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ABSTRACT

The extreme precipitation that resulted in historic flooding in central-northern France began 26 May 2016

and was linked to a large cutoff low. The floods caused some casualties and over a billion euros in damage. To

objectively answer the question of whether anthropogenic climate change played a role, a near-real-time

‘‘rapid’’ attribution analysis was performed, using well-established event attribution methods, best available

observational data, and as many climate simulations as possible within that time frame. This study confirms

the results of the rapid attribution study. We estimate how anthropogenic climate change has affected the

likelihood of exceedance of the observed amount of 3-day precipitation in April–June for the Seine and Loire

basins. We find that the observed precipitation in the Seine basin was very rare, with a return period of

hundreds of years. It was less rare on the Loire—roughly 1 in 20 years. We evaluated five climate model

ensembles for 3-day basin-averaged precipitation extremes in April–June. The four ensembles that simulated

the statistics agree well. Combining the results reduces the uncertainty and indicates that the probability of

such rainfall has increased over the last century by about a factor of 2.2 (.1.4) on the Seine and 1.9 (.1.5) on

the Loire due to anthropogenic emissions. These numbers are virtually the same as those in the near-real-time

attribution study by van Oldenborgh et al. Together with the evaluation of the attribution of StormDesmond

by Otto et al., this shows that, for these types of events, near-real-time attribution studies are now possible.

1. Introduction

From 26 May to 4 June 2016, a low pressure system

stayed almost stationary over France and Germany.

Due to their differing locations relative to the weather

system’s center, France and Germany underwent heavy

rainfall with different characteristics: moderate but con-

tinuous rain, partially large scale, partially convective,

over 3 consecutivedays in central and northeast France,

while severe thunderstorms hit southern Germany.

An analysis of the flooding events in France and

Germany was submitted toHydrology and Earth System

Sciences Discussions soon after the event but was re-

jected, partially because the analysis was considered

to have been conducted too quickly for peer-review
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standards and it was written up too hastily. The original

manuscript can still be found as a discussion paper

(including reviews and replies; van Oldenborgh et al.

2016). The current paper focuses on the French event,

reproduces all relevant background information, and

compares the results of the current ‘‘slow’’ attribution

study, including data that were not yet available in the

real-time study, with the real-time results where rele-

vant. This paper can be read independently of the dis-

cussion paper.

In France, the sustained precipitation in 2016

came on top of an already wet spring season and af-

fected small river basins. As a consequence, flooding

occurred first on smaller rivers like the Yvette and

Loing, and later runoff fueled high water levels in

the Loire and especially the Seine. The highest 3-day

rainfall occurred over 29–31 May (see Fig. 1). Over

these three days, moisture contributing to this rain-

fall converged from multiple sources and moved

into the region mainly from the east, circulating

around the low pressure system. Potential source

regions include the Mediterranean, Baltic, subtropical

Atlantic, eastern Atlantic, and moisture recycling over

continental Europe.

The maximum amount of rain fell on the center of the

Loire basin around the cities of Orléans and Tours

(150 mm in 3days), leading to the flooding of highways

on 31 May with numerous drivers being stranded. The

famous Renaissance Chambord castle was flooded on

1 June. The floods mostly affected small tributaries with

reduced warning systems.

The Loing River, a tributary of the Seine basin,

reacted promptly to the heavy rainfall and several cities

were flooded on 1 June, with more than 4000 people

evacuated at Nemours. It is the most severe flooding

event ever reported on the Loing basin. Although only

representing a surface area less than 9% of the Seine

basin, the Loing River contributed to around 25% of

the flood peak of the Seine. The Yvette River, a small

tributary in a heavily urbanized area southwest of Paris,

flooded several cities on the morning of 2 June, resulting

in more than 2000 evacuees in Longjumeau. The Seine

crested in Paris on 3 June at a height above 6.1 m at the

reference gauge for the Seine at Paris, Paris Austerlitz.

This was not a record on the Seine River. The water

level was lower than during the major flood of 1910 and

was also lower than the floods in 1924, 1945, 1955, 1959,

and 1982. The Seine flood itself is estimated to have a

return period of about 20 years (Brunelle et al. 2016).

There was considerable damage upstream of Paris, with

four fatalities (Gallet 2016), thousands of evacuees,

thousands without power, and an economic cost esti-

mated above 1 billion euros (Mulholland 2016; Perrin

et al. 2017). Estimates indicate that 828 100 inhabitants

were exposed to flooding in the Île-de-France, mainly

because buildings were constructed before the intro-

duction of regulations that prohibit building in flood-

plains (Faytre 2011).

FIG. 1. Precipitation averaged in western Europe (408–608N, 158W–258E) over 29–31 May

2016 (mmday21). Source: NOAA/NCEP/CPC.
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However, damages in Paris were less severe. Essential

networks that are typically vulnerable to flooding due

to their underground location (phone, railway, and

sewage) were largely unaffected in Paris, although the

Metro line that ran directly along the Seine was forced

to close and many people were left without electricity.

A timely training of crisis managers conducted in Paris

in March 2016, Operation EU Sequana, simulated a

major flood in the Île-de-France over 11 days and en-

sured authoritieswere prepared (www.prefecturedepolice.

interieur.gouv.fr/Sequana/EU-Sequana-2016).

A multireservoir system exists to reduce floods and

sustain low flows in the Seine basin. The four reservoirs

in the system are operated independently and follow

filling curves that determine the target amount of water

retained in the reservoir each day of the year. During

the high-flow seasons of November–June water is

stored in order to maintain the desired flows during the

upcoming dry season, a necessary function to regulate

water levels for shipping and drinking water for ap-

proximately 20 million people, among other socioeco-

nomic benefits (Ficchì et al. 2016; Dorchies et al. 2014).

During this flooding event, all of the reservoirs were

near 90% full in anticipation of typically dry conditions

in the summer months. This flood came as a surprise as

large floods in late spring are rare: virtually all Seine

floods occur in winter. In the historical record only July

1659 and June 1856 recorded floods outside of the ex-

tended winter (December–March), and the observed

river flow on 2 June 2016 in Paris was 46% above the

previous records in June available since 1886, which

was 933m3 s21 in 1926. The defenses currently in place

provide effective protection against frequent small

floods and significantly lower the risks of larger floods

and the associated damage. However, they are vul-

nerable to spring flooding when reservoirs are typically

almost full in anticipation of drier conditions, as well as

to successive flooding events that the dams may lack

capacity to moderate (Roche 2004). In addition, while

all four reservoirs are located in the upstream areas of

the Seine basin, some of the smaller tributaries that

encountered the worst flooding during this event are

located outside of the reservoir catchment areas. De-

spite this, the reservoirs are estimated to have reduced

the flood peak in Paris by about 0.23 m (240m3 s21;

Seine Grands Lacs 2016).

In this study we perform an attribution analysis of

the heavy rainfall event preceding the floods in the

Seine and Loire basins (Fig. 2). We consider the basin-

averaged precipitation in the 3-day period 29–31 May as

the main cause of the floods. Three days is the estimated

response time of the river, and the accumulated 3-day

precipitation was as much as 56% of the total amount

of precipitation during the 16days preceding the Seine

flood peak.

Although heavy rainfall as a variable captures a rel-

evant aspect of the flooding events that occurred, several

other contributing factors are not considered here.

These include catchment characteristics (e.g., topogra-

phy, land use, and runoff characteristics), elevated sat-

uration levels at the time of this extreme rainfall event

due to a wet spring and the locations, holding capacity,

and impacts of the upstream reservoirs filling. A full

attribution of the floods themselves, rather than just the

rainfall event, would therefore need to take all of these

factors into account. The aim of this study is to evaluate

the near-real-time attribution study, and not to do a new

attribution study of the flood itself.

The attribution of trends in heavy precipitation to

human influence has been a focus in recent years (e.g.,

Pall et al. 2011; Schaller et al. 2016). These pioneer

studies showed the potential of providing statements

about the role of human activities on weather extremes.

However, demand on such information is often in real

time, when, for a couple of days, damages and losses

raise the attention of the public and media and help

policy-makers to trigger new adaptation policies. A

challenge is therefore to provide scientifically sound and

reliable information in near–real time (about a week)

FIG. 2. Maps of the Seine (northern basin) and Loire (southern

basin) basins on top of elevation data (http://hydrosheds.cr.usgs.

gov; Lehner et al. 2008), including river data.
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about human influence on extreme events. There is still

some debate within the scientific community whether

the advantage of a quick analysis that may contain slight

‘‘errors’’ outweighs the benefit of an in-depth analysis

that waits for all observational data. We argue that a

quick analysis is highly useful and here present a vali-

dation study of such a quick analysis. This serves to il-

lustrate that the magnitude difference in results from

using updated data is rather small. The first revisited

rapid attribution study for the purpose of validation was

for the winter storm Desmond by van Oldenborgh et al.

(2015), which was considered too hastily written to be

acceptable as a scientific paper. However, the results

were recently confirmed in Otto et al. (2018).

Considering events similar to the rain studied here,

Schaller et al. (2014) found no trend in 3-day rainfall

averaged over the upper Elbe and Danube basins in the

same late spring/early summer season, whereas Vautard

et al. (2015) and Ribes et al. (2018) showed a significant

increase of about 5%decade21 in extreme convective

autumn rainfalls in a Mediterranean mountain range

in southern France over the past 60 years and in sur-

rounding areas.

On a coarser scale, van den Besselaar et al. (2013)

studied trends in 1-in-20-year events over 1951–2010,

where they divide Europe in a northern and a southern

half at 488N. They found that these events become more

common in northern Europe in spring but show no sig-

nificant change in southern Europe, both for 1- and

5-day periods.

The studies mentioned above show that findings de-

pend on the region, season, and time duration of the

event under study. Besides, different datasets or models

may lead to different conclusions, which increases the

need of multimodel studies.

In this article, we report the results of an attribution of

the French 3-day event. This study was originally carried

out through collaboration of several organizations,

including the team of the World Weather Attribution

initiative (https://www.worldweatherattribution.org/) in

a time period of less than 10days. The original study also

included an analysis of the 1-day area-maximum pre-

cipitation in Germany (van Oldenborgh et al. 2016),

showing that an attribution of that event was not possi-

ble with the data available at the time. In this evalua-

tion study we only show the results for the two French

basins, and we used additional observational datasets

to study the influence of data availability. The trends in

the 3-day mean basin-averaged precipitation in France

are investigated using a variety of methods, using three

observational or reanalysis datasets and five different

ensembles of climate models (see Table 1). We com-

puted the trends in observations since 1950, the trends

in sea surface temperature (SST)-forced global climate

model simulations since 1960, trends in regional climate

model simulations since 1950, and comparisons with

a counterfactual climate without anthropogenic emis-

sions in a large ensemble of SST-forced regional model

simulations. The methodology is described in section 2.

The analysis of observations and the five model en-

sembles are described in sections 3 and 4. Furthermore,

in section 5 we briefly analyze the potential large-scale

dynamic contribution of anomalous SSTs to the rainfall

event. This is followed by a synthesis, discussion, and

conclusions in section 6.

2. Methods

The attribution method consists of four steps, which

are repeated for the two regions. First, the models are

validated for the class of events under consideration.

Next, the return period of the observed 2016 event is

calculated. The third step is the trend detection. Finally,

attribution of the detected trend is done. These steps are

described below.

First, we evaluate whether the observational analyses

and models represent the statistics of high spring pre-

cipitation well enough to be able to use them. We do

this mainly by fitting the 3-daily extremes in April–June

to a generalized extreme value (GEV) distribution

(Coles 2001), which is assumed appropriate for these

block maxima. The event itself is excluded from the

fits. To account for possible changes, we scale the dis-

tribution with a measure of climate change, for which

we take the 4-yr smoothed global mean temperature

anomaly T0. The smoothing is introduced to remove the

fluctuations in the global mean temperature due to

ENSO, which are unforced. This measure was already

used in vanOldenborgh (2007). [Taking othermeasures,

such as theCO2 concentration or radiative forcing esti-

mates, gives almost the same results as these are highly

correlated: for annual means, the Pearson correlation

coefficient is r(T0, CO2) 5 0.93.]

The scaling is taken to be an exponential function of

the smoothed global mean temperature. This exponen-

tial dependence can clearly be seen in the scaling of daily

precipitation extremes with local daily temperature in

regions with enough moisture availability (Allen and

Ingram 2002; Lenderink and van Meijgaard 2008). It is

also expected on theoretical grounds through the first-

order dependence of the maximum moisture content on

temperature in the Clausius–Clapeyron (CC) relations

of about 7%K21, which gives rise to an exponential

form. Note that we fit the strength of the connection,

which is often different from CC scaling. As it is not

clear what the relevant local temperature is, but local
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temperature usually scales linearly with the global mean

temperature, we chose the latter.

Specifically, we take

F(p)5 exp

�
2
�
11 j

p2m

s

�1/j
�
,

m5m
0
exp(aT 0/m

0
) ,

s5s
0
exp(aT 0/m

0
) , (1)

with p the precipitation. We refer to m as the location

parameter, s as the scale parameter, and j as the shape

parameter. We assume that the ratio s/m, also called the

dispersion parameter, is constant, reducing the number

of fit parameters. This is a standard method in hydro-

dynamics, where it is called the index flood assumption

(e.g., Hanel et al. 2009). We check that it also holds here

in models with enough data that this assumption does

not need to be made.

The fit is performed using a maximum likelihood

method varying a, m0, s0, and j. Uncertainties are esti-

mated with a 1000-member nonparametric bootstrap.

In the bootstrap we take all years to be independent,

which is supported by the lack of serial autocorrelations

in the data. When fitting to sets of stations (section 3) or

ensembles of model simulations (sections 4a–4e), we

have to take correlations between neighboring stations

or similar ensemble members into account. This is done

with a moving block technique analogous to the stan-

dard overlapping moving blocks employed when a time

series has significant serial autocorrelations (e.g., Efron

and Tibshirani 1998). In that case the block length is set

by the time at which the autocorrelation drops to 1/e.

Here, we take bootstrap samples of blocks of stations

with correlation r. 1/e. In practice this means that after

selecting a random year and station, all stations that

have a correlation as high as this are also entered into

the bootstrap sample, just like a block of years would

have been selected in the case of serial autocorrelations.

As a check, we redid the analysis of Vautard et al. (2015)

with this technique and verified that we obtained the

same result. The same spatial moving block technique

was also used in Eden et al. (2016) and van der Wiel

et al. (2017).

The shape parameter j is considered to be unphysical

if larger than 0.4 (a very heavy tail). We therefore

implement a penalty term on j with a width of 0.2. It can

be seen from the fits in the analysis that jjj, 0:1 for the

3-day mean basin-averaged precipitation. For daily

maximum precipitation there are arguments that j’
0:12 (Wilson and Toumi 2005; van den Brink and

Können 2011). All these values are substantially less

than the cutoff and are therefore virtually unaffected by

the penalty term. Conversely, time series often have

high outliers (cf. van den Brink and Können 2008). In

the bootstrap procedure, replicating these outliers

multiple times gives fits with unphysically high values of

the shape parameter. The penalty function does not af-

fect the best fit but keeps these unphysical fits from the

sample that is used to estimate the uncertainties.

After fitting Eq. (1) to the data, we verify that the

underlying assumptions are not invalid. Specifically, the

return period plots show whether the distribution can

be described by a GEV by overlaying the data points

and fit for the present and a past climate. Deviations,

such as those caused by double populations when the

most extreme events are caused by a different mecha-

nism with different GEV properties, are clearly visible

on this plot. It is similar to the usual Q–Q plot but with

axes emphasizing the high extremes. The second as-

sumption, that the PDF scales with the smoothed global

mean temperature, is checked in the weather@home

model (section 4c). The high number of data points

means that the extremes in that model can be studied

without these assumptions.

The three parameters of the distribution, m, s, and j,

are evaluated for the year 2016 (using the 3-yr average of

2014–16 as estimate of the smoothed temperature of

2016) and the values for the observational estimates

(analyses and reanalysis) compared. Models are evalu-

ated by checking whether these parameters are similar

to the distribution fitted to the longest observational

analysis. We require that for the models, both the ratio

of s/m and j should be comparable to those estimated

from observations within the 95% confidence interval

(CI). If this is the case, we apply a multiplicative bias

correction, if necessary, to account for differences in the

model mean compared to observations.

After the model evaluations, the return period of the

observed 2016 event is calculated. We determine the

return periods from the GEV distributions for the year

2016. As explained above, for models, if necessary, this

is calculated after applying a multiplicative bias cor-

rection when the model fitted range of m does not

overlap with the fit from observations.

The next step is trend detection. For the observed

record and reliable models for which simulations of

the historical record are available, we fit Eq. (1) to the

maxima of all available years. Inserting the T0 for the

years 1960 (or the first year with data if later) and 2016

in Eq. (1) gives the probability for the event in these

years, p0 and p1. These are expressed as return periods

ti 5 1/pi. The ratio of these is commonly referred to

as the risk ratio, RR 5 p1/p0 5 t0/t1. If this ratio is sig-

nificantly different from one, that is, the bootstrapped

two-sided 95% confidence interval excludes one, a trend
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is detected. The p value of the lower bound being posi-

tive is estimated as p5 (N#01 1)/(N1 1) withN5 1000

the number of bootstrap members and N#0 the number

with zero or negative trend (a # 0 or equivalently

RR # 1). If we have a priori knowledge that the trend

should be positive, we can interpret this as a test that

the trend is positive at p , 0.025; if this knowledge is

lacking, this is a test that the trend is not zero at p, 0.05.

The trend indicates how much more likely the event is

now than in 1960, but does not attribute this difference.

To attribute the change, we use models for which we

also have experiments simulating a counterfactual world

without anthropogenic emissions of greenhouse gases

and aerosols. These allow us to compute how much

more likely or unlikely the event has become due to

these emissions. Often we can neglect the effect of nat-

ural forcings on these extremes. In that case themodeled

change from preindustrial conditions to now (about 18C
warming) can also be used for attribution. Given the

assumption of exponential dependence on tempera-

ture in Eq. (1), we transform the risk ratios from 1960–

2016 to 1880–2016, which is close to preindustrial–2016

(Hawkins et al. 2017), by assuming that the logarithm

of the risk ratio depends linearly on the global mean

temperature.

Because single models usually do not give a reliable

description of trends in the climate system due to model

biases (Annan and Hargreaves 2010; Yokohata et al.

2012; van Oldenborgh et al. 2013), we use as many

(preferably multimember or long runs and high resolu-

tion) model ensembles as readily available. In seasonal

forecasting and attribution studies such an ensemble

represents the uncertainty better than a single model

(Hagedorn et al. 2005; Hauser et al. 2017). A last step is

therefore to synthesize the results into a single attribu-

tion statement. The differences among the RRs of these

ensembles and the observations are due to natural var-

iability and to model spread. The relative contribution

of each of these factors can be determined from a x2

statistic. We compute x2/dof, with the number of de-

grees of freedom (dof) one less than the number of fits.

If this is roughly equal to one, the variability is com-

patible with only the natural variability that determines

the uncertainty on each separate model estimate of the

RR. If it is much larger than one, the differences be-

tween the models contribute significantly.

If the natural variability dominates, which is often

the case for precipitation, the final result can be ob-

tained by a simple average RR. We choose to use a

weighted average, with for each RR (models and ob-

servations) the weights are the inverse uncertainty

squared, as the uncertainty due to natural variability is

smaller in models with much data. The uncertainties

are approximated by symmetric errors on log(RR) and

added in quadrature («2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«21 1 «22 1 � � � 1 «2N

p
/N). If

there is a significant contribution of x2 due to model

spread, this has to be propagated to the final result, and

the final uncertainty is larger than the spread due to

natural variability would indicate. In this case we choose

to give all models equal weight. The method described

here was also used in Eden et al. (2016).

3. Observational analysis

New in this analysis compared to the rapid analysis is

the use of an updated dataset—E-OBS 14.0 instead of

E-OBS 12.0. This update includes additional French

station data that were not available in real time. The

analyses in the rejected manuscript were based on a

relatively sparse subset of stations. Updated numbers

are given to compare to the rapid analysis.

We compare the 0.258E-OBS 14.0 analysis 1950–2016

(Haylock et al. 2008) and 0.58 CPC analysis 1979–2016

(www.cpc.ncep.noaa.gov/products/Global_Monsoons/

gl_obs.shtml). The decorrelation scales of 3-day mean

precipitation in this season are more than 100 km (de-

rived from the public dense Dutch station network; we

cannot determine how much larger because of the lim-

ited size of that country). This is large enough that sta-

tion sparsity is not a problem. We double-checked this

by comparing the basin averages with the ERA-Interim

reanalysis, which is completely independent, and

found good agreement. Satellite-derived products do

FIG. 3. CPC analyzed sums of precipitation averaged over the

(a) Seine and (b) Loire basins. The smooth line denotes the 1981–

2010 climatology.
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not perform well in this region and season, exemplified

by a correlation of only r 5 0.7 for 3-day Seine basin-

averaged precipitation with E-OBS 14.0 over earlier

years. Radar data cannot be used for attribution due to

the short time series and large biases until it is calibrated

against station data.

The CPC analysis, which is updated daily, shows the

highest sums over 29–31 May 2016: in the original

manuscript, the 3-day mean averaged over the Seine

basin was 18.4 mmday21 [corresponding to a sum of

55.2 mm (3days)21] and 15.7mmday21 [sum of 47.1 mm

(3days)21] for the Loire basin (see Fig. 3). These values

were taken to represent the observed event, as the

E-OBS data for 29–31 May 2016 were not yet available

at the time the rapid manuscript was submitted. In this

new analysis, the E-OBS 14.0 estimates are 19.2 mmday21

for the Seine and 16.1 mmday21 for the Loire, which

are within 5% of the initial estimates. The Safran re-

analysis (Quintana-Seguí et al. 2008), which also be-

came available much later, gives 20.3 mmday21 for

the Seine and 19.0 mmday21 for the Loire, 10% and

21%more than the initial estimates. These differences

do not affect the conclusions. Comparisons are noted

in the text.

For the 3-day mean and basin-averaged precipitation

the distributions of the CPC and E-OBS 14.0 analyses

are remarkably similar, even though they cover different

time periods (see Tables 2, 3). The shorter ERA-Interim

reanalysis also resembles these well, albeit with a slightly

smaller-scale parameter. We performed a GEV fit using

Eq. (1), which includes a trend analysis by fitting the

trend parameter a. It suggests that the return period for

the Seine basin is larger than the length of the longest

series, which is E-OBS 14.0: t1 . 250 years for such an

event in April–June. (Note that a fit to an extreme value

distribution can only determine a return period smaller

than about 2N years from a series of lengthN years with

accuracy.) The time series from 1950, Fig. 4a, shows how

unusual this amount is for late spring/early summer. The

best fit for the trend parameter a is positive. However,

the uncertainties are large and easily encompassa5 0 or

equivalently RR 5 1.

For the Loire basin the event was less exceptional in

April–June, with a return time of about 50 years (11–

4000 years) in a GEV fit. The risk ratio again encom-

passes one, RR5 40 (0:7/‘).
The model analyses in the next sections show that

for higher statistics the shape parameter j is very close

to zero. We can reduce the uncertainties in the estimate

of the return period by setting j 5 0, that is, assuming

a Gumbel distribution (Fig. 5). In the original manu-

script this gave a best estimate for the return period

of 180 years for the Seine basin for the E-OBS 12.0

historical series in the current climate (as used in the

TABLE 2. Summary of the fits of the data for the Seine: location parameterm, the scale parameters, and the shape parameter j of theGEV

fit for 2016. Values between parentheses denote the 95% CI. The models that did not pass the validation test are in italic.

Seine dataset m (mmday21) s (mmday21) j

CPC 7.1 (6.7 to 7.6) 1.8 (0.9 to 1.5) 20.35 (20.14 to 0.11)

E-OBS 14.0 7.8 (7.2 to 8.2) 2.0 (1.4 to 2.3) 20.15 (20.21 to 0.10)

ERA-interim 7.6 (6.9 to 8.2) 1.7 (1.2 to 2.0) 20.12 (20.17 to 0.10)

HadGEM3-A 9.2 (9.1 to 9.4) 2.2 (2.1 to 2.4) 20.004 (20.049 to 0.047)

HadGEM3-A Nat 8.8 (8.6 to 9.0) 2.4 (2.2 to 2.5) 20.049 (20.093 to 0.000)

EC-Earth 9.0 (8.9 to 9.1) 1.7 (1.7 to 1.8) 20.018 (20.050 to 0.006)

weather@home 7.6 (7.5 to 7.7) 2.2 (2.1 to 2.3) 20.03 (20.04 to 20.015)

RACMO 8.2 (8.1 to 8.4) 1.8 (1.6 to 1.8) 20.010 (20.075 to 0.028)

CORDEX 9.0 (8.8 to 9.2) 2.1 (1.8 to 2.3) 20.05 (20.11 to 0.03)

TABLE 3. As in Table 2, but for the Loire.

Loire dataset m (mmday21) s (mmday21) j

CPC 8.9 (8.2 to 9.7) 2.4 (1.6 to 2.8) 20.14 (20.46 to 0.04)

E-OBS 14.0 8.7 (8.3 to 9.2) 2.0 (1.4 to 2.4) 20.13 (20.22 to 0.09)

ERA-interim 9.0 (8.3 to 9.8) 1.9 (1.2 to 2.3) 20.05 (20.30 to 0.22)

HadGEM3-A 9.4 (9.2 to 9.5) 2.1 (2.0 to 2.2) 20.027 (20.074 to 0.026)

HadGEM3-A Nat 9.3 (9.1 to 9.5) 2.0 (1.8 to 2.1) 20.06 (20.11 to 20.02)

EC-Earth 14.2 (14.0 to 14.3) 2.8 (2.6 to 2.8) 20.04 (20.07 to 20.01)

weather@home 7.8 (7.7 to 7.9) 2.2 (2.1 to 2.3) 20.035 (20.045 to 20.015)

RACMO 8.3 (8.2 to 8.4) 1.6 (1.5 to 1.7) 20.04 (20.09 to 0.00)

CORDEX 9.5 (9.3 to 9.7) 1.8 (1.7 to 2.0) 20.01 (20.07 to 0.05)
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near-real-time attribution), with still a wide 95% un-

certainty range of 50–3000 years. Using E-OBS 14.0

for both the historical time series and the value for

2016, we find a somewhat higher value of 260 years (60–

6000 years); however, this is well within the uncer-

tainties of the earlier estimate. This fit gives a RR of

2.1 (0.3–14).

The 3-day rainfall in the Loire basin was less ex-

ceptional: using the data available at the time of the

near-real-time attribution, the 2016 precipitation value

is not far above the precipitation values in the past

years (Figs. 4b,d), with a return period of the order of

100 years in April–June (2.5% lower bound 15 years).

The observations also showed a positive trend that was

not significantly different from zero. A Gumbel fit

gave a return period of 35 years (10–300 years). Now,

using the E-OBS 14.0 estimate that was available half a

year later, the best estimate is 20 years (7–170 years),

which is compatible with the earlier estimate. The RR

is 5.0 (0.7–30).

In the synthesis, we use the numbers obtained with

Gumbel fits to E-OBS 14.0 for observations.

FIG. 4. Fit of the highest observed 3-day mean rainfall in the Seine basin in April–June to a GEV that scales with the smoothed global

mean temperature. (a) The location parameter m (lower line), m1 s, and m1 2s (middle and upper lines). The vertical bars indicate the

95% confidence interval on the location parameterm at the two reference years. The purple square denotes the value of 2016 (not included

in the fit). (c) Gumbel plot of the GEV fit in 2016 (red lines) and 1960 (blue lines). The observations are drawn twice, scaled up with the

trend to 2016 and scaled down to 1960. (b),(d) As in (a) and (c), but for the Loire. Data from E-OBS 14.0.

FIG. 5. As Figs. 4c and 4d, but assuming a Gumbel distribution, that is, j 5 0, and the E-OBS 14.0 data.
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4. Model analyses

We use a set of different climate model ensembles in

order to study both natural variability withinmodels and

uncertainties that arise from using different models and

model setups. In this study we investigate five different

model ensembles which cover different model setups:

an SST-forced global climate model (HadGEM3-A), a

coupled global climate model (EC-Earth 2.3), regional

climate models driven by coupledGCMs (the RACMO-

EC-EARTH and EURO-CORDEX ensembles), and a

very large ensemble of an atmosphere-only regional

climate model (HadRM3P utilizing the weather@home

framework). Besides the necessity of being publicly

available, the models are selected to have a large num-

ber of simulated years. The models are described in

more detail in the next subsections.

Every model setup is subjected to some validation

tests (see also section 2). Based on the outcome of these

tests we either analyze the model or reject it. The pa-

rameters s,m, and j used for these validations are shown

in Tables 2 and 3.

Each subsection starts with a description of the model

setup, followed by validation tests. For the models that

are rejected, the analysis results are not shown.

a. HadGEM3-A ensemble

In the European Climate Extremes Interpretation

and Attribution (EUCLEIA) project, the Met Office

model HadGEM3-A (Christidis et al. 2013) was run in

atmosphere-only mode at high resolution (N216, about

60 km) for the period 1960–2013 with observed forcings

and SSTs [historical, based on historical forcings up

to 2005 and RCP4.5 afterward from phase 5 of the

Coupled Model Intercomparison Project (CMIP5)] and

with preindustrial forcings and SSTs from which the effect

of climate change has been subtracted (historicalNat).

The latter change has been estimated from the CMIP5

ensemble of coupled climate simulations (for details see

D. Stone and P. Pall 2016, unpublished manuscript). An

empirical relation between SST and sea ice was used to

establish the sea ice extent. The simulations were made

as an ensemble of 15 realizations for the historical

forcings, and another ensemble of 15 realizations were

used for the historicalNat forcings. The 15 members

were all entered into the fit simultaneously. For this

variable the series are sufficiently independent (r, 1/e)

in spite of the common SST forcing. The data are freely

available for noncommercial use.

Comparing the annualmaximumof 3-daymean basin-

averaged precipitation of the historical runs to the

E-OBS 14.0 observations (excluding 2016), the model

precipitation is about 15% higher than observed in the

Seine basin and about 7% in the Loire basin (Table 2).

The scale parameters s are overestimated by the same

factor, and the shape parameters j are compatible

with the observed distribution so that the model re-

sults can just be scaled back with a simple bias correc-

tion (see also Vautard et al. 2018).

Over the Seine basins, the model shows a clear in-

crease in 3-day extreme precipitation in April–June

(see Fig. 6, Table 2). The return period for an event

like the one observed is about 200 years in the current

climate,with a 95%uncertainty range from100 to 500 years.

This is a factor 1.9 (1.1–3.4) more frequent than in 1960,

which is significantly different from zero at p , 0.025

(derived from the nonparametric bootstrap described

in section 2). The return period of the observed

Loire precipitation is about 40 years in April–June

(23–62 years). In this model the probability in-

creased by a factor 1.2 (0.8–2.4), which is not sig-

nificantly different from no change.

Repeating the analysis for the historicalNat, we find

no trend: a is compatible with zero when fitting Eq. (1).

This gives risk ratios RR 5 0.95 (0.5–2.2) on the Seine

and 1.1 (0.5–1.7) on the Loire. This shows that the nat-

ural forcings and SST patterns have not had a large in-

fluence on the trend over this period. The return period

is constant and 370 years (160–1000 years) for the Seine

and 73 years (50–200 years) for the Loire. Comparing

the historical and historicalNat return periods in the

current climate, we conclude that the probability has

increased by a factor of 2.0 over the Seine basin owing to

anthropogenic emissions (0.7–5.0), which is not signifi-

cantly different from no change at p , 0.05. Over the

Loire basin the factor is 1.1 (0.6–3.1), also not signifi-

cantly different from no change at p, 0.05. However, as

the best estimates of theRR in the historicalNat runs are

very close to one, we argue that the (just not significant)

trend is mostly due to anthropogenic emissions.

b. EC-Earth ensemble

EC-Earth 2.3 is a coupled general circulation model

(Hazeleger et al. 2010). We used 16 experiments cov-

ering 1860–2100 of this EC-Earth model using the

CMIP5 protocol (Taylor et al. 2011), historical forcings

up to 2005, and RCP 8.5 afterward (the different sce-

narios are very close up to about 2030; Kirtman et al.

2013). The resolution of the model is T159, which is

about 150 km. This relatively coarse resolution means

that the Seine and Loire River basins are only six and

nine grid boxes, respectively.

The EC-Earth runs for the Seine and Loire strongly

overestimate the mean precipitation and underesti-

mate the skewness, and therefore also overestimate the

location parameter m in the GEV fit. As the scale
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parameter s is on the low side, the distribution cannot

be scaled to compensate for this bias (see Tables 2 and 3

for the parameters).

For this reason, we do not trust the model results for

our two specific domains and time scales. We therefore

did not use the EC-Earth model for these events.

c. Weather@home

We use the HadRM3P regional model at 50-km

resolution over Europe embedded in a one-way nest-

ing in the atmosphere-only global circulation model

HadAM3P in the distributed computing framework

weather@home (Massey et al. 2015). Three different

experiments are used for the analysis: 1) climatology for

the period 1986–2014 with observed atmospheric forc-

ings and observed SSTs (historicalClim or CLIM), 2)

actual experiment with observed atmospheric forcings

and observed SSTs for 2014 and 2015 (historical or

ACT), and 3) natural experiment with preindustrial

forcings and counterfactual SSTs for 2014 and 2015

(historicalNat or NAT). The actual simulations use

current greenhouse gas (GHG) and aerosol concentra-

tions and observed SSTs and sea–ice extent from the

Operational Sea Surface Temperature and Sea Ice

Analysis (OSTIA) dataset (Donlon et al. 2012). The

natural simulations use preindustrial levels of GHGs,

multiple anthropogenic warming patterns subtracted

from the OSTIA SSTs (as per Schaller et al. 2016), and

the maximum observed sea–ice extent in the OSTIA

dataset. The climatology serves as a reference dataset

for actual simulations and uses OSTIA SSTs.

Different 1-yr-long simulations were produced by

varying the initial conditions. Forty starting conditions

from previous simulations were used in each scenario,

and different initial condition perturbations were ap-

plied to the potential temperature to obtain thousands

of unique simulations of possible weather. The ensemble

size is 200 members per year in the CLIM experiments

and 1100 (2200) in ACT and 3000 (4700) in NAT for

2014 (2015). We estimate the maximum 3-day precipi-

tation in simulations of April–June.

The availability of large ensembles has always been

the advantage of the weather@home approach to attri-

bution (e.g., Otto et al. 2012; Schaller et al. 2014; Uhe

et al. 2016). This makes it possible to estimate changes in

return periods withoutmaking assumptions on the shape

of the distribution or how it depends on the anthropo-

genic forcing [the assumptions underlying Eq. (1)].

Comparing the statistics of weather@home simulations

to observations, we note that the magnitude of the

3-day running mean maximum in April–June is under-

estimated by HadRM3P. At the same time the magni-

tude of 1-day extremes compares well with observations.

We believe that this is a model artifact related to insuf-

ficient persistence probably in the driving model rather

than HadRM3P itself. While the blocking frequency for

high pressure systems in HadAM3P compares well with

observations (Mitchell et al. 2017), the persistence of

FIG. 6. As in Fig. 4, but for the historical run of theHadGEM3-AN216model. The 2016 value (horizontal line) has been scaled up to agree

with the model bias.
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summer precipitation has not been assessed yet. Rather

than bias correcting the magnitude, we use the best

estimate for the observed return period as the event

definition to determine the RR in weather@home. This

has the same effect as correcting the bias but avoids

manipulating the data and potentially destroying the

physical consistency of the ensemble (Sippel et al. 2016).

Over the Seine River basin, weather@home shows an

increase in 3-day mean extreme precipitation from the

experiments for 2014–15 with only natural forcings

(NAT) to the experiments with all forcings (ACT, see

Fig. 7). Comparing the two experiments at the best es-

timate of the return period from observations, 370 years,

we conclude that the probability of an extreme rainfall

event such as observed occurring has increased by a

factor of 2.0 over the Seine basin (0.6–5; Fig. 7a, not

significantly different from no change). Over the Loire

River basin, we find a RR of 1.8 (1.2–2.7; Fig. 7b, sig-

nificant at p , 0.05 based on the 73-yr return period.

Note that the similarity of the curves in Fig. 7 and in

the other figures justifies the assumptions made in the

other analyses. The first is that the distributions are

described well by a GEV (also verified in each plot by

the quality of the fit to the data points). The second one,

which can only be checked here, is that this GEV scales

with global warming. There are no indications that

the difference between the red and blue curves in Fig. 7

is different from the other model analyses (Figs. 4, 6, 8)

beyond the uncertainties indicated by the 95% error

bars.

d. RACMO–EC-Earth ensemble

We use a regional downscaling of the 16 member

EC-Earth 2.3 ensemble over western Europe using the

RCMKNMI-RACMO2 (VanMeijgaard et al. 2008; van

Meijgaard et al. 2012). RACMO2 is run 16 times at a

resolution of 0.118(12 km) for the period 1950–2100,

using initial conditions and boundaries derived from

the corresponding EC-Earth members. The RACMO2–

EC-Earth ensemble members only differ because of

internal variability. Thus, for the period 1950–2015 the

ensemble provides 16 3 66 years of high-resolution

data. Although this model cannot yet resolve thunder-

storms, it is expected that, owing to the relatively high

resolution, it reproduces small-scale extremes better

than the ’150-km EC-Earth ensemble, the ’60-km

HadGEM3-A ensemble, and the 50-km HadRM3P

weather@home ensemble (Prein et al. 2015).

The GEV fit parameters for the Seine are compatible

with the fit to the observations (Tables 2, 3) within the

2s uncertainties, so we accept themodel for this analysis

and do not apply a bias correction. In the Loire region

the model results are just significantly different, about

5% lower than the observed ones in both m and s, so we

accept the model also for this and apply a small, multi-

plicative bias correction.

The RACMO ensemble gives a return period in the

current climate of 350 years (180–1500 years; see Fig. 8).

The probability of an event like the observed one in-

creases with a factor of 2.0 (1.3–4.9), which is different

from no change at p , 0.01. On the Loire, the return

period is about 100 years (60–180 years) and the RR is

1.8 (1.3–3.2), again very significantly different from no

change (p , 0.01).

e. EURO-CORDEX ensemble

The multimodel EURO-CORDEX ensemble (Jacob

et al. 2014) was designed to provide a coordinated set

FIG. 7. Return periods for 3-day mean precipitation in April–June 2014 and 2015 from HadRM3P-EU for the

(a) Seine and (b) Loire River basins. Red dots are return periods for current conditions (ACT) with the horizontal

lines denoting 95% confidence intervals, blue for counterfactual conditions (NAT), and black denotes climato-

logical conditions (CLIM) for the 1986–2014 baseline period.No bias correction has been applied (see text), and the

vertical gray lines indicate the range of return times from the observations.
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of climate projections at a relatively high resolution

(12 km) over Europe and part of the North Atlantic,

similar to the RACMO ensemble but multimodel. We

used a subset of the EURO-CORDEX climate projec-

tions. The simulations all include the historical period

starting from dates between 1950 and 1971. We used

nine runs using historical forcings up to 2005 and

the RCP 8.5 scenario 2006–15. Up to 2030 the RCP sce-

narios do not diverge noticeably (Kirtman et al. 2013).

The runs are CNRM-CM5 r1i1p1/SMHI-RCA4 (1970–

2015), EC-EARTH r12i1p1/SMHI-RCA4 (1970–2015),

EC-EARTH r1i1p1/KNMI-RACMO22E (1950–2015),

EC-EARTH r3i1p1/DMI-HIRHAM5 (1951–2015),

IPSL-CM5A-MR r1i1p1/IPSL-INERIS-WRF331F (1951–

2015), IPSL-CM5A-MR r1i1p1/SMHI-RCA4 (1970–

2015), HadGEM2-ES r1i1p1/SMHI-RCA4 (1971–2015),

MPI-ESM-LR r1i1p1/MPI-CSC-REMO2009 (1950–

2015), and MPI-ESM-LR r1i1p1/SMHI-RCA4 (1971–

2015). These all have different biases in the annual

maximum of 3-day mean precipitation averaged over

the river basins. These are corrected to first order by a

simple scaling to a common mean, for which the mean

of all simulations is taken. Note that the common driving

GCMs and RCMs imply that these experiments are

not all independent. The same moving block procedure

employed for the station data found that there are only

4–5 degrees of freedom in these nine ensemble mem-

bers. The uncertainties take this into account as detailed

in section 2.

The distributions of the annual maximum of April–

June 3-day mean basin-average precipitation over the

Seine and Loire have shapes that resemble the observed

distributions well enough after the multiplicative bias

correction. For the Seine we find a return period of

about 1000 years (.250 years) with an RR of 1.6 (0.5–

4.9; see Fig. 9). Although positive, this is not significantly

different from no change. For the Loire basin the return

period is around 60 years (36–130 years) with an RR of

1.9 (1.1–3.6), which is significantly different from no

change at p , 0.05.

5. SST influence on precipitation

Since a smaller ensemble of weather@home HadAM3P

global simulations is available for May 2016 [seasonal

forecast SSTs from March applied according to the

method described in Haustein et al. (2016)], we are able

to diagnose the potential large-scale dynamic contribu-

tion that current SSTs might have had on the European

floods, such as a lagged effect of the strong 2015/16

El Niño event. Modeled monthly zonal 200-hPa wind

anomaly data (w.r.t. 1986–2014) from 200 ACT simu-

lations are used for that purpose. The result can then

be contrasted with the change in risk due to thermody-

namically driven, warming- related modifications of

the background atmosphere. Based on the results with

May 2016 SSTs, we found no significant large-scale

contribution of anomalous SST patterns to circulation

FIG. 8. As in Fig. 4, but for the RACMO data. The observed value (horizontal line) for the Loire has been scaled down by 5% to

compensate for the model bias.
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anomalies over Europe. In other words, the zonal

wind anomalies at 200 hPa do not indicate that the

large-scale flow over Europe was different compared to

the climatological mean (1986–2014) in the model.

However, this does not mean that there was no case-

specific contribution, as summer circulation anomalies

are fairly weak in general and extreme weather is

usually driven by other factors, such as mesoscale

convection-triggered but rather small cutoff lows. In

fact, the weather@home CLIM experiment (black dots

in Fig. 7) does suggest a strong role for case-specific

dynamic anomalies in the case of the Seine event (less

so for the Loire) as intensities for heavier rainfall

events are lower in CLIM than even in NAT (for 2014/

15). We did not investigate the root cause for that

outcome, but note two known effects. First, long-term

observations show on average a wetter spring after an

El Niño (van Oldenborgh et al. 2000) and higher Seine

runoff (r’ 0.4 between April–June runoff at Paris and

2-month-lagged Niño-3.4). The positive SST in the

ENSO region during spring 2015 (developing El Niño)
could have contributed to the offset between current

SST conditions and climatology. Second, North At-

lantic SSTs have been connected to the decadal vari-

ability in French river runoff (Boé and Habets 2014).

These were similar in all three years. Therefore, our

main weather@home results based on simulations with

2014/15 SSTs should not give completely different an-

swers for 2016 as far as the RR and the dynamic fea-

tures are concerned.

The ENSO state in 2016 should increase the likeli-

hood of wet extremes even more than in 2015, so we

conclude on the basis of these weather@home results

and previous investigations that specific SST patterns,

notably El Niño and the Atlantic Ocean, probably in-

creased the risk of flooding in May 2016.

While specific SST patterns in 2015/16 may have

influenced the risk of the flooding in May 2016, they

cannot explain the existence of a trend in risk. Our

results show that climate change is responsible for

the trend.

6. Synthesis, discussion, and conclusions

a. Return period

Major floods on the SeineRiver are rare this time of the

year.Although the overall return timeof the flood crest at

Paris was about 20 years, only two late spring/summer

floods have been recorded there in over 500 years before

2016. We computed that a 3-day rainfall event like the

one preceding this flood has a return period of a few

hundred years in April–June in the Seine basin. The

maximum 3-day sum of precipitation averaged over the

Loire basin in April–June 2016 has a return period of

roughly 20 years. These statements hold for the data

that were originally used in the rapid analysis, as well as

for the new E-OBS 14.0 data that were used for the

current paper.

A summary of the return periods of the 3-day rainfall

event can be found in Table 4. For the Seine basin the

FIG. 9. As in Fig. 4, but for 3-day means in the CORDEX data.
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return period could only be estimated from observations

fitted to a Gumbel distribution: 260 years (.60 years).

Themodels indicate a return period of at least 100 years,

but probably as high as hundreds of years. In the Loire

basin the return period was slightly less extreme, al-

though the best estimate from observations is still

20 years. The lowest estimate from models is 42 years.

Note that the model-estimated return periods are not

independent of the observations, as the bias correction

was based on the same observations as the ones from

which the return period was estimated.

Because of the relatively high return period compared

to the length of the observed time series, the un-

certainties on the return period are quite large. In the

near-real-time analysis the return period for the Seine

was estimated to be about 180 years (50–3000 years),

whereas it is now about 260 years (60–6000 years). For

the Loire this was about 35 years (10–300 years),

whereas it is now about 20 years (7–170 years). These

results are compatible within the large uncertainties.

b. Attribution

The observational records available to us are too short

to establish a trend over the last 65 years. We considered

five ensembles of climate model experiments to address

the question whether the probability of these kinds of

events has changed due to anthropogenic emissions of

greenhouse gases and aerosols. One relatively coarse-

resolution model (EC-Earth 2.3) was not realistic enough

for this analysis. To compare the risk ratios from the trend

analyses over 1960–2016 with the difference between

preindustrial and current conditions, or current condi-

tions without and with anthropogenic forcings, we need

to convert the 1960–2016 increase to an estimate of the

increase due to anthropogenic forcings. As described in

section 2, we do this by applying a scaling factor, assuming

that the logarithmof the risk ratio depends linearly on the

global mean temperature.

The summary of the risk ratios is given in Table 5. The

uncertainty margins on the different model results only

include natural variability. The variability between the

different models is less than expected on the basis of

this natural variability (x2/dof , 1), so it is appropriate

to use a weighted average with no inflation on the un-

certainty range (see section 2). A synthesis of the results

for the Seine and the Loire is shown in Fig. 10.

For the Seine, themodel spread is well within the range

of natural variability (see Fig. 10a). As detailed in section

2, we use a weighted average of the five results and add

the uncertainties in quadrature to obtain the combined

result. While the single model results and especially the

result from observations have large error margins, com-

bining the risk ratios reduces the error margins and leads

to a trend that is significant. The best estimate of the

weighted average of the risk ratio between 1880 and 2016

is 2.2, with 95% uncertainty margins ranging from 1.4 to

3.8. This means that we find a significant trend toward

more precipitation in the Seine basin for 3-day events

similar to or larger than experienced in May/June 2016.

For the Loire, we follow the same procedure as for the

synthesis of the RR values of the Seine (see Fig. 10b).

The best estimate of the weighted average of the risk

ratio between 1880 and 2016 is 1.9, with 95% uncertainty

margins ranging from1.5 to 2.6. Thismeans that, due to the

TABLE 5. Summary of the risk ratios found with the different

methods, for the two regions and for all used observations and

models. Numbers show the best estimate of the GEV fits (Gumbel

for observations) and the 95%CIs (in parentheses). The values for

HadGEM3-A Nat correspond to a trend in the preindustrial run.

1960–2016

Preindustrial

to 2016

Seine

E-OBS 14.0 2.1 (0.3–14) 2.4 (0.21–23)

HadGEM3-A 1.9 (1.1–3.4) 2.3 (0.6–7.1)

HadGEM3-A Nat 0.95 (0.5–2.2)

HadGEM3-A

Combined

2.0 (0.7–5.0) 2.3 (0.7–7.1)

weather@home 2.1 (0.6–5.0)

RACMO 2.0 (1.3–4.9) 2.3 (1.4–7.0)

CORDEX 1.6 (0.5–4.9) 1.7 (0.4–7.0)

Loire

E-OBS 14.0 5.0 (0.7–30) 6.9 (0.4–62)

HadGEM3-A 1.2 (0.8–2.4) 1.2 (0.8–2.9)

HadGEM3-A Nat 1.1 (0.5–1.7)

HadGEM3-A

Combined

1.1 (0.6–3.1) 1.1 (0.5–4.0)

weather@home 1.8 (1.2–2.7)

RACMO 1.8 (1.3–3.2) 2.1 (1.4–4.1)

CORDEX 2.0 (1.1–3.6) 2.4 (1.3–4.8)

TABLE 4. Summary of the return periods of the event in 2016

(except for HadGEM3-A Nat, which is for preindustrial) for the

two regions and for all used observations and models. Numbers

show the best estimate of the GEV fits (Gumbel for observations)

and the 95% CIs (in parentheses).

Return period

Seine

E-OBS 14.0 260 (60–6000)

HadGEM3-A 190 (100–500)

HadGEM3-A Nat 370 (160–1000)

RACMO 350 (180–1500)

CORDEX 960 (250–15000)

Loire

E-OBS 14.0 20 (7–170)

HadGEM3-A 42 (23–62)

HadGEM3-A Nat 73 (50–200)

RACMO 96 (61–180)

CORDEX 62 (36–130)
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combination of the results, we also find a significant trend

to more precipitation in the Loire basin for 3-day events

similar to or larger than experienced in May/June 2016.

We can attribute the increase in probability for 3-day

averaged precipitation in April–June in the Seine and

Loire basins as high as observed in 2016 or higher to

anthropogenic climate change using two lines of argu-

ment. First, this increase in likelihood is equivalent to an

increase in intensity of 6%–7% for a constant return

period. This value is in line with the increase in water

vapor expected due to the Clausius–Clapeyron relation

under a constant relative humidity and a heating of

slightly under 18C of the Mediterranean and subtropical

Atlantic Ocean that are potential sources of the mois-

ture here, so the trend in precipitation is related to the

trend in SSTs that has been attributed to anthropogenic

emissions. More directly, the two analyses that explicitly

investigate the difference between natural and natural1
anthropogenic forcings give results that are compatible

with all the others and together are significantly differ-

ent from no change, whereas the natural-only runs show

no trend. Together this confirms that the trend is to a

large extent due to anthropogenic forcings.

The original results in van Oldenborgh et al. (2016)

were based on initial precipitation estimates that turned

out to be about 10% lower than the area-averaged value

that became available later. However, the changes in in-

tensity and probability are not sensitive to such a change

in the threshold and the results of this analysis are very

similar. In the original results the risk ratio for the Seine

basin was estimated to be 2.3 (.1.6), whereas the current

analysis gives 2.2 (1.4–3.8). For theLoire basin the original

estimate was 2.0 (.1.4), whereas it is now 1.9 (1.5–2.6).

While this study is not a general proof that all rapid

analyses are now ‘‘valid’’ or free of error, it adds to the

weight of evidence that rapid analyses can be acceptable

and useful. However, in general, as for this case, we

expect the trends in intensity or probability of similar

events to be relatively insensitive to small changes in the

observed event magnitude (threshold).

An unanswered question at the moment is whether a

change in the dynamics played a role: have the odds of a

stationary cutoff low over this region increased? The

methods to answer this question have only been recently

developed (Vautard et al. 2016) and have not yet been

applied to this event.
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