Figure 3b shows how PREEMPT messages are handled. Apart from the case
where the node is IDLE described above there are two other cases to consider.
If a node is already PREEMPTING, or if it is ALLOCATED and the new
request has a lower precedence than the request that currently holds the resource,
then the request is stored in a local WAITING queue. Otherwise, i.e., when the
node is ALLOCATED and the new request has a higher precedence than the
request that currently holds the resource, the algorithm performs a preemption of
the resource on the request that currently holds it, named current. To perform
a preemption a node sends a PREEMPT message to the node that received
its resource, i.e., the node to which it previously sent an ALLOC message for
current. If the node that received the PREEMPT is not the last node in the
path of current, it continues the preemption to put current on hold. For this it
sends a PREEMPT message to the next node in the allocation order of current.
current resumes later when it becomes the request with the highest precedence
in the WAITING queue.

Figure 4 shows how preemption works in the case of Req2 and Req3. When
n3 receives the ALLOC message for Req3, it is already ALLOCATED because
it has previously received the ALLOC message for Req2. It then sends a PRE-
EMPT message along the path of Req2 to n6. n6 accepts the preemption, stores
Req2 in its local WAITING queue and sends back a PREEMPT ACK message.
Req3 then sends an ALLOC message for its last required resource to n4. Req3
is now satisfied and enters its CS. When it leaves its CS, n6 resumes Req2.

Further considerations on preemptions When a preemption occurs, the
algorithm ensures that the resource is always released. Either the node that
receives the PREEMPT message decides to release it immediately, either it
waits for the current request to leave its CS. As CS have finite durations the
algorithm ensures that the resource is released in finite time.

If multiple requests have a higher precedence than the one currently hold-
ing its resource, a node can receive a PREEMPT message when it is already
PREEMPTING. In this case, priority is given to the request with the highest
precedence.

As the communications channels are not FIFO, even if PREEMPT messages
are sent along the same path than the ALLOC messages, a node may receive a
PREEMPT before it has received the corresponding ALLOC . To deal with such
situations, each node maintains an IGNORE list. When it receives a PREEMPT
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for a request and it has not yet received the corresponding ALLOC , it stores the
request in the IGNORE list. When it finally receives the ALLOC for a request
that is present in the IGNORE list, it ignores the ALLOC and removes the
request from the list.

5 Experimental results

We present an evaluation of the two allocation orders reverse path and by values
of the algorithm detailed above. We compare their performance through metrics
that are introduced below to Dijkstra’s Incremental algorithm detailed in Section
5.2 as the baseline.

5.1 Metrics and evaluation

Several metrics are used to compare the results of the algorithms:
– the average usage rate is the average time during which resources are

used. It is the sum of the times during which each resource is used divided
by the overall duration of the experiment for all resources. 100% means that
all resources are used all the time. 50% means that 50% of the resources are
used on average. The objective is to maximize this metric,

– the average waiting time is the average time spent by requests between
the moment at which they are emitted and the moment they are satisfied.
The objective is to minimize this metric,

– The average number of messages per request is the ratio between the
total number of messages sent in the system for the duration of the test and
the number of requests. The objective is to minimize this metric.

5.2 Dijkstra’s Incremental algorithm

The baseline algorithm for our experiments is Dijkstra’s Incremental algorithm
[6]. It does not require any additional assumption on the system which allows
to evaluate it against the same systems as our algorithm described above. This
algorithm is selected because it gives the best average usage rate among all
the state of the art algorithms evaluated. Other algorithms are not included
here for the sake of space. Our implementation of the algorithm relies on the
same first subroutine described above for the selection of the path, but does
not require the building of the allocation vectors. The second subroutine of the
Incremental algorithm relies on a static global order of the nodes. For the test
system in Figure 1, our implementation considers that the global order of nodes
is n1 < n2 < . . . < n9 according to the subscript value.

This algorithm has a drawback we call the domino effect. It is possible
when the number of conflicts is high that nodes wait for each other’s requests to
be finished. Until these resources become available all the resources from nodes
that come after in the order are unavailable. The probability of occurrence of
the domino effect increases with the size of the requests.
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5.3 Simulating the system with SimGrid

The algorithms have been tested on topologies from the Internet Topology Zoo
[13], a dataset of topologies provided by Operators. The topologies are enriched
with resources distributed across their nodes. Weights are attributed to the net-
work links between the nodes to simulate the latency. To limit the number of
parameters, all experiments in this paper use the same constant weight for all
the links. The results presented here are based on the Cesnet200706 topology
which consists of N = 44 nodes. This topology was selected because it has a
sufficient enough size to avoid the possible bias in the results from topologies
that have few nodes. Larger topologies lead to longer simulation times to get
similar results. In this topology, the degrees of the nodes vary from 1 to 18, with
an average degree of 2.

The simulator is based on SimGrid 3.23 [3]. SimGrid provides multiple Rout-
ing Models for the routing of packets between nodes. The experiments use only
the Full routing model. This model requires all routes to be explicitly described
in the configuration file. It ensures that no routing algorithm is used to connect
two nodes that are not explicitly connected by a Link to each other. It allows
the routing of the packets to be made at the application level and thus allows
to simulate the first subroutine of the algorithm.

The routing tables necessary for the first subroutine are built statically by
the simulator during the initialization using Dijkstra’s Shortest Path algorithm
[5]. Routing tables are based on the Link and Hosts of the configuration.

The system is under maximum load during the tests. To achieve this, the
simulation starts as many requests as there are nodes in the system, and a
new request is sent as soon as a request ends. The contents of the requests
are generated by the node following a linear random function. The size of the
requests in a single experiment is constant. As shown by other experimental
results not included here for sake of space, using a constant size does not affect
the results significantly.

The duration of all experiments is the same. The time spent in CS by the
requests is also constant. Empirically we settled for a duration of CS of 300, 000
and a duration of experiment of 500, 000, 000 so that time spent in CS is orders
of magnitude longer than the time spent to send a message between nodes.
These durations are in simulator time unit. This approximately simulates CS
of 30s and a total simulation duration of 14 hours. Experiments show that this
duration is long enough to make the impact of randomness negligible and the
results representative.

In this experimental platform, if two allocation vectors have the same average
value, the id of the nodes are used to break the tie. Since requests all have the
same size, we first compare the id of the first nodes in each allocation vector. If
it is the same node for both requests, we compare the id of second nodes and so
on. It this comparison also results in a tie, when both requests are for the same
nodes, then the internal identifiers of the requests are compared.

Figure 5 shows the results of the evaluation of the metrics defined in Section 3
for the Incremental and the algorithm detailed in Section 4 using two allocation
orders : reverse path and by values in two different system configurations detailed
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below. The x-axis show the size of requests for a given simulation. Both axes of
all the figures use a logarithmic scale.

5.4 System with 1 instance of M resources

(a) average usage rates

(b) average nb of messages (c) average waiting times

Fig. 5. Evaluation for one instance of 44 types of resources

This section shows the evaluation on a system with one instance of C = 44
types of resources.

For requests of size 1, Figures 5a and 5c show that the algorithm itself has
no influence on the Average Usage Rate or the Average Waiting Time. In such
configuration, no preemption is performed.

For requests of size 2 to 7, we can observe that Average Usage Rate decreases
for all the algorithms. We reach a minimum between 7 and 9 depending on the
algorithms. This can be deduced from Maekawa’s proof of his quorum algorithm
[19], based on Finite Projective Planes properties, that

√
N ≈ 6.63 is the mini-

mum size so that all requests have at least one intersection. Usage rate rises up
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again after this lowest point because requests become larger and even if there
are more conflicts between requests, each request leads to the allocation of a
larger number of resources.

If the size of requests is greater than half the size of the system, then it is
not possible to allocate concurrently two requests. In such situations the only
possibility is to allocate the requests sequentially. The Average Usage Rate of
the system then grows linearly with the size of the requests. The figure has been
truncated at size 30 for the sake of readability. It is almost 100% for requests of
size N as each consecutive request allocates all the resources. It is not exactly
100% due to the cost of the algorithm.

Our algorithms show an improvement on the Incremental of the Average
Usage Rate with both allocation orders. The by values allocation order gives the
best results for all metrics. For the Average Usage Rate we can see improvement
of up to 20% from the Incremental. As shown in Figure 5b, by values does
not generate more messages than the Incremental whereas reverse path shows a
larger number of messages for requests of size 4 and more. This is due to the high
number of preemptions taking place. The by values order limits the number of
preemptions by starting with the node that has the highest counter value. This
node is the most likely to receive requests with a higher precedence. Once its
resource is allocated, the probability that the other nodes are preempted by
requests with higher precedence gets lower. Experimental results show in Figure
5c that the by values order does not impact negatively the Average Waiting
Time. The Average Waiting Time for the Incremental algorithm is significantly
worse than for any of the variants. This is due to the domino effect. For the sake
of space a full comparison with a near-optimal allocation is not included here,
but results show that even the best results included here are 10 to 20 points lower
than a near-optimal solution until requests of size 11, after which the difference
starts to decrease.

5.5 System with N instances of M resources

Figure 6 shows the Average Usage Rate of the same algorithms on the same
topology but with a different placement of the resources. Instead of a single
instance of each resource, the system holds 4 instances for each of C = 11
different types. The figure includes three additional algorithms. Each of this
additional algorithm is a variant of one of the three presented above: it uses the
same allocation subroutine but a different path computation subroutine. As the
path computation subroutine detailed in section 4.1 uses a static routing table, a
node always selects the same node for a type of resource. The result is that the
load is not well balanced across all the instances, which leads to lower Average
Usage Rate. For requests of size 4, the lowest Average Usage Rate observed, the
algorithm with the best result, the by values, reaches around 17%. This is lower
than the worst result for the configuration with a single instance of M resources
in Figure 5a where the Incremental reaches 27%.

As shown in the three additional algorithms, the load balancing improves
with a simple round-robin on the different instances of each type of resource
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Fig. 6. Evaluation for 4 instances of 11 types of resources

during the path computation subroutine. For example with 4 instances of c1, the
first request selects the first instance, the second request the second one, and so
on. It starts over with the fifth request that selects the first one. The selection
of the route has a significant impact when there are more than one instance of
the resources and improves the Average Usage Rate.

6 Conclusion and future works

We introduced in this paper a new algorithm for distributed Mutual Exclusion
for systems with N instances of M resources, known as the k−M −N problem.
This is applicable to the allocation of Multi-Domain Chains of NFs in 5G Slices.
We show an improvement of up to 20% of the Average Usage Rate of resources
from the baseline Incremental algorithm, with an Average Waiting Time that
can be several orders of magnitude lower and no degradation of the number
of messages. The results show the impact of the allocation order in which
allocation is performed.The presented results focus on a few key parameters.

For the path allocation subroutine of the algorithm, the results showed the
importance of the selection of the instance when N > 1. We plan to study how
the performance can be further improved.

Our approach to the allocation of resources in the allocation subroutine is
pessimistic, i.e., it considers that deadlocks are going to happen. But their proba-
bility of occurrence can be low in some situations. We plan to study an optimistic
approach that let deadlocks occur and fix them a posteriori.

We also plan to implement the algorithm in the scheduler of a NFV platform,
if possible in the live network of an Operator.
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