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Abstract
We study a transmission problem, in population dynamics, between two juxtaposed

habitats. In each habitat, we consider a generalized diffusion equation composed by the
Laplace operator and a biharmonic term. We consider that the coefficients in front of
each term could be negative or null. Using semigroups theory and functional calculus,
we give some relation between coefficients to obtain the existence and the uniqueness of
the classical solution in Lp-spaces.
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1 Introduction
In this work, we study, using semigroups theory, a transmission problem for a coupled system
of generalized diffusion equations in Lp-spaces, with p ∈ (1,+∞). We denote by generalized
diffusion equation, an equation of the following form

k∆2u− l∆u = g,

with k, l ∈ R and g given. This equation is obtained using the Landau-Ginzburg free energy
functional, we refer to [5] or [23] for more details. This work is a natural continuation of
the works done in [17] and [29]. Here, we investigate the influence of the Laplace operator
and the biharmonic term in the diffusion. In population dynamics, the Laplace operator
model the short range diffusion whereas the biharmonic operator represents the long range
diffusion. Thus, generalized diffusion is a linear combination of these two operators.

Usually, in most models k, l > 0, but in many works like for instance [5], [13], [21], [22]
or [23], the authors explain that the biharmonic term plays a stabilizing role if k > 0 and a
destabilizing role when k < 0. This is why, in the present paper, we consider k ∈ R \ {0}
and l ∈ R.

Many works have treated generalized diffusion equations and transmission problems as-
sociated to it. For instance, we refer to [5], [18], [22], [23] and [24], for the study of such an
equation in population dynamics and to [7], [10], [17] and [29] for transmission problems as-
sociated to it. Note that [17] and [29], consider applications in population dynamics wheras
[7] and [10], consider applications in plate theory.

We define Ω = Ω− ∪ Ω+, the n-dimensional area, n ∈ N \ {0, 1}, constituted by the two
juxtaposed habitats Ω− := (a, γ)× ω and Ω+ := (γ, b)× ω with their interface Γ = {γ} × ω,
where a, γ, b ∈ R with a < γ < b and ω being a bounded domain of Rn−1.

We investigate the study of the following transmission problem

(EQpde)
{
k+∆2u+ − l+∆u+ = g+, in Ω+
k−∆2u− − l−∆u− = g−, in Ω−,
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where k± ∈ R \ {0}, l± ∈ R, u± ∈ Ω± are population density and g± ∈ Lp(Ω±) are given.
Note that the case k±, l± > 0 has been already treated in [17] and the case l± = 0 has been
already treated in [29]. Thus, in the the present article, the most important new results
concern the other cases.

Here, we denote by (x, y) the spatial variables with x ∈ (a, b) and y ∈ ω. The above
equations are supplemented by the following boundary and transmission conditions

(BCpde)



(1)


u−(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω
u+(x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω

∆u−(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω
∆u+(x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω

(2)



u−(a, y) = ϕ−1 (y), y ∈ ω
u+(b, y) = ϕ+

1 (y), y ∈ ω
∂u−
∂x

(a, y) = ϕ−2 (y), y ∈ ω

∂u+
∂x

(b, y) = ϕ+
2 (y), y ∈ ω,

where ϕ±1 and ϕ±2 are given in suitable spaces, and

(TCpde)



u− = u+ on Γ
∂u−
∂x

= ∂u+
∂x

on Γ

k−∆u− = k+∆u+ on Γ
∂

∂x
(k−∆u− − l−u−) = ∂

∂x
(k+∆u+ − l+u+) on Γ.

In (BCpde), the boundary conditions on the two first lines of (1) means that the individ-
uals could not lie on the boundaries (a, b)× ∂ω, because, for instance, they die or the edge
is impassable. The boundary conditions on the two second lines of (1) mean that there is
no dispersal in the normal direction. It follows that the dispersal vanishes on (a, b)× ∂ω. In
(2), the population density and the flux are given, for instance on {a} × ω and on {b} × ω.
This signifies that the habitats are not isolated. Then, in (TCpde), the two first transmission
conditions mean the continuity of the density and its flux at the interface, while the two
second express, in some sense, the continuity of the dispersal and its flux at the interface Γ.

This article is organized as follows.
In section 2, we give our operational problem. Section 3 is devoted to some recall on

BIP operators and real interpolation spaces. In section 4, we give our assumptions and main
results. Then, in section 5, we state some preliminary results that will be useful to prove
our main result. Finally, section 6, which is composed of three parts, is devoted to the proof
of our main result.

2 Operational formulation

We set {
D(A0) := {ψ ∈W 2,p(ω) : ψ = 0 on ∂ω}

∀ψ ∈ D(A0), A0ψ = ∆yψ.
(1)
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Thus, using operator A0, problem (EQpde)− (BCpde)− (TCpde) becomes

u
(4)
+ (x) + (2A0 −

l+
k+

I)u′′+(x) + (A2
0 −

l+
k+

A0)u+(x) = f+(x), for a.e. x ∈ (γ, b)

u
(4)
− (x) + (2A0 −

l−
k−

I)u′′−(x) + (A2
0 −

l−
k−

A0)u−(x) = f−(x), for a.e. x ∈ (a, γ)

u−(a) = ϕ−1 , u+(b) = ϕ+
1

u′−(a) = ϕ−2 , u′+(b) = ϕ+
2

u−(γ) = u+(γ)

u′−(γ) = u′+(γ)

k−u
′′
−(γ) + k−A0u−(γ) = k+u

′′
+(γ) + k+A0u+(γ)

k−u
(3)
− (γ) + k−A0u

′
−(γ)− l−u′−(γ) = k+u

(3)
+ (γ) + k+A0u

′
+(γ)− l+u′+(γ),

where u±(x) := u±(x, ·), f±(x) := g±(x, ·)/k± and f− ∈ Lp(a, γ;Lp(ω)), f+ ∈ Lp(γ, b;Lp(ω))
with p ∈ (1,+∞).

Then, we will consider a more general case using (A,D(A)), instead of (A0, D(A0)), with
−A a BIP operator of angle θA ∈ (0, π) on a UMD space X, see below for the definitions of
BIP operator and UMD spaces, and f ∈ Lp(a, b;X).

More precisely, setting r± = l±
k±

, we study the following transmission problem (P):

(P)



(EQ)

 u
(4)
+ (x) + (2A− r+ I)u′′+(x) + (A2 − r+A)u+(x) = f+(x), x ∈ (γ, b)

u
(4)
− (x) + (2A− r− I)u′′−(x) + (A2 − r−A)u−(x) = f−(x), x ∈ (a, γ)

(BC)
{
u−(a) = ϕ−1 , u+(b) = ϕ+

1

u′−(a) = ϕ−2 , u′+(b) = ϕ+
2

(TC)



u−(γ) = u+(γ)

u′−(γ) = u′+(γ)

k−u
′′
−(γ) + k−Au−(γ) = k+u

′′
+(γ) + k+Au+(γ)

k−u
(3)
− (γ) + k−Au

′
−(γ)− l−u′−(γ) = k+u

(3)
+ (γ) + k+Au

′
+(γ)− l+u′+(γ).

The transmission conditions (TC) will be divided into

(TC1)
{
u−(γ) = u+(γ)

u′−(γ) = u′+(γ),

and

(TC2)

 k−u
′′
−(γ) + k−Au−(γ) = k+u

′′
+(γ) + k+Au+(γ)

k−u
(3)
− (γ) + k−Au

′
−(γ)− l−u′−(γ) = k+u

(3)
+ (γ) + k+Au

′
+(γ)− l+u′+(γ).

Note that (TC2) is well defined see Lemma 3.8 below.
We will search a classical solution of problem (P), that is a solution u such that u+ := u|(γ,b) ∈W 4,p(γ, b;X) ∩ Lp(γ, b;D(A2)), u′′+ ∈ Lp(γ, b;D(A)),

u− := u|(a,γ) ∈W 4,p(a, γ;X) ∩ Lp(a, γ;D(A2)), u′′− ∈ Lp(a, γ;D(A)),
(2)

and which satisfies (EQ)− (BC)− (TC).
Note that such a solution is not W 4,p(a, b;X) but uniquely W 4,p(a, γ;X) in Ω− and

W 4,p(γ, b;X) in Ω+.
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3 Definitions and prerequisites

3.1 The class of Bounded Imaginary Powers of operators

Definition 3.1. A Banach space X is a UMD space if and only if for all p ∈ (1,+∞), the
Hilbert transform is bounded from Lp(R, X) into itself (see [2] and [3]).

Definition 3.2. A closed linear operator T1 is called sectorial of angle α ∈ [0, π) if

i) σ(T1) ⊂ Sα,

ii) ∀ α′ ∈ (α, π), sup
{
‖λ(λ I − T1)−1‖L(X) : λ ∈ C \ Sα′

}
< +∞,

where

Sα :=
{
{z ∈ C : z 6= 0 and | arg(z)| < α} if α ∈ (0, π),

(0,+∞) if α = 0,
(3)

see [14], p. 19.

Remark 3.3. From [16], p. 342, we know that any injective sectorial operator T1 admits
imaginary powers T is1 , s ∈ R, but, in general, T is1 is not bounded.

Definition 3.4. Let θ ∈ [0, π). We denote by BIP(X, θ), the class of sectorial injective
operators T2 such that

i) D(T2) = R(T2) = X,

ii) ∀ s ∈ R, T is2 ∈ L(X),

iii) ∃ C ≥ 1, ∀ s ∈ R, ||T is2 ||L(X) ≤ Ce|s|θ,

see [25], p. 430.

3.2 Interpolation spaces

Here we recall some properties about real interpolation spaces in particular cases.

Definition 3.5. Let T3 : D(T3) ⊂ X −→ X be a linear operator such that

(0,+∞) ⊂ ρ(T3) and ∃ C > 0 : ∀ t > 0, ‖t(T3 − tI)-1‖L(X) 6 C. (4)

Let k ∈ N \ {0}, θ ∈ (0, 1) and q ∈ [1,+∞]. We will use the real interpolation spaces

(D(T k3 ), X)θ,q = (X,D(T k3 ))1-θ,q,

defined, for instance, in [19], or in [20].
In particular, for k = 1, we have the following characterization

(D(T3), X)θ,q :=
{
ψ ∈ X : t 7−→ t1-θ‖T3(T3 − tI)-1ψ‖X ∈ Lq∗(0,+∞)

}
,

where Lq∗(0,+∞) is given by

Lq∗(0,+∞;C) :=
{
f ∈ Lq(0,+∞) :

(∫ +∞

0
|f(t)|q dt

t

)1/q
< +∞

}
, for q ∈ [1,+∞),

and for q = +∞, by
L∞∗ (0,+∞;C) := sup

t∈(0,+∞)
|f(t)|,
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see [6] p. 325, or [12], p. 665, Teorema 3, or section 1.14 of [30], where this space is denoted
by (X,D(T3))1-θ,q. Note that we can also characterize the space (D(T3), X)θ,q taking into
account the Osservazione, p. 666, in [12].

We set also, for any k ∈ N \ {0}

(D(T3), X)k+θ,q :=
{
ψ ∈ D(T k3 ) : T k3 ψ ∈ (D(T3), X)θ,q

}
,

and
(X,D(T3))k+θ,q :=

{
ψ ∈ D(T k3 ) : T k3 ψ ∈ (X,D(T3))θ,q

}
.

Remark 3.6. The general situation of the real interpolation space (X0, X1)θ,q with X0, X1
two Banach spaces such that X0 ↪→ X1, is described in [19].

Remark 3.7. Note that for T3 satisfying (4), T k3 is closed for any k ∈ N\{0} since ρ(T3) 6= ∅;
consequently, if kθ < 1, we have

(D(T k3 ), X)θ,q = (X,D(T k3 ))1−θ,q = (X,D(T3))k−kθ,q = (D(T3), X)(k−1)+kθ,q ⊂ D(T k−1
3 ).

For more details see [20], (2.1.13), p. 43 or [12], p. 676, Teorema 6.

We recall the following lemma.

Lemma 3.8 ([12]). Let T3 be a linear operator satisfying (4). Let u such that

u ∈Wn,p(a1, b1;X) ∩ Lp(a1, b1;D(T k3 )),

where a1, b1 ∈ R with a1 < b1, n, k ∈ N\{0} and p ∈ (1,+∞). Then for any j ∈ N satisfying
the Poulsen condition 0 < 1

p + j < n and s ∈ {a1, b1}, we have

u(j)(s) ∈ (D(T k3 ), X) j
n

+ 1
np
,p.

This result is proved in [12], p. 678, Teorema 2’.

4 Assumptions and statement of results

4.1 Hypotheses

In all the sequel, r+, r− ∈ R, k+k− > 0 and A denotes a closed linear operator in X. We
assume the following hypotheses:

(H1) X is a UMD space,

(H2) [min(r+, r−, 0),+∞) ⊂ ρ(A),

(H3) −A ∈ BIP(X, θA) for some θA ∈ (0, π),

(H4) −A ∈ Sect(0).

Remark 4.1.

1. Due to (H2), if at least one parameter r+ or r− is negative or null, then 0 ∈ ρ(A).

2. Operator A0, defined by (1), satisfies all the previous hypotheses with X = Lq(ω),
q ∈ (1,+∞) and r± ∈

(
− π2

(b−a)2 ,+∞
)
. From [27], Proposition 3, p. 207, X satisfies

(H1) and taking A0 + r±I in [11], Theorem 9.15, p. 241 and Lemma 9.17, p. 242,
we deduce that A0 satisfies (H2). Moreover, (H3) is satisfied for every θA ∈ (0, π),
from [26], Theorem C, p. 166-167. Finally, (H4) is satisfied thanks to [14], section 8.3,
p. 232.
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3. In the scalar case, to solve each equation of (EQ), we need to solve the characteristic
equations

χ4 + (2A− r±)χ2 + (A2 − r±A) = 0,

thus, in our operational case, we consider the following operators

L− := −
√
−A+ r− I, L+ := −

√
−A+ r+ I and M := −

√
−A. (5)

Due to (H2) and (H3), −A, −A + r− I and −A + r+ I are sectorial operators, so
the existence of L−, L+ and M is ensured, see for instance [14], e), p.25 and [1],
Theorem 2.3, p. 69.

4. From [14], Proposition 3.1.9, p. 65, in , we have D(L−) = D(L+) = D(M). Thus, for
n,m ∈ N and m 6 n

D(Ln±) = D(Mn) = D(Lm±Mn−m) = D(MmLn−m± ).

5. From [25], Theorem 3, p. 437 and [1], Theorem 2.3, p. 69, assumptions (H2) and (H3)
imply that −A+ r± I ∈ BIP(X, θA) and due to [14], Proposition 3.2.1, e), p. 71, that

−L−,−L+,−M ∈ BIP(X, θA/2).

Moreover, from [25], Theorem 4, p. 441, we get

−(L− +M),−(L+ +M) ∈ BIP(X, θA/2 + ε),

for any ε ∈ (0, π/2− θA/2).
Since we have 0 < θA/2 < π/2, then due to [25], Theorem 2, p. 437, we deduce that
L−, L+, M , L− + M and L+ + M generate bounded analytic semigroups (exL−)x>0,
(exL+)x>0, (exM )x>0, (ex(L−+M))x>0 and (ex(L++M))x>0.

6. Using the Dore-Venni sums theorem, see [9], we deduce from (H1), (H2) and (H3) that
0 ∈ ρ(M) ∩ ρ(L−) ∩ ρ(L+) ∩ ρ(L+ +M) ∩ ρ(L− +M).

7. From (5), we deduce that

∀ ψ ∈ D(M2), (L2
+ −M2)ψ = r+ ψ and (L2

− −M2)ψ = r− ψ. (6)

and also that

∀ ψ ∈ D(M), (L+−M)ψ = r+(L++M)−1ψ and (L−−M)ψ = r−(L−+M)−1ψ. (7)

4.2 Main results

To solve our operational problem (P), we introduce two problems:

(P+)


u

(4)
+ (x) + (2A− r+ I)u′′+(x) + (A2 − r+A)u+(x) = f+(x), for a.e. x ∈ (γ, b)

u+(γ) = ψ1, u+(b) = ϕ+
1

u′+(γ) = ψ2, u′+(b) = ϕ+
2 .

and

(P−)


u

(4)
− (x) + (2A− r− I)u′′−(x) + (A2 − r−A)u−(x) = f−(x), for a.e. x ∈ (a, γ)

u−(a) = ϕ−1 , u−(γ) = ψ1

u′−(a) = ϕ−2 , u′−(γ) = ψ2,
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Remark 4.2. Recall that u is a classical solution of (P) if and only if there exist ψ1, ψ2 ∈ X
such that

(i) u− is a classical solution of (P−),

(ii) u+ is a classical solution of (P+),

(iii) u− and u+ satisfy (TC2).

Therefore, our aim is to state that there exists a unique couple (ψ1, ψ2) which satisfies
(i), (ii) and (iii).

Theorem 4.3. Let f− ∈ Lp(a, γ;X) and f+ ∈ Lp(γ, b;X) with p ∈ (1,+∞). Assume that
(H1), (H2), (H3), (H4) hold and k+k− > 0. Thus

1. for r+, r− ∈ R \ {0},

• if r+ > 0 and r− > 0,
• if r+ < 0 and r− < 0, such that

(l+ − l−)(k+ − k−) > 0,

• if r+ > 0 and r− < 0, such that

−6l−k+ + l+k+ + l−k− > 0,

• if r+ < 0 and r− > 0, such that

−6l+k− + l+k+ + l−k− > 0,

2. for r+ ∈ R \ {0} and r− = 0 with k−
k+

6 2,

• if r+ > 0 such that

r+ >

(√
t+ 1 +

√
t
)2

t2
k2

+
4k2
−
, for t ∈

(
0, 1
r+‖A−1‖

)
fixed,

• if r+ < 0 such that

−r+ >
27k2

+
64k2
−
,

3. for r+ = 0 and r− ∈ R \ {0} with k+
k−

6 2,

• if r− > 0 such that

r− >

(√
t+ 1 +

√
t
)2

t2
k2
−

4k2
+
, for t ∈

(
0, 1
r−‖A−1‖

)
fixed,

• if r− < 0 such that

−r− >
27k2
−

64k2
+
,

then, there exists a unique classical solution u, of the transmission problem (P) if and only
if

ϕ+
1 , ϕ

−
1 ∈ (D(A), X)1+ 1

2p
,p and ϕ+

2 , ϕ
−
2 ∈ (D(A), X)1+ 1

2 + 1
2p
,p. (8)
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Remark 4.4. Since the third case is the symmetric of the second one, replacing k+ by k−
and l+ by l−, the proof if exactly the same. Thus, we omit it.

Remark 4.5. If A = A0, to satisfy the conditions set in the second or the third case of
Theorem 4.3, since ‖A−1‖ = π2

(b−γ)2 , respectively ‖A−1‖ = π2

(γ−a)2 in the third case, we have
to take b− γ, respectively γ − a, enough large.

As a consequence of the previous Theorem, we state the following corollary.

Corollary 4.6. Let n > 2, f+ ∈ Lp(Ω+) and f− ∈ Lp(Ω−) with p ∈ (1,+∞) and p > n.
Assume that ω is a bounded open set of Rn−1 with C2-boundary. Let k+, k−, l+ > 0 and
l− < 0 with k+ = k−. Then, there exists a unique solution u of (Ppde), such that we have
u− ∈W 4,p(Ω−) and u+ ∈W 4,p(Ω+), if and only if

ϕ±1 , ϕ
±
2 ∈W 2,p(ω) ∩W 1,p

0 (ω)

∆ϕ±1 ,∈W
2− 1

p
,p(ω) ∩W 1,p

0 (ω)

∆ϕ±2 ∈W
1− 1

p
,p(ω) ∩W 1,p

0 (ω).

The proof is quite similar to the one state in [17], Corollary 1, p. 2941, or in [18],
Corollary 2.7, p. 357. Thus we omit it.

5 Preliminary results

In all the sequel, we set

c = γ − a > 0 and d = b− γ > 0.

From Remark 4.2, to solve problem (P) we must first study problems (P+) and (P−). To
this end, we need the following invertibility result obtained in [18] and [28].

Lemma 5.1 ([18] and [28]). Assume that (H1), (H2), (H3) and (H4) hold. Then operators
U±, V± ∈ L(X) defined by

U+ :=

 I − ed(L++M) − 1
r+

(L+ +M)2
(
edM − edL+

)
, if r+ ∈ R \ {0}

I − e2dM + 2dMedM , if r+ = 0

V+ :=

 I − ed(L++M) + 1
r+

(L+ +M)2
(
edM − edL+

)
, if r− ∈ R \ {0}

I − e2dM − 2dMedM , if r+ = 0

U− :=

 I − ec(L−+M) − 1
r−

(L− +M)2
(
ecM − ecL−

)
, if r− ∈ R \ {0}

I − e2cM + 2cMecM , if r− = 0

V− :=


I − ec(L−+M) + 1

r−
(L− +M)2

(
ecM − ecL−

)
, if r− ∈ R \ {0}

I − e2cM − 2cMecM , if r− = 0,

(9)

are invertible with bounded inverse.

From Remark 4.1, statement 4, U± and V± are well defined. For a detailed proof, see
[18], Proposition 5.4 with k = r± and [28], Proposition 4.5, p. 645.
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5.1 Transmission system

5.1.1 First case

Assume that r± ∈ R \ {0}. We set
P+

1 = k+(L+ +M)
(
U−1

+ (I + edM )(I − edL+) + V −1
+ (I − edM )(I + edL+)

)
P+

2 = k+(L+ +M)
(
U−1

+ (I − edM )(I − edL+) + V −1
+ (I + edM )(I + edL+)

)
P+

3 = k+(L+ +M)L+
(
U−1

+ (I + edM )(I + edL+) + V −1
+ (I − edM )(I − edL+)

)
,

(10)

and similarly
P−1 = k−(L− +M)

(
U−1
− (I + ecM )(I − ecL−) + V −1

− (I − ecM )(I + ecL−)
)

P−2 = k−(L− +M)
(
U−1
− (I − ecM )(I − ecL−) + V −1

− (I + ecM )(I + ecL−)
)

P−3 = k−(L− +M)L−
(
U−1
− (I + ecM )(I + ecL−) + V −1

− (I − ecM )(I − ecL−)
)
.

(11)

Moreover, we note

S1 = k+(L+ +M)
(
U−1

+ (I − edL+)ϕ̃2
+ + V −1

+ (I + edL+)ϕ̃4
+
)

−k−(L− +M)
(
U−1
− (I − ecL−)ϕ̃2

− + V −1
− (I + ecL−)ϕ̃4

−
)
,

(12)

and

S2 = −k+(L+ +M)
(
U−1

+ (I + edM )ϕ̃1
+ + V −1

+ (I − edM )ϕ̃3
+
)

−k−(L− +M)
(
U−1
− (I + ecM )ϕ̃1

− + V −1
− (I − ecM )ϕ̃3

−
)
− 2M−1R1,

(13)

with

R1 = −k+F
′′′
+ (γ) + k+M

2F ′+(γ) + l+F
′
+(γ) + k−F

′′′
− (γ)− k−M2F ′−(γ)− l−F ′−(γ), (14)

where F+ is the unique classical solution of problem u
(4)
+ (x) + (2A− r+ I)u′′+(x) + (A2 − r+A)u+(x) = f+(x), for a.e. x ∈ (γ, b)

u+(γ) = u+(b) = u′′+(γ) = u′′+(b) = 0,
(15)

and F− is the unique classical solution of problem u
(4)
− (x) + (2A− r− I)u′′−(x) + (A2 − r−A)u−(x) = f−(x), for a.e. x ∈ (a, γ)

u−(a) = u−(γ) = u′′−(a) = u′′+(γ) = 0.
(16)

For an explicit representation formula of the solution of both previous problems, we refer to
[18], Theorem 2.2, p. 355-356.

Remark 5.2. Since F± is a classical solution of (15), respectively (16), from Lemma 3.8, it
follows that, for j = 0, 1, 2, 3 and s = a, γ or b

F
(j)
± (s) ∈ (D(M), X)3−j+ 1

p
,p.

The next theorem extends the result of [17], Theorem 4.6, p. 2945, to the case r± < 0.

9



Theorem 5.3. Let f− ∈ Lp(a, γ;X) and f+ ∈ Lp(γ, b;X), with p ∈ (1,+∞). Assume that
(H1), (H2), (H3) and (H4) hold. Then, the transmission problem (P ) has a unique classical
solution if and only if the data ϕ+

1 , ϕ
−
1 , ϕ

+
2 , ϕ

−
2 satisfy (8) and system

(
P−1 − P

+
1

)
Mψ1 +

(
P+

2 + P−2

)
ψ2 = S1(

P+
3 + P−3

)
ψ1 +

(
P−1 − P

+
1

)
ψ2 = S2,

(17)

has a unique solution (ψ1, ψ2) such that

(ψ1, ψ2) ∈ (D(A), X)1+ 1
2p
,p × (D(A), X)1+ 1

2 + 1
2p
,p. (18)

Proof. Since the first line of (17) corresponds to the second line of system (23), p. 2944 in
[17] and the second line of (17) corresponds to the first line of system (23), p. 2944 in [17],
where P±1 in [17] becomes P±3 here, P±2 in [17] becomes P±1 here and P±3 in [17] becomes
P±2 here. Thus, the proof is the same than the proof of Theorem 4.6, p. 2945 in [17], which
clearly remains true for r± ∈ R \ {0}.

5.1.2 Second case

Now, assume that r− = 0, then l− = 0 and the transmission conditions (TC2) becomes

(TC2′)

 k−u
′′
−(γ) + k−Au−(γ) = k+u

′′
+(γ) + k+Au+(γ)

k−u
(3)
− (γ) + k−Au

′
−(γ) = k+u

(3)
+ (γ) + k+Au

′
+(γ)− l+u′+(γ).

(19)

Our aim here is to establish a similar result to the previous one. To this end, we set

Q−1 = k−
(
U−1
− + V −1

−

) (
I − e2cM

)
Q−2 = k−

(
U−1
−

(
I − ecM

)2
+ V −1

−

(
I + ecM

)2
)

Q−3 = k−

(
U−1
−

(
I + ecM

)2
+ V −1

−

(
I − ecM

)2
)
,

(20)

Moreover, we note

S3 = 2k−M
(
U−1
−

(
I − ecM

)
ϕ̃2
− + V −1

−

(
I + ecM

)
ϕ̃4
−
)

−k+(L+ +M)
(
U−1

+

(
I − edL+

)
ϕ̃2

+ + V −1
+

(
I + edL+

)
ϕ̃4

+
)
,

(21)

and

S4 = −2k−M
(
U−1
−

(
I + ecM

)
ϕ̃−2 + V −1

−

(
I − ecM

)
ϕ̃−4

)
−k+(L+ +M)

(
U−1

+

(
I + edM

)
ϕ̃+

1 + V −1
+

(
I − edM

)
ϕ̃+

3

)
+ 2M−1R2,

(22)

with
R2 = −k−F̃ (3)

− (γ) + k−M
2F̃ ′−(γ) + k+F

′′′
+ (γ)− k+M

2F ′+(γ)− l+F ′+(γ) (23)

where F̃− is the classical solution of problem u
(4)
− (x) + 2Au′′−(x) +A2u−(x) = f−(x), a.e. x ∈ (a, γ)

u−(a) = u−(γ) = u′′−(a) = u′′−(γ) = 0.
(24)
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Remark 5.4. Since F̃− is a classical solution of (16), as in Remark 5.2, from Lemma 3.8,
it follows that, for j = 0, 1, 2, 3 and s = a, γ or b

F̃
(j)
− (s) ∈ (D(M), X)3−j+ 1

p
,p.

Theorem 5.5. Let f− ∈ Lp(a, γ;X) and f+ ∈ Lp(γ, b;X), with p ∈ (1,+∞). Assume that
(H1), (H2), (H3) and (H4) hold. Then, problem (P) has a unique classical solution if and
only if the data ϕ+

1 , ϕ
−
1 , ϕ

+
2 , ϕ

−
2 satisfy (8) and system

(
P+

1 − 2MQ−1

)
Mψ1 −

(
P+

2 + 2MQ−2

)
ψ2 = S3(

P+
3 + 2MQ−3

)
ψ1 +

(
2MQ−1 − P

+
1

)
ψ2 = S4,

(25)

has a unique solution (ψ1, ψ2) satisfying (18).

Proof. We follow the same steps than the proof of Theorem 4.6, p. 2945 in [17], we only
point out the key points. From [18], Theorem 2.5, statement 2, there exists a unique classical
solution u+ of (P+) if and only if

ϕ+
1 , ψ1 ∈ (D(A), X)1+ 1

2p
,p and ϕ+

2 , ψ2 ∈ (D(A), X)1+ 1
2 + 1

2p
,p. (26)

Recall that, from Remark 3.7, we have

(D(A), X)1+ 1
2p
,p = (D(M), X)3+ 1

p
,p and (D(A), X)1+ 1

2 + 1
2p
,p = (D(M), X)2+ 1

p
,p. (27)

This solution is explicitly given in [17], Proposition 2, p. 2943-2944, from which we deduce
that

k+
(
u′′+(γ)−M2u+(γ)

)
= l+

(
I − edL+

)
α+

2 + l+
(
I + edL+

)
α+

4 ,

and

k+
(
u

(3)
+ (γ)−M2u′+(γ)

)
− l+u′+(γ) = −l+M

(
I + edM

)
α+

1 − l+M
(
I − edM

)
α+

3

+k+F
′′′
+ (γ)− k+M

2F ′+(γ)− l+F ′+(γ),

where 

α+
1 = 1

2r+
(L+ +M)U−1

+

[
L+(I + edL+)ψ1 − (I − edL+)ψ2 + ϕ̃+

1

]
α+

2 = − 1
2r+

(L+ +M)U−1
+

[
M(I + edM )ψ1 − (I − edM )ψ2 + ϕ̃+

2

]
α+

3 = 1
2r+

(L+ +M)V −1
+

[
L+(I − edL+)ψ1 − (I + edL+)ψ2 + ϕ̃+

3

]
α+

4 = − 1
2r+

(L+ +M)V −1
+

[
M(I − edM )ψ1 − (I + edM )ψ2 + ϕ̃+

4

]
,

(28)

with 

ϕ̃1
+ = −L+

(
I + edL+

)
ϕ+

1 +
(
I − edL+

) (
F ′+(b) + F ′+(γ)− ϕ+

2

)
ϕ̃2

+ = −M
(
I + edM

)
ϕ+

1 +
(
I − edM

) (
F ′+(b) + F ′+(γ)− ϕ+

2

)
ϕ̃3

+ = L+
(
I − edL+

)
ϕ+

1 −
(
I + edL+

) (
F ′+(b)− F ′+(γ)− ϕ+

2

)
ϕ̃4

+ = M
(
I − edM

)
ϕ+

1 −
(
I + edM

) (
F ′+(b)− F ′+(γ)− ϕ+

2

)
,

(29)
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and F+ is the unique classical solution of problem (15).
In the same way, from [28], Theorem 2.8, statement 2, p. 637, there exists a unique

classical solution u− of problem (P−) if and only if

ϕ−1 , ψ1 ∈ (D(A), X)1+ 1
2p
,p and ϕ−2 , ψ2 ∈ (D(A), X)1+ 1

2 + 1
2p
,p. (30)

Note that from (27), we have

ϕ−1 , ψ1 ∈ (D(M), X)3+ 1
p
,p and ϕ−2 , ψ2 ∈ (D(M), X)2+ 1

p
,p.

Moreover, this solution, given in [28], Proposition 4.1, p. 640, is explicitly written in [29],
Proposition 4.2, from which it follows that

k−
(
u′′−(γ)−M2u−(γ)

)
= −k−

(
2M

(
I − ecM

)
α−2 − 2M

(
I + ecM

)
α−4

)
,

and

k−
(
u

(3)
− (γ)−M2u′−(γ)

)
= k−

(
2M2

(
I + ecM

)
α−2 − 2M2

(
I − ecM

)
α−4

)
+k−F (3)

− (γ)− k−M2F ′−(γ),

where 

α−1 := −1
2U
−1
−

[(
I + (I + cM) ecM

)
ψ1 − cecMψ2 + ϕ̃−1

]
α−2 := 1

2U
−1
−

[(
I + ecM

)
Mψ1 +

(
I − ecM

)
ψ2 + ϕ̃−2

]
α−3 := 1

2V
−1
−

[(
I − (I + cM) ecM

)
ψ1 + cecMψ2 + ϕ̃−3

]
α−4 := −1

2V
−1
−

[(
I − ecM

)
Mψ1 +

(
I + ecM

)
ψ2 + ϕ̃−4

]
,

(31)

with 

ϕ̃1
− := −

(
I + ecM

)
ϕ−1 − ce

cM
(
Mϕ−1 + ϕ−2 − F̃

′
−(a)− F̃ ′−(γ)

)
ϕ̃2
− := −M

(
I + ecM

)
ϕ−1 +

(
I − ecM

) (
ϕ−2 − F̃

′
−(a)− F̃ ′−(γ)

)
ϕ̃3
− :=

(
I − ecM

)
ϕ−1 − ce

cM
(
Mϕ−1 + ϕ−2 − F̃

′
−(a) + F̃ ′−(γ)

)
ϕ̃4
− := M

(
I − ecM

)
ϕ−1 −

(
I + ecM

) (
ϕ−2 − F̃

′
−(a) + F̃ ′−(γ)

)
.

(32)

Note that due to (26), (27), (28) and (29), respectively to (27), (30), (31) and (32), we
deduce that

α±i ∈ D(M), for i = 1, 2, 3, 4 and α−2 , α
−
4 ∈ D(M2).

Thus, system (TC2′), given by (19), writes
−2k−M

((
I − ecM

)
α−2 −

(
I + ecM

)
α−4

)
= l+

((
I − edL+

)
α+

2 +
(
I + edL+

)
α+

4

)
2k−M2

((
I + ecM

)
α−2 −

(
I − ecM

)
α−4

)
= −l+M

((
I + edM

)
α+

1 +
(
I − edM

)
α+

3

)
+R2,
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where R2 is given by (23). Thus, it follows that the previous system gives

−2k−U−1
− M

(
I − ecM

) [(
I + ecM

)
Mψ1 +

(
I − ecM

)
ψ2 + ϕ̃−2

]
−2k−V −1

− M
(
I + ecM

) [(
I − ecM

)
Mψ1 +

(
I + ecM

)
ψ2 + ϕ̃−4

]
+k+(L+ +M)U−1

+

(
I − edL+

) [
M(I + edM )ψ1 − (I − edM )ψ2 + ϕ̃+

2

]
+k+(L+ +M)V −1

+

(
I + edL+

) [
M(I − edM )ψ1 − (I + edM )ψ2 + ϕ̃+

4

]
= 0

2k−MU−1
−

(
I + ecM

) [(
I + ecM

)
Mψ1 +

(
I − ecM

)
ψ2 + ϕ̃−2

]
+2k−MV −1

−

(
I − ecM

) [(
I − ecM

)
Mψ1 +

(
I + ecM

)
ψ2 + ϕ̃−4

]
+k+(L+ +M)U−1

+

(
I + edM

) [
L+(I + edL+)ψ1 − (I − edL+)ψ2 + ϕ̃+

1

]
+k+(L+ +M)V −1

+

(
I − edM

) [
L+(I − edL+)ψ1 − (I + edL+)ψ2 + ϕ̃+

3

]
= 2M−1R2,

Finally, using (10), (20), (21), (22) and (23), we obtain that the previous system writes as
system (25).

Conversely, if we assume that (8) holds and system (25) has a unique solution (ψ1, ψ2)
satisfying (18), then considering u± the unique classical solution of (P±), we obtain that u
is the unique classical solution of (P).

5.2 Functional calculus

In this section, by using functional calculus, we rewrite operators defined in (9), (10), (11)
and (20), to inverse the determinant operator of system (17) and system (25).

To this end, we recall some classical notations. For θ ∈ (0, π), we denote by H(Sθ)
the space of holomorphic functions on Sθ (defined by (3)) with values in C. Moreover, we
consider the following subspace of H(Sθ):

E∞(Sθ) :=
{
f ∈ H(Sθ) : f = O(|z|−s) (|z| → +∞) for some s > 0

}
.

In other words, E∞(Sθ) is the space of polynomial decreasing holomorphic functions at +∞.
Let T be an invertible sectorial operator of angle θT ∈ (0, π). If f ∈ E∞(Sθ), with θ ∈ (θT , π),
then we can define, by functional calculus, f(T ) ∈ L(X), see [14], p. 45. In this work, we
use functional calculus, as classicaly done, see for instance [4], [8] or [15].

Then, we recall a useful result from [18], Lemma 5.3, p. 370.
Lemma 5.6 ([18]). Let P be an invertible sectorial operator in X with angle θ, for all
θ ∈ (0, π). Let G ∈ H(Sθ), for some θ ∈ (0, π), such that

(i) 1−G ∈ E∞(Sθ),

(ii) G(x) 6= 0 for any x ∈ R+ \ {0}.
Then, G(P ) ∈ L(X), is invertible with bounded inverse.

Let r ∈ R, rm = max(−r, 0), δ > 0 and z ∈ C \ (−∞, rm]. We set

uδ,r(z) =


1− e−δ(

√
z+r+

√
z) − 1

r
(
√
z + r +

√
z)2

(
e−δ
√
z − e−δ

√
z+r
)
, if r ∈ R \ {0}

1− e−2δ
√
z − 2δ

√
ze−δ

√
z, if r = 0

vδ,r(z) =


1− e−δ(

√
z+r+

√
z) + 1

r
(
√
z + r +

√
z)2

(
e−δ
√
z − e−δ

√
z+r
)
, if r ∈ R \ {0}

1− e−2δ
√
z + 2δ

√
ze−δ

√
z, if r = 0
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and when uδ,r(z) 6= 0, vδ,r(z) 6= 0, we note

fδ,r,1(z) =



(√
z + r +

√
z
)√

z + r u−1
δ,r (z)

(
1 + e−δ

√
z
) (

1 + e−δ
√
z+r
)

+
(√

z + r +
√
z
)√

z + r v−1
d,r(z)

(
1− e−δ

√
z
) (

1− e−δ
√
z+r
)
, if r ∈ R \ {0}

(
u−1
δ,0(z) + v−1

δ,0 (z)
) (

1− e−2δ
√
z
)
, if r = 0,

fδ,r,2(z) =



−
(√

z + r +
√
z
)
u−1
δ,r (z)

(
1 + e−δ

√
z
) (

1− e−δ
√
z+r
)

−
(√

z + r +
√
z
)
v−1
δ,r (z)

(
1− e−δ

√
z
) (

1 + e−δ
√
z+r
)
, if r ∈ R \ {0}

u−1
δ,0(z)

(
1− e−δ

√
z
)2

+ v−1
δ,0 (z)

(
1 + e−δ

√
z
)2
, if r = 0,

and

fδ,r,3(z) =



−
(√

z + r +
√
z
)
u−1
δ,r (z)

(
1− e−δ

√
z
) (

1− e−δ
√
z+r
)

−
(√

z + r +
√
z
)
v−1
δ,r (z)

(
1 + e−δ

√
z
) (

1 + e−δ
√
z+r
)
, if r ∈ R \ {0}

u−1
δ,0(z)

(
1 + e−δ

√
z
)2

+ v−1
δ,0 (z)

(
1− e−δ

√
z
)2
, if r = 0

Remark 5.7. Note that, from (H2) and (H3), if r± 6= 0, we have
uc,r−(−A) = U−, ud,r+(−A) = U+, vc,r−(−A) = V−,
vd,r+(−A) = V+, k−fc,r−,1(−A) = P−1 , k+fd,r+,1(−A) = P+

1 ,
k−fc,r−,2(−A) = P−2 , k+fd,r+,2(−A) = P+

2 , k−fc,r−,3(−A) = P−3 ,
k+fd,r+,3(−A) = P+

3 ,

and if r− = 0, we obtain{
uc,0(−A) = U−, vc,0(−A) = V−, k−fc,0,1(−A) = Q−1 ,

k−fc,0,2(−A) = Q−2 , k−fc,0,3(−A) = Q−3 .

Remark 5.8. Let δ > 0, r ∈ R and x ∈ (rm,+∞). Then, when r = 0, we have

1− e−2δ
√
x ± 2δ

√
xe−δ

√
x = 2e−δ

√
x (sinh(δ

√
x)± δ

√
x
)
> 0,

and from [18], Lemma 5.2, p. 369, it clear that uδ,r(x) > 0 and vδ,r(x) > 0. Thus, when
r 6= 0, we deduce that

fδ,r,1(x) > 0 and fδ,r,2(x), fδ,r,3(x) < 0,

and when r = 0, we obtain

fδ,0,1(x), fδ,0,2(x), fδ,0,3(x) > 0.

Moreover, for z ∈ C \ (−∞, rm] and r ∈ R \ {0}, we define

gδ,r(z) = −
√
z + r

((
1− e−2δ(

√
z+r+

√
z)
)2
− 1
r2 (
√
z + r +

√
z)4

(
e−2δ

√
z − e−2δ

√
z+r
)2
)

+
√
z

((
1− e−δ(

√
z+r+

√
z)
)2

+ 1
r

(
√
z + r +

√
z)2

(
e−δ
√
z − e−δ

√
z+r
)2
)2
,

and for r = 0, we set

gδ,0(z) =
(
1 +
√
z
) (

1− e−2δ
√
z
)4

+ 4
(
1− e−2δ

√
z
)2
e−2δ

√
z − 16 δ2z e−4δ

√
z
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Lemma 5.9. Let δ > 0 and x ∈ (rm,+∞). Thus, if r ∈ R \ {0}, then gδ,r(x) < 0 and if
r = 0, then gδ,0(x) > 0.

Proof. Let r, δ, x > 0. From [17], Lemma 4.4, p. 2950, we obtain the result. Moreover,
if δ > 0, r < 0 and x ∈ (rm,+∞), then from Remark 5.8, we deduce that equation (36),
p. 2951, in [17], holds. Thus, following the same step than the proof of Lemma 4.4, p. 2950
in [17], we obtain the expected result.

Now, consider that r = 0. Then

gδ,0(x) =
(
1 +
√
x
) (

1− e−2δ
√
x
)4

+ 4e−2δ
√
x
((

1− e−2δ
√
x
)2
− 4 δ2x e−2δ

√
x
)

=
(
1 +
√
x
) (

1− e−2δ
√
x
)4

+4e−2δ
√
x
(
1− e−2δ

√
x − 2 δ

√
x e−δ

√
x
) (

1− e−2δ
√
x + 2 δ

√
x e−δ

√
x
)
.

Hence, since δ, x > 0, we have

1− e−2δ
√
x − 2 δ

√
x e−δ

√
x = e−δ

√
x
(
eδ
√
x − e−δ

√
x − 2 δ

√
x
)

= 2e−δ
√
x (sinh(δ

√
x)− δ

√
x
)
> 0.

Finally, we deduce that gδ,0 > 0.

6 Proof of the main results
In both cases, assume that problem (P) has a unique classical solution thus, from Theo-
rem 5.3, respectively Theorem 5.5, (8) holds. Conversely, assume that (8) holds, then due
to Theorem 5.3, respectively Theorem 5.5, we have to prove that system (17), respectively
system (25), has a unique solution such that (18) holds.

The proof is divided in three parts for both cases. First, we will make explicit, in the
first case, the determinant of system (17) and in the second case, the determinant of system
(25). Then, in the two cases, we will show the uniqueness of the solution. To this end, we
will inverse the determinant thanks to functional calculus. Finally, we will prove, in all cases,
that ψ1 and ψ2 have the expected regularity.

6.1 Calculus of the determinant

6.1.1 First case

Here, we consider r+, r− ∈ R\{0}. We have to make explicit the determinant of system (17)
that we recall here 

(
P−1 − P

+
1

)
Mψ1 +

(
P+

2 + P−2

)
ψ2 = S1(

P+
3 + P−3

)
ψ1 +

(
P−1 − P

+
1

)
ψ2 = S2.

We write the previous system as a matrix equation Λ1Ψ = S, where

Λ1 =

 (
P−1 − P

+
1

)
M

(
P+

2 + P−2

)(
P+

3 + P−3

) (
P−1 − P

+
1

)  , Ψ =
(
ψ1
ψ2

)
and S =

(
S1
S2

)
.

To solve system (17), we will study the determinant

det(Λ1) := M
(
P−1 − P

+
1

)2
−
(
P+

2 + P−2

) (
P+

3 + P−3

)
,
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of the matrix Λ1. Since the first line of (17) corresponds to the second line of system (23),
p. 2944 in [17] and the second line of (17) corresponds to the first line of system (23),
p. 2944 in [17], where P±1 in [17] becomes P±3 here, P±2 in [17] becomes P±1 here and P±3 in
[17] becomes P±2 here. It follows that our determinant det(Λ1) is exactly the opposite of the
one described in [17], section 5.1, p. 2953. Thus, we set

det(Λ1) = D+
1 +D−1 +D2, (33)

where 
D+

1 = M
(
P+

1

)2
− P+

3 P
+
2

D−1 = M
(
P−1

)2
− P−3 P

−
2

D2 = −P+
3 P

−
2 − P

−
3 P

+
2 − 2MP+

1 P
−
1 .

Then, we recall the result of [17] (Lemma 5.1, p. 2953), describing the determinant.

Lemma 6.1 ([17]). We have

1. D+
1 = −4k2

+(L+ +M)2U−2
+ V −2

+ D+, with

D+ = L+

((
I − e2d(L++M)

)2
− 1
r2

+
(L+ +M)4

(
e2dM − e2dL+

)2
)

−M
((
I − ed(L++M)

)2
+ 1
r2

+
(L+ +M)2

(
edM − edL+

)2
)2

.

2. D−1 = −4k2
−(L− +M)2U−2

− V −2
− D−, with

D− = L−

((
I − e2c(L−+M)

)2
− 1
r2
−

(L− +M)4
(
e2cM − e2cL−

)2
)

−M
((
I − ec(L−+M)

)2
+ 1
r2
−

(L− +M)2
(
ecM − ecL−

)2
)2

.

6.1.2 Second case

Here, we consider r+ ∈ R \ {0} and r− = 0. As previously, we make explicit the determinant
of system (25) that we recall here

(
P+

1 − 2MQ−1

)
Mψ1 −

(
P+

2 + 2MQ−2

)
ψ2 = S3(

P+
3 + 2MQ−3

)
ψ1 +

(
2MQ−1 − P

+
1

)
ψ2 = S4,

We write this system as a matrix equation Λ2Ψ = S̃, where

Λ2 =

 (
P+

1 − 2MQ−1

)
M −

(
P+

2 + 2MQ−2

)(
P+

3 + 2MQ−3

) (
2MQ−1 − P

+
1

)  , Ψ =
(
ψ1
ψ2

)
and S̃ =

(
S3
S4

)
.

To solve system (17), we will study the determinant

det(Λ2) := −M
(
P+

1 − 2MQ−1

)2
+
(
P+

3 + 2MQ−3

) (
P+

2 + 2MQ−2

)
,

of the matrix Λ2. We set
det(Λ2) = D+

3 +D−3 +D4, (34)

16



where
D+

3 = P+
2 P

+
3 −M

(
P+

1

)2
and D−3 = 4M2

(
Q−2 Q

−
3 −M

(
Q−1

)2
)
,

with
D4 = 2M

(
P+

3 Q
−
2 + P+

2 Q
−
3 +MP+

1 Q
−
1

)
.

Lemma 6.2. We have

1. D+
3 = k2

+(L+ +M)2U−2
+ V −2

+ D+
0 , with

D+
0 = L+

((
I − e2d(L++M)

)2
− 1
r2

+
(L+ +M)4

(
e2dM − e2dL+

)2
)

−M
((
I − ed(L++M)

)2
+ 1
r2

+
(L+ +M)2

(
edM − edL+

)2
)2

.

2. D−3 = 16k2
−M

2U−2
− V −2

− D−0 , with

D−0 = (I −M)
(
I − e2cM

)4
+ 4

(
I − e2cM

)2
e2cM − 16c2M2e4cM .

Proof.

1. We have
P+

2 P
+
3 = k2

+(L+ +M)2L+U
−2
+ V −2

+ D′+,

where

D′+ =
(
U2

+ + V 2
+

)
(I − e2dM )(I − e2dL+)

+U+V+
(
(I + edM )2(I + edL+)2 + (I − edM )2(I − edL+)2

)
=

(
U2

+ + V 2
+

) [(
I + ed(L++M)

)2
−
(
edM + edL+

)2
]

+2U+V+

[(
I + ed(L++M)

)2
+
(
edM + edL+

)2
]

= (U+ + V+)2
(
I + ed(L++M)

)2
− (V+ − U+)2

(
edM + edL+

)2
.

Moreover, from (9), we obtain that

U+ + V+ = 2
(
I − ed(L++M)

)
and V+ − U+ = 2

r+
(L+ +M)2

(
edM − edL+

)
. (35)

Then
D′+ = 4

(
I − ed(L++M)

)2 (
I + ed(L++M)

)2

− 4
r2

+
(L+ +M)4

(
edM − edL+

)2 (
edM + edL+

)2

= 4
(
I − e2d(L++M)

)2
− 4
r2

+
(L+ +M)4

(
e2dM − e2dL+

)2
.

Furthermore, we have

M
(
P+

1

)2
= k2

+(L+ +M)2MU−2
+ V −2

+ D′′+,

17



where

D′′+ =
(
V+(I + edM )(I − edL+) + U+(I − edM )(I + edL+)

)2

=
[
(U+ + V+)

(
I − ed(L++M)

)
+ (V+ − U+)

(
edM − edL+

)]2
,

and due to (35), it follows that

D′′+ =
[
2
(
I − ed(L++M)

)2
+ 2
r+

(L+ +M)2
(
edM − edL+

)2
]2
.

Finally, we deduce that

D+
3 = P+

2 P
+
3 −M

(
P+

1

)2

= k2
+(L+ +M)2U−2

+ V −2
+
(
L+D

′
+ −MD′′+

)
,

and setting D+
0 = L+D

′
+ −MD′′+, we obtain the expected result.

2. We have
Q−2 Q

−
3 = k2

−U
−2
− V −2

− D′−,

where

D′− =
(
V−
(
I − ecM

)2
+ U−

(
I + ecM

)2
)(

V−
(
I + ecM

)2
+ U−

(
I − ecM

)2
)

=
(
U2
− + V 2

−

) (
I − e2cM

)2
+ 2U−V−

(
I − e2cM

)2
+ 16U−V−e2cM ,

and

M
(
Q−1

)2
= k2

−MU−2
− V −2

− (U− + V−)2
(
I − e2cM

)2

= k2
−U
−2
− V −2

−

[
M
(
U2
− + V 2

−

) (
I − e2cM

)2
+ 2MU−V−

(
I − e2cM

)2
]
.

Thus
Q−2 Q

−
3 −M

(
Q−1

)2
= k2

−U
−2
− V −2

− D′′−,

where

D′′− = (I −M)
(
U2
− + V 2

−

) (
I − e2cM

)2
+ 2 (I −M)U−V−

(
I − e2cM

)2

+16U−V−e2cM

= (I −M) (U− + V−)2
(
I − e2cM

)2
+ 16U−V−e2cM .

Moreover, from (9), we obtain that

U− + V− = 2
(
I − e2cM

)
and U−V− =

(
I − e2cM

)2
− 4c2M2e2cM .

Then

D′′− = 4 (I −M)
(
I − e2cM

)4
+ 16

(
I − e2cM

)2
e2cM − 64c2M2e4cM .

Therefore, it follows that

D−3 = 4M2
(
Q−2 Q

−
3 −M

(
Q−1

)2
)

= 16k2
−M

2U−2
− V −2

− D−0 ,

where D−0 = 1
4D
′′
−.
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6.2 Inversion of the determinant

6.2.1 First case

Here, we consider r+, r− ∈ R \ {0}. Let r = max(−r+,−r−, 0) > 0. By using functional
calculus, we prove that the determinant of system (17), given by (33), is invertible with
bounded inverse. Due to Lemma 6.1 and the definition of D2, we obtain:

D+
1 = g+

1 (−A), D−1 = g−1 (−A) and D2 = g2(−A),

where, for z ∈ C \ R−, we have set

g+
1 (z) = 4k2

+(
√
z + r+ +

√
z)2u−2

d,r+
(z)v−2

d,r+
(z)gd,r+(z)

g−1 (z) = 4k2
−(
√
z + r− +

√
z)2u−2

c,r−(z)v−2
c,r−(z)gc,r−(z)

g2(z) = k+fd,r+,1(z)k−fc,r−,3(z) + k−fc,r−,1(z)k+fd,r+,3(z)
−2
√
z k+fd,r+,2(z)k−fc,r−,2(z),

with uδ,r, vδ,r, gδ,r and fδ,r,i the complex functions defined in section 5.2. Thus

det(Λ1) = D+
1 +D−1 +D2 = f1(−A), (36)

with f1 = g+
1 + g−1 + g2. Note that, for some θ ∈ (0, π), we have f ∈ H(Sθ) and due to

Remark 5.8 and Lemma 5.9, for x > 0, we have

f1(x) = g+
1 (x) + g−1 (x) + g2(x) < 0. (37)

Let C1, C2 be two linear operators in X. We denote by C1 ∼ C2 the equality C1 = C2 + Σ,
where Σ is a finite sum of terms of type kLl+Lm−MneαL+eβL−eδM , where k ∈ R; l,m, n ∈ N;
α, β, δ ∈ R+ with α+ β + δ 6= 0. Note that Σ is a regular term in the sense:

Σ ∈ L(X) with Σ(X) ⊂ D(M∞) :=
⋂
k>0

D(Mk).

Since we have U± ∼ I, V± ∼ I, then by setting W = U−U+V−V+ ∼ I, we deduce that
WP+

1 ∼ 2k+(L+ +M), WP−1 ∼ 2k−(L− +M)

WP+
2 ∼ 2k+(L+ +M), WP−2 ∼ 2k−(L− +M)

WP+
3 ∼ 2k+(L+ +M)L+, WP−3 ∼ 2k−(L− +M)L−.

Thus

W 2 det(Λ1) = M
(
WP+

1

)2
−
(
WP+

2 WP+
3

)
+M

(
WP−1

)2
−
(
WP−2 WP−3

)
−
(
WP−2 WP+

3 +WP+
2 WP−3 + 2MWP+

1 WP−1

)
∼ −4k2

+(L+ +M)2(L+ −M)− 4k2
−(L− +M)2(L− −M)

−4k+k−(L+ +M)(L− +M)(L+ + L− + 2M).

From (7), we have

−W 2 det(Λ1) ∼ 4k2
+r+(L+ +M) + 4k2

−r−(L− +M)

+4k+k−(L+ +M)(L− +M)(L+ + L− + 2M)

∼ 4k+l+(L+ +M) + 4k−l−(L− +M)

+4k+k−(L+ +M)(L− +M)(L+ + L− + 2M)
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Hence, we note

B1 = 4k+l+(L+ +M) + 4k−l−(L− +M) + 4k+k−(L+ +M)(L− +M)(L+ + L− + 2M).

Thus, we obtain

det(Λ1) = −W−2

B1 +
∑
j∈J

kjL
lj
+L

mj

− MnjeαjL+eβjL−eδjM

 , (38)

where J is a finite set and for any j ∈ J :

kj ∈ R; lj ,mj , nj ∈ N, αj , βj , δj ∈ R+ with αj + βj + δj 6= 0.

We set

B2 = I + l+
k−

(L− +M)−1(L+ + L− + 2M)−1 + l−
k+

(L+ +M)−1(L+ + L− + 2M)−1

such that
B1 = 4k+k−(L+ +M)(L− +M)(L+ + L− + 2M)B2.

Proposition 6.3. Assume that (H1), (H2), (H3), (H4) hold and k+k− > 0. Thus

• if l+
k−

> 0 and l−
k+

> 0,

• if l+
k−

< 0 and l−
k+

< 0, such that

(l+ − l−)(k+ − k−) > 0, (39)

• if l+
k−

> 0 and l−
k+

< 0, such that

− 6l−k+ + l+k+ + l−k− > 0, (40)

• if l+
k−

< 0 and l−
k+

> 0, such that

− 6l+k− + l+k+ + l−k− > 0, (41)

then, b2(x) > 0, for x > r > 0 and operator B1, defined above, is invertible with bounded
inverse.

Remark 6.4. Since k+k− > 0, then we have the following equivalences

l+
k−

> 0⇐⇒ r+ > 0 and l−
k+

> 0⇐⇒ r− > 0.

Proof. From (H2) and (H3), since k+k− 6= 0, it is clear that

0 ∈ ρ (4k+k−(L+ +M)(L− +M)(L+ + L− + 2M)) .

Thus, it remains to prove that 0 ∈ ρ(B2).
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Let z ∈ C \ (−∞, r]. We set

b2(z) = 1 + l+
k−

1
(√z + r− +

√
z)(√z + r+ +√z + r− + 2

√
z)

+ l−
k+

1
(√z + r+ +

√
z)(√z + r+ +√z + r− + 2

√
z) ,

(42)

hence b2(−A) = B2. Then, for all x > r > 0, it follows

b2(x) = 1 + l+
k−

1
(√x+ r− +

√
x)(√x+ r+ +√x+ r− + 2

√
x)

+ l−
k+

1
(√x+ r+ +

√
x)(√x+ r+ +√x+ r− + 2

√
x)

Our aim is to prove that b(x) > 0, for all x > r. To this end, we set

y = x− r > 0 ⇐⇒ x = y + r > 0,

hence

b2(y + r) = 1 + l+
k−

1
(√y + r + r− +

√
y + r)(√y + r + r+ +√y + r + r− + 2

√
y + r)

+ l−
k+

1
(√y + r + r+ +

√
y + r)(√y + r + r+ +√y + r + r− + 2

√
y + r)

= 1 + 1
(√y + r + r+ +√y + r + r− + 2

√
y + r)b3(y),

where

b3(y) =
l+
k−

(√y + r + r− +
√
y + r) +

l−
k+

(√y + r + r+ +
√
y + r) .

Then

b′3(y) =
− l+
k−

(
1

2
√
y+r+r− + 1

2
√
y+r

)
(√y + r + r− +

√
y + r)2 +

− l−
k+

(
1

2
√
y+r+r+

+ 1
2
√
y+r

)
(√y + r + r+ +

√
y + r)2

and

b′2(y + r) =
−
(

1
2
√
y+r+r+

+ 1
2
√
y+r+r− + 1√

y+r

)
(√y + r + r+ +√y + r + r− + 2

√
y + r)2 b3(y)

+ 1
(√y + r + r+ +√y + r + r− + 2

√
y + r)b

′
3(y),

Now, we have to study the following fourth cases.

1. If l+
k−

> 0 and l−
k+

> 0, then it is clear that b3 > 0 and b2 > 0.

2. If l+
k−

< 0 and l−
k+

< 0, then b′3 > 0 and b′2 > 0. Thus b2(y + r) > b2(r) where

b2(r) = 1 + 1
(√r + r+ + 2

√
r)b3(0) > 1 + 1

2
√
r
b3(0),

with

b3(0) =
l+
k−√

r + r− +
√
r

+
l−
k+√

r + r+ +
√
r
>

1√
r

(
l+
k−

+ l−
k+

)
.
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Thus, we obtain
b2(r) > 1 + 1

2r

(
l+
k−

+ l−
k+

)
.

Moreover, we have

1 + 1
2r

(
l+
k−

+ l−
k+

)
> 0⇐⇒ 2r > −

(
l+
k−

+ l−
k+

)
,

where

−
(
l+
k−

+ l−
k+

)
=


−r−

(
l+
l−

+ k−
k+

)
, if r = −r−

−r+

(
k+
k−

+ l−
l+

)
, if r = −r+.

Thus, we obtain that

2r > −
(
l+
k−

+ l−
k+

)
⇐⇒

{
l+k+ + l−k− − 2l−k+ > 0, if r = −r−
l+k+ + l−k− − 2l+k− > 0, if r = −r+.

Furthermore, since k+k− > 0, if r = −r−, then −
l−
k−

> − l+
k+

, hence −l−k+ > −l+k−

and if r = −r+, then −
l+
k+

> − l−
k−

, hence −l+k− > −l−k+. It follows that

{
l+k+ + l−k− − 2l−k+ > l+k+ + l−k− − l+k− − l−k+, if r = −r−
l+k+ + l−k− − 2l+k− > l+k+ + l−k− − l+k− − l−k+, if r = −r+.

Finally, if (39) holds, then we obtain b2 > 0.

3. If l+
k−

> 0 and l−
k+

< 0, then since k+k− > 0, we have

l+
k−

> 0⇐⇒ l+
k+

k+
k−
k2
− > 0⇐⇒ r+ > 0 and l−

k+
< 0⇐⇒ l−

k−

k−
k+
k2

+ < 0⇐⇒ r− < 0.

Thus r = −r− and

b3(y) =
l+
k−

(√y +
√
y + r) +

l−
k+

(√y + r + r+ +
√
y + r) >

1
2
√
y + r

(
l+
k−

+ l−
k+

)
.

If l+
k−

+ l−
k+

> 0, then b3 > 0 and b2 > 0. If l+
k−

+ l−
k+

< 0, then we have

b2(y + r) = 1 + 1
(√y + r + r+ +√y + 2

√
y + r)b3(y)

> 1 + 1
3
√
y + r

b3(y)

> 1 + 1
6(y + r)

(
l+
k−

+ l−
k+

)
.

Moreover, we have

1 + 1
6(y + r)

(
l+
k−

+ l−
k+

)
> 0⇐⇒ 6(y + r) + l+

k−
+ l−
k+

> 0.
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It is obvious that
6(y + r) +

(
l+
k−

+ l−
k+

)
> 6r + l+

k−
+ l−
k+
,

thus, since k+k− > 0 and here r = −r− = − l−
k−

, we deduce that the previous inequality
becomes

−6 l−
k−

+ l+
k−

+ l−
k+

> 0⇐⇒ −6l−k+ + l+k+ + l−k− > 0.

Finally, since k+k− > 0, if (40) holds, then b2 > 0.

4. If l+
k−

< 0 and l−
k+

> 0, then here r = −r+ and in the same way than previously, if

(41) holds, then b2 > 0.

Since r = max(−r+,−r−, 0) > 0 and due to (H2) and (H3), we deduce that operator
−A − rI ∈ BIP(X, θA) with 0 ∈ ρ(−A − rI). Thus, considering b̃2(z) = b2(z + r), with
z+ r ∈ C \R−, it follows that b̃2(−A− rI) = B2. Moreover, for a given θ ∈ (0, π), it is clear
that 1 − b2, 1 − b̃2 ∈ E∞. Finally, applying Lemma 5.6 with G = b̃2 and P = −A − rI, we
deduce the result.

Due to (38) and Proposition 6.3, it follows that

det(Λ1) = −W−2B1F1, (43)

where
F1 = I +

∑
j∈J

kjB
−1
1 L

lj
+L

mj

− MnjeαjL+eβjL−eδjM . (44)

For z ∈ C \ (−∞, r], we set

b1(z) = −4k+k−(
√
z + r+ +

√
z)(
√
z + r− +

√
z)(
√
z + r+ +

√
z + r− + 2

√
z)b2(z), (45)

where b2 is given by (42) and

f̃1(z) = 1 +
∑
j∈J

kjb1(z)−1 (−√z + r+
)lj (−√z + r−

)mj
(
−
√
z
)nj e−αj

√
z+r+e−βj

√
z+r−e−δj

√
z.

Then, due to (H2) and (H3), we have B1 = b1(−A) and F1 = f̃1(−A). Moreover, from (36)
and (43), we obtain

f1(−A) = det(Λ1) = −W−2B1f̃1(−A).

Note that, we have

f1(z) = −u−2
d,r+

(z)v−2
d,r+

(z)u−2
c,r−(z)v−2

c,r−(z)b1(z)f̃1(z). (46)

Proposition 6.5. Assume that (H1), (H2), (H3), (H4) hold and k+k− > 0. Thus

• if r+ > 0 and r− > 0,

• if r+ < 0 and r− < 0, such that (39) holds,

• if r+ > 0 and r− < 0, such that (40) holds,

• if r+ < 0 and r− > 0, such that (41) holds,

then, F1 ∈ L(X), given by (44), is invertible with bounded inverse.
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Proof. For a given θ ∈ (0, π), we have f1, f̃1 ∈ H(Sθ). Moreover, for z ∈ C \ (−∞, r], since

kjb
−1
1 (z)

(
−
√
z + r+

)lj (−√z + r−
)mj

(
−
√
z
)nj , for all j ∈ J,

are polynomial functions, we deduce that 1− f̃1 ∈ E∞(Sθ).
From (37), Proposition 6.3 and Remark 6.4, we know that f1 < 0 and b2 > 0 on (r,+∞).

Then, since ud,r+ , uc,r− , vd,r+ , vc,r− > 0 on (r,+∞) and due to (45) and (46), we deduce that
f̃1 < 0 on (r,+∞). Therefore, noting ˜fr,1(z) = f̃1(z + r) and applying Lemma 5.6 with
G = f̃1 and P = −A − rI, thus we deduce that operator F1 = ˜fr,1(−A − rI) = f̃1(−A) is
invertible with bounded inverse.

This result finally leads us to state the following main result of this section.

Proposition 6.6. Assume that (H1), (H2), (H3), (H4) hold and k+k− > 0. Thus

• if r+ > 0 and r− > 0,

• if r+ < 0 and r− < 0, such that (39) holds,

• if r+ > 0 and r− < 0, such that (40) holds,

• if r+ < 0 and r− > 0, such that (41) holds,

then det(Λ1) is invertible with bounded inverse.

Proof. From (43), Proposition 6.3 and Proposition 6.5, it follows that det(Λ1) = −W−2B1F1,
is invertible with bounded inverse.

6.2.2 Second case

Let r+ ∈ R \ {0} and r− = 0. In the same way than previously, using functional calculus, we
prove that the determinant of system (25), given by (34), is invertible with bounded inverse.
Due to Lemma 6.2, and the definition of D4, we obtain:

D+
3 = g+

3 (−A), D−3 = g−3 (−A) and D4 = g4(−A),

where, for z ∈ C \ R−, we have set

g+
3 (z) = 4k2

+(
√
z + r+ +

√
z)2u−2

d,r+
(z)v−2

d,r+
(z)gd,r+(z)

g−3 (z) = 16k2
− z u

−2
c,0(z)v−2

c,0 (z)gc,0(z)

g4(z) = −2
√
z
(
k+fd,r+,3(z)k−fc,0,2(z) + k+fd,r+,2(z)k−fc,0,3(z)

)
+2zk+fd,r+,1(z)k−fc,0,1(z),

with uδ,r, vδ,r, gδ,r and fδ,r,i the complex functions defined in section 5.2. Thus

det(Λ2) = D+
3 +D−3 +D4 = f2(−A), (47)

with f2 = g+
3 + g−3 + g4. Note that, for some θ ∈ (0, π), we have f2 ∈ H(Sθ) and due to

Remark 5.8 and Lemma 5.9, for x > max(−r+, 0), we have

f2(x) = g+
3 (x) + g−3 (x) + g4(x), where g+

3 < 0 and g−3 , g4 > 0. (48)

Lemma 6.7. Let k+k− > 0. Then
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• if r+ > 0 such that

r+ >

(√
t+ 1 +

√
t
)2

t2
k2

+
4k2
−
, for t > 0 fixed. (49)

for all x > tr+, we have f2(x) > 0.

• if r+ < 0 such that

− r+ >
27k2

+
64k2
−
, (50)

for all x > −r+, we have f2(x) > 0.

Proof. From (48), we deduce

f2(x) > g+
3 (x) + g4(x) > g+

3 (x) + 2k+k− x fd,r+,1(x)fc,0,1(x).

Let r = max(−r+, 0). For x ∈ (r,+∞), setting y = x− r > 0 and noting

h1(y) = g+
3 (y + r) + 2k+k− (y + r) fd,r+,1(y + r)fc,0,1(y + r),

it follows

h1(y) = 4k2
+

(√y + r + r+ +
√
y + r)2

u2
d,r+

(y + r)v2
d,r+

(y + r)
gd,r+(y + r)

+2k+k− (y + r) fd,r+,1(y + r)fc,0,1(y + r).

Since we have

0 > gd,r+(y + r) > −
√
y + r + r+

(
1− e−2d(

√
y+r+r++

√
y+r)

)2
,

then

h1(y) > 4 (√y + r + r+ +
√
y + r)√y + r + r+

u2
d,r+

(y + r)v2
d,r+

(y + r)uc,0(y + r)vc,0(y + r)
h2(y),

where

h2(y) = −k2
+(
√
y + r + r+ +

√
y + r)

(
1− e−2d(

√
y+r+r++

√
y+r)

)2
uc,0(y + r)vc,0(y + r)

+k+k− (y + r)
(
1− e−2c

√
y+r
)2
vd,r+(y + r)

(
1 + e−d

√
y+r
) (

1 + e−d
√
y+r+r+

)
+k+k− (y + r)

(
1− e−2c

√
y+r
)2
ud,r+(y + r)

(
1− e−d

√
y+r
) (

1− e−d
√
y+r+r+

)
> −k2

+(
√
y + r + r+ +

√
y + r)

(
1− e−2d(

√
y+r+r++

√
y+r)

)2 (
1− e−2c

√
y+r
)2

+k+k− (y + r)
(
1− e−2c

√
y+r
)2
h3(y),

with
h3(y) = vd,r+(y + r)

(
1 + e−d

√
y+r
) (

1 + e−d
√
y+r+r+

)
+ud,r+(y + r)

(
1− e−d

√
y+r
) (

1− e−d
√
y+r+r+

)
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and

h3(y) = 2vd,r+(y + r)
(
1 + e−d(

√
y+r+r++

√
y+r)

)
+ 2ud,r+(y + r)

(
e−d
√
y+r + e−d

√
y+r+r+

)
= 2

(
1− e−d(

√
y+r+r++

√
y+r)

) (
1 + e−d(

√
y+r+r++

√
y+r)

)
+2(√y + r + r+ +

√
y + r)2

r+

(
e−d
√
y+r − e−d

√
y+r+r+

) (
e−d
√
y+r + e−d

√
y+r+r+

)

= 2
(
1− e−2d(

√
y+r+r++

√
y+r)

)
+2(√y + r + r+ +

√
y + r)2

r+

(
e−2d

√
y+r − e−2d

√
y+r+r+

)
.

Moreover, for all y > 0, since we have

e−2d
√
y+r − e−2d

√
y+r+r+

r+
> 0, for r+ ∈ R \ {0},

we deduce that
h3(y) > 2

(
1− e−2d(

√
y+r+r++

√
y+r)

)
,

and

h2(y) > −k2
+(
√
y + r + r+ +

√
y + r)

(
1− e−2d(

√
y+r+r++

√
y+r)

)2 (
1− e−2c

√
y+r
)2

+2k+k− (y + r)
(
1− e−2c

√
y+r
)2 (

1− e−2d(
√
y+r+r++

√
y+r)

)
> −k2

+(
√
y + r + r+ +

√
y + r)

(
1− e−2d(

√
y+r+r++

√
y+r)

) (
1− e−2c

√
y+r
)2

+2k+k− (y + r)
(
1− e−2d(

√
y+r+r++

√
y+r)

) (
1− e−2c

√
y+r
)2

>
(
1− e−2d(

√
y+r+r++

√
y+r)

) (
1− e−2c

√
y+r
)2
h4(y),

where
h4(y) = 2k+k− (y + r)− k2

+(
√
y + r + r+ +

√
y + r).

Thus
h4(y) > 0⇐⇒ y + r√

y + r + r+ +
√
y + r

>
k2

+
2k+k−

.

We set
h5(y) = y + r√

y + r + r+ +
√
y + r

,

hence

h′5(y) =
( 1√

y + r + r+ +
√
y + r

)(
1− 1

2

√
y + r

y + r + r+

)
.

1. If r+ < 0, then r = −r+ and
y + r

y + r + r+
= y + r

y
,

moreover

h′5(y) > 0⇐⇒ 1− 1
2

√
y + r

y
> 0⇐⇒ 4 >

y + r

y
⇐⇒ y >

r

3 .
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Thus, we have

h5(y) > h5

(
r

3

)
=

4r
3√

r
3 + 2

√
r
3

= 4
3

√
r

3 > 0.

Therefore, we deduce that

h4(y) > 0⇐⇒ h5(y) >
k2

+
2k+k−

⇐⇒ h5

(
r

3

)
>

k+
2k−

⇐⇒ 4
3

√
r

3 >
k+
2k−

,

hence,
4
3

√
r

3 >
k+
2k−

⇐⇒ r

3 >
9k2

+
64k2
−
⇐⇒ −r+ >

27k2
+

64k2
−
.

2. If r+ > 0, then r = 0 and
y + r

y + r + r+
= y

y + r+
< 1,

hence h′5 > 0 and h5 is an increasing function. Thus

h5(y) >
k2

+
2k+k−

⇐⇒ y√
y + r+ +√y >

k+
2k−

.

Moreover, for t > 0 fixed, we have

h5(tr+) > k+
2k−

⇐⇒ tr+√
(t+ 1)r+ +

√
tr+

>
k+
2k−

⇐⇒ t√
t+ 1 +

√
t

√
r+ >

k+
2k−

,

hence

√
r+ >

√
t+ 1 +

√
t

t

k+
2k−

⇐⇒ r+ >

(√
t+ 1 +

√
t
)2

t2
k2

+
4k2
−
.

Finally, if r+ > 0 such that (49) holds, then since y = x, for all x > tr+, we have h2(x) > 0,
h1(x) > 0 and f2(x) > 0. Moreover, r+ < 0 such that (50) holds, then for all y > 0, we have
h2(y) > 0, h1(y) > 0 and since y = x+ r+, for all x > −r+, it follows that f2(x) > 0.

Therefore, as in the first case, since we have U± ∼ I and V± ∼ I, then by setting
W = U−U+V−V+ ∼ I, we deduce that

WP+
1 ∼ 2k+(L+ +M), WQ−1 ∼ 2k−I

WP+
2 ∼ 2k+(L+ +M), WQ−2 ∼ 2k−I

WP+
3 ∼ 2k+(L+ +M)L+, WQ−3 ∼ 2k−I.

Thus

W 2 det(Λ2) =
(
WP+

2 WP+
3 −M

(
WP+

1

)2
)

+ 4M2
(
WQ−2 WQ−3 −M

(
WQ−1

)2
)

+2M
(
WP+

3 WQ−2 +WP+
2 WQ−3 +MWP+

1 WQ−1

)
∼ 4k2

+(L+ +M)2(L+ −M) + 16k2
−M

2(I −M)

+8k+k−(L+ +M)M(L+ +M + I).
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From (7), we have

W 2 det(Λ2) ∼ 4k2
+r+(L+ +M) + 16k2

−M
2(I −M)

+8k+k−(L+ +M)M(L+ +M + I)

∼ 4k+l+(L+ +M) + 16k2
−M

2(I −M)

+8k+k−(L+ +M)M(L+ +M + I)

Hence, we note

B3 = 4k+l+(L+ +M) + 16k2
−M

2(I −M) + 8k+k−(L+ +M)M(L+ +M + I).

Thus, we obtain

det(Λ2) = W−2

B3 +
∑
j∈J

kjL
lj
+M

mjeαjL+eβjM

 , (51)

where J is a finite set and for any j ∈ J :

kj ∈ R; lj ,mj ∈ N, αj , βj ∈ R+ with αj + βj 6= 0.

Proposition 6.8. Assume that (H1), (H2), (H3) hold and k+k− > 0. If k−k+
6 2, then

0 ∈ ρ
(
8k+k−(L+ +M)2M − 16k2

−M
3
)
.

Proof. Since k+k− > 0, we have k−
k+

> 0 and

8k+k−(L+ +M)2M − 16k2
−M

3 = 8k+k−M

[
L2

+ + 2L+M +M2 − 2k−
k+
M2

]
.

From Remark 4.1, 5. and Corollary 3, p. 444 in [25], we deduce that

L2
+, 2L+M, M2 ∈ BIP(X, θA).

Thus, if k−
k+

6 1, then

L2
+ + 2L+M +M2 − 2k−

k+
M2 = L2

+ −
k−
k+
M2 + 2L+M +

(
1− k−

k+

)
M2.

Moreover, for all ψ ∈ D(M2) = D(A), due to (6), we have(
L2

+ −
k−
k+
M2

)
ψ =

[
−
(

1− k−
k+

)
A+ r+I

]
ψ,

and from [25], Theorem 3, p. 437 and [1], Theorem 2.3, p. 69, assumptions (H2) and (H3)
imply that

−
(

1− k−
k+

)
A+ r+I ∈ BIP(X, θA),

and
L2

+ −
k−
k+
M2 + 2L+M +

(
1− k−

k+

)
M2 ∈ BIP(X, θA + ε),
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for any ε ∈ (0, π−θA). Moreover, since 0 ∈ ρ(L+M), we deduce from [25], remark at the end
of p. 445, that 0 ∈ ρ

(
L2

+ −
k−
k+
M2 + 2L+M +

(
1− k−

k+

)
M2

)
. Therefore, since 0 ∈ ρ(M)

and k+k− > 0, it follows that

0 ∈ ρ
(
8k+k−(L+ +M)2M − 16k2

−M
3
)
.

In the same way, if 1 < k−
k+

6 2, then

L2
+ + 2L+M +M2 − 2k−

k+
M2 = L2

+ −M2 + 2L+M − 2
(
k−
k+
− 1

)
M2 +M2 −M2,

hence, for all ψ ∈ D(M2) = D(A), from (6), we obtain(
L2

+ + 2L+M +M2 − 2k−
k+
M2

)
ψ = r+ψ + 2M

(
L+ −

(
k−
k+
− 1

)
M

)
ψ. (52)

Moreover, we have(
L+ −

(
k−
k+
− 1

)
M

)
ψ =

(
L+ +

(
k−
k+
− 1

)
M

)−1(
L2

+ −
(
k−
k+
− 1

)2
M2

)
ψ,

and from [25], Theorem 3, p. 437 and [1], Theorem 2.3, p. 69, assumptions (H2) and (H3)
imply that (

L2
+ −

(
k−
k+
− 1

)2
M2

)
= −

(
2− k−

k+

)
A+ r+I ∈ BIP(X, θA). (53)

Finally, from (H2), (H3), (52), (53) and [25], Theorem 3, p. 437, we deduce that

r+ψ + 2M
(
L+ −

(
k−
k+
− 1

)
M

)
∈ BIP(X, θA),

and
0 ∈ ρ

(
r+ψ + 2M

(
L+ −

(
k−
k+
− 1

)
M

))
.

Therefore, since 0 ∈ ρ(M) and k+k− > 0, it follows that

0 ∈ ρ
(
8k+k−(L+ +M)2M − 16k2

−M
3
)
.

We set

B4 = I + 4k+l+(L+ +M)
(
8k+k−(L+ +M)2M − 16k2

−M
3
)−1

+16k2
−M

2
(
8k+k−(L+ +M)2M − 16k2

−M
3
)−1

+8k+k−(L+ +M)M
(
8k+k−(L+ +M)2M − 16k2

−M
3
)−1

,

(54)

thus, we have
B3 =

(
8k+k−(L+ +M)2M − 16k2

−M
3
)
B4.

Moreover, from (51) and noting B5 = 8k+k−(L+ +M)2M − 16k2
−M

3, we have

det(Λ2) = W−2B5F2, (55)
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where
F2 = B4 +

∑
j∈J

kjB
−1
5 L

lj
+M

mjeαjL+eβjM . (56)

Now, for z ∈ C \ [max(−r+, 0),+∞), we set

f̃2(z) = b4(z) +
∑
j∈J

kjb5(z)−1√z + r+
lj√zmje−αj

√
z+r+e−βj

√
z,

where b3(z) = b4(z)b5(z), with

b4(z) = 1 + 4k+l+(√z + r+ +
√
z)
(
8k+k−(√z + r+ +

√
z)2√z − 16k2

−
√
z

3
)−1

+16k2
−z
(
−8k+k−(

√
z + r+ +

√
z)2√z + 16k2

−
√
z

3)−1

+8k+k−(
√
z + r+ +

√
z)
√
z
(
8k+k−(

√
z + r+ +

√
z)2√z − 16k2

−
√
z

3)−1
,

and
b5(z) = −8k+k−(

√
z + r+ +

√
z)2√z + 16k2

−
√
z

3
.

Then f̃2(−A) = F2, b3(−A) = B3, b4(−A) = B4 and b5(−A) = B5. Thus, from (47) and
(55), we deduce that

f2(z) = u−2
d,r+

(z)v−2
d,r+

(z)u−2
c,0(z)v−2

c,0 (z)b5(z)f̃2(z). (57)

Proposition 6.9. Assume that (H1), (H2), (H3), (H4) hold and k+k− > 0 with k−
k+

6 2.
Thus

• if r+ > 0 such that

r+ >

(√
t+ 1 +

√
t
)2

t2
k2

+
4k2
−
, for t ∈

(
0, 1
r+‖A−1‖

)
fixed, (58)

• if r+ < 0 such that (50) holds,

then F2, given by (56), is invertible with bounded inverse.

Proof. From Proposition 6.8 and (56), we deduce that F2 is well defined.

• Assume that r+ > 0 such that (49) holds. Then, from Lemma 6.7 and (57), it follows
that f2 does not vanish on (tr+,+∞), for t > 0 fixed, which involves that u−2

d,r+
, v−2

d,r+
,

u−2
c,0 , v

−2
c,0 , b5 and f̃2 do not vanish on (tr+,+∞), for t > 0 fixed. Moreover, due

to (H2), there exists R = 1
‖A−1‖ > 0 such that B(0, R) ⊂ ρ(A). Therefore, setting

f̃tr+,2(z) = f̃2(z + tr+), with t ∈
(
0, 1

r+‖A−1‖

)
fixed and applying Lemma 5.6 where

we have set G = f̃tr+,2 and operator P = −A − tr+I ∈ BIP (X, θA) (due to (H2) and
(H3)), we deduce that operator F2 = f̃tr+,2(−A − tr+I) = f̃2(−A) is invertible with
bounded inverse.

• Now, assume that r+ < 0 such that (50) holds. Then f̃2 does not vanish on (−r+,+∞).
Moreover, from (H2) and (H3), we have −A + r+I ∈ BIP (X, θA). It follows that
F2 = f̃−r+,2(−A+ r+I) = f̃2(−A) is invertible with bounded inverse.
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This result finally leads us to state the following main result of this section.

Proposition 6.10. Assume that (H1), (H2), (H3), (H4) hold and k+k− > 0 with k−
k+

6 2.
Thus

• if r+ > 0 such that (58) holds,

• if r+ < 0 such that (50) holds,

then det(Λ2) is invertible with bounded inverse.

Proof. From (55), Proposition 6.8 and Proposition 6.9, we obtain that det(Λ2) = W−2B5F2,
is invertible with bounded inverse.

6.3 Regularity

6.3.1 First case

Here, we consider r+, r− ∈ R \ {0}. From Theorem 5.3, we have to prove that system (17)
has a unique solution (ψ1, ψ2) satisfying (18). The existence and uniqueness of this solution
is ensured by Proposition 6.6, so we have

ψ1 =
(
P−1 − P

+
1

)
[det(Λ1)]−1 S1 −

(
P+

2 + P−2

)
[det(Λ1)]−1 S2

ψ2 = −
(
P+

3 − P
−
3

)
[det(Λ1)]−1 S1 +M

(
P−1 − P

+
1

)
[det(Λ1)]−1 S2.

(59)

Now, we have to study the regularity of [det(Λ1)]−1. Since, in this case, the determinant
det(Λ1) is the same than the one in [17], we deduce, from [17], Lemma 5.3, p. 2958, that
there exists Rdet(Λ1) ∈ L(X) such that

Rdet(Λ1)(X) ⊂ D(M), [det(Λ1)]−1 = N−1 +N−1Rdet(Λ1),

where N = 4k+k−(L− + M)(L+ + M)(L+ + L− + 2M). Then, the rest of the proof is
similar to the one given in [17], section 5.3. Therefore, from (12) and (13), it follows that
S1, S2 ∈ (D(M), X)1+ 1

p
,p and thus

[det(Λ)]−1 S1, [det(Λ)]−1 S2 ∈ (D(M), X)4+ 1
p
,p. (60)

Moreover, from (59), we have

ψ1 = −2 (k+(L+ +M)− k−(L− +M)) [det(Λ1)]−1 S1

+2 (k+(L+ +M)− k−(L− +M)) [det(Λ1)]−1 S2 + S̃1

ψ2 = −2 (k+(L+ +M)L+ + k−(L− +M)L−) [det(Λ1)]−1 S1

−2 (k+(L+ +M)− k−(L− +M)) [det(Λ1)]−1 S2 + S̃2,

(61)

where S̃1, S̃2 ∈ D(M∞). Finally, from (27), (60) and (61), we obtain
ψ1 ∈ (D(M), X)3+ 1

p
,p = (D(A), X)1+ 1

2p
,p

ψ2 ∈ (D(M), X)2+ 1
p
,p = (D(A), X)1+ 1

2 + 1
2p
,p.
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6.3.2 Second case

Here, we consider r+ ∈ R \ {0} and r− = 0. From Theorem 5.5, we have to prove that (25)
has a unique solution (ψ1, ψ2) satisfying (18). The existence and uniqueness of this solution
is ensured by Proposition 6.10, so we have

ψ1 =
(
2MQ−1 − P

+
1

)
[det(Λ2)]−1 S3 +

(
P+

2 + 2MQ−2

)
[det(Λ2)]−1 S4

ψ2 = −
(
P+

3 + 2MQ−3

)
[det(Λ2)]−1 S3 +M

(
P+

1 − 2MQ−1

)
[det(Λ2)]−1 S4.

(62)

Now, we have to study the regularity of [det(Λ2)]−1. From (9), (54), (55), (56) and [18],
Lemma 5.1, p. 365, we deduce that there exists Rdet(Λ2) ∈ L(X) such that

Rdet(Λ2)(X) ⊂ D(M), [det(Λ2)]−1 = B−1
5 +B−1

5 Rdet(Λ2),

where we recall that B5 = 8k+k−(L+ + M)2M − 16k2
−M

3. Moreover, from (8), (27), (29)
and (32), we have

ϕ̃+
1 , ϕ̃

−
2 , ϕ̃

+
2 , ϕ̃

+
3 , ϕ̃

−
4 , ϕ̃

+
4 ∈ (D(M), X)2+ 1

p
,p and ϕ̃−1 , ϕ̃

−
3 ∈ (D(M), X)3+ 1

p
,p .

Thus, from (21), (22), (23), Remark 5.2 and Remark 5.4, we deduce that

R2 ∈ (D(M), X) 1
p
,p and S3, S4 ∈ (D(M), X)1+ 1

p
,p ,

which implies that

[det(Λ2)]−1 S3, [det(Λ2)]−1 S4 ∈ (D(M), X)4+ 1
p
,p . (63)

Moreover, due to (10), (20), (62) and [18], Lemma 5.1, p. 365, we have

ψ1 = −2 (k+(L+ +M)− 2k−M) [det(Λ2)]−1 S3

+2 (k+(L+ +M) + 2k−M) [det(Λ2)]−1 S4 + S̃3

ψ2 = −2 (k+(L+ +M)L+ + 2k−M) [det(Λ2)]−1 S3

+2M (k+(L+ +M)− 2k−M) [det(Λ2)]−1 S4 + S̃4,

(64)

where S̃3, S̃4 ∈ D(M∞). Finally, from (27), (63) and (64), we obtain
ψ1 ∈ (D(M), X)3+ 1

p
,p = (D(A), X)1+ 1

2p
,p

ψ2 ∈ (D(M), X)2+ 1
p
,p = (D(A), X)1+ 1

2 + 1
2p
,p.
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