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Abstract: This paper presents an observer-based state and parameter estimation for the
extended sliding-consolidation model of a landslide. This system is described by a pair of coupled
Ordinary Differential Equation (ODE) and Partial Differential Equation (PDE), with a mixed
boundary condition for the PDE. The coupling appears both in the ODE and in the Neuman
boundary condition of the PDE. The observer consists of a copy of the PDE part of the system
and Kalman-like observer for the ODE. It is shown to ensure exponential convergence of the
state and parameter estimates by means of Lyapunov tool. Finally, a simulation result of the
extended sliding-consolidation model is presented to illustrate the effectiveness of the proposed
observer.

Keywords: State estimation, parameter estimation, extended sliding-consolidation model,
coupled ODE-PDE system, observer.

1. INTRODUCTION

A landslide or slope destabilization is a gravity-driven
downslope movement of rock, debris, or soil near earth’s
surface caused by heavy precipitation, flood, earthquakes,
substantial snowmelt, or human activities such as con-
struction work. Over the last decade, climate change (Gar-
iano and Guzzetti, 2016) and rapid urbanization (Nyam-
bod, 2010) have increased the frequency of occurrence of
landslides. This, in turn, grabbed the attention towards
the implementation of early warning systems (EWS) to
take timely actions to reduce human and economic losses
in advance of hazardous events (Krøgli et al., 2018). One
of the significant components of EWS is environmental
monitoring and forecasting (UN/ISDR, 2006). Environ-
mental monitoring and forecasting are tools to assess
the current status of an environment and establish the
trends in environmental parameters. Information or data
collected with the help of environmental monitoring are
processed and often used in the assessment of risks related
to the environment, e.g., weather forecast provides bet-
ter predictions for tropical storms, hurricanes, and severe
weather. In the past few years, developments in satellite
remote sensing of the surface and atmosphere of the earth,
numerical modeling, and data assimilation have improved
the accuracy of weather forecasting.
Similarly, for anticipation/estimation of the hazards asso-
ciated with landslide, a physics-based dynamical model,
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landslide monitoring, and heterogeneous data handling
play a vital role. These physics-based dynamical models,
e.g., sliding-consolidation model (Hutchinson, 1986), vis-
coplastic sliding-consolidation model (Corominas et al.,
2005; Herrera et al., 2013; Bernardie et al., 2014) and
extended sliding-consolidation model (Iverson, 2005) are
sensitive to the initial conditions and parameters of the
system. These sensitivities can be taken into account by
simulating a model and iteratively adjusting the initial
conditions and parameter values to obtain consistency
with measured data, i.e., by adjoint method (Nguyen
et al., 2016). Another efficient approach is to run a model
over a time and continually fine-tune it to synchronize
with incoming data, i.e., Kalman filter like approach.
Therefore, a comprehensive evaluation of landslide haz-
ards involves multi-dimensional problems, which require
a multi-disciplinary approach viz. geophysics, mechanics,
signal/data processing, dynamical systems, control theory,
and information technologies.

In this context, the present paper proposes an observer
design for state and parameter estimation in an extended
sliding-consolidation of a landslide with full convergence
analysis. The key feature of this model is mechanical feed-
back, which might be responsible for the diverse rates of
landslide motion (from steady creeping motion to runaway
acceleration). This model is made of an Ordinary Differ-
ential Equation (ODE) coupled with a Partial Differential
Equation (PDE) subject to mixed boundary conditions,
with the PDE state entering into the ODE dynamics,
and the ODE state affecting the Neuman boundary of
the PDE. The observer design relies on a measurement



on the ODE. Notice that observer is known to be an
efficient tool for state estimation, or joint state and pa-
rameter estimation (starting with the famous Extended
Kalman Filter). In recent years, it has also been extended
to systems with distributed dynamics, with examples in
open channel level control (Besançon et al., 2008) or
monitoring (Bedjaoui et al., 2009), backstepping boundary
observer for a class of linear first-order hyperbolic sys-
tems with spatially-varying parameters (Di Meglio et al.,
2013), robust state estimation based on a boundary out-
put injection for a class of convection-diffusion-reaction
systems (Besançon et al., 2013), matrix inequality-based
observer for transport-reaction systems (Schaum et al.,
2014), backstepping adaptive observer-based state and pa-
rameter estimation for hyperbolic systems with uncertain
boundary parameters and its application to underbalanced
drilling (Di Meglio et al., 2014), adaptive observer for
coupled linear hyperbolic PDEs with unknown boundary
parameters based on swapping (Anfinsen et al., 2016),
and even with extension to coupled ODE-PDE like in the
case of high-gain type observer for a class of nonlinear
ODE-PDE cascade systems (Ahmed-Ali et al., 2015), and
boundary observer based on the Volterra integral transfor-
mation for hyperbolic PDE-ODE cascade systems (Hasan
et al., 2016). In the present paper, the coupled PDE-
ODE observer problem under consideration is addressed
by basically combining a copy of PDE dynamics with a
Kalman-like observer for the ODE.

The structure of the paper is as follows: A landslide model
depicting landslide behavior and the problem statement
is given in Section 2. Section 3 presents the proposed
observer with full convergence analysis. In Section 4, the
simulation results demonstrate the effectiveness of the
proposed observer. Finally, some conclusions and future
directions of the work are discussed in Section 5.

2. PROBLEM FORMULATION

Extended sliding-consolidation model

The extended sliding-consolidation model (Iverson, 2005)
is based on a representation of the landslide as a rigid block
overlying a thin shear zone, where landslide (slide block)
motion is opposed by basal Coulomb friction and regulated
by basal pore fluid pressure. For the analysis purpose, the
model assumes two components of basal pore pressure:
i) imposed pore pressure pi due rain infiltration and ii)
development of excess pore pressure pe in response to
dilation or contraction of the basal shear zone. The motion
of the slide block and excess pore pressure evolution are
described by Eq.(1) and (2) respectively.

Momentum equation

d2ux

dt2
=
dvx

dt
= gcosψ [sin(θ − ψ)− cos(θ − ψ)tanφ]

+
cos2ψtanφ

ρZ
{pi(0, t) + pe(0, t)}

(1)

Excess pore pressure diffusion equation

∂pe(z, t)

∂t
= D

∂2pe(z, t)

∂z2

∂pe(0, t)

∂z
=
ρwgψ

K
vx,

pe(Z, t) = 0

(2)

Fig. 1. The coordinate systems, geometric variables and
material property of the slide block

where φ: friction angle (mechanical strength),
ψ: dilatancy angle of the material,
ρ: soil density,
ρw: pore water density,
D: diffusion coefficient,
K: hydraulic conductivity,
g: acceleration due to gravity,
θ: sliding angle,
ux(t) and vx(t): displacement and velocity of the slide
block respectively (along x-axis),
pi(0, t): imposed pore pressure at the slide block base,
pe(z, t): excess pore pressure distribution,
∂pe(0, t)/∂z = ρwgψvx/K: Neuman boundary condition,
and pe(Z, t) = 0: Dirichlet boundary condition of the
excess pore pressure diffusion equation.

z ∈ [0, Z] with Z the spatial domain length (slide block
thickness), and t > 0 is the time. In addition, vx0

and pe0
are initial values of vx and pe respectively. Coordinate z
translates with the base of the slide block such that with
dilation or contraction of shear zone the base of the slide
block is always located at z = 0 as shown in Fig. 1.

In this model, rate of landslide motion depends on the
dilatancy angle (ψ), which is generally difficult to measure.
Also, this model is sensitive to the friction angle (φ) of the
soil. Assuming that the other parameters can be obtained
from some knowledge on soil characteristics and landslide
geometry, this paper is thus concerned with the estimation
of φ and ψ, along with the system state variables vx
and pe(x, t). This will be done assuming further some
known imposed pore pressure time series, as well as some
measured velocity time series.



3. OBSERVER-BASED STATE AND PARAMETER
ESTIMATION

3.1 Normalized and transformed system equations

In order to address the observer problem, let us first nor-
malize the system equations by introducing dimensionless
variables defined as

z∗ =
z

Z
, t∗ =

t

Z2/D
, v∗x =

vx

g(Z2/D)
,

p∗i =
pi

ρwgZ
& p∗e =

pe

ρwgZ
.

(3)

Then, consider a transformation

p̄∗e(z∗, t∗) =

[
K/g

ψ(Z2/D)

]
p∗e(z∗, t∗) (4)

and set
f0 = cosψ [sin(θ − ψ)− cos(θ − ψ)tanφ] ,

f1 =
ρw

ρ
cos2ψtanφ & f2 =

(
Z2/D

K/g

)
ψf1

(5)

where f0, f1 and f2 are augmentative states depending
on the parameter values i.e. ḟ0 = ḟ1 = ḟ2 = 0. Now,
substituting (3), (4), and (5) in (1) and (2) gives following
system equations (Note that from now on notation ‘ ˙ ’
denotes d/dt∗):

v̇
∗
x

ḟ0
ḟ1
ḟ2

 =

A(t∗)︷ ︸︸ ︷0 1 p∗i (0, t∗) p̄∗e(0, t∗)
0 0 0 0
0 0 0 0
0 0 0 0

v∗xf0
f1
f2


y = C

[
v∗x f0 f1 f2

]>
(6)

∂p̄∗e(z∗, t∗)

∂t∗
=
∂2p̄∗e(z∗, t∗)

∂z∗2

∂p̄∗e(0, t∗)

∂z∗
= v∗x

p̄∗e(1, t∗) = 0

(7)

where C = [1 0 0 0]. This new form will be used for
observer design. Here system transformation simplifies
system equations while normalization helps to define space
domain as 0 ≤ z∗ ≤ 1, which will facilitate the convergence
proof of observer.

3.2 Observer Design

For the sake of clarity, let us recall some notations,
Poincaré’s inequality, Agmon’s inequality and definition
of regular persistence which will be used later in the
convergence proof of the proposed scheme.

Notations: For a given x ∈ Rn, ‖x‖ and ‖x‖H1
denotes its

usual Euclidean norm and H1 norm respectively.

Poincaré’s inequality. (Besançon et al., 2013) Let g =
g(x) be continously differentiable function on [0, 1] with
g(0) = 0 or g(1) = 0, then∫ 1

0

g2(x)dx ≤
1

π2

∫ 1

0

g2x(x)dx <

∫ 1

0

g2x(x)dx

where gx is the first order derivative of g w.r.t. x.

Agmon’s inequality. (Krstic and Smyshlyaev, 2008) For
a function g(x) ∈ H1 on [0, 1] following inequality holds

max
x∈[0,1]

|g(x)|2 ≤ 2

√∫ 1

0

g(x)2dx

√∫ 1

0

gx(x)2dx.

Regular persistence. (Besançon et al., 1996) For regu-
larly persistent p∗i (0, t

∗) and initial conditions in system
(6)-(7), ∃ T > 0, α > 0, t∗0 > 0 such that∫ t∗+T

t∗
φ>(τ, t∗)C>Cφ(τ, t∗)dτ ≥ αI ∀t∗ ≥ t∗0 (8)

where φ(τ, t∗) is the state transition matrix of (6).

The main result can be stated as follows:

Theorem 1. For system (6)-(7) with available measure-
ment y = v∗x, regularly persistent known imposed pore
pressure time series p∗i (0, t

∗) and any initial condition,
observer (9)-(10) guarantees that ˆ̄p∗e(z

∗, t∗) − p̄∗e(z
∗, t∗),

v̂∗x(t∗) − v∗x(t∗), f̂0(t∗) − f0, f̂1(t∗) − f1, and f̂2(t∗) − f2
converge to 0 as t∗ →∞ for all 0 ≤ z∗ ≤ 1, and θ ≥ θ0 for
some θ0 > 0.

∂ ˆ̄p∗e(z∗, t∗)

∂t∗
=
∂2 ˆ̄p∗e(z∗, t∗)

∂z∗2

∂ ˆ̄p∗e(0, t∗)

∂z∗
= y,

ˆ̄p∗e(1, t∗) = 0

(9)


˙̂v∗x
˙̂
f0
˙̂
f1
˙̂
f2

 =

Â(t∗)︷ ︸︸ ︷0 1 p∗i (0, t∗) ˆ̄p∗e(0, t∗)
0 0 0 0
0 0 0 0
0 0 0 0


v̂
∗
x

f̂0
f̂1
f̂2

− Ŝ−1C>
[
v̂∗x − y

]
˙̂
S(t∗) = −θŜ(t∗)− Â(t∗)>Ŝ(t∗)− Ŝ(t∗)Â(t∗) + C>C

(10)

Proof.
Define estimation errors: e(z∗, t∗) := ˆ̄p∗e(z

∗, t∗)− p̄∗e(z∗, t∗)
and

E(t∗) =

v̂
∗
x(t∗)

f̂0(t∗)

f̂1(t∗)

f̂2(t∗)

−
v∗x(t∗)

f0
f1
f2

 .
Then, they satisfy equations:

et(z
∗, t∗) = ezz(z∗, t∗)

ez(0, t∗) = 0

e(1, t∗) = 0

e(z∗, 0) = e0(z∗)

(11)

and

Ė =
[
Â(t∗)− Ŝ−1(t∗)C>C

]
E +


{

ˆ̄p∗e(0, t∗)− p̄∗e(0, t∗)
}
f2

0
0
0


(12)

where ez and ezz are first and second order derivatives of e
w.r.t. z∗ respectively, and et is the first order derivative of
e w.r.t. t∗. Let us study the convergence of both estimation
errors by Lyapunov function approach separately.

• Convergence of e(z∗, t∗):

A candidate Lyapunov function based on the classical
energy function is considered as (Krstic and Smyshlyaev,
2008):

V1(t∗) :=
1

2

∫ 1

0

e2(z∗, t∗)dz∗ +
1

2

∫ 1

0

e2z(z∗, t∗)dz∗. (13)

Differentiating (13) w.r.t. t∗, by using integration by parts
and (11), we get:



V̇1(t∗) = −
∫ 1

0

e2zdz
∗ −
∫ 1

0

e2zzdz
∗ ≤ −

∫ 1

0

e2zdz
∗

V̇1(t∗) ≤ −
1

2

∫ 1

0

e2zdz
∗ −

1

2

∫ 1

0

e2zdz
∗.

Finally, by using Poincaré’s inequality and (13), we obtain

V̇1(t∗) ≤ −V1(t∗) which implies V1(t∗) ≤ exp(−t∗)V1(0)
i.e., ∫ 1

0

[e2(z∗, t∗) + e2z(z∗, t∗)]dz∗

≤ exp(−t∗)
{∫ 1

0

[
e2(z∗, 0) + e2z(z∗, 0)

]
dz∗

}
≤ exp(−t∗) ‖e(z∗, 0))‖2H1

.

(14)

Condition above proves that
∫ 1

0
e(z∗, t∗)dz∗ → 0 as t∗ →

∞ but this does not imply that e(z∗, t∗) goes to 0 ∀z∗ ∈
(0, 1). Therefore, by Agmon’s inequality we obtain

max
z∗∈[0,1]

|e(z∗, t∗)|2 ≤ 2

√∫ 1

0

e2(z∗, t∗)dz∗

√∫ 1

0

e2z(z∗, t∗)dz∗

≤
∫ 1

0

e2(z∗, t∗)dz∗ +

∫ 1

0

e2z(z∗, t∗)dz∗.

Now, by using (14) we get

max
z∗∈[0,1]

|e(z∗, t∗)|2 ≤ exp(−t∗) ‖e(z∗, 0))‖2H1
. (15)

This conclude that e(z∗, t∗) converges to 0 as t∗ → ∞
∀z∗ ∈ [0, 1].

• Convergence of E(t∗):

Remember first regular persistence (8) and its consequence
on the following Lyapunov differential equation:

Ṡ(t∗) = −θS(t∗)−A>(t∗)S(t∗)− S(t∗)A(t∗) + C>C, S(0) > 0.

From (Besançon et al., 1996) for instance, ∃θ0 > 0 such
that ∀θ ≥ θ0, ∃α1 > 0, α2 > 0, t∗0 > 0 : ∀t∗ ≥ t∗0

α1I ≤ S(t∗) ≤ α2I

Notice then that Â = A + ∆ with ‖∆‖ exponentially
vanishing. It results from Lemma 3.1 in (Besançon et al.,
1996) that solution of

˙̂
S(t∗) = −θŜ(t∗)− Â>(t∗)Ŝ(t∗)− Ŝ(t∗)Â(t∗) + C>C, Ŝ(0) > 0

satisfies
∥∥∥Ŝ(t∗)− S(t∗)

∥∥∥ ≤ λe−ξt
∗

for λ > 0, ξ > 0 and

θ large enough. From this, θ can be chosen so that Ŝ(t∗)
also satisfies boundedness of the form

α̂1I ≤ Ŝ(t∗) ≤ α̂2I, ∀t∗ ≥ t∗0, α̂1, α̂2 > 0. (16)

Hence, we can consider a candidate Lyapunov function as:

V2(t∗) := E(t∗)>Ŝ(t∗)E(t∗). (17)

Firstly, differentiating (17) w.r.t. time, using (10) and (12)
we get

V̇2(t∗) = 2E(t∗)>Ŝ(t∗)Ė(t∗) + E(t∗)>
˙̂
S(t∗)E(t∗)

= −θE(t∗)>Ŝ(t∗)E(t∗) + 2E(t∗)>Ŝ(t∗)

e(0, t∗)f20
0
0


≤ −θV2 + 2 ‖E‖

∥∥Ŝ(t∗)
∥∥ |e(0, t∗)| f2

Then, from (15), (16) and (17) we obtain

V̇2(t∗) ≤ −θV2 + 2
√
V2(t∗)/α̂

2
α̂2exp(−t∗) ‖e(0, 0))‖2H1

f2

Now, dividing both sides of the equation by 2
√
V2(t∗) we

get

d

dt∗

√
V2(t∗) ≤ −

θ

2α̂2

√
V2(t∗) +

√
α̂2exp(−t∗) ‖e(0, 0))‖2H1

f2.

Integrating both sides of the equation gives√
V2(t∗) ≤ exp

(
−

θ

2α̂2
t∗
)√

V2(0)

+

∫ t∗

0

exp

(
−

θ

2α̂2
(t∗ − τ)

)√
α̂2exp(−τ) ‖e(0, 0))‖2H1

f2dτ

which implies that
√
V2(t∗) exponentially decays to zero

and so E(t∗)→ 0 as t∗ →∞.

4. SIMULATION RESULTS

4.1 Measured velocity time-series

To validate the effectiveness of the designed observer, a
slide block velocity time-series is generated by solving
the system equations (1)-(2), and then white Gaussian
noise is added to it (Signal to noise ratio = 20 dB). The
parameter values (Iverson, 2005) and initial values used
for the simulation are indicated in Table 1 (Initial values
are chosen differently than initial values for the observer
to validate the performance). The momentum equation
(1) is solved by a stepwise analytical method, and the
numerical solution of the pore pressure diffusion equation
(2) is obtained with the Crank-Nicolson method. In the
simulations, imposed pore pressure time-series pi(0, t) rep-
resenting rainfall variations is assumed as shown in Fig 2.
The value of imposed pore pressure assumed to be greater
than or equal to pcrit given as

pcrit =
gcosψ [cos(θ − ψ)tanφ− sin(θ − ψ)]

cos2ψtanφ/ρZ
,

which corresponds to the value of pore pressure above
which slide block starts to accelerate. Simulated excess
pore pressure and velocity time series (with noise) are
shown in Fig. 2 and Fig. 3 respectively. At each time step of
solving (1)-(2) variables t, pi(0, t) and vx(t) are normalized
using (3), so as to obtain t∗, p∗i (0, t

∗) and v∗x(t∗) which act
as input to observer.

Table 1. Parameter Values

Parameters Value Unit

Initial velocity, v0 2.4× 10−2 mm/s
Initial excess pore pressure, pe0 -46.6 Pa
Simulation time, T 1000 s
Time step, ∆t 0.01 s
Space step, ∆z 0.0066 m
Diffusion coefficient, D 3× 10−3 m2/s
Acceleration due to gravity, g 9.8 m/s2

Slide block thickness, Z 0.65 m
Hydraulic conductivity, K 2× 10−5 m/s
Plane inclination angle, θ 31 deg
Slide block mass density, ρ 2000 kg/m3

Pore water density, ρw 1000 kg/m3

Friction angle, φ 35 deg
Dilatancy angle, ψ 6 deg

4.2 Observer results

In the simulation result, we are interested in the estimation
of friction angle φ, dilatancy angle ψ, velocity of the slide
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block vx, and basal excess pore pressure pe(0, t) assuming
other parameter values and imposed pore pressure are
known along with synthetic slide block velocity measure-
ment. For initial states given in Table 2 (chosen such that
initial guess for the φ and ψ are 55◦ and 3◦ respectively),
observer (9)-(10) gives, estimates of the slide block velocity

v̂∗x, excess pore pressure ˆ̄p∗e(z, t), augmentative states f̂0,

f̂1 and f̂2.

Table 2. Initial states for the observer

State Value

Initial velocity, v̂∗x(0) 0
Initial excess pore pressure, ˆ̄p∗e(z∗, 0) 0

Initial augmentative state, f̂0(0) −0.7895

Initial augmentative state, f̂1(0) 0.7114

Initial augmentative state, f̂2(0) 2.5691× 106

Notice that for observer (9)-(10) space step ∆z∗ = ∆z
Z =

0.01 and time step ∆t∗ = ∆t
Z2/D = 7.1 × 10−5. Based on

estimates from observer, at each time step firstly dilatancy

angle ψ̂ and mechanical strength φ̂ are reconstructed by
using Eq. (18) and (19) respectively.

ψ̂(t∗) =
f̂2(t∗)

f̂1(t∗)
×
(
K/g

Z2/D

)
(18)

φ̂(t∗) = tan−1

[
ρf̂1(t∗)

ρwcos2ψ̂(t∗)

]
(19)

Then, basal excess pore pressure p̂∗e(0, t
∗) is obtained by

inverse transformation

p̂∗e(0, t∗) =

[
Z2/D

K/g

]
ψ̂(t∗)ˆ̄p∗e(0, t∗). (20)

Observer (9)-(10) is solved for simulation time T ∗ =
T

Z2/D = 7.1. After completion of the simulation, all desired

estimates ψ̂(t), φ̂(t), v̂x(t), and p̂e(0, t) are reconstructed

from ψ̂(t∗), φ̂(t∗), v̂∗x(t∗), and p̂∗e(0, t
∗) using (3).

A convergence of the state and parameter estimates can
be seen in Fig. 4, Fig. 5, Fig. 6 and Fig. 7. In this
simulation, the estimated parameter values are ψ = 5.97◦

and φ = 35.5◦ with the relative error between estimated
and desired values 0.5% and 1.42% respectively.
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Fig. 6. Time evolution of the state estimate v̂x (Zoomed-
in)
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Fig. 7. Time evolution of the state estimate p̂e(0, t)

5. CONCLUSIONS AND FUTURE WORK

In this paper, we designed an observer for state and param-
eter estimation of a landslide. Firstly, we considered the
extended sliding-consolidation model depicting a landslide
behavior, which is a coupled ODE-PDE system. Secondly,
the model is transformed and simplified to utilize the
Kalman filter like approach for the observer design. Then
the exponential stability of estimation errors has been
validated with the help of candidate Lyapunov functional.
Lastly, parameter values (friction and dilatancy angle) and
states of the system have been well estimated.

Based on this result, a future direction for work will be
to validate the effectiveness of the designed observer on
actual field measurements.
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