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GENERAL TOEPLITZ MATRICES SUBJECT TO GAUSSIAN
PERTURBATIONS

JOHANNES SJÖSTRAND AND MARTIN VOGEL

Abstract. We study the spectra of general N ×N Toeplitz matrices given by symbols
in the Wiener Algebra perturbed by small complex Gaussian random matrices, in the
regime N � 1. We prove an asymptotic formula for the number of eigenvalues of the
perturbed matrix in smooth domains. We show that these eigenvalues follow a Weyl
law with probability sub-exponentially close to 1, as N � 1, in particular that most
eigenvalues of the perturbed Toeplitz matrix are close to the curve in the complex plane
given by the symbol of the unperturbed Toeplitz matrix.
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1. Introduction and main result

Let aν ∈ C, for ν ∈ Z and assume that

(1.1) |aν | ≤ O(1)m(ν),

where m : Z→]0,+∞[ satisfies

(1.2) (1 + |ν|)m(ν) ∈ `1,

and

(1.3) m(−ν) = m(ν), ∀ν ∈ Z.

Let

(1.4) p(τ) =
+∞∑
−∞

aντ
ν ,

act on complex valued functions on Z. Here τ denotes translation by 1 unit to the right:
τu(j) = u(j− 1), j ∈ Z. By (1.2) we know that p(τ) = O(1) : `2(Z)→ `2(Z). Indeed, for
the corresponding operator norm, we have

(1.5) ‖p(τ)‖ ≤
∑
|aj|‖τ j‖ = ‖a‖`1 ≤ O(1)‖m‖`1 .
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2 JOHANNES SJÖSTRAND AND MARTIN VOGEL

From the identity, τ(eikξ) = e−iξeikξ, we define the symbol of p(τ) by

(1.6) p(e−iξ) =
∞∑
−∞

aνe
−iνξ.

It is an element of the Wiener algebra [BöSi99] and by (1.2) in C1(S1).

We are interested in the Toeplitz matrix

(1.7) PN
def
= 1[0,N [p(τ)1[0,N [,

acting on CN ' `2([0, N [), for 1� N <∞. Furthermore, we frequently identify `2([0, N [)
with the space `2

[0,N [(Z) of functions u ∈ `2(Z) with support in [0, N [.

The spectra of such Toeplitz matrices have been studied thoroughly, see [BöSi99] for
an overview. Let P∞ denote p(τ) as an operator `2(Z) → `2(Z). It is a normal operator
and by Fourier series expansions, we see that the spectrum of P∞ is given by

(1.8) σ(P∞) = p(S1).

The restriction PN = P∞|`2(N) of P∞ to `2(N), is in general no longer normal, except for
specific choices of the coefficients aν . The essential spectrum of the Toeplitz operator PN

is given by p(S1) and we have pointspectrum in all loops of p(S1) with non-zero winding
number, i.e.

(1.9) σ(PN) = p(S1) ∪ {z ∈ C; indp(S1)(z) 6= 0}.

By a result of Krein [BöSi99, Theorem 1.15] the winding number of p(S1) around the
point z 6∈ p(S1) is related to the Fredholm index of PN − z: Ind(PN − z) = −indp(S1)(z).

The spectrum of the Toeplitz matrix PN is contained in a small neighborhood of the
spectrum of PN. More precisely, for every ε > 0,

(1.10) σ(PN) ⊂ σ(PN) +D(0, ε)

for N > 0 sufficiently large, where D(z, r) denotes the open disc of radius r, centered at
z. Moreover, the limit of σ(PN) as N →∞ is contained in a union of analytic arcs inside
σ(PN), see [BöSi99, Theorem 5.28].

We show in Theorem 1.1 below that after adding a small random perturbation to PN ,
most of its eigenvalues will be close to the curve p(S1) with probability very close to 1.
See Figure 1 below for a numerical illustration.

1.1. Small Gaussian perturbation. Consider the random matrix

(1.11) Qω
def
= Qω(N)

def
= (qj,k(ω))1≤j,k≤N

with complex Gaussian law

(Qω)∗(dP) = π−N
2

e−‖Q‖
2
HSL(dQ),

where L denotes the Lebesgue measure on CN×N . The entries qj,k of Qω are independent
and identically distributed complex Gaussian random variables with expectation 0, and
variance 1, i.e. qj,k∼NC(0,1).

We recall that the probability distribution of a complex Gaussian random variable
α ∼ NC(0, 1), is given by

α∗(dP) = π−1e−|α|
2

L(dα),
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where L(dα) denotes the Lebesgue measure on C. If E denotes the expectation with
respect to the probability measure P, then

E[α] = 0, E[|α|2] = 1.

We are interested in studying the spectrum of the random perturbations of the matrix
P 0
N = PN :

(1.12) P δ
N

def
= P 0

N + δQω, 0 ≤ δ � 1.

1.2. Eigenvalue asympotics in smooth domains. Let Ω b C be an open simply
connected set with smooth boundary ∂Ω, which is independent of N , satisfying

(1) ∂Ω intersects p(S1) in at most finitely many points;
(2) p(S1) does not self-intersect at these points of intersection;
(3) these points of intersection are non-critical, i.e.

dp 6= 0 on p−1(∂Ω ∩ p(S1));

(4) ∂Ω and p(S1) are transversal at every point of the intersection.

Theorem 1.1. Let p be as in (1.6) and let P δ
N be as in (1.12). Let Ω be as above,

satisfying conditions (1) - (4), pick a δ0 ∈]0, 1[ and let δ1 > 3. If

(1.13) e−N
δ0 ≤ δ � N−δ1 ,

then there exists εN = o(1), as N →∞, such that

(1.14)

∣∣∣∣#(σ(P δ
N) ∩ Ω)− N

2π

∫
S1∩ p−1(Ω)

LS1(dθ)

∣∣∣∣ ≤ εNN,

with probability

(1.15) ≥ 1− e−N
δ0 .

In (1.14) we view p as a map from S1 to C. Theorem 1.1 shows that most eigenvalues
of P δ

N can be found close to the curve p(S1) with probability subexponentially close to 1.
This is illustrated in Figure 1 for two different symbols. The left hand side of Figure 1
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Figure 1. The left hand side shows the spectrum of the perturbed Toeplitz
matrix with symbol defined in (1.16), (1.17) and the right hand side shows the
spectrum of the perturbed Toeplitz matrix with symbol defined in (1.18), (1.17)
The red line shows the symbol curve p(S1).
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shows the spectrum of a perturbed Toeplitz matrix with N = 2000 and δ = 10−14, given
by the symbol p = p0 + p1 where

(1.16) p0(1/ζ) = −ζ−4 − (3 + 2i)ζ−3 + iζ−2 + ζ−1 + 10ζ + (3 + i)ζ2 + 4ζ3 + iζ4

and
(1.17)

p1(1/ζ) =
∑
ν∈Z

aνζ
ν , a0 = 0, a−ν = 0.7|ν|−5 + i|ν|−9, aν = −2iν−5 + 0.5ν−9 ν ∈ N.

The red line shows the curve p(S1). The right hand side of Figure 1 similarly shows the
spectrum of the perturbed Toeplitz matrix given by p = p0 + p1 where p1 is as above and

(1.18) p0(1/ζ) = −4ζ1 − 2iζ2 + 2iζ−1 − ζ−2 + 2ζ−3.

In our previous work [SjVo19], we studied Toeplitz matrices with a finite number of bands,
given by symbols of the form

(1.19) p(τ) =

N+∑
j=−N−

ajτ
j, a−N− , a−N−+1, . . . , aN+ ∈ C, a±N± 6= 0.

In this case the symbols are analytic functions on S1 and we are able to provide in [SjVo19,
Theorem 2.1] a version of Theorem 1.1 with a much sharper remainder estimate. See also
[Sj19, SjVo16], concerning the special cases of large Jordan block matrices p(τ) = τ−1 and
large bi-diagonal matrices p(τ) = aτ + bτ−1, a, b ∈ C. However, Figure 1 suggests that
one could hope for a better remainder estimate in Theorem 1.1 as well.

Theorem 1.1 and Theorem 1.2 below can be extended to allow for coupling constants
with δ1 > 1/2. Furthermore, one can allow for much more general perturbations, for
example perturbations given by random matrices whose entries are iid copies of a centred
random variables with bounded fourth moment. However, both extensions require some
extra work which we will present in a follow-up paper.

1.3. Convergence of the empirical measure and related results. An alternative
way to study the limiting distribution of the eigenvalues of P δ

N , up to errors of o(N), is
to study the empirical measure of eigenvalues, defined by

(1.20) ξN
def
=

1

N

∑
λ∈Spec(P δN )

δλ

where the eigenvalues are counted including multiplicity and δλ denotes the Dirac measure
at λ ∈ C. For any positive monotonically increasing function φ on the positive reals
and random variable X, Markov’s inequality states that P[|X| ≥ ε] ≤ φ(ε)−1E[φ(|X|)],
assuming that the last quantity is finite. Using φ(x) = ex/C , x ≥ 0, with a sufficiently
large C > 0, yields that for C1 > 0 large enough

(1.21) P[‖Qω‖HS ≤ C1N ] ≥ 1− e−N
2

.

If δ ≤ N−1, then (1.5) and the the Borel-Cantelli Theorem shows that, almost surely, ξN
has compact support for N > 0 sufficiently large.

We will show that, almost surely, ξN converges weakly to the push-forward of the
uniform measure on S1 by the symbol p.

Theorem 1.2. Let δ0 ∈]0, 1[, let δ1 > 3 and let p be as in (1.4). If (1.13) holds, i.e.

e−N
δ0 ≤ δ � N−δ1
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then, almost surely,

(1.22) ξN ⇀ p∗

(
1

2π
LS1

)
, N →∞,

weakly, where LS1 denotes the Lebesgue measure on S1.

This result generalizes [SjVo19, Corollary 2.2] from the case of Toeplitz matrices with
a finite number of bands to the general case (1.4).

Similar results to Theorem 1.2 have been proven in various settings. In [BaPaZe18a,
BaPaZe18b], the authors consider the special case of band Toeplitz matrices, i.e. PN
with p as in (1.19). In this case they show that the convergence (1.22) holds weakly in
probability for a coupling constant δ = N−γ, with γ > 1/2. Furthermore, they prove a
version of this theorem for Toeplitz matrices with non-constant coefficients in the bands,
see [BaPaZe18a, Theorem 1.3, Theorem 4.1]. They follow a different approach than we
do: They compute directly the log | detMN − z| by relating it to log | detMN(z)|, where
MN(z) is a truncation of MN − z, where the smallest singular values of MN − z have
been excluded. The level of truncation however depends on the strength of the coupling
constant and it necessitates a very detailed analysis of the small singular values of MN−z.

In the earlier work [GuWoZe14], the authors prove that the convergence (1.22) holds
weakly in probability for the Jordan bloc matrix PN with p(τ) = τ−1 (1.4) and a perturba-
tion given by a complex Gaussian random matrix whose entries are independent complex
Gaussian random variables whose variances vanishes (not necessarily at the same speed)
polynomially fast, with minimal decay of order N−1/2+. See also [DaHa09] for a related
result.

In [Wo16], using a replacement principle developed in [TaVuKr10], it was shown that the
result of [GuWoZe14] holds for perturbations given by complex random matrices whose
entries are independent and identically distributed random complex random variables
with expectation 0 and variance 1 and a coupling constant δ = N−γ, with γ > 2.

1.4. Notation. We will frequently use the following notation: when we write a� b, we
mean that Ca ≤ b for some sufficiently large constant C > 0. The notation f = O(N)
means that there exists a constant C > 0 (independent of N) such that |f | ≤ CN . When
we want to emphasize that the constant C > 0 depends on some parameter k, then we
write Ck, or with the above notation Ok(N).

Acknowledgments. The first author acknowledges support from the 2018 S. Bergman
award. The second author was supported by a CNRS Momentum fellowship. We are
grateful to Ofer Zeitouni for his interest and a remark which lead to a better presentation
of this paper. We are grateful to the referee for pointing out a mistake affecting the range
of the exponent δ1.

2. The unperturbed operator

We are interested in the Toeplitz matrix

(2.1) PN = 1[0,N [p(τ)1[0,N [ : `2([0, N [)→ `2([0, N [)

for 1 � N < ∞, see also (1.7). Here we identify `2([0, N [) with the space `2
[0,N [(Z) of

functions u ∈ `2(Z) with support in [0, N [. Sometimes we write PN = P[0,N [ and identify
PN with PI = 1Ip(τ)1I where I = IN is any interval in Z of “length” |I| = #I = N .
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Let PN = P[0,+∞[ and let PZ/ÑZ denote P = p(τ), acting on `2(Z/ÑZ) which we identify

with the space of Ñ -periodic functions on Z. Here Ñ ≥ 1. Using the discrete Fourier
transform, we see that

(2.2) σ(PZ/ÑZ) = p(SÑ),

where SÑ is the dual of Z/ÑZ and given by

SÑ = {eik2π/Ñ ; 0 ≤ k < Ñ}.

Let

(2.3) pN(τ) =
∑
|ν|≤N

aντ
ν =

∑
ν∈Z

aNν τ
ν , aNν = 1[−N,N ](ν)aν .

and notice that

(2.4) PN = 1[0,N [ pN(τ)1[0,N [.

We now consider [0, N [ as an interval IN in Z/ÑZ, Ñ = N +M , where M ∈ {1, 2, ..} will
be fixed and independent of N . The matrix of PN , indexed over IN × IN is then given by

(2.5) PN(j, k) = aN
j̃−k̃, j, k ∈ IN ⊂ Z/ÑZ,

where j̃, k̃ ∈ Z are the preimages of j, k under the projection Z→ Z/ÑZ, that belong to
the interval [0, N [⊂ Z.

Let P̃N be given by the formula (2.4), with the difference that we now view τ as a

translation on `2(Z/ÑZ):

(2.6) P̃N = 1INpN(τ)1IN .

The matrix of P̃N is given by

(2.7) P̃N(j, k) =
∑
ν∈Z,

ν≡j−kmod ÑZ

aNν , j, k ∈ IN .

Alternatively, if we let j̃, k̃ be the preimages in [0, N [ of j, k ∈ IN , then

(2.8) P̃N(j, k) =
∑

ĵ∈Z; ĵ≡j̃mod ÑZ

aN
ĵ−k̃.

Recall that the terms in (2.7), (2.8) with |ν| > N or |̂j − k̃| > N do vanish. This implies

that with j̃, k̃ as in (2.8),

(2.9) P̃N(j, k)− PN(j, k) = aN
j̃−Ñ−k̃ + aN

j̃+Ñ−k̃.

Here

j̃ − Ñ ∈ [0, N [−Ñ = [−Ñ ,N − Ñ [= [−N −M,−M [,

j̃ + Ñ ∈ [0, N [+Ñ = [Ñ ,N + Ñ [= [N +M, 2N +M [.

Since k̃ ∈ [0, N [ we have for the first term in (2.9) that |̃j − Ñ − k̃| = k̃ + M + (N − j̃)
with nonnegative terms in the last sum. Similarly for the second term in (2.9), we have

|̃j + Ñ − k̃| = j̃ +M + (N − k̃) where the terms in the last sum are all ≥ 0.
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It follows that the trace class norm of PN − P̃N is bounded from above by∑
j<−M, k≥0

|aj−k|+
∑

j≥N+M, k<N

|aj−k| =
∑

k≥0, j≤−M

|aj−k|+
∑

k≤0, j≥M

|aj−k|

≤ 2C
∞∑
k=0

∞∑
j=0

m(M + k + j) = 2C
∞∑
k=0

(k + 1)m(M + k)

= 2C
∞∑

k=M

(k + 1−M)m(k).

By (1.2), it follows that

(2.10) ‖PN − P̃N‖tr ≤ 2C
+∞∑
k=M

(k + 1−M)m(k)→ 0, M →∞,

uniformly with respect to N . Here ‖A‖tr = tr(A∗A)1/2 denotes the Schatten 1-norm for
a trace class operator A.

Remark 2.1. To illustrate the difference between PN and P̃N let N � 1, M > 0 and
consider the example of p(τ) = τn, so an = 1, for some fixed n ∈ N, and aν = 0 for
ν 6= n. Since PN(j, k) = aN

j̃−k̃, we see that

PN(j, k) =

{
1, j̃ = n+ k̃

0, else.

In other words PN = (J∗)n where J denotes the N ×N Jordan block matrix. The matrix

elements of P̃N on the other hand are given by P̃N(j, k) = aN
j̃−Ñ−k̃ + aN

j̃−k̃ + aN
j̃+Ñ−k̃, so

P̃N(j, k) =


1, j̃ = n+ k̃

1, j̃ = n+ k̃ − (N +M)

0, else.

So P̃N = PN + J (N+M−n), when n ≥M , otherwise P̃N = PN .

3. A Grushin problem for PN − z

Let K b C be an open relatively compact set and let z ∈ K. Consider

(3.1) J = [−M, 0[, IN = [0, N [

as subsets of Z/(N +M)Z so that

J ∪ IN = Z/(N +M)Z =: ZN+M

is a partition. Recall (2.3), (2.6) and consider

pN(τ)− z : `2(ZN+M)→ `2(ZN+M)

and write this operator as a 2× 2 matrix

(3.2) pN − z =

(
P̃N − z R−
R+ R+−(z)

)
,

induced by the orthogonal decomposition

(3.3) `2(ZN+M) = `2(IN)⊕ `2(J).

The operator pN(τ) is normal and we know by (2.2) that its spectrum is

(3.4) σ(pN(τ)) = pN(SN+M).
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Replacing P̃N in (3.2) by PN (2.4), we put

(3.5) PN(z) =

(
PN − z R−
R+ R+−(z)

)
.

Then, by (2.10),

(3.6) ‖PN(z)− (pN − z)‖tr ≤ 2C
+∞∑
k=M

(k + 1−M)m(k) =: ε(M).

If ε(M) < dist (z, pN(SN+M)) =: dN(z), then PN(z) is bijective and

(3.7) ‖PN(z)−1‖ ≤ 1

dN(z)− ε(M)
.

Write,

PN(z) = pN(τ)− z + PN(z)− (pN(τ)− z)

= (pN(τ)− z)
(
1 + (pN(τ)− z)−1(PN(z)− (pN(τ)− z))

)
.

Here, ∣∣ det
(
1 + (pN(τ)− z)−1(PN(z)− (pN(τ)− z))

)∣∣
≤ exp ‖(pN(τ)− z)−1(PN(z)− (pN(τ)− z))‖tr

≤ exp(ε(M)/dN(z)),

so

(3.8) | detPN(z)| ≤ | det(pN(τ)− z)| eε(M)/dN (z).

Similarly from

pN(τ)− z = PN(z) + pN(τ)− z − PN(z)

= PN(z)
(
1 + PN(z)−1(pN(τ)− z − PN(z)

)
,

we get

(3.9) | det(pN(τ)− z)| ≤ | detPN(z)|e
ε(M)

dN (z)−ε(M) .

In analogy with (3.5), we write

(3.10) PN(z)−1 = EN(z) =

(
EN EN

+

EN
− EN

−+

)
: `2(IN)⊕ `2(J)→ `2(IN)⊕ `2(J),

where J , IN were defined in (3.1), still viewed as intervals in ZN+M . From (3.7) we get
for the respective operator norms:

(3.11) ‖EN‖, ‖EN
+ ‖, ‖EN

− ‖, ‖EN
−+‖ ≤ (dN(z)− ε(M))−1.

4. Second Grushin problem

We begin with a result, which is a generalization of [SjZw07, Proposition 3.4] to the
case where R+− 6= 0.

Proposition 4.1. Let H1,H2,H±,S± be Banach spaces. If

(4.1) P =

(
P R−
R+ R+−

)
: H1 ×H− → H2 ×H+

is bijective with bounded inverse

E =

(
E E+

E− E−+

)
: H2 ×H+ → H1 ×H−,
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and if

(4.2) S =

(
E−+ S−
S+ 0

)
: H+ × S− → H− × S+

is bijective with bounded inverse

F =

(
F F+

F− F−+

)
: H− × S+ → H+ × S−,

then

(4.3) T =

(
P R−S−

S+R+ S+R+−S−

)
=:

(
P T−
T+ T+−

)
: H1 × S− → H2 × S+

is bijective with bounded inverse

(4.4) G =

(
G G+

G− G−+

)
=

(
E − E+FE− E+F+

F−E− −F−+

)
: H2 × S+ → H1 × S−.

Proof. We can essentially follow the proof of [SjZw07, Proposition 3.4]. We need to solve

(4.5)

{
Pu+R−S−u− = v

S+R+u+ S+R+−S−u− = v+.

Putting ṽ+ = R+u+R+−S−u−, the first equation is equivalent to{
Pu+R−S−u− = v

R+u+R+−S−u− = ṽ+,
i.e. P

(
u

S−u−

)
=

(
v
ṽ+

)
,

and hence to

(4.6)

{
u = Ev + E+ṽ+

S−u− = E−v + E−+ṽ+.

Therefore, we can replace u by ṽ+ and (4.5) is equivalent to

(4.7)

(
E−+ S−
S+ 0

)(
ṽ+

−u−

)
=

(
−E−v
v+

)
which can be solved by F . Hence, (4.7) is equivalent to{

ṽ+ = −FE−v + F+v+

−u− = −F−E−v + F−+v+,

and (4.6) gives the unique solution of (4.5){
u = (E − E+FE−)v + E+F+v+

u− = F−E−v − F−+v+.
�

4.1. Grushin problem for E−+(z). We want to apply Proposition 4.1 to P = P(z) =
PN(z) in (3.5) with the inverse E = EN(z) in (3.10), where we sometimes drop the index
N . We begin by constructing an invertible Grushin problem for E−+:

Let 0 ≤ t1 ≤ · · · ≤ tM denote the singular values of E−+(z). Let e1, . . . , eM denote
an orthonormal basis of eigenvectors of E∗−+E−+ associated to the eigenvalues t21 ≤ · · · ≤
t2M . Since E−+ is a square matrix, we have that dimN (E−+(z)) = dimN (E∗−+(z))1.
Using the spectral decomposition `2(J) = N (E∗−+E−+)⊕⊥R(E∗−+E−+) together with the
fact that N (E∗−+E−+) = N (E−+) and R(E∗−+) = N (E−+)⊥, it follows that R(E∗−+) =

1Here N (A) and R(A) denote the nullspace and the range of a linear operator A.
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R(E∗−+E−+). Similarly, we get that R(E−+) = R(E−+E
∗
−+). One then easily checks

that E−+ : R(E∗−+E−+) → R(E−+E
∗
−+) is a bijection. Similarly, E∗−+ : R(E−+E

∗
−+) →

R(E∗−+E−+) is a bijection. Let f1, . . . , fM0 denote an orthonormal basis of N (E∗−+(z))
and set

fj = t−1
j E−+ej, j = M0 + 1, . . . ,M.

Then, f1, . . . , fM is an orthonormal basis of `2(J) comprised of eigenfunctions of E−+E
∗
−+

associated with the eigenvalues t21 ≤ · · · ≤ t2M . In particular, σ(E−+E
∗
−+) = σ(E∗−+E−+)

and

(4.8) E−+ej = tjfj, E∗−+fj = tjej, j = 1, . . . ,M.

Let 0 ≤ t1 ≤ ... ≤ tk be the singular values of E−+(z) in the interval [0, τ ] for τ > 0
small. Let S+, S− ⊂ `2(J) be the corresponding (sums of) spectral subspaces for E∗−+E−+

and E−+E
∗
−+ respectively, corresponding to the eigenvalues t21 ≤ t22 ≤ ... ≤ t2k in [0, τ 2].

Using (4.8), we see that the restrictions (denoted by the same symbols)

E−+ : S+ → S−, E∗−+ : S− → S+,

have norms ≤ τ . Also,

(4.9) E−+ : S⊥+ → S⊥− , E∗−+ : S⊥− → S⊥+
are bijective with inverses of norm ≤ 1/τ .

Let S+ be the orthogonal projection onto S+, viewed as an operator `2(J)→ S+, whose
adjoint is the inclusion map S+ → `2(J). Let S− : S− → `2(J) be the inclusion map. Let
S be the operator in (4.2) with H± = `2(J), corresponding to the problem

(4.10)

{
E−+g + S−g− = h ∈ `2(J),

S+g = h+ ∈ S+,

for the unknowns g ∈ `2(J), g− ∈ S−. Using the orthogonal decompositions,

`2(J) = S⊥+ ⊕ S+, `
2(J) = S⊥− ⊕ S−,

we write g =
∑k

1 gjej + g⊥ and h =
∑k

1 hjfj + h⊥. Then, (4.10) is equivalent to
g⊥ = (E−+)−1h⊥(
gj
gj−

)
=

(
0 1

1 −tj

)(
hj
hj+

)
, j = 1, . . . ,M,

where we also used that g− =
∑k

1 g
j
−fj and h+ =

∑k
1 h

j
+ej. It follows that

(4.11)

{
g = (E−+)−1h⊥ +

∑k
1 h

j
+ej

g− =
∑k

1 h
jfj −

∑k
1 tjh

j
+fj.

Hence, the unique solution to (4.10) is given by

(4.12)

(
g
g−

)
= F

(
h
h+

)
=

(
F F+

F− F−+

)(
h
h+

)
,

where

F = E−1
−+ΠS⊥− , F+ = S∗+,

F− = S∗−, F−+ = −E−+|S+
: S+ → S−.

(4.13)
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Here ΠB denotes the orthogonal projection onto the subspace B of A, viewed as a self-
adjoint operator A→ A. Notice that F = ΠS⊥+F and that

(4.14) F−+ = −
k∑
1

tjfj ◦ e∗j , i.e. F−+u = −
k∑
1

tj(u|ej)fj.

Using as well (4.9), we have

(4.15) ‖F‖ ≤ 1/τ, ‖F+‖, ‖F−‖ ≤ 1, ‖F−+‖ ≤ τ.

4.2. Composing the Grushin problems. From now on we assume that

(4.16) 0 < α� 1, ε(M) ≤ α/2,

and the estimates below will be uniformly valid for z ∈ K \ γα, N � 1, where K is some
fixed relatively compact open set in C and

(4.17) γα = {z ∈ C; dist (z, γ) ≤ α}, γ = p(S1).

We apply Proposition 4.1 to PN in (3.5) with the inverse EN in (3.10), and to S defined
in (4.10) with inverse in F in (4.12). Let z ∈ K\γα, then

(4.18) TN =

(
PN − z R−S−
S+R+ S+R+−S−

)
=

(
PN − z T−
T+ T+−

)
: L2(IN)× S− → L2(IN)× S+,

defined as in (4.3), is bijective with the bounded inverse

(4.19) GN =

(
GN GN

+

GN
− GN

−+

)
=

(
EN − EN

+FE
N
− EN

+F+

F−E
N
− −F−+

)
.

Since S± have norms ≤ 1, we get

(4.20) ‖T±‖ ≤ ‖R±‖ = O(1),

uniformly in N , α and z ∈ K. Also, since the norms of EN , EN
+ , E

N
− are ≤ 2/α (uniformly

as N →∞) by (3.11), we get from (4.4), (4.15), that

(4.21) ‖GN‖ ≤ 2

α
+

4

τα2
, ‖GN

−+‖ ≤ τ, ‖GN
±‖ ≤

2

α
.

Proposition 4.2. Let K b C be an open relatively compact set, let z ∈ K\γα, and let
τ > 0 be as in the definition of the Grushin problem (4.10). Then, for τ > 0 small enough,
depending only on K, we have that GN

+ is injective and GN
− is surjective. Moreover, there

exists a constant C > 0, depending only on K, such that for all z ∈ K\γα the singular
values s+

j of GN
+ , and s−j of (GN

− )∗ satisfy

(4.22)
1

C
≤ s±j ≤

2

α
, 1 ≤ j ≤ k(z) = rank(GN

± ).

Proof. To ease the notation we will omit the sub-/superscript N . We begin with the
injectivity of G+. From

(4.23)

(
P − z T−
T+ T+−

)(
G G+

G− G−+

)
= 1,

we have T+G+ + T+−G−+ = 1 which we write T+G+ = 1− T+−G−+. Here

‖T+−G−+‖ ≤ ‖R+−‖τ = O(τ),

where we used that ‖R+−‖ ≤ ‖p(τ) − z‖ = O(1)‖m‖`1 , thus the error term above only
depends on K. Choosing τ > 0 small enough, depending on K but not on N , we get that
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‖T+−G+−‖ ≤ 1/2. Then 1 − T+−G−+ is bijective with ‖(1 − T+−G−+)−1‖ ≤ 2 and G+

has the left inverse

(4.24) (1− T+−G−+)−1T+

of norm ≤ 2‖R+‖ = O(1), depending only on K.

Now we turn to the surjectivity of G−. From(
G G+

G− G−+

)(
P − z T−
T+ T+−

)
= 1,

we get (
(P − z)∗ T ∗+
T ∗− T ∗+−

)(
G∗ G∗−
G∗+ G∗−+

)
= 1,

and as above we then see that G∗− has the left inverse (1− T ∗+−G∗−+)−1T ∗−. Hence G− has
the right inverse

(4.25) T−(1−G−+T+−)−1,

of norm ≤ 2‖R−‖ = O(1), depending only on K.

The lower bound on the singular values follows from the estimates on the left inverses
of G+ and G∗−, and the upper bound follows from (4.21). �

5. Determinants

We continue working under the assumptions (4.16), (4.17). Additionally, we fix τ > 0
sufficiently small (depending only on the fixed relatively compact set K b C) so that
‖T+−G−+‖, ‖G−+T+−‖ (both = O(τ)) are ≤ 1/2, which implies that G+ is injective and
G+ is surjective, see Proposition 4.2. Here, we sometimes drop the sub-/superscript N .

From now on we will work with z ∈ K\γα. The constructions and estimates in Section
3 are then uniform in z for N � 1 and the same holds for those in Section 4.

Remark 5.1. To get the o(N) error term in Theorem 1.1, we will take α > 0 arbitrarily
small, and M > 1 large enough (but fixed) so that ε(M) ≤ α/2, see (2.10) as well as
N > 1 sufficiently large. In the following, the error terms will typically depend on α,
although we will not always denote this explicitly, however they will be uniform in N > 1
and in z ∈ K\γα.

5.1. The unperturbed operator. For z ∈ K \ γα, we have dN(z) ≥ α and (3.8), (3.9)
give

(5.1) | detPN(z)| ≤ eε(M)/α| det(pN(τ)− z)|,

(5.2) | det(pN(τ)− z)| ≤ e2ε(M)/α| detPN(z)|,

where we also used that

ε(M)

dN(z)− ε(M)
≤ ε(M)

α− ε(M)
≤ 2ε(M)

α
,

by the second inequality in (4.16). Recall here that pN(τ) acts on `2(Z/ÑZ), Ñ = N+M .
By the Schur complement formula, we have

det(PN − z) = detPN(z) detE−+(z),

det(PN − z) = det TN(z) detG−+(z),
(5.3)
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so

(5.4)
det TN
detPN

=
detE−+

detG−+

.

Recall from the Section 4.1 that the singular values of E−+ are denoted by 0 ≤ t1 ≤ t2 ≤
· · · ≤ tM and that those of G−+ are t1, ..., tk, where k = k(z,N) is determined by the
condition tk ≤ τ < tk+1. Thus ∣∣∣∣detE−+

detG−+

∣∣∣∣ =
M∏
k+1

tj

and we get (since τ � 1)

τM ≤
∣∣∣∣detE−+

detG−+

∣∣∣∣ ≤ ( 2

α

)M
.

Since τ > 0 is small, but fixed depending only on K, we have uniformly for z ∈ K \ γα,
N � 1:

(5.5) |ln | detE−+| − ln | detG−+|| ≤ O(1)

and by (5.4)

(5.6) |ln | det TN | − ln | detPN || ≤ O(1).

From (5.1), (5.2), we get

(5.7) |ln | detPN | − ln | det(pN(τ)− z)|| ≤ O(1),

hence

(5.8) |ln | det TN | − ln | det(pN(τ)− z)|| ≤ O(1).

5.2. The perturbed operator. We next extend the estimates to the case of a perturbed
operator

(5.9) P δ
N = PN + δQ,

where Q : `2(IN)→ `2(IN) satisfies

(5.10) δ‖Q‖ � 1.

Proposition 5.2. Let K b C be an open relatively compact set and suppose that (4.16)
hold. Recall (4.17) and (3.5), if δ‖Q‖α−1 � 1, then for all z ∈ K\γα

(5.11) PδN =

(
P δ
N − z R−
R+ R+−(z)

)
= P +

(
δQ 0
0 0

)
,

is bijective with bounded inverse

(5.12) EδN =

(
Eδ Eδ

+

Eδ
− Eδ

+−

)
.

Recall (4.18), if δ‖Q‖α−2 � 1, then for all z ∈ K\γα

(5.13) T δN =

(
P δ
N − z T−
T+ T+−

)
= TN +

(
δQ 0
0 0

)
.

is bijective with bounded inverse

(5.14) GδN =

(
Gδ Gδ

+

Gδ
− Gδ

+−

)
,

with

(5.15) Gδ
−+(z) = G−+ −G−δQ(1 +GδQ)−1G+.
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Moreover, ‖EδN‖ ≤ 4/α, ‖GδN‖ ≤ O(α−2), uniformly in z ∈ K\γα and N > 1.

Proof. We sometimes drop the subscript N . By (3.10),

PδE = 1 +

(
δQE δQE+

0 0

)
.

By (3.11), it follows that ‖E‖ ≤ 2/α, so if δ‖Q‖α−1 � 1, then by Neumann series
argument, the above is invertible and

(5.16) E
(

1 +

(
δQE δQE+

0 0

))−1

is a right inverse of Pδ, of norm ≤ 2‖E‖ ≤ 4/α. Since Pδ is Fredholm of index 0, this is
also a left inverse. The proof for T δN is similar, using that ‖G‖ = O(α−2) by (4.21) , since
τ > 0 is fixed. Finally, the expression (5.15) follows easily from expanding (5.16). �

We drop the subscript N until further notice. By (5.13), we have

(5.17) ‖T − T δ‖tr ≤ δ‖Q‖tr.

Recall from the text after (2.10) the definition of the Schatten norm ‖ · ‖tr. Write,

T δ = T (1− T −1(T − T δ)),
where

(5.18) ‖T −1(T − T δ)‖tr ≤ O(δ)‖Q‖tr.

Here, we used that ‖T −1‖ = ‖G‖ = O(1), by (4.21) and the fact that τ > 0 is fixed. We
recall that the estimates here depend on α, yet are uniform in z ∈ K\γα and N > 1. It
follows that

| det(1− T −1(T − T δ))| ≤ exp ‖T −1(T − T δ)‖tr ≤ exp(O(δ)‖Q‖tr),

and

| det Tδ| = | det T || det(1− T −1(T − T δ))|
≤ exp(O(δ)‖Q‖tr)| det T |.

(5.19)

Similarly from the identity

T = T δ(1− T −1
δ (T δ − T )),

(putting δ as a subscript whenever convenient), we get

(5.20) | det T | ≤ exp(O(δ)‖Q‖tr)| det T δ|,
thus

(5.21) |ln | det Tδ| − ln |T || ≤ O(δ)‖Q‖tr.

Assume that (uniformly in N > 1 and independently of α)

(5.22) δ‖Q‖tr ≤ O(1)

and recall (5.8). Then

(5.23) |ln | det Tδ| − ln | det(pN(τ)− z)|| ≤ O(1).

Notice that the error term depends on α. Using also the general identity (cf. (5.3)),

det(P δ
N − z) = det T δ(z) detGδ

−+(z),(5.24)

we get

(5.25) ln | det(P δ
N − z)| = ln | det(pN(τ)− z)|+ ln | detGδ

−+|+O(1),

uniformly for z ∈ K \ γα, N � 1.
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6. Lower bounds with probability close to 1

We now adapt the discussion in [SjVo19, Section 5] to T δ. Let

(6.1) P δ
N = PN + δQω, Qω = (qj,k(ω))1≤j,k≤N ,

where 0 ≤ δ � 1 and qj,k(ω) ∼ N (0, 1) are independent normalized complex Gaussian
random variables. Recall from (1.21) that

(6.2) P[‖Qω‖HS ≤ C1N ] ≥ 1− e−N2

,

for some universal constant C1 > 0. In the following we restrict the attention to the case
when

(6.3) ‖Qω‖HS ≤ C1N,

and (as before) z ∈ K \ γα, N � 1. We assume that

(6.4) δ � N−3/2.

Then

δ‖Q‖tr ≤ δN1/2‖Q‖HS ≤ δC1N
3/2 � 1,

and the estimates of the previous sections apply.
Let QC1N be the set of matrices satisfying (6.3). As in [SjVo19, Section 5.3] we study

the map (5.15), i.e.

QC1N 3 Q 7→ Gδ
−+(z) = G−+ −G−δQ(1 +GδQ)−1G+

= G−+ − δG−(Q+ T (z,Q))G+,
(6.5)

where

(6.6) T (z,Q) =
∞∑
1

(−δ)nQ(GQ)n,

and notice first that by (4.21)

(6.7) ‖T‖HS ≤ O(δα−2N2).

We strengthen the assumption (6.4) to

(6.8) δ � N−2α2.

At the end of Section 4 we have established the uniform injectivity and surjectivity
respectively for G+ and G−. This means that the singular values s±j of G± for 1 ≤ j ≤
k(z) = rank (G−) = rank (G+) satisfy

(6.9)
1

C
≤ s±j ≤

2

α

This corresponds to [SjVo19, (5.27)] and the subsequent discussion there carries over to
the present situation with the obvious modifications. Similarly to [SjVo19, (5.42)] we
strengthen the assumption on δ to

(6.10) δ � N−3α2

Notice, that assumption (6.10) is stronger than the assumptions on δ in Proposition
5.2. The same reasoning as in [SjVo19, Section 5.3] leads to the following adaptation of
Proposition 5.3 in [SjVo19]:
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Proposition 6.1. Let K ⊂ C be compact, 0 < α� 1 and choose M so that ε(M) ≤ α/2.
Let δ satisfy (6.10). Then the second Grushin problem with matrix T δ is well posed with
a bounded inverse Gδ introduced in Proposition 5.2. The following holds uniformly for
z ∈ K \ γα, N � 1:

There exist positive constants C0, C2 such that

P
(
ln | detGδ

−+(z)|2 ≥ −t and ‖Q‖HS ≤ C1N
)
≥ 1− e−N2 − C2δ

−Me−t/2,

when

t ≥ C0 − 2M ln δ, 0 < δ � N−3α2.

7. Counting eigenvalues in smooth domains

In this section we will prove Theorem 1.1. We will begin with a brief outline of the key
steps:

We wish to count the zeros of the holomorphic function u(z) = det(P δ
N − z), which

depends on the large parameter N > 0, in smooth domains Ω b C as in Theorem 1.1.
1. We work in some sufficiently large but fixed compact set K b C containing Ω. In

Section 7.1, we begin by showing that u(z) satisfies with probability close to 1 an upper
bound of the form

(7.1) ln |u(z)| ≤ N(φ(z) + ε),

for z ∈ K. Here, 0 < ε� 1 and φ(z) is some suitable continuous subharmonic function.
Next, we will show that u(z) satisfies for any fixed point z0 in K\Γα a lower bound of the
form

(7.2) ln |u(z0)| ≥ N(φ(z0)− ε)

with probability close to 1. Here, Γα denotes the set γα suitably enlarged to be a compact
set with smooth boundary, see Figure 2 for an illustration. The function φ will be con-
structed in the following way : Outside Γα we set φ(z) to be ln | det(pN(τ) − z)|, which
in view of (5.25) and Proposition 6.1 yields the estimates (7.1), (7.2) outside Γα. Inside
Γα we set φ to be the solution to the Dirichlet problem for the Laplace operator on Γα
with boundary conditions φ�∂Γα= ln | det(pN(τ)− z)|�∂Γα . Since ln |u(z)| is subharmonic
we have that the bound (7.1) holds in all of K.

2. In Section 7.2, we will use (7.1), (7.2) and [Sj10, Theorem 1.1] (see also [Sj19, Chapter
12]) to estimate the number of zeros of u in Ω and thus the number of eigenvalues of P δ

N

in Ω, i.e.

(7.3) #(σ(P δ
N) ∩ Ω) = #(u−1(0) ∩ Ω) ∼ N

2π

∫
Ω

∆φL(dz),

see (7.22) below.

3. In Section 7.3, we study the measure ∆φ by analysing the Poisson and Green kernel
of Γα. We will use this analysis to give precise error estimates on the asymptotics (7.3)
and we will show that N

2π
∆φ integrated over Ω is, up to a small error, given by the number

of eigenvalues λj of pN(τ) (3.4) in Ω, i.e.

N

2π

∫
Ω

∆φL(dz) = #{λj ∈ Ω}+O(αN),

see (7.53) below. This, in combination with (7.3), see (7.22) below, will let us conclude
Theorem 1.1.



GENERAL TOEPLITZ MATRICES SUBJECT TO GAUSSIAN PERTURBATIONS 17

7.1. Estimates on the log-determinant. We work under the assumptions of Proposi-
tion 6.1 and from now on we assume that δ satisfies (1.13), i.e.

(7.4) e−N
δ0 ≤ δ � N−δ1 ,

for some fixed δ0 ∈]0, 1[ and δ1 > 3. Notice that (6.10) holds for N > 1 sufficiently large

(depending on α). Then with probability ≥ 1 − e−N2
we have Gδ

−+(z) = O(1) for every
z ∈ K \ γα, hence by (5.25)

(7.5) ln | det(P δ
N − z)| ≤ ln | det(pN(τ)− z)|+O(1).

On the other hand, by (5.25) and Proposition 6.1, we have for every z ∈ K \ γα that

(7.6) ln | det(P δ
N − z)| ≥ ln | det(pN(τ)− z)| − t

2
−O(1)

with probability

(7.7) ≥ 1− e−N2 − C2δ
−Me−t/2,

when

(7.8) t ≥ C0 − 2M ln δ.

Next we enlarge γα to Γα, away from a neighbourhood of the region ∂Ω∩γ, so that Γα has
a smooth boundary. More precisely: Let g ∈ C∞(C;R) be a boundary defining function
of Ω, so that g(z) < 0 for z ∈ Ω and dg 6= 0 on ∂Ω. Then, for C > 0 sufficiently large and
α > 0 sufficiently small, we define

(7.9) Γ0
α

def
= γα ∪ {z ∈ C; g(z) < −1/C} ∪ {z ∈ C; g(z) > 1/C and |z| ≤ C},

Notice that due to the assumption that the intersection of ∂Ω with γ is transversal, the
boundary of Γ0

α may be only Lipschitz near the intersection points

{z0, . . . , zq} = ∂γα ∩ ∂G, where G
def
= {z ∈ C; |g(z)| ≤ 1/C}.

By the assumptions on Ω we have that q < ∞. Away from these points, we have that
∂Γ0

α is smooth. To remedy this lack of regularity we will slightly deform Γ0
α in an α-

neighborhood of these points.
Pick z0 ∈ ∂γα∩∂G. Since ∂γα∩D(z0, α) and ∂G∩D(z0, α) are transversal to each other,

it follows that there exists new affine coordinates z̃ = U(z − z0), R2 ' C 3 z = (z1, z2)
being the old coordinates, where U is orthogonal, and smooth functions f1, f2 independent
of α, such that γα ∩D(z0, α) takes the form

A = {z ∈ D(z0, α); z̃2 ≤ f2(z̃1), |z̃1| < α, ‖z̃‖ < α},

and that (C\G̊) ∩D(z0, α) takes the form

B = {z ∈ D(z0, α); z̃2 ≤ f1(z̃1), |z̃1| < α, ‖z̃‖ < α}.
Here, f1, respectively f2, is (after translation and rotation) a smooth local parametrization
of ∂G, resp. ∂γα, near z0. Moreover, f2(0) = f1(0) and the transversality assumption
yields that z̃1 = 0 is the only point in the interval ]− α, α[ where f2(z̃1) = f1(z̃1).

Then, Γ0
α ∩D(z0, α) takes the form

A ∪B = {z ∈ D(z0, α); z̃2 ≤ max{f1(z̃1), f2(z̃1)}, |z̃1| < α, ‖z̃‖ < α}.
Continuing, let χ ∈ C∞c (R; [0, 1]) so that χ = 1 on [−1/4, 1/4] and χ = 0 outside
]− 1/2, 1/2[, and let C > 0 be sufficiently large. Set

f(t) =

(
1− χ

(
t

α

))
max{f1(t), f2(t)}+ χ

(
t

α

)
α

C
, t ∈]− α, α[,
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which is a smooth function. Then, let Γ1
α be equal to Γ0

α outside D(z0, α), and equal to

{z ∈ D(z0, α); z̃2 ≤ f(z̃1), |z̃1| < α, ‖z̃‖ < α},
inside D(z0, α). Summing up, we have that the boundary of Γ1

α is smooth at z0 and
Γ0
α ⊂ Γ1

α.
Next, we perform the same procedure for Γ1

α at the point z1 and obtain Γ2
α whose

boundary is smooth at z0 and z1 and which contains Γ1
α. Continuing in this way until zq,

and defining

(7.10) Γα
def
= Γqα,

we have that Γα has a smooth boundary and it contains Γ0
α (7.9), and thus γα. Figure 2

below presents an illustration of this ”fattening” of γα.

Remark 7.1. Notice that the deformation of the boundary of Γ0
α (7.9) has been done in

such a way that the rescaled domain 1
α

Γα has a smooth boundary which can be locally

parametrised by a smooth function f with ∂βf = O(1), β ∈ N, uniformly in α.

γ

γα

Ω

∂Γα
γ

Γextα

Γintα

ΩΓ1,α

Γ2,α

|g(z)| ≤ 1
C

Figure 2. The left hand side shows the curve γ surrounded by the tube γα and
the domain Ω (dashed line) where we are counting the eigenvalues of P δN . The
right hand side shows the same picture with γα enlarged to Γα = Γextα ∪ Γintα ∪
Γ1,α ∪ Γ2,α, i.e. the whole grey area. The decomposition into an ”exterior” part,
an ”interior” part and into the thin tubes Γj,α connecting exterior and interior
will play a role in the proof of Lemma 7.3.

Continuing, we define φ(z) = φN(z) by requiring that

(7.11) Nφ(z) = ln | det(pN(τ)− z)| on K \ Γα,

and

(7.12) φ(z) is continuous in K and harmonic in
◦
Γα

Here we assume that K is large enough to contain a neighborhood of Γα. Choose

(7.13) t = N ε0 ,
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for some fixed ε0 ∈]0, 1[ with δ0 < ε0, see (7.4), (1.13). Then

C2δ
−Me−t/2 = exp (lnC2 −M ln δ −N ε0/2) ,

and we require from δ that

lnC2 −M ln δ −N ε0/2 ≤ −N ε0/4,

i.e.

ln δ ≥ lnC2

M
− N ε0

4M
.

This is fulfilled if N � 1 and

ln δ ≥ −N
ε0

5M
,

i.e.

(7.14) δ ≥ exp

(
− 1

5M
N ε0

)
and (7.13), (7.14) imply (7.8) when N � 1. Notice that (7.4) implies (7.14) for N � 1.

Combining (7.6), (7.11), (7.13) and (7.14), we get for each z ∈ K \ Γα that

(7.15) ln | det(P δ
N − z)| ≥ N(φ(z)− ε1),

with probability

(7.16) ≥ 1− e−N2 − e−Nε0/4

where

(7.17) ε1 = N ε0−1.

Here and in the following, we assume that N ≥ N(α,K) sufficiently large.

On the other hand, with probability ≥ 1− e−N2
, we have by (7.5)

(7.18) ln | det(P δ
N − z)| ≤ N(φ(z) + ε1)

for all z ∈ K \ Γα. Then, since the left hand side in (7.18) is subharmonic and the right
hand side is harmonic in Γα, we see that (7.18) remains valid also in Γα and hence in all
of K.

7.2. Counting zeros of holomorphic functions with exponential growth. Let Ω b
C be as in Theorem 1.1, so that ∂Ω intersects γ at finitely many points z̃1, ..., z̃k0 which are
not critical values of p and where the intersection is transversal. Choose z1, ..., zL ∈ ∂Ω\Γα
such that with r0 = C0α, C0 � 1, we have

(7.19)
r0

4
≤ |zj+1 − zj| ≤

r0

2
where the zj are distributed along the boundary in the positively oriented sense and with
the cyclic convention that zL+1 = z1. Notice that L = O(1/α). Then

∂Ω ⊂
L⋃
1

D(zj, r0/2)

and we can arrange so that zj 6∈ Γα and even so that

(7.20) dist (zj,Γα) ≥ α,

for α > 0 sufficiently small.
Choose K above so that Ω b K. Combining (7.18) and (7.15) we have that det(P δ

N−z)
satisfies the upper bound (7.18) for all z ∈ K and the lower bound (7.15) for z = z1, . . . , zL
with probability

(7.21) ≥ 1−O(α−1)(e−N
2

+ e−N
ε0/4).
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Since φ is continuous and subharmonic, we can apply [Sj10, Theorem 1.1] (see also [Sj19,
Chapter 12]) to the holomorphic function det(P δ

N − z) and get

(7.22)

∣∣∣∣#(σ(P δ
N) ∩ Ω)− N

2π

∫
Ω

∆φL(dz)

∣∣∣∣ ≤ O(N)×(
Lε1 +

∫
∂Ω+D(0,r0)

∆φL(dz) +
L∑
1

∫
D(zj ,r0)

∆φ(z)

∣∣∣∣ln |z − zj|r0

∣∣∣∣L(dz)

)
with probability (7.21).

Recall that L = O(1/α) (hence O(1) for every fixed α). ∆φ is supported in Γα and the
number of discs D(zj, r0) that intersect Γα is ≤ O(1) uniformly with respect to α. Also
ln(|z− zj|/r0) = O(1) on the intersection of each such disc with Γα. Since ε1 = N ε0−1, we
get from (7.22):

(7.23)

∣∣∣∣#(σ(P δ
N) ∩ Ω)− N

2π

∫
Ω

∆φL(dz)

∣∣∣∣
≤ O(N)

(
Oα(N ε0−1) +

∫
(γ∩∂Ω)+D(0,2r0)

∆φ(z)L(dz)

)
.

7.3. Analysis of the measure ∆φ. By (3.4) we have that

(7.24) ln | det(pN(τ)− z)| =
N+M∑

1

ln |z − λj|,

where

λj = p

(
exp

2πij

N +M

)
, 1 ≤ j ≤ N +M,

and this expression is equal to Nφ(z) in K \ Γα.
Define

(7.25) ψ(z) = φ(z)− 1

N

N+M∑
1

ln |z − λj|,

so that ψ is continuous away from the λj ∈ γ,

(7.26) ψ(z) = 0 in C \ Γα,

(7.27) ψ �∂Γα= 0,

(7.28) ∆ψ = −2π

N

N+M∑
1

δλj in
◦
Γα .

It follows that in Γα:

(7.29) ψ(z) = −2π

N

N+M∑
1

GΓα(z, λj),

where GΓα is the Green kernel for Γα.
φ is harmonic away from ∂Γα, so for φ as a distribution on C, we have supp ∆φ ⊂ ∂Γα.

Now ψ − φ is harmonic near ∂Γα, so ∆ψ = ∆φ near ∂Γα. In the interior of Γα we have
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(7.28) and in order to compute ∆ψ globally, we let v ∈ C∞0 (C) and apply Green’s formula
to get

〈∆ψ, v〉 = 〈ψ,∆v〉 =

∫
Γα

ψ∆vL(dz)

=

∫
Γα

∆ψvL(dz) +

∫
∂Γα

ψ∂νv|dz| −
∫
∂Γα

∂νψv|dz|.

Here ν is the exterior unit normal and in the last term it is understood that we apply ∂ν

to the restriction of ψ to
◦
Γα then take the boundary limit. (7.27), (7.28), (7.29) imply

that in the sense of distributions on C,

(7.30) ∆ψ = −2π

N

N+M∑
1

δλj +
2π

N
∂ν

(
N+M∑

1

GΓα(·, λj)

)
L∂Γα(dz)

where L∂Γα denotes the (Lebesgue) arc length measure supported on ∂Γα.
By the preceding discussion we conclude that

(7.31) ∆φ =
2π

N

(
N+M∑

1

∂νGγα(·, λj)L∂Γα(dz)

)
.

Each term in the sum is a non-negative measure of mass 1:

(7.32)

∫
∂νG(z, λj)L∂Γα(dz) = 1.

Before continuing we will present two technical lemmas.

Lemma 7.2. Let X b C be an open relatively compact, simply connected domain with

smooth boundary. Let u ∈ C∞(X) with u �∂X= 0. Let z0 ∈ ∂X and let W̃ b W b C be

two open relatively compact small complex neighborhoods of z0, so that the closure of W̃
is contained in W . If u is harmonic in X ∩W , then for any s ∈ N

(7.33) ‖u‖Hs(X∩W̃ ) ≤ Os,W̃ (1)‖u‖H0(X∩W ).

Here Hs are the standard Sobolev spaces.

Proof. The proof is standard, and we present it here for the reader’s convenience.
1. Let W1 b W b C be two open relatively compact small complex neighborhoods of

z0, so that the closure of W1 is contained in W . Let χ ∈ C∞c (C; [0, 1]) be so that χ = 1
on W1 and suppχ ⊂ W . Integration by parts then yields that∫

X∩W
|χ∇u|2dx =

∫
X∩W

χ∇u · (∇(χu)− u∇χ)dx

= −
∫
X∩W

χu∇(χ∇u) + χu∇u · ∇χ)dx

= −2

∫
X∩W

χu∇u · ∇χdx.

In the last equality we used as well that u is harmonic in X ∩W . By the Cauchy-Schwarz
inequality

‖χ∇u‖2
L2(X∩W ) ≤ O(1)‖χ∇u‖L2(X∩W )‖u‖L2(X∩W ),

which implies that
‖χ∇u‖L2(X∩W ) ≤ O(1)‖u‖L2(X∩W ).

Hence,

(7.34) ‖u‖H1(X∩W1) ≤ O(1)‖u‖L2(X∩W ).
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2. Since W is small, we may pass to new local coordinates y, and we can suppose that
z0 = 0 and that locally ∂X = {y2 = 0}. If φ is a local diffeomorphism realizing this
change of variables then the Laplacian can be formally written in the new coordinates as

(7.35) L
def
= t((φ′)−1∇y) · ((φ′)−1∇y), with ∆x = (φ−1)∗ ◦∆ ◦ φ∗.

Here, L is an elliptic 2nd order differential operator, and φ′ is the Jacobian map associated
with the diffeomorphism φ.

Working from now on in these new coordinates, we proceed by an induction argument:
suppose that

(7.36) ‖u‖Hs+1(X∩W1) ≤ O(1)‖u‖HsX∩W ).

holds for some s ∈ N. Here we write as well W,W1 for the respective sets in the new
coordinates to ease notation. We want to show that we then also have

(7.37) ‖u‖Hs+2(X∩W2) ≤ O(1)‖u‖Hs+1X∩W1).

where W2 b W1 is a slightly smaller neighborhood of z0 = 0, whose closure is contained
inside W1.

Let χ ∈ C∞c (C; [0, 1]) be so that χ = 1 on W2 and suppχ ⊂ W1. Let ∂t,ju(y) :=
t−1(u(y + tej)− u(y), where x ∈ C ' R2 and e1, e2 is the standard orthonormal basis of
R2. Then, by the hypothesis (7.36) applied to ∂t,jχu, for |t| � 1, we get

‖∂t,1χu‖Hs+1(X∩W1) ≤ O(1)‖∂t,1χu‖Hs(X∩W )

≤ O(1)‖χ∂t,1u‖Hs(X∩W ) +O(1)‖[∂t,1, χ]u‖Hs(X∩W )

≤ O(1)‖u‖Hs+1(X∩W1) +O(1)‖u‖Hs(X∩W1),

uniformly in |t| � 1. In the last inequality we used as well that χ∂t,1u and [∂t,1, χ]u =
(∂t,1χ)u(·+ te1) are supported in W1 for |t| � 1. Performing the limit t→ 0, we get

(7.38) ‖∂y1χu‖Hs+1(X∩W1) ≤ O(1)‖u‖Hs+1X∩W1).

Thus, for j = 1, 2, we have that

(7.39) ‖∂y1∂yjχu‖Hs(X∩W1) ≤ O(1)‖∂y1u‖Hs+1(X∩W1) ≤ O(1)‖u‖Hs+1(X∩W1).

By (7.35), it follows that there exists some smooth function a 6= 0, such that

(7.40) ∂2
y2
χu =

1

a
Lχu− L̃χu,

where L̃ is a second order differential operator with smooth coefficients and which does
not contain the derivative ∂2

y2
. Since u is harmonic in X∩W it follows that Lχu = [L, χ]u.

Since [L, χ] is a differential operator of order 1, it follows from (7.40) and (7.39) that

(7.41) ‖∂y2χu‖Hs+1(X∩W1) ≤ O(1)
2∑
1

‖∂yj∂y2χu‖Hs(X∩W1) ≤ O(1)‖u‖Hs+1(X∩W1).

In combination with (7.38) this yields

(7.42) ‖u‖Hs+2(X∩W2) ≤ ‖χu‖Hs+2(X∩W1) ≤ O(1)‖u‖Hs+1X∩W1).

Thus, by choosing a decreasing sequence of nested compact neighborhoods of z0, say

W̃ = Ws+1 b Ws · · · b W0 = W , we may iterate the estimate (7.36), which then in
combination with (7.34) yields (7.33). �
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Lemma 7.3. There exists a C > 0 independent of α > 0, such that for any 1 ≤ j ≤ N+M

(7.43) |∂νGΓα(z, λj)| ≤
1

α
e−
|z−λj |
Cα ,

for z ∈ ∂Γα ∩ neigh (γ ∩ ∂Ω), λj ∈ Γα, |z − λj| ≥ α/C. (7.43) also holds when z ∈ ∂Γα,
λj ∈ Γα, |z − λj| ≥ α/C and (z, λj) ∈ (Ω× (C \ Ω)) ∪ ((C \ Ω)× Ω).

Proof. 1. By scaling of the harmonic function GΓα(·, λj) by a factor 1/α, it suffices to
show that

(7.44) |GΓα(z, λj)| ≤ e−
|z−λj |
Cα ,

for (z, λj) as after (7.43) with the difference that z now varies in Γα instead of ∂Γα.
To see this, recall from the construction of Γα after (7.8) that dist(∂Γα, λj) ≥ α and fix

a point z0 ∈ ∂Γα, let C1 > 0 be sufficiently large so that for any z ∈ D(z0, α/C1)∩ Γα we
have that (z, λj) satisfies the conditions after (7.43) with z varying in D(z0, α/C1) ∩ Γα
instead of ∂Γα.

Let u(z) := Gγα(αz, λj), z ∈ 1
α

Γα, be the scaled function, and recall Remark 7.1. Let
χ ∈ C∞c (C; [0, 1]) be so that χ = 1 on D(z0/α, 1/(4C1)), suppχ ⊂ D(z0/α, 1/2C1) =: W ′

and ∂β = O(1), uniformly in α for any β ∈ N2. Moreover, put W = D(z0/α, 1/C1).
Then χu ∈ Hs(Γα ∩W ′) for any s > 0. We can find an extension v ∈ Hs(R2) of χu so

that ‖v‖Hs ≤ O(1)‖χu‖Hs(Γα∩W ′). Using the Fourier transform, we see that for s > 2 and
for z ∈ D(z0/α, 1/(4C1))

(7.45) |∇v(z)| ≤ O(1)‖|ξ|v̂‖L2 ≤ O(1)‖|ξ|〈ξ〉−s‖L2‖v‖Hs ≤ O(1)‖χu‖Hs(Γα∩W ′).

By Lemma 7.2 and (7.44), we see that

(7.46) |∂νv(z)| ≤ O(1)‖u‖L∞(Γα∩W ) ≤ O(1) e−
|z−λj/α|

C ,

and

(7.47) |α(∂νGΓα)(αz, λj)| ≤ O(1) e−
|z−λj/α|

C ,

which implies (7.44) after rescaling and potentially slightly increasing the constant C > 0.

2. We decompose Γα as Γint∪Γext∪Γ1,α∪ ...∪ΓT,α, where Γint and Γext are the enlarged
parts of Γα with Γint ⊂ Ω, Γext ⊂ C \ Ω and Γ1,α, ...,ΓT,α are the regular parts of width
2α, corresponding to the segments of γ, that intersect ∂Ω transversally, see Figure 2 for
an illustration. Here, T is the number of intersections of γ with ∂Ω, notice that T is finite
and independent of N,α.

For simplicity, we assume that Γint and Γext are connected and that each segment Γk,α
links Γint to Γext and crosses ∂Ω once. We may think of Γα as a graph with the vertices
Γint, Γext and with Γk,α as the edges.

Let first λj belong to Γint. We apply the first estimate in Proposition 2.2 in [Sj10] or
equivalently Proposition 12.2.2 in [Sj19] and see that −GΓα(z, λj) ≤ O(1) for z ∈ Γα,
|z − λj| ≥ 1/O(1). Here and in the following the constants O(1) are independent of j
and α. Furthermore, the notation 1/O(1) means 1/C for some sufficiently large constant
C > 0.

Possibly, after cutting away a piece of Γk,α and adding it to Γint, we may assume that
−GΓα(z, λj) ≤ O(1) in Γk,α. Consider one of the Γk,α as a finite band with the two ends
given by the closure of the set of z ∈ ∂Γk,α with dist (z, ∂Γα) < α. Let GΓk,α denote the
Green kernel of Γk,α. Then the second estimate in the quoted proposition applies and we
find

−GΓk,α(x, y) ≤ O(1)e−|x−y|/(αO(1)), when x, y ∈ Γk,α, |x− y| ≥ α/O(1).
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Let

u = χGΓα(·, λj)�Γk,α ,

where χ ∈ C∞(Γk,α; [0, 1]) vanishes near the ends of Γk,α, is equal to 1 away from an
α-neighborhood of these end points and with the property that ∇χ = O(1/α), ∇2χ =
O(1/α2). Then u|∂Γk,α

= 0 and ∆u = O(α−2) is supported in an α-neighborhood of the

union of the two ends and hence of uniformly bounded L1-norm. Now we apply the second
estimate in the quoted proposition to u =

∫
GΓk,α(·, y)∆u(y)L(dy) and we see that

(7.48) GΓα(·, λj) = O(e−1/(αO(1))).

in {x ∈ Γk,α; dist (x, ∂Ω ∩ Γk,α) ≤ 1/O(1)}. Here, we also recall that λj ∈ γ b Γ̊α.
Varying k, we get (7.48) in {x ∈ Γα; dist (x, ∂Ω∩ Γ) ≤ 1/O(1)}. Applying the maximum
principle to the harmonic function GΓα(·, λj)�(C\Ω)∩Γα , we see that (7.48) holds uniformly
in (C \ Ω) ∩ Γα.

Similarly, we have (7.48) uniformly in

{x ∈ Γα; dist (x, ∂Ω ∩ γ) ≤ 1/O(1)} ∪ (Ω ∩ Γα),

when λj ∈ Γext and we have shown (7.44), (7.43) when λj ∈ Γint ∪ Γext. Similarly, we
have (7.43) when λj ∈ γk,α is close to one of the ends.

It remains to treat the case when λj ∈ γk,α is at distance ≥ 1/O(1) from the ends of
γk,α. Defining u = χGΓα(·, λj)�γk,α as before we now have

∆u = [∆, χ]GΓα(·,λj) + δλj ,

where the first term in the right hand side has its support in an α-neighborhood of the
union of the ends and is O(1) in L1. By the second part of the quoted proposition we
have

(7.49) u(x) = O(1) exp

(
− 1

O(1)α
min (dist (x, ends (γk,α)), |x− λj|)

)
,

away from an α-neighborhood of ends (γk,α)∪{λj}. Here ends (γk,α) denotes the union of
the two ends of γk,α. Since u is harmonic away from λj and from α-neighborhoods of the
ends, we get from (7.49) that

(7.50) ∇u(x) = O
(

1

α

)
exp

(
− 1

O(1)α
min (dist (x, ends (γk,α)), |x− λj|)

)
,

which gives (7.43) near ∂Ω∩γ. By using the maximum principle as before, we can extend
the validity of (7.43) to all of ∂Γα \D(λj, α/O(1)). �

Continuing, notice that by (3.4), (7.24)

(7.51) #{σ(PS
Ñ

) ∩ η} = #{ŜÑ ∩ p
−1
N (η)}, Ñ = N +M,

for η ⊂ γ. Since two consecutive points of ŜÑ differ by an angle of 2π/Ñ and by the
assumptions (1)-(4) prior to Theorem 1.1, we get that

#{λj; dist (λj, ∂Ω ∩ γ) < 4r0} = O(αN)

and also

#{λj; dist (λj, ∂Ω ∩ γ) ∈ [2kr0, 2
k+1r0[} = O(α2kN), k = 2, 3, ...
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From (7.43) and (7.31) we get

N

2π

∫
(∂Ω∩γ)+D(0,2r0)

∆φL(dz) =
∑
j

∫
((∂Ω∩γ)+D(0,2r0))∩∂Γα

∂νGΓα(z, λj)L(dz)

= O(αN) +
∞∑
k=2

∑
λj ;

dist (λj,∂Ω∩γ)∈[2kr0,2
k+1r0[

e−2k/O(1)

= O(1)

(
αN +

∞∑
k=2

e−2k/O(1)α2kN

)

= O(αN) +O(1)Nα

∫ ∞
0

e−t/O(1)dt

= O(αN).

(7.52)

Combining (7.32) and (7.43), we get when dist (λj, ∂Ω ∩ γ) ≥ 2r0:∫
∂Γα∩Ω

∂νGγα(z, λj)L∂Γα(dz) =

{
1 +O(1)e−dist (λj ,∂Ω∩γ)/O(α), when λj ∈ Ω,

O(1)e−dist (λj ,∂Ω∩γ)/O(α), when λj 6∈ Ω.

We now get

N

2π

∫
Ω

∆φL(dz) =
∑

j; dist (λj ,γ∩∂Ω)≤4r0

∫
∂Γα∩Ω

∂νGΓα(z, λj)L∂Γα(dz)

+
∞∑
k=2

∑
λj∈Ω,

dist (λj,γ∩∂Ω)∈[2kr0,2
k+1r0[

∫
∂Γα∩Ω

∂νGΓα(z, λj)L∂γα(dz)

+
∞∑
k=2

∑
λj∈C\Ω,

dist (λj,γ∩∂Ω)∈[2kr0,2
k+1r0[

∫
∂Γα∩Ω

∂νGΓα(z, λj)L∂γα(dz)

=O(αN) +
∞∑
k=2

∑
λj∈Ω,

dist (λj,γ∩∂Ω)∈[2kr0,2
k+1r0[

(1 +O(1)e−2k/O(1))

+
∞∑
k=2

∑
λj∈C\Ω,

dist (λj,γ∩∂Ω)∈[2kr0,2
k+1r0[

O(1)e−2k/O(1)

= #{λj ∈ Ω}+O(αN).

(7.53)

Thus (7.23) gives

#(σ(P δ
N) ∩ Ω) = #({λj} ∩ Ω) +O(αN) +Oα(N ε0)

=
N

2π

(∫
S1∩p−1(Ω)

LS1(dθ)

)
+O(αN) +Oα(N ε0) + o(N),

(7.54)

with a probability as in (7.21) which is bounded from below by the probability (1.15) for
N > 1 sufficiently large. Here and in the next formula we view pN and p as maps from
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S1 to C. In the second equality we used that by (7.51)

#({λj} ∩ Ω) =
Ñ

2π

∫
S1∩p−1

N (Ω)

LS1(dθ) +O(1)

=
N

2π

∫
S1∩p−1

N (Ω)

LS1(dθ) +O(M)

=
N

2π

∫
S1∩p−1(Ω)

LS1(dθ) + o(N),

(7.55)

where we used that pN → p uniformly on S1 and where the measure LS1(dθ) in the
integral denotes the Lebesgue measure on S1.

Theorem 1.1 follows by taking α > 0 in (7.54) arbitrarily small and N > 1 sufficiently
large.

8. Convergence of the empirical measure

In this section we present a proof of Theorem 1.2 following the strategy of [SjVo19, Sec-
tion 7.3]. An alternative, and perhaps more direct way, to conclude the weak convergence
of the empirical measure from a counting theorem as Theorem 1.2, has been presented in
[SjVo19, Section 7.1].

Recall the definition of the empirical measure ξN (1.20). By (1.21), (1.5) combined
with a Borel Cantelli argument, it follows that almost surely

(8.1) supp ξN ⊂ D(0, ‖p‖L∞(S1) + 1)
def
= K ⊂ D(0, ‖p‖L∞(S1) + 2)

def
= K ′

for N sufficiently large. For p as in (1.4), put

(8.2) ξ = p∗

(
1

2π
LS1

)
which has compact support,

(8.3) supp ξ = p(S1) ⊂ K.

Here, 1
2π
LS1 denotes the normalized Lebesgue measure on S1.

We recall [SjVo19, Theorem 7.1]:

Theorem 8.1. Let K,K ′ b C be open relatively compact sets with K ⊂ K ′, and let
{µn}n∈N ∈ P(C) be as sequence of random measures so that almost surely

suppµn ⊂ K for n sufficiently large.

Suppose that for a.e. z ∈ K ′ almost surely

Uµn(z)→ Uµ(z), n→∞,
where µ ∈ P(C) is some probability measure with suppµ ⊂ K. Then, almost surely,

µn ⇀ µ, n→∞, weakly.

This Theorem is a modification of a classical result which allows to deduce the weak
convergence of measures from the point-wise convergence of the associated Logarithmic
potentials, see for instance [Ta12, Theorem 2.8.3] or [BoCa13].

In view of Theorem 8.1 it remains to show that for almost every z ∈ K ′ we have that
UξN (z)→ Uξ(z) almost surely, where

UξN (z) = −
∫

log |z − x|ξN(dx), Uξ(z) = −
∫

log |z − x|ξ(dx).



GENERAL TOEPLITZ MATRICES SUBJECT TO GAUSSIAN PERTURBATIONS 27

For z /∈ σ(P δ
N)

(8.4) UξN (z) = − 1

N
log | det(P δ

N − z)|.

For any z ∈ C the set Σz = {Q ∈ CN×N ; det(PN + δQ − z) = 0} has Lebesgue measure
0, since CN×N 3 Q 7→ det(P δ

N − z) is analytic and not constantly 0. Thus µN(Σz) = 0,
where µN is the Gaussian measure given in after (1.11), and for every z ∈ C (8.4) holds
almost surely.

Let δ satisfy (1.13) for some fixed δ0 ∈]0, 1[ and δ1 > 3. Pick a ε0 ∈]δ0, 1[. Let
z ∈ K ′\p(S1). Recall (4.17). For α > 0 sufficiently small, we have that z ∈ K ′\γα.

Put t = N ε0 as in (7.13), which together with (7.14) implies (7.8) when N � 1. Since
(1.13) implies (7.14), it follows by combining (7.14), (7.5), (7.6) and (7.7) that

(8.5)

∣∣∣∣ 1

N
log | det(P δ

N − z)| − φ(z)

∣∣∣∣ ≤ O(N ε0−1).

with probability ≥ 1−e−N
2−e−N

ε0/4 . Here, φ(z) := N−1 ln | det(pN(τ)−z)|, since z /∈ γα.
Using a Riemann sum argument and the fact that pN → p uniformly on S1, we have

that

(8.6) |φ(z) + Uξ(z)| −→ 0, as N →∞.
Thus, by (8.5), (8.6), we have for any z ∈ K ′\p(S1) that

(8.7) |UξN (z)− Uξ(z)| = o(1)

with probability ≥ 1 − e−N
2 − e−N

ε0/4 . By the Borel-Cantelli theorem if follows that for
every z ∈ K ′\p(S1)

(8.8) UξN (z) −→ Uξ(z), as N →∞, almost surely,

which by Theorem 8.1 concludes the proof of Theorem 1.2.
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