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We study a transmission problem, in population dynamics, between two juxtaposed habitats. In each habitat, we consider a generalized diffusion equation composed by the Laplace operator and a biharmonic term. We consider that the coefficients in front of each term could be negative or null. Using semigroups theory and functional calculus, we give some relation between coefficients to obtain the existence and the uniqueness of the classical solution in L p -spaces.

Introduction

In this work, we study, using semigroups theory, a transmission problem for a coupled system of generalized diffusion equations in L p -spaces, with p ∈ (1, +∞). We denote by generalized diffusion equation, an equation of the following form k∆ 2 u -l∆u = g, with k, l ∈ R and g given. This equation is obtained using the Landau-Ginzburg free energy functional, we refer to [START_REF] Cohen | A generalized diffusion model for growth and dispersal in population[END_REF] or [START_REF] Ochoa | A generalized reaction-diffusion model for spatial structures formed by motile cells[END_REF] for more details. This work is a natural continuation of the works done in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] and [START_REF] Thorel | A biharmonic transmission problem in L p -spaces[END_REF]. Here, we investigate the influence of the Laplace operator and the biharmonic term in the diffusion. In population dynamics, the Laplace operator model the short range diffusion whereas the biharmonic operator represents the long range diffusion. Thus, generalized diffusion is a linear combination of these two operators.

Usually, in most models k, l > 0, but in many works like for instance [START_REF] Cohen | A generalized diffusion model for growth and dispersal in population[END_REF], [START_REF] Gros | La représentation de l'espace dans les modèles de dynamiques de populations, Modèles dynamiques déterministes à temps et espace continus[END_REF], [START_REF] Murray | Mathematical Biology II: Spatial Models and Biomedical Applications[END_REF], [START_REF] Novick-Cohen | [END_REF] or [START_REF] Ochoa | A generalized reaction-diffusion model for spatial structures formed by motile cells[END_REF], the authors explain that the biharmonic term plays a stabilizing role if k > 0 and a destabilizing role when k < 0. This is why, in the present paper, we consider k ∈ R \ {0} and l ∈ R.

Many works have treated generalized diffusion equations and transmission problems associated to it. For instance, we refer to [START_REF] Cohen | A generalized diffusion model for growth and dispersal in population[END_REF], [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], [START_REF] Novick-Cohen | [END_REF], [START_REF] Ochoa | A generalized reaction-diffusion model for spatial structures formed by motile cells[END_REF] and [START_REF] Okubo | Diffusion and ecological problems, Mahematical biology[END_REF], for the study of such an equation in population dynamics and to [START_REF] Denk | Exponential stability for a coupled system of damped-undamped plate equations[END_REF], [START_REF] Favini | Resolution and Optimal Regularity for a Biharmonic Equation with Impedance Boundary Conditions and Some Generalizations[END_REF], [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] and [START_REF] Thorel | A biharmonic transmission problem in L p -spaces[END_REF] for transmission problems associated to it. Note that [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] and [START_REF] Thorel | A biharmonic transmission problem in L p -spaces[END_REF], consider applications in population dynamics wheras [START_REF] Denk | Exponential stability for a coupled system of damped-undamped plate equations[END_REF] and [START_REF] Favini | Resolution and Optimal Regularity for a Biharmonic Equation with Impedance Boundary Conditions and Some Generalizations[END_REF], consider applications in plate theory.

We define Ω = Ω -∪ Ω + , the n-dimensional area, n ∈ N \ {0, 1}, constituted by the two juxtaposed habitats Ω -:= (a, γ) × ω and Ω + := (γ, b) × ω with their interface Γ = {γ} × ω, where a, γ, b ∈ R with a < γ < b and ω being a bounded domain of R n- 1 .

We investigate the study of the following transmission problem

(EQ pde ) k + ∆ 2 u + -l + ∆u + = g + , in Ω + k -∆ 2 u --l -∆u -= g -, in Ω -,
where k ± ∈ R \ {0}, l ± ∈ R, u ± ∈ Ω ± are population density and g ± ∈ L p (Ω ± ) are given. Note that the case k ± , l ± > 0 has been already treated in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] and the case l ± = 0 has been already treated in [START_REF] Thorel | A biharmonic transmission problem in L p -spaces[END_REF]. Thus, in the the present article, the most important new results concern the other cases.

Here, we denote by (x, y) the spatial variables with x ∈ (a, b) and y ∈ ω. The above equations are supplemented by the following boundary and transmission conditions

(BC pde )                                      (1)          u -(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω u + (x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω ∆u -(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω ∆u + (x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω (2)                  u -(a, y) = ϕ - 1 (y), y ∈ ω u + (b, y) = ϕ + 1 (y), y ∈ ω ∂u - ∂x (a, y) = ϕ - 2 (y), y ∈ ω ∂u + ∂x (b, y) = ϕ + 2 (y), y ∈ ω,
where ϕ ± 1 and ϕ ± 2 are given in suitable spaces, and

(T C pde )                  u -= u + on Γ ∂u - ∂x = ∂u + ∂x on Γ k -∆u -= k + ∆u + on Γ ∂ ∂x (k -∆u --l -u -) = ∂ ∂x (k + ∆u + -l + u + ) on Γ.
In (BC pde ), the boundary conditions on the two first lines of [START_REF] Arendt | Functional calculus, variational methods and Liapunov's theorem[END_REF] means that the individuals could not lie on the boundaries (a, b) × ∂ω, because, for instance, they die or the edge is impassable. The boundary conditions on the two second lines of (1) mean that there is no dispersal in the normal direction. It follows that the dispersal vanishes on (a, b) × ∂ω. In [START_REF] Bourgain | Some remarks on Banach spaces in which martingale difference sequences are unconditional[END_REF], the population density and the flux are given, for instance on {a} × ω and on {b} × ω. This signifies that the habitats are not isolated. Then, in (T C pde ), the two first transmission conditions mean the continuity of the density and its flux at the interface, while the two second express, in some sense, the continuity of the dispersal and its flux at the interface Γ.

This article is organized as follows.

In section 2, we give our operational problem. Section 3 is devoted to some recall on BIP operators and real interpolation spaces. In section 4, we give our assumptions and main results. Then, in section 5, we state some preliminary results that will be useful to prove our main result. Finally, section 6, which is composed of three parts, is devoted to the proof of our main result.

Operational formulation

We set D(A 0 ) := {ψ ∈ W 2,p (ω) : ψ = 0 on ∂ω} ∀ψ ∈ D(A 0 ), A 0 ψ = ∆ y ψ.

(1) Thus, using operator A 0 , problem (EQ pde ) -(BC pde ) -(T C pde ) becomes

                                                 u (4) + (x) + (2A 0 - l + k + I)u + (x) + (A 2 0 - l + k + A 0 )u + (x) = f + (x), for a.e. x ∈ (γ, b) u (4) -(x) + (2A 0 - l - k - I)u -(x) + (A 2 0 - l - k - A 0 )u -(x) = f -(x), for a.e. x ∈ (a, γ) u -(a) = ϕ - 1 , u + (b) = ϕ + 1 u -(a) = ϕ - 2 , u + (b) = ϕ + 2 u -(γ) = u + (γ) u -(γ) = u + (γ) k -u -(γ) + k -A 0 u -(γ) = k + u + (γ) + k + A 0 u + (γ) k -u (3) -(γ) + k -A 0 u -(γ) -l -u -(γ) = k + u (3) + (γ) + k + A 0 u + (γ) -l + u + (γ), where u ± (x) := u ± (x, •), f ± (x) := g ± (x, •)/k ± and f -∈ L p (a, γ; L p (ω)), f + ∈ L p (γ, b; L p (ω)) with p ∈ (1, +∞).
Then, we will consider a more general case using (A, D(A)), instead of (A 0 , D(A 0 )), with -A a BIP operator of angle θ A ∈ (0, π) on a UMD space X, see below for the definitions of BIP operator and UMD spaces, and f ∈ L p (a, b; X).

More precisely, setting r ± = l ± k ± , we study the following transmission problem (P):

(P)                                            (EQ)    u (4) + (x) + (2A -r + I)u + (x) + (A 2 -r + A)u + (x) = f + (x), x ∈ (γ, b) u (4) -(x) + (2A -r -I)u -(x) + (A 2 -r -A)u -(x) = f -(x), x ∈ (a, γ) (BC) u -(a) = ϕ - 1 , u + (b) = ϕ + 1 u -(a) = ϕ - 2 , u + (b) = ϕ + 2 (T C)                u -(γ) = u + (γ) u -(γ) = u + (γ) k -u -(γ) + k -Au -(γ) = k + u + (γ) + k + Au + (γ) k -u (3) -(γ) + k -Au -(γ) -l -u -(γ) = k + u (3) + (γ) + k + Au + (γ) -l + u + (γ). The transmission conditions (T C) will be divided into (T C1) u -(γ) = u + (γ) u -(γ) = u + (γ), and 
(T C2)    k -u -(γ) + k -Au -(γ) = k + u + (γ) + k + Au + (γ) k -u (3) -(γ) + k -Au -(γ) -l -u -(γ) = k + u (3) + (γ) + k + Au + (γ) -l + u + (γ). Note that (T C2) is well defined see Lemma 3.8 below.
We will search a classical solution of problem (P), that is a solution u such that

   u + := u |(γ,b) ∈ W 4,p (γ, b; X) ∩ L p (γ, b; D(A 2 )), u + ∈ L p (γ, b; D(A)), u -:= u |(a,γ) ∈ W 4,p (a, γ; X) ∩ L p (a, γ; D(A 2 )), u -∈ L p (a, γ; D(A)), (2) 
and which satisfies (EQ) -(BC) -(T C).

Note that such a solution is not W 4,p (a, b; X) but uniquely W 4,p (a, γ; X) in Ω -and W 4,p (γ, b; X) in Ω + .

Definitions and prerequisites

The class of Bounded Imaginary Powers of operators

Definition 3.1. A Banach space X is a UMD space if and only if for all p ∈ (1, +∞), the Hilbert transform is bounded from L p (R, X) into itself (see [START_REF] Bourgain | Some remarks on Banach spaces in which martingale difference sequences are unconditional[END_REF] and [START_REF] Burkholder | A geometrical characterisation of Banach spaces in which martingale difference sequences are unconditional[END_REF]).

Definition 3.2. A closed linear operator

T 1 is called sectorial of angle α ∈ [0, π) if i) σ(T 1 ) ⊂ S α , ii) ∀ α ∈ (α, π), sup λ(λ I -T 1 ) -1 L(X) : λ ∈ C \ S α < +∞,
where

S α := {z ∈ C : z = 0 and | arg(z)| < α} if α ∈ (0, π), (0, +∞) if α = 0, (3) 
see [START_REF] Haase | The Functional Calculus for Sectorial Operators[END_REF], p. 19.

Remark 3.3. From [START_REF] Komatsu | Fractional Powers of Operators[END_REF], p. 342, we know that any injective sectorial operator T 1 admits imaginary powers

T is 1 , s ∈ R, but, in general, T is 1 is not bounded. Definition 3.4. Let θ ∈ [0, π). We denote by BIP(X, θ), the class of sectorial injective operators T 2 such that i) D(T 2 ) = R(T 2 ) = X, ii) ∀ s ∈ R, T is 2 ∈ L(X), iii) ∃ C ≥ 1, ∀ s ∈ R, ||T is 2 || L(X) ≤ Ce |s|θ ,
see [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], p. 430.

Interpolation spaces

Here we recall some properties about real interpolation spaces in particular cases.

Definition 3.5. Let T 3 : D(T 3 ) ⊂ X -→ X be a linear operator such that (0, +∞) ⊂ ρ(T 3 ) and ∃ C > 0 :

∀ t > 0, t(T 3 -tI) -1 L(X) C. ( 4 
)
Let k ∈ N \ {0}, θ ∈ (0, 1) and q ∈ [1, +∞]. We will use the real interpolation spaces

(D(T k 3 ), X) θ,q = (X, D(T k 3 )) 1-θ,q ,
defined, for instance, in [START_REF] Lions | Sur une classe d'espaces d'interpolation[END_REF], or in [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF].

In particular, for k = 1, we have the following characterization

(D(T 3 ), X) θ,q := ψ ∈ X : t -→ t 1-θ T 3 (T 3 -tI) -1 ψ X ∈ L q * (0, +∞) ,
where L q * (0, +∞) is given by

L q * (0, +∞; C) := f ∈ L q (0, +∞) : +∞ 0 |f (t)| q dt t 1/q < +∞ , for q ∈ [1, +∞),
and for q = +∞, by

L ∞ * (0, +∞; C) := sup t∈(0,+∞) |f (t)|,
see [START_REF] Da Prato | Somme d'opérateurs linéaires et équations différentielles opérationnelles[END_REF] p. 325, or [START_REF] Grisvard | Spazi di tracce ed Applicazioni[END_REF], p. 665, Teorema 3, or section 1.14 of [START_REF] Triebel | Interpolation Theory, Functions Spaces, Differential Operators[END_REF], where this space is denoted by (X, D(T 3 )) 1-θ,q . Note that we can also characterize the space (D(T 3 ), X) θ,q taking into account the Osservazione, p. 666, in [START_REF] Grisvard | Spazi di tracce ed Applicazioni[END_REF]. We set also, for any k ∈ N \ {0}

(D(T 3 ), X) k+θ,q := ψ ∈ D(T k 3 ) : T k 3 ψ ∈ (D(T 3 ), X) θ,q ,
and (X,

D(T 3 )) k+θ,q := ψ ∈ D(T k 3 ) : T k 3 ψ ∈ (X, D(T 3 )) θ,q .
Remark 3.6. The general situation of the real interpolation space (X 0 , X 1 ) θ,q with X 0 , X 1 two Banach spaces such that X 0 → X 1 , is described in [START_REF] Lions | Sur une classe d'espaces d'interpolation[END_REF].

Remark 3.7. Note that for T 3 satisfying (4),

T k 3 is closed for any k ∈ N\{0} since ρ(T 3 ) = ∅; consequently, if kθ < 1, we have (D(T k 3 ), X) θ,q = (X, D(T k 3 )) 1-θ,q = (X, D(T 3 )) k-kθ,q = (D(T 3 ), X) (k-1)+kθ,q ⊂ D(T k-1 3
).

For more details see [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF], (2.1.13), p. 43 or [START_REF] Grisvard | Spazi di tracce ed Applicazioni[END_REF], p. 676, Teorema 6.

We recall the following lemma.

Lemma 3.8 ([12]). Let T 3 be a linear operator satisfying [START_REF] Buşe | A surjection problem leading to the Ax-Grothendieck theorem[END_REF]. Let u such that

u ∈ W n,p (a 1 , b 1 ; X) ∩ L p (a 1 , b 1 ; D(T k 3 )),
where

a 1 , b 1 ∈ R with a 1 < b 1 , n, k ∈ N \ {0} and p ∈ (1, +∞).
Then for any j ∈ N satisfying the Poulsen condition 0 < 1 p + j < n and s ∈ {a 1 , b 1 }, we have

u (j) (s) ∈ (D(T k 3 ), X) j n + 1
np ,p . This result is proved in [START_REF] Grisvard | Spazi di tracce ed Applicazioni[END_REF], p. 678, Teorema 2'.

Assumptions and statement of results

Hypotheses

In all the sequel, r + , r -∈ R, k + k -> 0 and A denotes a closed linear operator in X. We assume the following hypotheses: 1. Due to (H 2 ), if at least one parameter r + or r -is negative or null, then 0 ∈ ρ(A).

(H 1 ) X is a UMD space, (H 2 ) [min(r + , r -, 0), +∞) ⊂ ρ(A), (H 3 ) -A ∈ BIP(X, θ A ) for some θ A ∈ (0, π), (H 4 ) -A ∈ Sect(0).
2. Operator A 0 , defined by [START_REF] Arendt | Functional calculus, variational methods and Liapunov's theorem[END_REF], satisfies all the previous hypotheses with X = L q (ω), q ∈ (1, +∞) and r ± ∈ -π 2 (b-a) 2 , +∞ . From [START_REF] Rubio De Francia | Martingale and integral transforms of Banach space valued functions[END_REF], Proposition 3, p. 207, X satisfies (H 1 ) and taking A 0 + r ± I in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], Theorem 9.15, p. 241 and Lemma 9.17, p. 242, we deduce that A 0 satisfies (H 2 ). Moreover, (H 3 ) is satisfied for every θ A ∈ (0, π), from [START_REF] Prüss | Imaginary powers of elliptic second order differential operators in L p -spaces[END_REF], Theorem C, p. 166-167. Finally, (H 4 ) is satisfied thanks to [START_REF] Haase | The Functional Calculus for Sectorial Operators[END_REF], section 8.3, p. 232.

3. In the scalar case, to solve each equation of (EQ), we need to solve the characteristic equations

χ 4 + (2A -r ± )χ 2 + (A 2 -r ± A) = 0,
thus, in our operational case, we consider the following operators

L -:= --A + r -I, L + := --A + r + I and M := - √ -A. (5) 
Due to (H 2 ) and (H 3 ), -A, -A + r -I and -A + r + I are sectorial operators, so the existence of L -, L + and M is ensured, see for instance [START_REF] Haase | The Functional Calculus for Sectorial Operators[END_REF], e), p.25 and [1], Theorem 2.3, p. 69.

4. From [START_REF] Haase | The Functional Calculus for Sectorial Operators[END_REF], Proposition 3.1.9, p. 65, in , we have

D(L -) = D(L + ) = D(M ). Thus, for n, m ∈ N and m n D(L n ± ) = D(M n ) = D(L m ± M n-m ) = D(M m L n-m ± ).
5. From [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], Theorem 3, p. 437 and [START_REF] Arendt | Functional calculus, variational methods and Liapunov's theorem[END_REF], Theorem 2.3, p. 69, assumptions (H 2 ) and (H 3 ) imply that -A + r ± I ∈ BIP(X, θ A ) and due to [START_REF] Haase | The Functional Calculus for Sectorial Operators[END_REF], Proposition 3.2.1, e), p. 71, that

-L -, -L + , -M ∈ BIP(X, θ A /2).
Moreover, from [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], Theorem 4, p. 441, we get

-(L -+ M ), -(L + + M ) ∈ BIP(X, θ A /2 + ε), for any ε ∈ (0, π/2 -θ A /2).
Since we have 0 < θ A /2 < π/2, then due to [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], Theorem 2, p. 437, we deduce that L -, L + , M , L -+ M and L + + M generate bounded analytic semigroups (e xL -) x 0 , (e xL + ) x 0 , (e xM ) x 0 , (e x(L -+M ) ) x 0 and (e x(L + +M ) ) x 0 .

6. Using the Dore-Venni sums theorem, see [START_REF] Dore | On the closedness of the sum of two closed operators[END_REF], we deduce from (H 1 ), (H 2 ) and (H 3

) that 0 ∈ ρ(M ) ∩ ρ(L -) ∩ ρ(L + ) ∩ ρ(L + + M ) ∩ ρ(L -+ M ).
7. From (5), we deduce that

∀ ψ ∈ D(M 2 ), (L 2 + -M 2 )ψ = r + ψ and (L 2 --M 2 )ψ = r -ψ. ( 6 
)
and also that

∀ ψ ∈ D(M ), (L + -M )ψ = r + (L + +M ) -1 ψ and (L --M )ψ = r -(L -+M ) -1 ψ. (7)

Main results

To solve our operational problem (P), we introduce two problems:

(P + )          u (4) + (x) + (2A -r + I)u + (x) + (A 2 -r + A)u + (x) = f + (x), for a.e. x ∈ (γ, b) u + (γ) = ψ 1 , u + (b) = ϕ + 1 u + (γ) = ψ 2 , u + (b) = ϕ + 2 .
and

(P -)          u (4) -(x) + (2A -r -I)u -(x) + (A 2 -r -A)u -(x) = f -(x), for a.e. x ∈ (a, γ) u -(a) = ϕ - 1 , u -(γ) = ψ 1 u -(a) = ϕ - 2 , u -(γ) = ψ 2 , Remark 4.2.
Recall that u is a classical solution of (P) if and only if there exist ψ 1 , ψ 2 ∈ X such that (i) u -is a classical solution of (P -), (ii) u + is a classical solution of (P + ), (iii) u -and u + satisfy (T C2).

Therefore, our aim is to state that there exists a unique couple (ψ 1 , ψ 2 ) which satisfies (i), (ii) and (iii). Theorem 4.3. Let f -∈ L p (a, γ; X) and f + ∈ L p (γ, b; X) with p ∈ (1, +∞). Assume that (H 1 ), (H 2 ), (H 3 ), (H 4 ) hold and k + k -> 0. Thus

1. for r + , r -∈ R \ {0},
• if r + > 0 and r -> 0,

• if r + < 0 and r -< 0, such that

(l + -l -)(k + -k -) 0, • if r + > 0 and r -< 0, such that -6l -k + + l + k + + l -k -0, • if r + < 0 and r -> 0, such that -6l + k -+ l + k + + l -k -0, 2. for r + ∈ R \ {0} and r -= 0 with k - k + 2,
• if r + > 0 such that

r + √ t + 1 + √ t 2 t 2 k 2 + 4k 2 - , for t ∈ 0, 1 r + A -1 fixed, • if r + < 0 such that -r + 27k 2 + 64k 2 - , 3. for r + = 0 and r -∈ R \ {0} with k + k - 2, • if r -> 0 such that r - √ t + 1 + √ t 2 t 2 k 2 - 4k 2 + , for t ∈ 0, 1 r -A -1 fixed, • if r -< 0 such that -r - 27k 2 - 64k 2 + ,
then, there exists a unique classical solution u, of the transmission problem (P) if and only

if ϕ + 1 , ϕ - 1 ∈ (D(A), X) 1+ 1 2p ,p and ϕ + 2 , ϕ - 2 ∈ (D(A), X) 1+ 1 2 + 1 2p ,p . ( 8 
)
Remark 4.4. Since the third case is the symmetric of the second one, replacing k + by k - and l + by l -, the proof if exactly the same. Thus, we omit it.

Remark 4.5. If A = A 0 , to satisfy the conditions set in the second or the third case of Theorem 4.3, since

A -1 = π 2 (b-γ) 2 , respectively A -1 = π 2 (γ-a)
2 in the third case, we have to take b -γ, respectively γ -a, enough large.

As a consequence of the previous Theorem, we state the following corollary.

Corollary 4.6. Let n 2, f + ∈ L p (Ω+) and f -∈ L p (Ω-) with p ∈ (1, +∞) and p > n. Assume that ω is a bounded open set of R n-1 with C 2 -boundary. Let k + , k -, l + > 0 and l -< 0 with k + = k -.
Then, there exists a unique solution u of (P pde ), such that we have u -∈ W 4,p (Ω-) and u + ∈ W 4,p (Ω+), if and only if

           ϕ ± 1 , ϕ ± 2 ∈ W 2,p (ω) ∩ W 1,p 0 (ω) ∆ϕ ± 1 , ∈ W 2-1 p ,p (ω) ∩ W 1,p 0 (ω) ∆ϕ ± 2 ∈ W 1-1 p ,p (ω) ∩ W 1,p 0 (ω).
The proof is quite similar to the one state in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], Corollary 1, p. 2941, or in [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], Corollary 2.7, p. 357. Thus we omit it.

Preliminary results

In all the sequel, we set

c = γ -a > 0 and d = b -γ > 0.
From Remark 4.2, to solve problem (P) we must first study problems (P + ) and (P -). To this end, we need the following invertibility result obtained in [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF] and [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF].

Lemma 5.1 ([18] and [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF]). Assume that (H 1 ), (H 2 ), (H 3 ) and (H 4 ) hold. Then operators

U ± , V ± ∈ L(X) defined by                                                  U + :=    I -e d(L + +M ) - 1 r + (L + + M ) 2 e dM -e dL + , if r + ∈ R \ {0} I -e 2dM + 2dM e dM , if r + = 0 V + :=    I -e d(L + +M ) + 1 r + (L + + M ) 2 e dM -e dL + , if r -∈ R \ {0} I -e 2dM -2dM e dM , if r + = 0 U -:=    I -e c(L -+M ) - 1 r - (L -+ M ) 2 e cM -e cL -, if r -∈ R \ {0} I -e 2cM + 2cM e cM , if r -= 0 V -:=      I -e c(L -+M ) + 1 r - (L -+ M ) 2 e cM -e cL -, if r -∈ R \ {0} I -e 2cM -2cM e cM , if r -= 0, (9) 
are invertible with bounded inverse.

From Remark 4.1, statement 4, U ± and V ± are well defined. For a detailed proof, see [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], Proposition 5.4 with k = r ± and [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], Proposition 4.5, p. 645.

Transmission system

First case

Assume that r ± ∈ R \ {0}. We set

             P + 1 = k + (L + + M ) U -1 + (I + e dM )(I -e dL + ) + V -1 + (I -e dM )(I + e dL + ) P + 2 = k + (L + + M ) U -1 + (I -e dM )(I -e dL + ) + V -1 + (I + e dM )(I + e dL + ) P + 3 = k + (L + + M )L + U -1 + (I + e dM )(I + e dL + ) + V -1 + (I -e dM )(I -e dL + ) , (10) 
and similarly

             P - 1 = k -(L -+ M ) U -1 -(I + e cM )(I -e cL -) + V -1 -(I -e cM )(I + e cL -) P - 2 = k -(L -+ M ) U -1 -(I -e cM )(I -e cL -) + V -1 -(I + e cM )(I + e cL -) P - 3 = k -(L -+ M )L -U -1 -(I + e cM )(I + e cL -) + V -1 -(I -e cM )(I -e cL -) . ( 11 
)
Moreover, we note

S 1 = k + (L + + M ) U -1 + (I -e dL + ) φ2 + + V -1 + (I + e dL + ) φ4 + -k -(L -+ M ) U -1 -(I -e cL -) φ2 -+ V -1 -(I + e cL -) φ4 -, (12) 
and

S 2 = -k + (L + + M ) U -1 + (I + e dM ) φ1 + + V -1 + (I -e dM ) φ3 + -k -(L -+ M ) U -1 -(I + e cM ) φ1 -+ V -1 -(I -e cM ) φ3 --2M -1 R 1 , (13) 
with

R 1 = -k + F + (γ) + k + M 2 F + (γ) + l + F + (γ) + k -F -(γ) -k -M 2 F -(γ) -l -F -(γ), (14) 
where F + is the unique classical solution of problem

   u (4) + (x) + (2A -r + I)u + (x) + (A 2 -r + A)u + (x) = f + (x), for a.e. x ∈ (γ, b) u + (γ) = u + (b) = u + (γ) = u + (b) = 0, (15) 
and F -is the unique classical solution of problem

   u (4) -(x) + (2A -r -I)u -(x) + (A 2 -r -A)u -(x) = f -(x), for a.e. x ∈ (a, γ) u -(a) = u -(γ) = u -(a) = u + (γ) = 0. ( 16 
)
For an explicit representation formula of the solution of both previous problems, we refer to [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], Theorem 2.2, p. 355-356.

Remark 5.2. Since F ± is a classical solution of [START_REF] Jiang | Localized Hardy spaces associated with operators[END_REF], respectively [START_REF] Komatsu | Fractional Powers of Operators[END_REF], from Lemma 3.8, it follows that, for j = 0, 1, 2, 3 and s = a, γ or b

F (j) ± (s) ∈ (D(M ), X) 3-j+ 1 p ,p .
The next theorem extends the result of [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], Theorem 4.6, p. 2945, to the case r ± < 0. 

     P - 1 -P + 1 M ψ 1 + P + 2 + P - 2 ψ 2 = S 1 P + 3 + P - 3 ψ 1 + P - 1 -P + 1 ψ 2 = S 2 , ( 17 
)
has a unique solution (ψ 1 , ψ 2 ) such that

(ψ 1 , ψ 2 ) ∈ (D(A), X) 1+ 1 2p ,p × (D(A), X) 1+ 1 2 + 1 2p ,p . ( 18 
)
Proof. Since the first line of ( 17) corresponds to the second line of system [START_REF] Ochoa | A generalized reaction-diffusion model for spatial structures formed by motile cells[END_REF], p. 2944 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] and the second line of ( 17) corresponds to the first line of system [START_REF] Ochoa | A generalized reaction-diffusion model for spatial structures formed by motile cells[END_REF], p. 2944 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], where P ± 1 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] becomes P ± 3 here, P ± 2 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] becomes P ± 1 here and P ± 3 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] becomes P ± 2 here. Thus, the proof is the same than the proof of Theorem 4.6, p. 2945 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], which clearly remains true for r ± ∈ R \ {0}.

Second case

Now, assume that r -= 0, then l -= 0 and the transmission conditions (T C2) becomes

(T C2 )    k -u -(γ) + k -Au -(γ) = k + u + (γ) + k + Au + (γ) k -u (3) -(γ) + k -Au -(γ) = k + u (3) + (γ) + k + Au + (γ) -l + u + (γ). ( 19 
)
Our aim here is to establish a similar result to the previous one. To this end, we set

                 Q - 1 = k -U -1 -+ V -1 - I -e 2cM Q - 2 = k -U -1 - I -e cM 2 + V -1 - I + e cM 2 Q - 3 = k -U -1 - I + e cM 2 + V -1 - I -e cM 2 , (20) 
Moreover, we note

S 3 = 2k -M U -1 - I -e cM φ2 -+ V -1 - I + e cM φ4 - -k + (L + + M ) U -1 + I -e dL + φ2 + + V -1 + I + e dL + φ4 + , (21) 
and

S 4 = -2k -M U -1 - I + e cM φ- 2 + V -1 - I -e cM φ- 4 -k + (L + + M ) U -1 + I + e dM φ+ 1 + V -1 + I -e dM φ+ 3 + 2M -1 R 2 , ( 22 
) with R 2 = -k - F (3) -(γ) + k -M 2 F -(γ) + k + F + (γ) -k + M 2 F + (γ) -l + F + (γ) ( 23 
)
where Fis the classical solution of problem

   u (4) -(x) + 2Au -(x) + A 2 u -(x) = f -(x), a.e. x ∈ (a, γ) u -(a) = u -(γ) = u -(a) = u -(γ) = 0. ( 24 
)
Remark 5.4. Since Fis a classical solution of ( 16), as in Remark 5.2, from Lemma 3.8, it follows that, for j = 0, 1, 2, 3 and s = a, γ or b 

F (j) -(s) ∈ (D(M ), X)
     P + 1 -2M Q - 1 M ψ 1 -P + 2 + 2M Q - 2 ψ 2 = S 3 P + 3 + 2M Q - 3 ψ 1 + 2M Q - 1 -P + 1 ψ 2 = S 4 , ( 25 
)
has a unique solution (ψ 1 , ψ 2 ) satisfying [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF].

Proof. We follow the same steps than the proof of Theorem 4.6, p. 2945 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], we only point out the key points. From [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], Theorem 2.5, statement 2, there exists a unique classical solution u + of (P + ) if and only if

ϕ + 1 , ψ 1 ∈ (D(A), X) 1+ 1 2p ,p and ϕ + 2 , ψ 2 ∈ (D(A), X) 1+ 1 2 + 1 2p ,p . ( 26 
)
Recall that, from Remark 3.7, we have

(D(A), X) 1+ 1 2p ,p = (D(M ), X) 3+ 1 p ,p and (D(A), X) 1+ 1 2 + 1 2p ,p = (D(M ), X) 2+ 1 p ,p . ( 27 
)
This solution is explicitly given in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], Proposition 2, p. 2943-2944, from which we deduce that k + u + (γ) -M 2 u + (γ) = l + I -e dL + α + 2 + l + I + e dL + α + 4 , and

k + u (3) + (γ) -M 2 u + (γ) -l + u + (γ) = -l + M I + e dM α + 1 -l + M I -e dM α + 3 +k + F + (γ) -k + M 2 F + (γ) -l + F + (γ),
where

                             α + 1 = 1 2r + (L + + M )U -1 + L + (I + e dL + )ψ 1 -(I -e dL + )ψ 2 + φ+ 1 α + 2 = - 1 2r + (L + + M )U -1 + M (I + e dM )ψ 1 -(I -e dM )ψ 2 + φ+ 2 α + 3 = 1 2r + (L + + M )V -1 + L + (I -e dL + )ψ 1 -(I + e dL + )ψ 2 + φ+ 3 α + 4 = - 1 2r + (L + + M )V -1 + M (I -e dM )ψ 1 -(I + e dM )ψ 2 + φ+ 4 , (28) 
with

                     φ1 + = -L + I + e dL + ϕ + 1 + I -e dL + F + (b) + F + (γ) -ϕ + 2 φ2 + = -M I + e dM ϕ + 1 + I -e dM F + (b) + F + (γ) -ϕ + 2 φ3 + = L + I -e dL + ϕ + 1 -I + e dL + F + (b) -F + (γ) -ϕ + 2 φ4 + = M I -e dM ϕ + 1 -I + e dM F + (b) -F + (γ) -ϕ + 2 , ( 29 
)
and F + is the unique classical solution of problem [START_REF] Jiang | Localized Hardy spaces associated with operators[END_REF]. In the same way, from [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], Theorem 2.8, statement 2, p. 637, there exists a unique classical solution u -of problem (P -) if and only if

ϕ - 1 , ψ 1 ∈ (D(A), X) 1+ 1 2p ,p and ϕ - 2 , ψ 2 ∈ (D(A), X) 1+ 1 2 + 1 2p ,p . (30) 
Note that from [START_REF] Rubio De Francia | Martingale and integral transforms of Banach space valued functions[END_REF], we have

ϕ - 1 , ψ 1 ∈ (D(M ), X) 3+ 1 p ,p and ϕ - 2 , ψ 2 ∈ (D(M ), X) 2+ 1 p ,p .
Moreover, this solution, given in [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], Proposition 4.1, p. 640, is explicitly written in [START_REF] Thorel | A biharmonic transmission problem in L p -spaces[END_REF], Proposition 4.2, from which it follows that

k -u -(γ) -M 2 u -(γ) = -k -2M I -e cM α - 2 -2M I + e cM α - 4 ,
and

k -u (3) -(γ) -M 2 u -(γ) = k -2M 2 I + e cM α - 2 -2M 2 I -e cM α - 4 +k -F (3) -(γ) -k -M 2 F -(γ),
where

                         α - 1 := - 1 2 U -1 - I + (I + cM ) e cM ψ 1 -ce cM ψ 2 + φ- 1 α - 2 := 1 2 U -1 - I + e cM M ψ 1 + I -e cM ψ 2 + φ- 2 α - 3 := 1 2 V -1 - I -(I + cM ) e cM ψ 1 + ce cM ψ 2 + φ- 3 α - 4 := - 1 2 V -1 - I -e cM M ψ 1 + I + e cM ψ 2 + φ- 4 , (31) 
with

                           φ1 -:= -I + e cM ϕ - 1 -ce cM M ϕ - 1 + ϕ - 2 -F -(a) -F -(γ) φ2 -:= -M I + e cM ϕ - 1 + I -e cM ϕ - 2 -F -(a) -F -(γ) φ3 -:= I -e cM ϕ - 1 -ce cM M ϕ - 1 + ϕ - 2 -F -(a) + F -(γ) φ4 -:= M I -e cM ϕ - 1 -I + e cM ϕ - 2 -F -(a) + F -(γ) . ( 32 
)
Note that due to (26), ( 27), ( 28) and ( 29), respectively to ( 27), ( 30), (31) and (32), we deduce that

α ± i ∈ D(M ), for i = 1, 2, 3, 4 and α - 2 , α - 4 ∈ D(M 2 ).
Thus, system (T C2 ), given by ( 19), writes

       -2k -M I -e cM α - 2 -I + e cM α - 4 = l + I -e dL + α + 2 + I + e dL + α + 4 2k -M 2 I + e cM α - 2 -I -e cM α - 4 = -l + M I + e dM α + 1 + I -e dM α + 3 +R 2 ,
where R 2 is given by [START_REF] Ochoa | A generalized reaction-diffusion model for spatial structures formed by motile cells[END_REF]. Thus, it follows that the previous system gives

                                                       -2k -U -1 -M I -e cM I + e cM M ψ 1 + I -e cM ψ 2 + φ- 2 -2k -V -1 -M I + e cM I -e cM M ψ 1 + I + e cM ψ 2 + φ- 4 +k + (L + + M )U -1 + I -e dL + M (I + e dM )ψ 1 -(I -e dM )ψ 2 + φ+ 2 +k + (L + + M )V -1 + I + e dL + M (I -e dM )ψ 1 -(I + e dM )ψ 2 + φ+ 4 = 0 2k -M U -1 - I + e cM I + e cM M ψ 1 + I -e cM ψ 2 + φ- 2 +2k -M V -1 - I -e cM I -e cM M ψ 1 + I + e cM ψ 2 + φ- 4 +k + (L + + M )U -1 + I + e dM L + (I + e dL + )ψ 1 -(I -e dL + )ψ 2 + φ+ 1 +k + (L + + M )V -1 + I -e dM L + (I -e dL + )ψ 1 -(I + e dL + )ψ 2 + φ+ 3 = 2M -1 R 2 ,
Finally, using ( 10), ( 20), ( 21), ( 22) and ( 23), we obtain that the previous system writes as system [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF].

Conversely, if we assume that (8) holds and system (25) has a unique solution (ψ 1 , ψ 2 ) satisfying [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], then considering u ± the unique classical solution of (P ± ), we obtain that u is the unique classical solution of (P).

Functional calculus

In this section, by using functional calculus, we rewrite operators defined in ( 9), ( 10), [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] and [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF], to inverse the determinant operator of system [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] and system [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF].

To this end, we recall some classical notations. For θ ∈ (0, π), we denote by H(S θ ) the space of holomorphic functions on S θ (defined by ( 3)) with values in C. Moreover, we consider the following subspace of H(S θ ):

E ∞ (S θ ) := f ∈ H(S θ ) : f = O(|z| -s ) (|z| → +∞) for some s > 0 .
In other words, E ∞ (S θ ) is the space of polynomial decreasing holomorphic functions at +∞. Let T be an invertible sectorial operator of angle θ T ∈ (0, π). If f ∈ E ∞ (S θ ), with θ ∈ (θ T , π), then we can define, by functional calculus, f (T ) ∈ L(X), see [START_REF] Haase | The Functional Calculus for Sectorial Operators[END_REF], p. 45. In this work, we use functional calculus, as classicaly done, see for instance [START_REF] Buşe | A surjection problem leading to the Ax-Grothendieck theorem[END_REF], [START_REF] Dlotkoa | Pseudodifferential parabolic equations in uniform spaces[END_REF] or [START_REF] Jiang | Localized Hardy spaces associated with operators[END_REF].

Then, we recall a useful result from [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], Lemma 5.3, p. 370.

Lemma 5.6 ([18]

). Let P be an invertible sectorial operator in X with angle θ, for all θ ∈ (0, π). Let G ∈ H(S θ ), for some θ ∈ (0, π), such that

(i) 1 -G ∈ E ∞ (S θ ), (ii) G(x) = 0 for any x ∈ R + \ {0}.
Then, G(P ) ∈ L(X), is invertible with bounded inverse.

Let r ∈ R, r m = max(-r, 0), δ > 0 and z ∈ C \ (-∞, r m ]. We set

                       u δ,r (z) =      1 -e -δ( √ z+r+ √ z) - 1 r ( √ z + r + √ z) 2 e -δ √ z -e -δ √ z+r , if r ∈ R \ {0} 1 -e -2δ √ z -2δ √ ze -δ √ z , if r = 0 v δ,r (z) =      1 -e -δ( √ z+r+ √ z) + 1 r ( √ z + r + √ z) 2 e -δ √ z -e -δ √ z+r , if r ∈ R \ {0} 1 -e -2δ √ z + 2δ √ ze -δ √ z , if r = 0
and when u δ,r (z) = 0, v δ,r (z) = 0, we note

f δ,r,1 (z) =                √ z + r + √ z √ z + r u -1 δ,r (z) 1 + e -δ √ z 1 + e -δ √ z+r + √ z + r + √ z √ z + r v -1 d,r (z) 1 -e -δ √ z 1 -e -δ √ z+r , if r ∈ R \ {0} u -1 δ,0 (z) + v -1 δ,0 (z) 1 -e -2δ √ z , if r = 0, f δ,r,2 (z) =                - √ z + r + √ z u -1 δ,r (z) 1 + e -δ √ z 1 -e -δ √ z+r - √ z + r + √ z v -1 δ,r (z) 1 -e -δ √ z 1 + e -δ √ z+r , if r ∈ R \ {0} u -1 δ,0 (z) 1 -e -δ √ z 2 + v -1 δ,0 (z) 1 + e -δ √ z 2 , if r = 0,
and

f δ,r,3 (z) =                - √ z + r + √ z u -1 δ,r (z) 1 -e -δ √ z 1 -e -δ √ z+r - √ z + r + √ z v -1 δ,r (z) 1 + e -δ √ z 1 + e -δ √ z+r , if r ∈ R \ {0} u -1 δ,0 (z) 1 + e -δ √ z 2 + v -1 δ,0 (z) 1 -e -δ √ z 2 , if r = 0
Remark 5.7. Note that, from (H 2 ) and (H 3 ), if r ± = 0, we have

         u c,r -(-A) = U -, u d,r + (-A) = U + , v c,r -(-A) = V -, v d,r + (-A) = V + , k -f c,r -,1 (-A) = P - 1 , k + f d,r + ,1 (-A) = P + 1 , k -f c,r -,2 (-A) = P - 2 , k + f d,r + ,2 (-A) = P + 2 , k -f c,r -,3 (-A) = P - 3 , k + f d,r + ,3 (-A) = P +
3 , and if r -= 0, we obtain

u c,0 (-A) = U -, v c,0 (-A) = V -, k -f c,0,1 (-A) = Q - 1 , k -f c,0,2 (-A) = Q - 2 , k -f c,0,3 (-A) = Q - 3 .
Remark 5.8. Let δ > 0, r ∈ R and x ∈ (r m , +∞). Then, when r = 0, we have

1 -e -2δ √ x ± 2δ √ xe -δ √ x = 2e -δ √ x sinh(δ √ x) ± δ √ x > 0,
and from [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], Lemma 5.2, p. 369, it clear that u δ,r (x) > 0 and v δ,r (x) > 0. Thus, when r = 0, we deduce that f δ,r,1 (x) > 0 and f δ,r,2 (x), f δ,r,3 (x) < 0, and when r = 0, we obtain

f δ,0,1 (x), f δ,0,2 (x), f δ,0,3 (x) > 0.
Moreover, for z ∈ C \ (-∞, r m ] and r ∈ R \ {0}, we define

g δ,r (z) = - √ z + r 1 -e -2δ( √ z+r+ √ z) 2 - 1 r 2 ( √ z + r + √ z) 4 e -2δ √ z -e -2δ √ z+r 2 + √ z 1 -e -δ( √ z+r+ √ z) 2 + 1 r ( √ z + r + √ z) 2 e -δ √ z -e -δ √ z+r 2 2
, and for r = 0, we set

g δ,0 (z) = 1 + √ z 1 -e -2δ √ z 4 + 4 1 -e -2δ √ z 2 e -2δ √ z -16 δ 2 z e -4δ
√ z Lemma 5.9. Let δ > 0 and x ∈ (r m , +∞). Thus, if r ∈ R \ {0}, then g δ,r (x) < 0 and if r = 0, then g δ,0 (x) > 0.

Proof. Let r, δ, x > 0. From [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], Lemma 4.4, p. 2950, we obtain the result. Moreover, if δ > 0, r < 0 and x ∈ (r m , +∞), then from Remark 5.8, we deduce that equation (36), p. 2951, in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], holds. Thus, following the same step than the proof of Lemma 4.4, p. 2950 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], we obtain the expected result. Now, consider that r = 0. Then

g δ,0 (x) = 1 + √ x 1 -e -2δ √ x 4 + 4e -2δ √ x 1 -e -2δ √ x 2 -4 δ 2 x e -2δ √ x = 1 + √ x 1 -e -2δ √ x 4 +4e -2δ √ x 1 -e -2δ √ x -2 δ √ x e -δ √ x 1 -e -2δ √ x + 2 δ √ x e -δ √ x .
Hence, since δ, x > 0, we have

1 -e -2δ √ x -2 δ √ x e -δ √ x = e -δ √ x e δ √ x -e -δ √ x -2 δ √ x = 2e -δ √ x sinh(δ √ x) -δ √ x > 0.
Finally, we deduce that g δ,0 > 0.

Proof of the main results

In both cases, assume that problem (P) has a unique classical solution thus, from Theorem 5.3, respectively Theorem 5.5, (8) holds. Conversely, assume that (8) holds, then due to Theorem 5.3, respectively Theorem 5.5, we have to prove that system (17), respectively system [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], has a unique solution such that (18) holds.

The proof is divided in three parts for both cases. First, we will make explicit, in the first case, the determinant of system [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] and in the second case, the determinant of system [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF]. Then, in the two cases, we will show the uniqueness of the solution. To this end, we will inverse the determinant thanks to functional calculus. Finally, we will prove, in all cases, that ψ 1 and ψ 2 have the expected regularity.

Calculus of the determinant

First case

Here, we consider r + , r -∈ R \ {0}. We have to make explicit the determinant of system (17) that we recall here

     P - 1 -P + 1 M ψ 1 + P + 2 + P - 2 ψ 2 = S 1 P + 3 + P - 3 ψ 1 + P - 1 -P + 1 ψ 2 = S 2 .
We write the previous system as a matrix equation Λ 1 Ψ = S, where

Λ 1 =   P - 1 -P + 1 M P + 2 + P - 2 P + 3 + P - 3 P - 1 -P + 1   , Ψ = ψ 1 ψ 2 and S = S 1 S 2 .
To solve system ( 17), we will study the determinant det(Λ 1 ) := M P -

1 -P + 1 2 -P + 2 + P - 2 P + 3 + P - 3 ,
of the matrix Λ 1 . Since the first line of ( 17) corresponds to the second line of system (23), p. 2944 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] and the second line of ( 17) corresponds to the first line of system (23), p. 2944 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], where P ± 1 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] becomes P ± 3 here, P ± 2 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] becomes P ± 1 here and P ± 3 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] becomes P ± 2 here. It follows that our determinant det(Λ 1 ) is exactly the opposite of the one described in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], section 5.1, p. 2953. Thus, we set

det(Λ 1 ) = D + 1 + D - 1 + D 2 , ( 33 
)
where

             D + 1 = M P + 1 2 -P + 3 P + 2 D - 1 = M P - 1 2 -P - 3 P - 2 D 2 = -P + 3 P - 2 -P - 3 P + 2 -2M P + 1 P - 1 .
Then, we recall the result of [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] (Lemma 5.1, p. 2953), describing the determinant. Lemma 6.1 ([17]). We have

1. D + 1 = -4k 2 + (L + + M ) 2 U -2 + V -2 + D + , with D + = L + I -e 2d(L + +M ) 2 - 1 r 2 + (L + + M ) 4 e 2dM -e 2dL + 2 -M I -e d(L + +M ) 2 + 1 r 2 + (L + + M ) 2 e dM -e dL + 2 2 . 2. D - 1 = -4k 2 -(L -+ M ) 2 U -2 -V -2 -D -, with D -= L -I -e 2c(L -+M ) 2 - 1 r 2 - (L -+ M ) 4 e 2cM -e 2cL -2 -M I -e c(L -+M ) 2 + 1 r 2 - (L -+ M ) 2 e cM -e cL -2 2 .

Second case

Here, we consider r + ∈ R \ {0} and r -= 0. As previously, we make explicit the determinant of system (25) that we recall here

     P + 1 -2M Q - 1 M ψ 1 -P + 2 + 2M Q - 2 ψ 2 = S 3 P + 3 + 2M Q - 3 ψ 1 + 2M Q - 1 -P + 1 ψ 2 = S 4 ,
We write this system as a matrix equation Λ 2 Ψ = S, where

Λ 2 =   P + 1 -2M Q - 1 M -P + 2 + 2M Q - 2 P + 3 + 2M Q - 3 2M Q - 1 -P + 1   , Ψ = ψ 1 ψ 2 and S = S 3 S 4 .
To solve system (17), we will study the determinant

det(Λ 2 ) := -M P + 1 -2M Q - 1 2 + P + 3 + 2M Q - 3 P + 2 + 2M Q - 2 , of the matrix Λ 2 . We set det(Λ 2 ) = D + 3 + D - 3 + D 4 , ( 34 
)
where

D + 3 = P + 2 P + 3 -M P + 1 2 and D - 3 = 4M 2 Q - 2 Q - 3 -M Q - 1 2 , with D 4 = 2M P + 3 Q - 2 + P + 2 Q - 3 + M P + 1 Q - 1 .
Lemma 6.2. We have

1. D + 3 = k 2 + (L + + M ) 2 U -2 + V -2 + D + 0 , with D + 0 = L + I -e 2d(L + +M ) 2 - 1 r 2 + (L + + M ) 4 e 2dM -e 2dL + 2 -M I -e d(L + +M ) 2 + 1 r 2 + (L + + M ) 2 e dM -e dL + 2 2 . 2. D - 3 = 16k 2 -M 2 U -2 -V -2 -D - 0 , with D - 0 = (I -M ) I -e 2cM 4 + 4 I -e 2cM 2 e 2cM -16c 2 M 2 e 4cM .
Proof.

1. We have

P + 2 P + 3 = k 2 + (L + + M ) 2 L + U -2 + V -2 + D + , where D + = U 2 + + V 2 + (I -e 2dM )(I -e 2dL + ) +U + V + (I + e dM ) 2 (I + e dL + ) 2 + (I -e dM ) 2 (I -e dL + ) 2 = U 2 + + V 2 + I + e d(L + +M ) 2 -e dM + e dL + 2 +2U + V + I + e d(L + +M ) 2 + e dM + e dL + 2 = (U + + V + ) 2 I + e d(L + +M ) 2 -(V + -U + ) 2 e dM + e dL + 2 .
Moreover, from ( 9), we obtain that

U + + V + = 2 I -e d(L + +M ) and V + -U + = 2 r + (L + + M ) 2 e dM -e dL + . ( 35 
)
Then

D + = 4 I -e d(L + +M ) 2 I + e d(L + +M ) 2 - 4 r 2 + (L + + M ) 4 e dM -e dL + 2 e dM + e dL + 2 = 4 I -e 2d(L + +M ) 2 - 4 r 2 + (L + + M ) 4 e 2dM -e 2dL + 2 .
Furthermore, we have

M P + 1 2 = k 2 + (L + + M ) 2 M U -2 + V -2 + D + ,
where

D + = V + (I + e dM )(I -e dL + ) + U + (I -e dM )(I + e dL + ) 2 = (U + + V + ) I -e d(L + +M ) + (V + -U + ) e dM -e dL + 2 ,
and due to (35), it follows that

D + = 2 I -e d(L + +M ) 2 + 2 r + (L + + M ) 2 e dM -e dL + 2 2 .
Finally, we deduce that

D + 3 = P + 2 P + 3 -M P + 1 2 = k 2 + (L + + M ) 2 U -2 + V -2 + L + D + -M D + ,
and setting D + 0 = L + D + -M D + , we obtain the expected result. 2. We have

Q - 2 Q - 3 = k 2 -U -2 -V -2 -D -, where D -= V -I -e cM 2 + U -I + e cM 2 V -I + e cM 2 + U -I -e cM 2 = U 2 -+ V 2 - I -e 2cM 2 + 2U -V -I -e 2cM 2 + 16U -V -e 2cM ,
and

M Q - 1 2 = k 2 -M U -2 -V -2 -(U -+ V -) 2 I -e 2cM 2 = k 2 -U -2 -V -2 - M U 2 -+ V 2 - I -e 2cM 2 + 2M U -V -I -e 2cM 2 . Thus Q - 2 Q - 3 -M Q - 1 2 = k 2 -U -2 -V -2 -D -, where D -= (I -M ) U 2 -+ V 2 - I -e 2cM 2 + 2 (I -M ) U -V -I -e 2cM 2 +16U -V -e 2cM = (I -M ) (U -+ V -) 2 I -e 2cM 2 + 16U -V -e 2cM .
Moreover, from [START_REF] Dore | On the closedness of the sum of two closed operators[END_REF], we obtain that

U -+ V -= 2 I -e 2cM and U -V -= I -e 2cM 2 -4c 2 M 2 e 2cM .
Then

D -= 4 (I -M ) I -e 2cM 4 + 16 I -e 2cM 2 e 2cM -64c 2 M 2 e 4cM .
Therefore, it follows that

D - 3 = 4M 2 Q - 2 Q - 3 -M Q - 1 2 = 16k 2 -M 2 U -2 -V -2 -D - 0 , where D - 0 = 1 4 D -.

Inversion of the determinant

First case

Here, we consider r + , r -∈ R \ {0}. Let r = max(-r + , -r -, 0) 0. By using functional calculus, we prove that the determinant of system [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], given by (33), is invertible with bounded inverse. Due to Lemma 6.1 and the definition of D 2 , we obtain:

D + 1 = g + 1 (-A), D - 1 = g - 1 (-A) and D 2 = g 2 (-A),
where, for z ∈ C \ R -, we have set

               g + 1 (z) = 4k 2 + ( √ z + r + + √ z) 2 u -2 d,r + (z)v -2 d,r + (z)g d,r + (z) g - 1 (z) = 4k 2 -( √ z + r -+ √ z) 2 u -2 c,r -(z)v -2 c,r -(z)g c,r -(z) g 2 (z) = k + f d,r + ,1 (z)k -f c,r -,3 (z) + k -f c,r -,1 (z)k + f d,r + ,3 (z) -2 √ z k + f d,r + ,2 (z)k -f c,r -,2 (z),
with u δ,r , v δ,r , g δ,r and f δ,r,i the complex functions defined in section 5.2. Thus

det(Λ 1 ) = D + 1 + D - 1 + D 2 = f 1 (-A), (36) 
with

f 1 = g + 1 + g - 1 + g 2 .
Note that, for some θ ∈ (0, π), we have f ∈ H(S θ ) and due to Remark 5.8 and Lemma 5.9, for x > 0, we have

f 1 (x) = g + 1 (x) + g - 1 (x) + g 2 (x) < 0. (37) 
Let C 1 , C 2 be two linear operators in X. We denote by

C 1 ∼ C 2 the equality C 1 = C 2 + Σ, where Σ is a finite sum of terms of type kL l + L m -M n e αL + e βL -e δM , where k ∈ R; l, m, n ∈ N; α, β, δ ∈ R + with α + β + δ = 0. Note that Σ is a regular term in the sense: Σ ∈ L(X) with Σ(X) ⊂ D(M ∞ ) := k 0 D(M k ).
Since we have U ± ∼ I, V ± ∼ I, then by setting

W = U -U + V -V + ∼ I, we deduce that        W P + 1 ∼ 2k + (L + + M ), W P - 1 ∼ 2k -(L -+ M ) W P + 2 ∼ 2k + (L + + M ), W P - 2 ∼ 2k -(L -+ M ) W P + 3 ∼ 2k + (L + + M )L + , W P - 3 ∼ 2k -(L -+ M )L -.
Thus

W 2 det(Λ 1 ) = M W P + 1 2 -W P + 2 W P + 3 + M W P - 1 2 -W P - 2 W P - 3 -W P - 2 W P + 3 + W P + 2 W P - 3 + 2M W P + 1 W P - 1 ∼ -4k 2 + (L + + M ) 2 (L + -M ) -4k 2 -(L -+ M ) 2 (L --M ) -4k + k -(L + + M )(L -+ M )(L + + L -+ 2M ).
From [START_REF] Denk | Exponential stability for a coupled system of damped-undamped plate equations[END_REF], we have

-W 2 det(Λ 1 ) ∼ 4k 2 + r + (L + + M ) + 4k 2 -r -(L -+ M ) +4k + k -(L + + M )(L -+ M )(L + + L -+ 2M ) ∼ 4k + l + (L + + M ) + 4k -l -(L -+ M ) +4k + k -(L + + M )(L -+ M )(L + + L -+ 2M )
Hence, we note

B 1 = 4k + l + (L + + M ) + 4k -l -(L -+ M ) + 4k + k -(L + + M )(L -+ M )(L + + L -+ 2M ).
Thus, we obtain

det(Λ 1 ) = -W -2   B 1 + j∈J k j L l j + L m j -M n j e α j L + e β j L -e δ j M   , ( 38 
)
where J is a finite set and for any j ∈ J:

k j ∈ R; l j , m j , n j ∈ N, α j , β j , δ j ∈ R + with α j + β j + δ j = 0.
We set

B 2 = I + l + k - (L -+ M ) -1 (L + + L -+ 2M ) -1 + l - k + (L + + M ) -1 (L + + L -+ 2M ) -1 such that B 1 = 4k + k -(L + + M )(L -+ M )(L + + L -+ 2M )B 2 .
Proposition 6.3. Assume that (H 1 ), (H 2 ), (H 3 ), (H 4 ) hold and k + k -> 0. Thus

• if l + k - > 0 and l - k + > 0, • if l + k - < 0 and l - k + < 0, such that (l + -l -)(k + -k -) 0, (39) 
• if l + k - > 0 and l - k + < 0, such that -6l -k + + l + k + + l -k -0, (40) 
• if l + k - < 0 and l - k + > 0, such that -6l + k -+ l + k + + l -k -0, (41) 
then, b 2 (x) > 0, for x > r 0 and operator B 1 , defined above, is invertible with bounded inverse.

Remark 6.4. Since k + k -> 0, then we have the following equivalences

l + k - > 0 ⇐⇒ r + > 0 and l - k + > 0 ⇐⇒ r -> 0.
Proof. From (H 2 ) and (H 3 ), since

k + k -= 0, it is clear that 0 ∈ ρ (4k + k -(L + + M )(L -+ M )(L + + L -+ 2M )) .
Thus, it remains to prove that 0 ∈ ρ(B 2 ).

Let z ∈ C \ (-∞, r]. We set b 2 (z) = 1 + l + k - 1 ( √ z + r -+ √ z)( √ z + r + + √ z + r -+ 2 √ z) + l - k + 1 ( √ z + r + + √ z)( √ z + r + + √ z + r -+ 2 √ z) , (42) hence b 2 (-A) = B 2 .
Then, for all x > r 0, it follows

b 2 (x) = 1 + l + k - 1 ( √ x + r -+ √ x)( √ x + r + + √ x + r -+ 2 √ x) + l - k + 1 ( √ x + r + + √ x)( √ x + r + + √ x + r -+ 2 √ x)
Our aim is to prove that b(x) > 0, for all x > r. To this end, we set

y = x -r > 0 ⇐⇒ x = y + r > 0, hence b 2 (y + r) = 1 + l + k - 1 ( √ y + r + r -+ √ y + r)( √ y + r + r + + √ y + r + r -+ 2 √ y + r) + l - k + 1 ( √ y + r + r + + √ y + r)( √ y + r + r + + √ y + r + r -+ 2 √ y + r) = 1 + 1 ( √ y + r + r + + √ y + r + r -+ 2 √ y + r) b 3 (y),
where

b 3 (y) = l + k - ( √ y + r + r -+ √ y + r) + l - k + ( √ y + r + r + + √ y + r) . Then b 3 (y) = -l + k - 1 2 √ y+r+r -+ 1 2 √ y+r ( √ y + r + r -+ √ y + r) 2 + -l - k + 1 2 √ y+r+r + + 1 2 √ y+r ( √ y + r + r + + √ y + r) 2 and b 2 (y + r) = - 1 2 √ y+r+r + + 1 2 √ y+r+r -+ 1 √ y+r ( √ y + r + r + + √ y + r + r -+ 2 √ y + r) 2 b 3 (y) + 1 ( √ y + r + r + + √ y + r + r -+ 2 √ y + r) b 3 (y),
Now, we have to study the following fourth cases.

1. If l + k - > 0 and l - k + > 0, then it is clear that b 3 > 0 and b 2 > 0. 2. If l + k - < 0 and l - k + < 0, then b 3 > 0 and b 2 > 0. Thus b 2 (y + r) > b 2 (r) where b 2 (r) = 1 + 1 ( √ r + r + + 2 √ r) b 3 (0) > 1 + 1 2 √ r b 3 (0), with b 3 (0) = l + k - √ r + r -+ √ r + l - k + √ r + r + + √ r > 1 √ r l + k - + l - k + .
Thus, we obtain b 2 (r) > 1 + 1 2r

l + k - + l - k + .
Moreover, we have

1 + 1 2r l + k - + l - k + 0 ⇐⇒ 2r - l + k - + l - k + ,
where

- l + k - + l - k + =          -r - l + l - + k - k + , if r = -r - -r + k + k - + l - l + , if r = -r + .
Thus, we obtain that

2r - l + k - + l - k + ⇐⇒ l + k + + l -k --2l -k + 0, if r = -r - l + k + + l -k --2l + k -0, if r = -r + . Furthermore, since k + k -> 0, if r = -r -, then - l - k - - l + k + , hence -l -k + -l + k - and if r = -r + , then - l + k + - l - k - , hence -l + k --l -k + . It follows that l + k + + l -k --2l -k + l + k + + l -k --l + k --l -k + , if r = -r - l + k + + l -k --2l + k -l + k + + l -k --l + k --l -k + , if r = -r + .
Finally, if (39) holds, then we obtain b 2 > 0.

3. If l + k - > 0 and l - k + < 0, then since k + k -> 0, we have

l + k - > 0 ⇐⇒ l + k + k + k - k 2 -> 0 ⇐⇒ r + > 0 and l - k + < 0 ⇐⇒ l - k - k - k + k 2 + < 0 ⇐⇒ r -< 0. Thus r = -r -and b 3 (y) = l + k - ( √ y + √ y + r) + l - k + ( √ y + r + r + + √ y + r) > 1 2 √ y + r l + k - + l - k + . If l + k - + l - k + > 0, then b 3 > 0 and b 2 > 0. If l + k - + l - k + < 0, then we have b 2 (y + r) = 1 + 1 ( √ y + r + r + + √ y + 2 √ y + r) b 3 (y) > 1 + 1 3 √ y + r b 3 (y) > 1 + 1 6(y + r) l + k - + l - k + .
Moreover, we have

1 + 1 6(y + r) l + k - + l - k + 0 ⇐⇒ 6(y + r) + l + k - + l - k + 0.
It is obvious that

6(y + r) + l + k - + l - k + 6r + l + k - + l - k + ,
thus, since k + k -> 0 and here r = -r -= -l - k - , we deduce that the previous inequality becomes -6

l - k - + l + k - + l - k + 0 ⇐⇒ -6l -k + + l + k + + l -k -0.
Finally, since k + k -> 0, if (40) holds, then b 2 > 0.

4. If l + k - < 0 and l - k + > 0, then here r = -r + and in the same way than previously, if (41) holds, then b 2 > 0.

Since r = max(-r + , -r -, 0) 0 and due to (H 2 ) and (H 3 ), we deduce that operator -A -rI ∈ BIP(X, θ A ) with 0 ∈ ρ(-A -rI). Thus, considering b2 (z) = b 2 (z + r), with z + r ∈ C \ R -, it follows that b2 (-A -rI) = B 2 . Moreover, for a given θ ∈ (0, π), it is clear that 1 -b 2 , 1 -b2 ∈ E ∞ . Finally, applying Lemma 5.6 with G = b2 and P = -A -rI, we deduce the result.

Due to (38) and Proposition 6.3, it follows that

det(Λ 1 ) = -W -2 B 1 F 1 , (43) 
where

F 1 = I + j∈J k j B -1 1 L l j + L m j -M n j e α j L + e β j L -e δ j M . ( 44 
) For z ∈ C \ (-∞, r], we set b 1 (z) = -4k + k -( √ z + r + + √ z)( √ z + r -+ √ z)( √ z + r + + √ z + r -+ 2 √ z)b 2 (z), ( 45 
)
where b 2 is given by (42) and

f1 (z) = 1 + j∈J k j b 1 (z) -1 - √ z + r + l j - √ z + r - m j - √ z n j e -α j √ z+r + e -β j √ z+r -e -δ j √ z .
Then, due to (H 2 ) and (H 3 ), we have B 1 = b 1 (-A) and F 1 = f1 (-A). Moreover, from (36) and (43), we obtain

f 1 (-A) = det(Λ 1 ) = -W -2 B 1 f1 (-A).
Note that, we have

f 1 (z) = -u -2 d,r + (z)v -2 d,r + (z)u -2 c,r -(z)v -2 c,r -(z)b 1 (z) f1 (z). ( 46 
)
Proposition 6.5. Assume that (H 1 ), (H 2 ), (H 3 ), (H 4 ) hold and k + k -> 0. Thus

• if r + > 0 and r -> 0,

• if r + < 0 and r -< 0, such that (39) holds,

• if r + > 0 and r -< 0, such that (40) holds,

• if r + < 0 and r -> 0, such that (41) holds, then, F 1 ∈ L(X), given by (44), is invertible with bounded inverse.

• if r + > 0 such that r + √ t + 1 + √ t 2 t 2 k 2 + 4k 2 - , for t > 0 fixed. ( 49 
)
for all x tr + , we have f 2 (x) > 0.

• if r + < 0 such that

-r + 27k 2 + 64k 2 - , (50) 
for all x -r + , we have f 2 (x) > 0.

Proof. From (48), we deduce

f 2 (x) g + 3 (x) + g 4 (x) g + 3 (x) + 2k + k -x f d,r + ,1 (x)f c,0,1 (x).
Let r = max(-r + , 0). For x ∈ (r, +∞), setting y = x -r > 0 and noting

h 1 (y) = g + 3 (y + r) + 2k + k -(y + r) f d,r + ,1 (y + r)f c,0,1 (y + r), it follows h 1 (y) = 4k 2 + ( √ y + r + r + + √ y + r) 2 u 2 d,r + (y + r)v 2 d,r + (y + r) g d,r + (y + r) +2k + k -(y + r) f d,r + ,1 (y + r)f c,0,1 (y + r).
Since we have

0 > g d,r + (y + r) - √ y + r + r + 1 -e -2d( √ y+r+r + + √ y+r) 2 , then h 1 (y) 4 ( √ y + r + r + + √ y + r) √ y + r + r + u 2 d,r + (y + r)v 2 d,r + (y + r)u c,0 (y + r)v c,0 (y + r) h 2 (y),
where 

h 2 (y) = -k 2 + ( √ y + r + r + + √ y + r) 1 -e -2d( √ y+r+r + + √ y+r) 2 u c,0 (y + r)v c,0 (y + r) +k + k -(y + r) 1 -e -2c √ y+r 2 v d,r + (y + r) 1 + e -d √ y+r 1 + e -d √ y+r+r + +k + k -(y + r) 1 -e -2c √ y+r 2 u d,r + (y + r) 1 -e -d √ y+r 1 -e -d √ y+r+r + -k 2 + ( √ y + r + r + + √ y + r) 1 -e -2d( √ y+r+r + + √ y+r) 2 1 -e -2c √ y+r 2 +k + k -(y + r) 1 -e -2c √ y+r 2 h 3 (y), with h 3 (y) = v d,r + (y + r)
+2 ( √ y + r + r + + √ y + r) 2 r + e -2d √ y+r -e -2d √ y+r+r + .
Moreover, for all y > 0, since we have

e -2d √ y+r -e -2d √ y+r+r + r + > 0, for r + ∈ R \ {0}, we deduce that h 3 (y) > 2 1 -e -2d( √ y+r+r + + √ y+r) ,
and

h 2 (y) > -k 2 + ( √ y + r + r + + √ y + r) 1 -e -2d( √ y+r+r + + √ y+r) 2 1 -e -2c √ y+r 2 +2k + k -(y + r) 1 -e -2c √ y+r 2 1 -e -2d( √ y+r+r + + √ y+r) > -k 2 + ( √ y + r + r + + √ y + r) 1 -e -2d( √ y+r+r + + √ y+r) 1 -e -2c √ y+r 2 +2k + k -(y + r) 1 -e -2d( √ y+r+r + + √ y+r) 1 -e -2c √ y+r 2 > 1 -e -2d( √ y+r+r + + √ y+r) 1 -e -2c √ y+r 2 h 4 (y), where h 4 (y) = 2k + k -(y + r) -k 2 + ( √ y + r + r + + √ y + r). Thus h 4 (y) 0 ⇐⇒ y + r √ y + r + r + + √ y + r k 2 + 2k + k - . We set h 5 (y) = y + r √ y + r + r + + √ y + r , hence h 5 (y) = 1 √ y + r + r + + √ y + r 1 - 1 2 y + r y + r + r + . 1. If r + < 0, then r = -r + and y + r y + r + r + = y + r y , moreover h 5 (y) 0 ⇐⇒ 1 - 1 2 y + r y 0 ⇐⇒ 4 y + r y ⇐⇒ y r 3 .
Thus, we have

h 5 (y) h 5 r 3 = 4r 3 r 3 + 2 r 3 = 4 3 r 3 > 0.
Therefore, we deduce that

h 4 (y) 0 ⇐⇒ h 5 (y) k 2 + 2k + k - ⇐⇒ h 5 r 3 k + 2k - ⇐⇒ 4 3 r 3 k + 2k - , hence, 4 3 
r 3 k + 2k - ⇐⇒ r 3 9k 2 + 64k 2 - ⇐⇒ -r + 27k 2 + 64k 2 - .
2. If r + > 0, then r = 0 and y + r y + r + r + = y y + r + < 1, hence h 5 > 0 and h 5 is an increasing function. Thus

h 5 (y) k 2 + 2k + k - ⇐⇒ y √ y + r + + √ y k + 2k - .
Moreover, for t > 0 fixed, we have

h 5 (tr + ) k + 2k - ⇐⇒ tr + (t + 1)r + + √ tr + k + 2k - ⇐⇒ t √ t + 1 + √ t √ r + k + 2k - , hence √ r + √ t + 1 + √ t t k + 2k - ⇐⇒ r + t + 1 + √ t 2 t 2 k 2 + 4k 2 - .
Finally, if r + > 0 such that (49) holds, then since y = x, for all x tr + , we have h 2 (x) > 0, h 1 (x) > 0 and f 2 (x) > 0. Moreover, r + < 0 such that (50) holds, then for all y > 0, we have h 2 (y) > 0, h 1 (y) > 0 and since y = x + r + , for all x > -r + , it follows that f 2 (x) > 0.

Therefore, as in the first case, since we have U ± ∼ I and V ± ∼ I, then by setting

W = U -U + V -V + ∼ I, we deduce that        W P + 1 ∼ 2k + (L + + M ), W Q - 1 ∼ 2k -I W P + 2 ∼ 2k + (L + + M ), W Q - 2 ∼ 2k -I W P + 3 ∼ 2k + (L + + M )L + , W Q - 3 ∼ 2k -I. Thus W 2 det(Λ 2 ) = W P + 2 W P + 3 -M W P + 1 2 + 4M 2 W Q - 2 W Q - 3 -M W Q - 1 2 +2M W P + 3 W Q - 2 + W P + 2 W Q - 3 + M W P + 1 W Q - 1 ∼ 4k 2 + (L + + M ) 2 (L + -M ) + 16k 2 -M 2 (I -M ) +8k + k -(L + + M )M (L + + M + I).
From (7), we have

W 2 det(Λ 2 ) ∼ 4k 2 + r + (L + + M ) + 16k 2 -M 2 (I -M ) +8k + k -(L + + M )M (L + + M + I) ∼ 4k + l + (L + + M ) + 16k 2 -M 2 (I -M ) +8k + k -(L + + M )M (L + + M + I)
Hence, we note

B 3 = 4k + l + (L + + M ) + 16k 2 -M 2 (I -M ) + 8k + k -(L + + M )M (L + + M + I).
Thus, we obtain

det(Λ 2 ) = W -2   B 3 + j∈J k j L l j + M m j e α j L + e β j M   , ( 51 
)
where J is a finite set and for any j ∈ J: k j ∈ R; l j , m j ∈ N, α j , β j ∈ R + with α j + β j = 0. Proposition 6.8. Assume that (H 1 ), (H 2 ), (H 3 ) hold and

k + k -> 0. If k - k + 2, then 0 ∈ ρ 8k + k -(L + + M ) 2 M -16k 2 -M 3 .
Proof. Since k + k -> 0, we have k - k + > 0 and

8k + k -(L + + M ) 2 M -16k 2 -M 3 = 8k + k -M L 2 + + 2L + M + M 2 -2 k - k + M 2 .
From Remark 4.1, 5. and Corollary 3, p. 444 in [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], we deduce that

L 2 + , 2L + M, M 2 ∈ BIP(X, θ A ).
Thus, if k - k + 1, then

L 2 + + 2L + M + M 2 -2 k - k + M 2 = L 2 + - k - k + M 2 + 2L + M + 1 - k - k + M 2 .
Moreover, for all ψ ∈ D(M 2 ) = D(A), due to (6), we have

L 2 + - k - k + M 2 ψ = -1 - k - k + A + r + I ψ,
and from [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], Theorem 3, p. 437 and [START_REF] Arendt | Functional calculus, variational methods and Liapunov's theorem[END_REF], Theorem 2.3, p. 69, assumptions (H 2 ) and (H 3 ) imply that

-1 - k - k + A + r + I ∈ BIP(X, θ A ),
and

L 2 + - k - k + M 2 + 2L + M + 1 - k - k + M 2 ∈ BIP(X, θ A + ε),
for any ε ∈ (0, π -θ A ). Moreover, since 0 ∈ ρ(L + M ), we deduce from [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], remark at the end of p. 445, that 0 ∈ ρ L 2 + -k - k + M 2 + 2L + M + 1 -k - k + M 2 . Therefore, since 0 ∈ ρ(M ) and k + k -> 0, it follows that

0 ∈ ρ 8k + k -(L + + M ) 2 M -16k 2 -M 3 .
In the same way, if 1 < k - k + 2, then

L 2 + + 2L + M + M 2 -2 k - k + M 2 = L 2 + -M 2 + 2L + M -2 k - k + -1 M 2 + M 2 -M 2 ,
hence, for all ψ ∈ D(M 2 ) = D(A), from (6), we obtain

L 2 + + 2L + M + M 2 -2 k - k + M 2 ψ = r + ψ + 2M L + - k - k + -1 M ψ. ( 52 
)
Moreover, we have

L + - k - k + -1 M ψ = L + + k - k + -1 M -1 L 2 + - k - k + -1 2 M 2 ψ,
and from [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], Theorem 3, p. 437 and [START_REF] Arendt | Functional calculus, variational methods and Liapunov's theorem[END_REF], Theorem 2.3, p. 69, assumptions (H 2 ) and (H 3 ) imply that

L 2 + - k - k + -1 2 M 2 = -2 - k - k + A + r + I ∈ BIP(X, θ A ). (53) 
Finally, from (H 2 ), (H 3 ), (52), (53) and [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], Theorem 3, p. 437, we deduce that

r + ψ + 2M L + - k - k + -1 M ∈ BIP(X, θ A ), and 0 ∈ ρ r + ψ + 2M L + - k - k + -1 M .
Therefore, since 0 ∈ ρ(M ) and k + k -> 0, it follows that

0 ∈ ρ 8k + k -(L + + M ) 2 M -16k 2 -M 3 .
We set 

B 4 = I + 4k + l + (L + + M ) 8k + k -(L + + M ) 2 M -16k 2 -M 3 -1 +16k 2 -M 2 8k + k -(L + + M ) 2 M -16k 2 -M 3 -1 +8k + k -(L + + M )M 8k + k -(L + + M ) 2 M -16k 2 -M 3 -1 , ( 54 
√ z + r + + √ z) 8k + k -( √ z + r + + √ z) 2 √ z -16k 2 - √ z 3 -1 +16k 2 -z -8k + k -( √ z + r + + √ z) 2 √ z + 16k 2 - √ z 3 -1 +8k + k -( √ z + r + + √ z) √ z 8k + k -( √ z + r + + √ z) 2 √ z -16k 2 - √ z 3 -1
• if r + < 0 such that (50) holds, then F 2 , given by (56), is invertible with bounded inverse.

Proof. From Proposition 6.8 and (56), we deduce that F 2 is well defined.

• Assume that r + > 0 such that (49) holds. Then, from Lemma 6.7 and (57), it follows that f 2 does not vanish on (tr + , +∞), for t > 0 fixed, which involves that u -2 d,r + , v -2 d,r + , u -2 c,0 , v -2 c,0 , b 5 and f2 do not vanish on (tr + , +∞), for t > 0 fixed. Moreover, due to (H 2 ), there exists R = 1

A -1 > 0 such that B(0, R) ⊂ ρ(A). Therefore, setting ftr + ,2 (z) = f2 (z + tr + ), with t ∈ 0, 1 r + A -1 fixed and applying Lemma 5.6 where we have set G = ftr + ,2 and operator P = -A -tr + I ∈ BIP (X, θ A ) (due to (H 2 ) and (H 3 )), we deduce that operator F 2 = ftr + ,2 (-A -tr + I) = f2 (-A) is invertible with bounded inverse.

• Now, assume that r + < 0 such that (50) holds. Then f2 does not vanish on (-r + , +∞).

Moreover, from (H 2 ) and (H 3 ), we have -A + r + I ∈ BIP (X, θ A ). It follows that F 2 = f-r + ,2 (-A + r + I) = f2 (-A) is invertible with bounded inverse.

F 2 = B 4 +

 24 ) thus, we haveB 3 = 8k + k -(L + + M ) 2 M -16k 2 -M 3 B 4 .Moreover, from (51) and notingB 5 = 8k + k -(L + + M ) 2 M -16k 2 -M 3 , we have det(Λ 2 ) = W -2 B 5 F 2 , (55)where M m j e α j L + e β j M . (56)Now, for z ∈ C \ [max(-r + , 0), +∞), we setf2 (z) = b 4 (z) + j∈J k j b 5 (z) -1 √ z + r + l j √ z m j e -α j √ z+r + e -β j√ z , where b 3 (z) = b 4 (z)b 5 (z), with b 4 (z) = 1 + 4k + l + (

, and b 5 2 - √ z 3 .

 523 (z) = -8k + k -( √ z + r + + √ z) 2 √ z + 16k Then f2 (-A) = F 2 , b 3 (-A) = B 3 , b 4 (-A) = B 4 and b 5 (-A) = B 5 .Thus, from (47) and (55), we deduce thatf 2 (z) = u -2 d,r + (z)v -2 d,r + (z)u -2 c,0 (z)v -2 c,0 (z)b 5 (z) f2 (z).

  Assume that (H 1 ), (H 2 ), (H 3 ) and (H 4 ) hold. Then, the transmission problem (P ) has a unique classical solution if and only if the data ϕ +

	1 , ϕ -1 , ϕ + 2 , ϕ -2 satisfy (8) and system

Theorem 5.3. Let f -∈ L p (a, γ; X) and f + ∈ L p (γ, b; X), with p ∈ (1, +∞).

  Proposition 6.9. Assume that (H 1 ), (H 2 ), (H 3 ), (H 4 ) hold and k + k -> 0 with k

										-k +	2.
	Thus									
	• if r + > 0 such that									
	r +	√	t + 1 + t 2	√	t	2	k 2 + 4k 2 -	, for t ∈ 0,	1 r + A -1	fixed,

Proof. For a given θ ∈ (0, π), we have f 1 , f1 ∈ H(S θ ). Moreover, for z ∈ C \ (-∞, r], since

are polynomial functions, we deduce that 1 -f1 ∈ E ∞ (S θ ). From (37), Proposition 6.3 and Remark 6.4, we know that f 1 < 0 and b 2 > 0 on (r, +∞). Then, since u d,r + , u c,r -, v d,r + , v c,r -> 0 on (r, +∞) and due to (45) and (46), we deduce that f1 < 0 on (r, +∞). Therefore, noting f r,1 (z) = f1 (z + r) and applying Lemma 5.6 with G = f1 and P = -A -rI, thus we deduce that operator

This result finally leads us to state the following main result of this section. Proposition 6.6. Assume that (H 1 ), (H 2 ), (H 3 ), (H 4 ) hold and k + k -> 0. Thus

• if r + < 0 and r -< 0, such that (39) holds,

• if r + > 0 and r -< 0, such that (40) holds,

• if r + < 0 and r -> 0, such that (41) holds, then det(Λ 1 ) is invertible with bounded inverse.

Proof. From (43), Proposition 6.3 and Proposition 6.5, it follows that det(Λ 1 ) = -W -2 B 1 F 1 , is invertible with bounded inverse.

Second case

Let r + ∈ R \ {0} and r -= 0. In the same way than previously, using functional calculus, we prove that the determinant of system [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], given by (34), is invertible with bounded inverse. Due to Lemma 6.2, and the definition of D 4 , we obtain:

where, for z ∈ C \ R -, we have set

with u δ,r , v δ,r , g δ,r and f δ,r,i the complex functions defined in section 5.2. Thus

with f 2 = g + 3 + g - 3 + g 4 . Note that, for some θ ∈ (0, π), we have f 2 ∈ H(S θ ) and due to Remark 5.8 and Lemma 5.9, for x > max(-r + , 0), we have 

Thus

• if r + > 0 such that (58) holds,

• if r + < 0 such that (50) holds, then det(Λ 2 ) is invertible with bounded inverse.

Proof. From (55), Proposition 6.8 and Proposition 6.9, we obtain that det(Λ 2 ) = W -2 B 5 F 2 , is invertible with bounded inverse.

Regularity

First case

Here, we consider r + , r -∈ R \ {0}. From Theorem 5.3, we have to prove that system [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] has a unique solution (ψ 1 , ψ 2 ) satisfying [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF]. The existence and uniqueness of this solution is ensured by Proposition 6.6, so we have

(59)

Now, we have to study the regularity of [det(Λ 1 )] -1 . Since, in this case, the determinant det(Λ 1 ) is the same than the one in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], we deduce, from [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], Lemma 5.3, p. 2958, that there exists R det(Λ 1 ) ∈ L(X) such that

,

Then, the rest of the proof is similar to the one given in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], section 5.3. Therefore, from ( 12) and ( 13), it follows that S 1 , S 2 ∈ (D(M ), X) 1+ 1 p ,p and thus

Moreover, from (59), we have

where S1 , S2 ∈ D(M ∞ ). Finally, from ( 27), ( 60) and (61), we obtain

Second case

Here, we consider r + ∈ R \ {0} and r -= 0. From Theorem 5.5, we have to prove that (25) has a unique solution (ψ 1 , ψ 2 ) satisfying [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF]. The existence and uniqueness of this solution is ensured by Proposition 6.10, so we have

(62)

Now, we have to study the regularity of [det(Λ 2 )] -1 . From ( 9), ( 54), ( 55), (56) and [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], Lemma 5.1, p. 365, we deduce that there exists R det(Λ 2 ) ∈ L(X) such that

where we recall that

, ( 27), ( 29) and (32), we have

Thus, from ( 21), ( 22), ( 23), Remark 5.2 and Remark 5.4, we deduce that

Moreover, due to [START_REF] Favini | Resolution and Optimal Regularity for a Biharmonic Equation with Impedance Boundary Conditions and Some Generalizations[END_REF], ( 20), (62) and [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], Lemma 5.1, p. 365, we have