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Abstract 

In this paper, we aim to present a unified mathematical modelling and description of the kinetics 

of magnetic nanoparticles phase condensation (conducting to the appearance of bulk elongated 

aggregates) under homogeneous permanent or alternating magnetic field. For such case, the 

aggregate growth rate usually takes the form 𝑑𝑉/𝑑𝑡 = 𝐺(𝑉)∆(𝑡), with V and t being the 

aggregate’s volume and time, respectively, ∆(𝑡) – the supersaturation of the nanoparticle 

suspension, and with the function 𝐺(𝑉) depending on the precise configuration of the applied field. 

The Liouville equation for the aggregate size distribution function is solved by the method of 

characteristics. The solution is obtained in parametric form for an arbitrary function 𝐺(𝑉), 

providing a general framework for any type of the applied magnetic field. In the particular case of 

low-frequency rotating magnetic field (𝐺(𝑉)~𝑉2/3), an explicit expression of the distribution 

function is obtained., while the dimensionless average aggregate volume 〈𝑉〉 is found by the 

method of moments allowing a complete decoupling of the system of equations for the statistical 

moments 〈𝑉𝑛〉  of the distribution function. Numerical examples are provided for the cases of 

permanent and low- or medium frequency rotating fields. It is shown that in all cases, the average 

volume 〈𝑉〉 only slightly depends on the relative width of the initial size distribution. Nevertheless, 

at any times, 𝑡 > 0, the size distribution shows a significant spreading around the average value 

〈𝑉〉 which increases progressively with time and achieves a final plateau at long times. This model 

can be helpful for several biomedical or environmental applications of magnetic nanoparticles, in 

which the nanoparticle suspension undergoes a field-induced phase condensation. 
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I. Introduction 

 

Magnetic nanoparticles are gaining a growing interest as a versatile nanomaterial for 

biomedical and environmental applications [1, 2]. In many of these applications, magnetic 

nanoparticles are subjected to aggregation induced by the applied external magnetic field due to 

dipole-dipole interactions. Such aggregation is often treated as a condensation phase transition or 

phase separation where initially homogeneous colloid separates into a concentrated phase (usually 

present in form of needle-like aggregates) and a dilute phase representing a homogeneous 

suspending medium for aggregates [3]. The typical aggregation timescale has often to be compared 

to the characteristic timescales of the given application. Kinetics of field-induced aggregation 

becomes therefore very important for a successful realization of the application. Since various 

magnetic field configurations are used in different applications (permanent, oscillatory, rotating 

magnetic fields), it is very useful to find a unified description of the kinetics of nanoparticle 

aggregation independent of the field configuration and applicable to both permanent and 

alternating magnetic fields. To the best of our knowledge, such generalized theory of kinetics of 

field-induced aggregation (or phase condensation) does not exist. Theoretical [4-6] and computer 

[7-9] models of the field-induced phase condensation and its kinetics have been mainly developed 

for the permanent magnetic field. However, the kinetics of aggregation has never been treated for 

the practically important case of rotating magnetic field, which makes the aggregates rotate [10, 

11]; this is expected to change dramatically the law of the aggregate growth. 

In particular, in a recently proposed novel treatment of brain strokes and thrombosis, the 

magnetic nanoparticles are injected to the blocked vessel to activate recirculation of the blood flow 

near the blood clots. Its goal is to enhance the drug transport to the clot allowing its faster 

dissolution [12]. This recirculation is achieved by the application of rotating magnetic fields, 

which first induce aggregation of nanoparticles to micron-sized needle-like aggregates. Then the 

rotational motion of these aggregates induces recirculation flows in the blood vessel. When the 

applied field is switched off, the nanoparticle aggregates are destroyed by thermal motion and 

convective fluxes, and biocompatible nanoparticles are slowly eliminated from the human body 

by liver macrophages [13]. The same mechanism is involved in the elimination of magnetic 

nanoparticles applied as contrast agents in magnetic resonance imaging [14]. The timescale of 

field-induced aggregation should be much smaller than the typical time of the medical 

intervention. In this context, the kinetics of nanoparticle aggregation under rotating magnetic fields 

plays a decisive role in the success of brain stroke treatment. 

This paper is focused on the development of the unified mathematical modelling of the 

kinetics of field-induced phase condensation in ferrfoluids under a spatially homogeneous 

permanent or alternating magnetic field of an arbitrary configuration (harmonic or non-harmonic 

oscillatory, rotating with circular or non-circular polarization, etc.). This description is given under 

two following limits: (a) very fast initial nucleation stage allowing the appearance of all the nuclei 

at very small times; (b) the aggregation timescale is large enough with respect to the characteristic 

period of the magnetic field. Under these limits, the unified modelling of the kinetics becomes 

possible since, in most of the relevant cases, the aggregate growth rate 𝑑𝑉/𝑑𝑡 can be presented as 

a product of some function 𝐺(𝑉) of the aggregate volume by another function Δ(𝑡) of time. The 

precise details of the aggregation mechanism are contained in the function 𝐺(𝑉), which depends 

on the magnetic field configuration, while the second function Δ(𝑡) stands for the suspension 

supersaturation. For definiteness, two distinct cases of the permanent (with 𝐺(𝑉) ∝ 𝑉3/7) and 

rotating (with 𝐺(𝑉) ∝ 𝑉2/3) magnetic fields will be considered. The distribution function of the 

aggregate volume, as well as evolution of the average volume with time, will be calculated for 

these two particular cases as for a general case of an arbitrary function 𝐺(𝑉). 
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II. Liouville equation solution for arbitrary function 𝐺(𝑉) 

 

In this section, we propose a mathematical model of the evolution of the dense aggregates, 

consisting of many magnetic nanoparticles, under a homogeneous either permanent or 

homogeneous alternating magnetic field. The intensity of these magnetic fields may be an arbitrary 

function of time, under the restriction that the period of the lowest harmonics of the magnetic field 

is much smaller than the aggregation timescale. In many experiments, straight elongated 

aggregates with a shape assimilated to prolate ellipsoids have been reported under permanent [3], 

rotating [10] or oscillating [3] magnetic fields, at least in a low-frequency range below a critical 

frequency at which the straight elongated shape becomes unstable [16]. Thus, we consider dense 

elongated aggregates that, depending on the magnetic field configuration, can either be stationary 

or perform an angular motion (rotation as an example) under the action of this field. The aggregates 

are illustrated in Fig.1. 

 

 
Fig.1. Sketch of the aggregates, which can either be stationary or perform an angular motion depending on the applied 

magnetic field. Dots around the aggregates stand for individual magnetic particles. 

 

All real magnetic colloids (ferrofluids) are polydisperse systems, very often with a wide 

distribution over particles sizes. As a rule they include small particles, not able to aggregate under 

the magnetic forces, as well as  relatively large particles with the energy of magnetic interaction 

large enough to provoke their aggregation in external magnetic field.  Here we suppose that the 

aggregates appear and grow due to absorbtion of the large particles.   

To prevent irreversible coagulation of the particles under the colloidal attractive forces, 

they are covered with special surfactant or ionic layers. However, these layers do not always 

completely screen the colloidal attractive forces and the particles, at the stage of the ferrofluid 

synthesis, form some so-called primary agglomerates (sometimes called flocculi), consisting of 

several or several tens of nanoparticles. That is why, the onset of the ferrofluid aggregation is 

determined by many factors – by the size distribution of the particles, the presence of the primary 

agglomerates, etc. The biggest particles or the biggest primary agglomerates can serve as centres 

of the heterogeneous nucleation of the main part of the particles. The rate of the primary nuclei 

appearance can be very high; the characteristic time of the nucleation is usually below the ability 

of detection of the process [17]. Therefore, the most probable scenario of the kinetics of the phase 

separation is the following. Once the external magnetic field is applied, for practically negligible 

time, the nuclei of the dense phase appear on some condensation centres. After that, due to the 
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magnetic interparticle interaction, the nuclei absorb the free particles from the main part of the 

ferrofluid and grow; supersaturation of the system decreases. These growing nuclei will be 

hereinafter called aggregates. At the final stage of the phase condensation, the aggregates 

amalgamate because of magnetic interaction between them. 

In this work, we will consider the main second part of the phase condensation, when the 

aggregates grow due to capture of free nanoparticles from the surrounding dilute phase. New nuclei 

no longer appear during this stage, while the coalescence of aggregates under attractive dipolar 

interaction is still negligible [17], such that the number of aggregates N per unit volume will be 

considered to be constant with time. Because of the size polydispersity of the nucleation centres, 

the aggregates are expected to have unequal size. It is convenient to describe the aggregate size 

distribution at a given moment of time t by a distribution function (probability density) 𝐹(𝑉, 𝑡) 

over the aggregate volumes V. After the very fast nucleation stage, the aggregate size usually 

achieve a few microns. The effect of thermal fluctuations on the rate of volume growth is expected 

to be negligible for such supercritical aggregates. That is why, as commonly admitted in the theory 

of phase transitions, the distribution function 𝐹(𝑉, 𝑡) of the aggregate size obeys the classical 

Liouville equation free of any diffusive terms [18]: 

 
𝜕𝐹

𝜕𝑡
+

𝜕

𝜕𝑉 
(𝑉̇𝐹) = 0,          (1) 

with the normalization condition 

∫ 𝐹(𝑉, 𝑡)𝑑𝑉 = 1
∞

0
          (2) 

and the initial condition 

𝐹(𝑉, 0) = 𝐹0(𝑉)          (3) 

relevant for the considered case of constant number density N of aggregates with the initial size 

distribution 𝐹0(𝑉) in the issue of very short heterogeneous nucleation stage. In the present work, 

this initial distribution is supposed to be known, while in practice it can either be measured in 

experiments or modelled through a detailed consideration of the heterogeneous nucleation stage.  

The aggregate growth rate 𝑑𝑉/𝑑𝑡 depends on both the aggregate volume V and time t. 

However, in most physically relevant cases, separation of variables takes place and the function 

𝑑𝑉/𝑑𝑡   takes the following general form: 

𝑉̇(𝑉, 𝑡) = 𝐺(𝑉)∆(𝑡),  𝑉̇ ≡
𝑑𝑉

𝑑𝑡
        (4) 

where Δ(𝑡) = 𝜑(𝑡) − 𝜑0 is the ferrofluid supersaturation, 𝜑(𝑡) is the mean volume concentration 

of the free particles in the inter-aggregate space (in the dilute phase) and 𝜑0 is the concentration 

of the nanoparticles in the dilute phase when the equilibrium between the dilute and concentrated 

(inside the aggregate) phases is achieved. The function 𝐺(𝑉) depends on the intensity, frequency 

and shape of the temporal dependency of the magnetic field. For example, in the case of the 

permanent magnetic field, 𝐺(𝑉) ∝ 𝑉3/7 [19], while in the case of the circularly polarized rotating 

field, 𝐺(𝑉) ∝ 𝑉2/3 at low frequency and can show an intermediate behaviour between 𝑉3/7 and 

𝑉2/3 at higher frequencies, as shown in the Appendix. 

The size distribution must also respect the volume conservation condition that can be 

written in terms of the supersaturation as follows [17, 19]: 

∆(𝑡) = ∆0 − 𝑁𝜑𝑖〈𝑉〉,          (5a) 

〈𝑉〉 = ∫ 𝐹(𝑉, 𝑡)𝑉𝑑𝑉
∞

0
,         (5b) 
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where 𝜑𝑖 is the volume fraction of nanoparticles inside the aggregates and 〈𝑉〉 is the average 

aggregate volume at a given time t.  

Equation (5a) allows us to determine the maximal average volume of the aggregates at the 

end of the aggregate growth stage when the supersaturation tends to zero: 〈𝑉〉𝑚𝑎𝑥 = ∆0/(𝑁𝜑𝑖). It 

is thus reasonable to scale the aggregate volume by the maximal average volume and introduce 

the dimensionless aggregate volume as 𝑣 = 𝑉/〈𝑉〉𝑚𝑎𝑥. Furthermore, the function 𝐺(𝑉) has a 

dimension of the aggregate growth rate (m3/s) and can be presented as 

𝐺(𝑉) ≡ 𝜅〈𝑉〉𝑚𝑎𝑥𝑔(𝑣),  

with  being some kinetic constant having a dimension of inverse time (s-1), and 𝑔(𝑣) – a function 

of the dimensionless volume v that can in principle depend on 〈𝑉〉𝑚𝑎𝑥. With this in mind, let us 

introduce the following dimensionless quantities: 𝑓 = 〈𝑉〉𝑚𝑎𝑥𝐹 – the dimensionless distribution 

function; 𝜏 = Δ0𝜅𝑡 – the dimensionless time and 𝜔 = Δ/Δ0 – the reduced supersaturation. The 

initial value problem (1) – (5) for the aggregate size distribution can now be written in the 

following dimensionless form: 

𝜕𝑓

𝜕𝜏
+ 𝜔(𝜏)

𝜕

𝜕𝑣 
(𝑔(𝑣)𝑓) = 0,          (6a) 

∫ 𝑓(𝑣, 𝜏)𝑑𝑣 = 1
∞

0
,          (6b) 

𝑓(𝑣, 0) = 𝑓0(𝑣),          (6c) 

𝜔(𝜏) = 1 − 〈𝑣〉 = 1 − ∫ 𝑓(𝑣, 𝜏)𝑣𝑑𝑣
∞

0
.       (6d) 

Introducing new functions:  

𝑈(𝑣, 𝜏) = 𝑔(𝑣)𝑓(𝑣, 𝜏),         (7a) 

𝜃(𝜏) = ∫ 𝜔(𝜏′)
𝜏

0
𝑑𝜏′,           (7b) 

𝑦(𝑣) = ∫
𝑑𝑣′

𝑔(𝑣′)

𝑣

0
,           (7c) 

we come to the problem with the initial condition as follows: 

𝜕𝑈

𝜕𝛩
+

𝜕𝑈

𝜕𝑦
= 0,    𝑈(𝑦, 0) = 𝑔(𝑣(𝑦))𝑓0(𝑣(𝑦)),       (8) 

where 𝑣(𝑦) is the inverse function of 𝑦(𝑣) defined in (7c). 

By using the methods of characteristics, one can get the solution of the initial value problem 

(8) as 

𝑈(𝑦, 𝜃) = 𝑔(𝑣(𝑦 − 𝜃))𝑓0(𝑣(𝑦 − 𝜃))𝐻(𝑦 − 𝜃),      (9)  

where 𝐻(𝑥) is the Heaviside step function, introduced to avoid negative values of the argument 

(dimensionless volume) of the initial size distribution 𝑓0(𝑣). Let us denote 𝑣(𝑦 − 𝜃) = 𝑣∗(𝑦, 𝜃). 

Since 𝑣(𝑦) is the inverse function of 𝑦(𝑣) than 𝑣(𝑦 − 𝜃) is expected to be an inverse function of 

𝑦(𝑉) − 𝜃(𝜏). This implies 𝑦(𝑣∗) = 𝑦(𝑣) − 𝜃(𝜏). Using the definition of y [Eq. (7c)], we get: 

𝜃 = ∫
𝑑𝑣′

𝑔(𝑣′)

𝑣

𝑣∗ → 𝑣∗ = function(𝜃, 𝑣).       (10) 

With this new notation, the distribution function takes the following form in coordinates (v, ): 

𝑓(𝑣, 𝜃) =
1

𝑔(𝑣)
𝑈(𝑣, 𝜃) =

1

𝑔(𝑣)
𝑔(𝑣∗(𝑣, 𝜃))𝑓0(𝑣∗(𝑣, 𝜃))𝐻(𝑣∗(𝑣, 𝜃)),    (11)  
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where 𝑣∗(𝑣, 𝜃) is the solution of Eq. (10). From the solution (11), it follows that at a given 

equivalent time 𝜃, the dimensionless volume 𝑣 has a minimal non-zero value 𝑣𝑚𝑖𝑛 defined by the 

condition 𝑣∗(𝑣𝑚𝑖𝑛, 𝜃) = 0. Substituting this expression to Eq. (10), we get the following 

transcendental equation allowing finding the minimal volume as a function of 𝜃: 

𝜃 = ∫
𝑑𝑣′

𝑔(𝑣′)

𝑣𝑚𝑖𝑛

0
→ 𝑣𝑚𝑖𝑛 = function(𝜃).       (12) 

Before finding (), let us first find the average aggregate volume as a function of the unknown : 

〈𝑣〉 = ∫ 𝑓(𝑣, 𝜃)𝑣𝑑𝑣
∞

0
= ∫

𝑔(𝑣∗(𝑣,𝜃))𝑓0(𝑣∗(𝑣,𝜃))

𝑔(𝑣)
𝑣𝑑𝑣

∞

𝑣min(𝜃)
= function(𝜃).   (13) 

Then we use the volume conservation condition (6d), 𝜔(𝜏) = 𝑑𝜃/𝑑𝜏 = 1 − 〈𝑣〉, whose solution 

is trivial: 

𝜏(𝜃) = ∫
𝑑𝜃′

1−〈𝑣〉(𝜃′)

𝜃

0
.          (14) 

Thus, the average volume and the distribution function can be found in the function of time in 

parametric form by variation of the parameter . The main steps of such parametric calculation are 

summarized as follows: 

1) first, we find the minimal volume 𝑣𝑚𝑖𝑛(𝜃) by solving the transcendental equation (12); 

2) then, we find 𝑣∗(𝑣𝑚𝑖𝑛, 𝜃) by solving the transcendental equation (10); 

3) then we find, the average volume 〈𝑣〉(𝜃) and time 𝜏(𝜃) by Eqs. (13), (14); 

4) finally, we plot the distribution function 𝑓(𝑣, 𝜃) as a function of 𝑣 at different moments of 

time 𝜏(𝜃). 

This procedure can be applied to an arbitrary function g(v) depending on the magnetic field 

configuration. In the next two sections, we focus our attention on a specific form of the function 

𝑔(𝑣) = 𝑣2/3, relevant for rotating magnetic field and allowing more concise analytical solution 

for 𝑓(𝑣, 𝜃) and 𝜏(𝜃) (Sec. III) and finding the average volume 〈𝑣〉 by the method of moments 

without solving the Liouville equation (Sec. IV).  

III. Resolution of the Liouville equation for the particular case g(v)=v2/3 

The particular case 𝑔(𝑣) = 𝑣2/3 corresponds to the circularly polarized rotating magnetic 

field (see Appendix) and is important for the application of magnetic nanoparticles in magnetically 

assisted brain stroke treatment, as pointed out in Introduction. This case allows rather simple 

expressions for all unknown quantities, such as 𝑣𝑚𝑖𝑛 , 𝑣∗, 𝜃 and 𝑓(𝑣, 𝜃). Straightforward 

application of the calculation steps described at the end of Sec. II gives the following results: 

𝑣𝑚𝑖𝑛 = (
𝜃

3
)

3

,           (15a) 

𝑣∗ = (𝑣1/3 −
𝜃

3
)

3

,           (15b) 

〈𝑣〉 = ∫ 𝑣∗2/3𝑓0(𝑣∗)𝑣1/3𝑑𝑣
∞

𝑣min(𝜃)
= 3 ∫ 𝜉2𝑓0(𝜉3) (𝜉 +

𝜃

3
)

3

𝑑𝜉
∞

0
= 𝐴 + 𝐵𝜃 + 𝐶𝜃2 + 𝐷𝜃3 (15c) 

𝜏(𝜃) = ∫
𝑑𝜃′

1−[𝐴+𝐵𝜃′+𝐶𝜃′2+𝐷𝜃′3]

𝜃

0
,        (15d) 

𝑓(𝑣, 𝜃) = 𝑣−2/3 (𝑣1/3 −
𝜃

3
)

2

𝑓0 ((𝑣1/3 −
𝜃

3
)

3
) 𝐻 (𝑣1/3 −

𝜃

3
),    (15e)  
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𝐴 = 3 ∫ 𝜉5𝑓0(𝜉3)𝑑𝜉
∞

0
; 𝐵 = 3 ∫ 𝜉4𝑓0(𝜉3)𝑑𝜉

∞

0
; 𝐶 = ∫ 𝜉3𝑓0(𝜉3)𝑑𝜉

∞

0
; 𝐷 =

1

9
∫ 𝜉2𝑓0(𝜉3)𝑑𝜉

∞

0
, (15f) 

where we have made a change of variables 𝜉 ≡ 𝑣∗1/3 = 𝑣1/3 − 𝜃/3 when calculating the integral 

in (15c). The integral in (15d) can be evaluated numerically, while the numerical values of the 

coefficients A, B, C and D in (15f) will depend on the shape of the initial size distribution 𝑓0(𝑣). 

Numerical examples will be analyzed in Sec. V. 

The analysis shows that in the particular case of the Dirac delta initial distribution of the 

aggregate size 𝑓0(𝑣) = 𝛿(𝑣 − 𝑣0), i.e. all aggregates of the same initial volume 𝑣0, the size 

distribution remains monodisperse at any moment of time  𝜏 or 𝜃: 

𝑓(𝑣, 𝜃) = 𝛿(𝑣 − 𝑣1),          (16)  

with the aggregate volume 𝑣1 (the same for all aggregates) and the dimensionless time 𝜏 given by 

𝑣1 = (𝑣0
1/3 +

𝜃

3
)

3

; 𝜏(𝜃) = ∫
𝑑𝜃′

1−(𝑣0
1/3+𝜃′/3)

3

𝜃

0
,      (17)  

or, eliminating  from (17), we get the following explicit expression for the dimensionless time as 

function of the aggregate volume in this particular case of monodisperse size distribution: 

𝜏(𝑣1) = ∫
𝑑𝑣

𝑣
2
3(1−𝑣)

𝑣1

𝑣0
= 𝜓(𝑣1) − 𝜓(𝑣0);    𝜓(𝑥) = 31/2 atan

1+2𝑥1/3

31/2 +
1

2
ln

1+𝑥1/3+𝑥2/3

(1−𝑥1/3)
2   (18) 

The case of monodisperse aggregate size will be compared to the case of the polydisperse 

size distribution (with some initial distribution 𝑓0(𝑣) ≠ 𝛿(𝑣 − 𝑣0)) in Sec. V. 

 

IV. Method of moments for determination of the average volume in particular case 

g(v)=v2/3. 

In this section, we show that the special case g(v)=v2/3 admits a complete decoupling of the 

moments 〈𝑣𝑛〉 = ∫ 𝑣𝑛𝑓(𝑣)𝑑𝑣
∞

0
, 𝑛 =

1

3
,

2

3
, 1 of the distribution function 𝑓(𝑣, 𝜏) without any 

closure approximation. Thus, we do not need to solve the Liouville equation (6a) for the 

distribution function to find the average volume 〈𝑣〉. Such decoupling of moments is of particular 

interest for statistical physics and can generally provide faster computations as compared to the 

general method provided in Sec. III. 

First, in the considered case, g(v)=v2/3, the Liouville equation (6a) written in dimensionless 

variables takes the following form: 

𝜕𝑓

𝜕𝜏
+ 𝜔(𝜏)

𝜕

𝜕𝑣 
(𝑣2/3𝑓) = 0          (19) 

Then, multiplying both parts of Eq. (19) by 𝑣 and integrating over 𝑣, one gets: 

𝑑<𝑣>

𝑑𝜏
+ 𝜔 ∫ 𝑣

𝜕

𝜕𝑣
(𝑣2/3𝑓)

∞

0
𝑑𝑣 = 0. 

Integrating by parts, taking into account that 𝑓 = 0 at 𝑣 = 0 , 𝑣 → ∞, we come to the equation: 

𝑑〈𝑣〉

𝑑𝜏
= 𝜔 < 𝑣2/3 >,          (20) 

Similarly, multiplying Eq. (19) by 𝑣2/3 and by 𝑣1/3, and integrating over 𝑣, we get respectively: 
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𝑑〈𝑣2/3〉

𝑑𝜏
=

2

3
𝜔 < 𝑣1/3 >,         (21) 

𝑑<𝑣1/3>

𝑑𝜏
=

1

3
𝜔           (22)    

Along with the volume conservation equation (6d), implying 𝜔(𝜏) = 1 − 〈𝑣〉, equations 

(20) – (22) present a closed system of differential equations with respect to the moments < 𝑣 >

, < 𝑣2/3 >, < 𝑣1/3 >. Eliminating the moments < 𝑣2/3 > and < 𝑣 >, we arrive at a single 

differential equation as follows for the moment < 𝑣1/3 >: 

𝑑<𝑣1/3>

𝑑𝜏
=

1

3
[1 − (< 𝑣1/3 >3+ 3𝐶1 < 𝑣1/3 > +𝐶2)],     (23) 

where the integration constants C1 and C2 are found from the initial size distribution 𝑓0(𝑣) as 

follows: 

𝐶1 = 〈𝑣2/3〉0 − (〈𝑣1/3〉0)
2
, 𝐶2 = 〈𝑣〉0 + 2(〈𝑣1/3〉0)

3
− 3〈𝑣2/3〉0〈𝑣1/3〉0,   (24) 

with 〈𝑣𝑛〉0 = ∫ 𝑣𝑛𝑓0(𝑣)𝑑𝑣
∞

0
, 𝑛 =

1

3
,

2

3
, 1. 

The differential equation (23) allows expressing the moment < 𝑣1/3 > as an inverse 

function of the dimensionless time 𝜏, while the system (20)-(22) allows one to relate the average 

volume < 𝑣 > to < 𝑣1/3 >. Thus, the time dependence of the average volume can be written in 

the following parametric form using < 𝑣1/3 >≡ 𝑥 as a parameter:  

< 𝑣 > (𝑥) = 𝑥3 + 3𝐶1𝑥 + 𝐶2,        (25a) 

𝜏(𝑥) = 3 ∫
𝑑𝑥′

1−(𝑥′3+3𝐶1𝑥′+𝐶2)

𝑥

𝑥0
 , 𝑥0 = 〈𝑣1/3〉0.      (25b) 

It can be easily checked, that in particular case of monodisperse initial size distribution, 

𝑓0(𝑣) = 𝛿(𝑣 − 𝑣0), the constants 𝐶1 = 𝐶2 = 0, the size distribution remains monodisperse with 

time and given by Eq. (16), while the aggregate volume 𝑣1 (the same for all aggregates) is given 

by the inverse function of time provided in Eq. (18). 

V. Results 

For the sake of the definiteness, we apply our models developed in Secs. II-IV to the 

physically relevant case of initial log-normal distribution of aggregate sizes: 

𝑓0(𝑣) =
1

√2𝜋𝜎𝑣
𝑒𝑥𝑝 (−

(ln(
𝑣

〈𝑣〉0
)+

𝜎2

2
)

2

2𝜎2
) 𝐻(𝑣),       (26) 

where 〈𝑣〉0 is the initial dimensionless average aggregate volume and 𝜎 is a parameter 

characterizing the distribution width. 

Let us first analyze the evolution of the dimensionless average aggregate volume 〈𝑣〉 with 

dimensionless time  for the three following cases:  

(a) a permanent magnetic field with g(v)=v3/7 (as shown in [17, 19]) – the case labelled as “P”; 

(b) low frequency circularly polarized rotating magnetic field with g(v)=v2/3 (see Appendix) – 

the case labelled as “R1”; 

(c) moderate frequency circularly polarized magnetic field with 
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𝑔(𝑣) = [𝑎𝑣−2/3 + 𝑏𝑣−3/7]
−1

, 

where a and b – dimensionless constants (see Appendix) – the case labelled as “R2”.  

All cases are treated using the general methodology developed at the end of Sec. II, while 

it is checked that for the case R1 (g(v)=v2/3), the calculations using this methodology (applied in 

Sec. III for this case) and the method of moments (developed in Sec. IV) coincide. The 〈𝑣〉 versus 

 dependency is plotted in Fig. 2 for the three cases with the initial log-normal size distribution 

[Eq. (26)] characterized by 〈𝑣〉0 = 0.1 and 𝜎 = 1.5. The case R2 is calculated at a=b=1. 

 

Fig. 2. Dimensionless average aggregate volume 〈𝑣〉 as function of dimensionless time  for three different 

functions g(v) and initial log-normal size distribution with 〈𝑣〉0 = 0.1 and 𝜎 = 1.5. The case R2 is calculated for 

a=b=1. 

As is seen from this figure, the average aggregate volume gradually increases with time 

from its initial value 〈𝑣〉0 = 0.1 and asymptotically tends to unity at long times. Recalling that the 

dimensional volume 𝑉 has been normalized by the maximal average volume, 〈𝑉〉𝑚𝑎𝑥 =

∆0/(𝑁𝜑𝑖), this means that at long times the average dimensional volume 𝑉 tends to its maximal 

value when the ferrofluid supersaturation  (or ) tends to zero. We have to bear in mind that the 

coalescence of aggregates has been neglected at this stage, and in fact, our preliminary experiments 

show that coalescence is strongly hindered by hydrodynamic repulsion between aggregates in the 

case of rotating magnetic field, which makes the aggregate turn synchronously with the field. 

Analyzing the difference between the three plotted curves in Fig. 2, one could presume that the 

permanent magnetic field (curve “P”) provides a faster aggregation than the rotating one, while 

low-frequency rotating field (curve “R1”) ensures faster aggregation than medium-frequency 

rotating field (curve “R2”). We have to bear in mind however that the kinetic constant  

(introduced below Eq. (5)) can be essentially different for three considered cases implying 

different dimensional times 𝑡 = 𝜏/(Δ0𝜅) at the same dimensionless time . For example, in a 

permanent magnetic field, the kinetic constant is related to the inverse characteristic time of 

Brownian diffusion of a single nanoparticle. On the other hand, in a rotating field, the kinetic 

constant is expected to be a function of the field frequency while the convective transport of 

nanoparticles towards the aggregate is expected to be enhanced with increasing frequency leading 

to faster aggregation at a higher frequency. At this stage, we restrict our analysis to the 

dimensionless quantities and focus our attention to a general theoretical description of the solution 

of the kinetic problem. A deeper insight into the physical aspects related to precise dependence of 

the kinetic constant on the dimensional physical parameters (as magnetic field intensity, frequency, 

particle size, etc.) will be provided in future in comparison with experiments.   
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Let us now inspect the effect of the width  of the initial size distribution [Eq. (26)] on the 

average volume. The 〈𝑣〉 versus  dependency is plotted in Fig. 3 for the case R1 (g(v)=v2/3) for 

〈𝑣〉0 = 0.1 and three different values of , with =0 corresponding to the Dirac delta initial 

distribution admitting the analytical solution Eq. (18). 

 
Fig. 3. Dimensionless average aggregate volume 〈𝑣〉 as function of dimensionless time  for the R1-case and initial 

log-normal size distribution with 〈𝑣〉0 = 0.1 and three different values 𝜎 of the distribution width. 

As is seen from this figure, the curves are shifted to the right with increasing the initial 

distribution width ( parameter), indicating that the aggregation gets slower. However, the 

difference with the monodisperse distribution (Dirac delta with =0) remains really small even at 

a very wide initial distribution with =2. Such a difference can be on the order of errors related to 

different model assumptions and it seems reasonable to use simple analytical result [Eq. (18)] 

(derived for monodisperse distribution) for the average aggregate volume even in the case of wide 

initial size distribution. 

Having found a slight effect of the initial distribution width, it is now interesting to inspect 

what happens with the size distribution with time. The distribution function f(v) of the 

dimensionless aggregate volume is plotted in Fig. 4 for the R1-case with 〈𝑣〉0 = 0.1, =1.5 and 

three different dimensionless times, including the initial moment =0 with a given initial 

distribution f0(v) [Eq. (26)] and the moment of time =8.4 at which the average aggregate volume 

is equal to 〈𝑣〉 = 0.999 (thus approaches its maximal value 〈𝑣〉𝑚𝑎𝑥 = 1). 

 

Fig. 4. Aggregate size distribution for the R1-case with 〈𝑣〉0 = 0.1, =1.5 and at the dimensionless times , 

covering the whole range of the average volume 〈𝑣〉0 ≤ 〈𝑣〉 ≾ 1. 
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It is seen from Fig. 4 that the size distribution displaces along the abscissa axis and spreads 

over this axis during time although the average volume remains close to the one of the 

monodisperse distribution. One can, therefore, conclude that the distribution globally keeps its 

initial shape and nearly equally spreads around its average value roughly given by the 

monodisperse approximation [Eq. (18)].  

For the practical biomedical applications, the whole size distribution (and not only the 

average aggregate volume) could appear to be an important parameter. For example in brain stroke 

treatments, the largest aggregates can achieve the size of the vessels and the smallest aggregates 

can be too small for effective manipulation by external fields. It was, therefore, important to learn 

about relatively large width of the aggregate size distribution (Fig. 4) even in the case when the 

average aggregate volume was nearly independent of the width of initial distribution (Fig. 3).   

VI. Concluding remarks  

In this paper, we present a mathematical model of nanoparticle phase condensation (or, 

equivalently, nanoparticle aggregation) under homogeneous permanent or homogeneous 

alternating magnetic field with arbitrary time dependence of the magnetic field intensity. The 

model is derived under basic assumptions of very fast nucleation kinetics but negligible aggregate 

coalescence (thus, the aggregate number density is constant over time) and for the magnetic field 

frequency range respecting two following conditions: (a) the aggregate growth is slow enough 

with respect to the field variation, and (b) the aggregates keep their straight elongated shape. Under 

these conditions, the aggregate growth rate takes the general form 𝑑𝑉/𝑑𝑡 = 𝐺(𝑉)∆(𝑡), with the 

function 𝐺(𝑉) depending on the precise configuration of the applied magnetic field. The ensemble 

of aggregates is described by their size distribution function 𝐹(𝑉, 𝑡), which is found by the solution 

of the Liouville equation (1) at an appropriate initial condition. The problem is solved by the 

method of characteristics, and the solution is obtained in parametric form for an arbitrary function 

𝐺(𝑉), providing a general framework for any type of the applied magnetic field. In its 

dimensionless form, the solution is expressed through the integrals, whose integrands contain the 

dimensionless counterparts, 𝑔(𝑣) and 𝑓0(𝑣), of the function 𝐺(𝑉) and the initial size distribution 

𝐹0(𝑉), respectively. In the particular case of low-frequency rotating magnetic field (𝑔(𝑣) = 𝑣2/3), 

an explicit expression of the dimensionless distribution function 𝑓(𝑣, 𝜃) is obtained [Eq. (15e)], 

while the dimensionless average aggregate volume 〈𝑣〉 is easily found by the method of moments 

allowing a complete decoupling of the statistical moments 〈𝑣𝑛〉, 𝑛 =
1

3
,

2

3
, 1, without the necessity 

to solve the Liouville equation.  

Numerical examples are provided for initial log-normal size distribution and the cases of a 

permanent magnetic field (𝑔(𝑣) = 𝑣3/7), low-frequency rotating field (𝑔(𝑣) = 𝑣2/3), and 

medium-frequency rotating field (with intermediate behaviour between 𝑣3/7 and 𝑣2/3). All these 

cases share the following common features: (a) at long times, the average volume asymptotically 

tends to its maximal value 〈𝑉〉𝑚𝑎𝑥 = ∆0/(𝑁𝜑𝑖) (or, 〈𝑣〉𝑚𝑎𝑥 = 1 in the dimensionless form) when 

the ferrofluid supersaturation ∆ (or 𝜔) tends to zero; (b) the average volume depends only slightly 

on the relative width 𝜎 of the initial size distribution, allowing one to evaluate 〈𝑣〉 for any 𝜎 (within 

the range 0 ≤ 𝜎 ≤ 2) using the explicit expression [Eq. (18)] derived for the Dirac delta 

distribution; (c) despite a negligible dependence of the average volume on 𝜎, the width of the size 

distribution at any moment 𝜏 > 0 strongly depends on 𝜎; the size distribution shifts along the 

abscissa axis with time and shows a significant spreading around the average value 〈𝑣〉, however, 

this spreading seems to be quasi-symmetric with respect to 〈𝑣〉, such that the average volume 

appears to be slightly affected by the width of the initial distribution. The three considered cases 
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show some difference when the average dimensionless volume 〈𝑣〉 is plotted against the 

dimensionless time 𝜏, however, at the tendency can change if the analysis is conducted in 

dimensional quantities because the kinetic constant  (which intervenes into the normalization of 

the dimensional time t) depends on the physics behind each particular case (permanent or rotating 

magnetic field). A deeper insight into this problem will be presented in future in conjunction with 

the comparison with experiments. 

From the practical perspective, it was important to learn about relatively large width of the 

aggregate size distribution (Fig. 4) even in the case when the average aggregate volume was nearly 

independent of the width of initial distribution (Fig. 3). In fact, the presence of too small or too 

large aggregates can be undesirable in biomedical or environmental applications of magnetic 

nanoparticles, for example, in brain stroke treatment. Thus, the mathematical model of aggregation 

kinetics presented in this work can provide useful feedback to a given application allowing 

optimization of operating parameters.  

Appendix. The rate of the aggregate growth in a rotating field 

In this Appendix, we derive a scaling law of the aggregate growth rate 𝑉̇ (the increase of 

its volume by unit time) as a function of the aggregate volume. At this stage, we are not looking 

for the exact expression for this rate, as long as it does not affect the mathematical structure of the 

kinetic equation (6a) considered in Sec. II and the complex physics of the aggregate growth only 

affect the kinetic constant  in the scaling law 𝑑𝑉/𝑑𝑡 = function(𝑉). We consider a dense 

aggregate, of a length L and diameter da consisting of many ferromagnetic nanoparticles, elongated 

by the applied rotating field and synchronously spinning with this field. The angular frequency of 

the rotating field is denoted by . These aggregates are illustrated in Fig.1. We denote 𝜑𝑖 = 𝑂(1) 

– the volume fraction of nanoparticles inside the aggregates Kinetics of the aggregate growth is 

described by the following approximate balance equation: 

𝜑𝑖𝑉̇ = 𝐽,           (A.1) 

where J  is the flux of the particles toward the aggregate.  

The magnetophoretic flux arising due to magnetic attraction of individual nanoparticles to 

strongly aggregates has been found to be negligible in comparison to the diffusive flux [17, 19], 

while the typical ratio of the convective to the diffusive flux, at the distances comparable with the 

aggregate diameter da, is estimated through the Péclet number: 𝑃𝑒 = 𝐿Ω𝑑𝑎/𝐷, where 𝐷 is the 

Brownian diffusivity of a single nanoparticle. Estimates show that for individual nanoparticles of 

typical size 20 nm and the typical aggregates with a diameter 𝑑𝑎~1 −  10𝜇𝑚 and length 

𝐿~100𝜇𝑚 suspended in water under the action of the field rotating with the frequency Ω~10𝑠−1 

, the strong inequality Pe>>1 holds. At such condition, the surface density of the diffusive flux on 

the aggregate surface can be evaluated using the boundary layer approach [20]:  

𝑗𝐷~𝐷Δ/𝛿;     𝛿~𝑑𝑎𝑃𝑒−1/3.          (A.2) 

Here Δ is the ferrofluid supersaturation (see Sec. II) and 𝛿 is the thickness of the diffusion boundary 

layer near the aggregate surface. According to the concept of the boundary layer approach, outside 

this layer, the convective flux dominates over the diffusion one; while the diffusion flux dominates 

inside the layer. Integrating the flux density [Eq. (A.2)] over the aggregate surface, one gets the 

following scaling for the particle flux (and consequently aggregate growth rate): 

𝑉̇~𝐽𝐷𝐿𝑃𝑒1/3Δ,          (A.3) 

The aggregate length and diameter are related to its volume by the following scaling [17, 19]: 

𝐿 ∝ 𝑉3/7and  𝑑𝑎 ∝ 𝑉2/7         (A.4) 
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Combining Eqs. (A.3), (A.4), with the definition of the Péclet number, we arrive at the 

following scaling relationship for the aggregate growth rate:  

𝑉̇ ∝ 𝑉
2

3Δ(𝑡),           (A.5) 

where a dimensional multiplier before 𝑉2/3Δ depends on the field frequency  and the 

nanoparticle diffusivity D; however, derivation of the exact expression for this multiplier is out of 

the scope of the present work, as long as it does not affect the mathematical structure of the kinetic 

equation. 

Notice that in reality, the relationship 𝑑𝑉/𝑑𝑡 = function(𝑉) can appear to be more 

complicated. In fact, the aggregate rotates in some volume having a disk-like shape and after one 

spin the aggregate can absorb most of the particles situated inside this disk-like cavity. In such 

situation, the free nanoparticles will diffuse from outside towards the cavity and the total flux will 

be affected by both convective transport of particles inside the cavity towards the aggregate and 

purely diffusive transport of particles towards the cavity. From obvious electric analogy, one can 

deduce that the total flux follows the rule of the series circuit with the inverse of the equivalent 

conductivity (the proportionality factor between J and ) being the sum of inverse conductivities 

of purely convective [Eq. (A.5)] and purely diffusive (𝐽𝑉3/7Δ – see [17, 19]) transports. In such 

circumstances we get  

𝑑𝑉/𝑑𝑡 ∝ (𝛼𝑉−
2

3 + 𝛽𝑉−
3

7)
−1

Δ(𝑡),        (A.6) 

with the dimensional constants  and  depending on exact expressions for the diffusive and 

convective fluxes. The term in parentheses in Eq. (A.6) is nothing but the function 𝐺(𝑉), 

intervening into the aggregate growth rate [Eq. (4)] with its dimensionless counterpart taking the 

form 𝑔(𝑣) = [𝑎𝑣−2/3 + 𝑏𝑣−3/7]
−1

, where a and b – dimensionless constants proportional to  

and , respectively.  

Notice that equation (A.6) is expected to apply at intermediate field frequencies, which 

remain small enough such that straight elongated shape of the aggregate is still stable, while Eq. 

(A.5) is expected to apply for relatively low frequencies when, after one aggregate spin, the 

nanoparticles have enough time to fill the cavity and compensate the “loss” of the “cavity particles” 

absorbed by the aggregate. The frequency has to be however high enough such that the aggregation 

timescale is always much slower than the rotation period and the high Péclet number limit is still 

sasisfied. 
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