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Abstract

We study the solvability of boundary-value problems for differential-operator equa-
tions of the second order in Lp(0, 1;X), with 1 < p < +∞, X being a UMD complex
Banach space. The originality of this work lies in the fact that we have considered the
case when spectral complex parameters appear in the equation and in the abstract Robin
boundary condition illustrated by some unbounded operator non commuting with the
one used in the equation. Existence, uniqueness, representation formula, maximal reg-
ularity of the solution, sharp estimates and generation of strongly continuous analytic
semigroup are proved. Many concrete applications are given for which our theory applies.
This work gives news considerations with respect to all those studied by the authors in
[7] and is a continuation, in some sense, of the results in [1] studied in Hilbertian spaces.
Key Words and Phrases: Second order boundary value problem with two spectral
parameters, Robin boundary condition, spectral estimates, functional calculus, genera-
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1 Introduction

In this article, we consider a new spectral problem that is equation

u′′(x) +Au(x)− λu(x) = f(x), x ∈ (0, 1), (1)

together with the abstract Robin boundary conditions

u′(0)−Hu(0)− µu(0) = d0, u(1) = u1. (2)

Here, λ, µ are complex parameters; A, H are closed linear operators in a complex Banach
space X; f belongs to Lp(0, 1;X) with 1 < p < +∞; d0, u1 are given elements of X. We
develop a completely different approach from those used until now where it is more easy to
verify the assumptions and to apply this approach to concrete problems.

Many boundary value problems with a spectral parameter in the equation and in the
boundary conditions arise in different concrete problems. Let us cite some interesting studied
problems. One of the first works, was treated in [5], where the author have considered a
class of boundary problems with a spectral parameter in the boundary conditions. In [4],
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the author has considered some second order elliptic boundary value problems on bounded
domains with boundary conditions depending nonlinearly on the spectral parameter. In [2],
we find a study, in a separable Hilbert space, of the following boundary-value second-order
elliptic differential-operator equation:{

u′′(x) +Au(x)− λu(x) = f(x), x ∈ (0, 1)
λu′(0)− αu(1) = f1, u(1) = f2,

where λ is the spectral parameter, α is a complex number with Re(α) > 0 and −A is a
linear self-adjoint operator garanteeing the ellipticity of the equation. Note that here, the
parameter λ appears in the nonlocal boundary condition. Recently, in [1], the authors have
considered the following boundary-value problem for an elliptic differential-operator equation
of second order {

λ2u(x)− u′′(x) +Au(x) = f(x), x ∈ (0, 1)
u′(0) + λu(1) = f1, βu

′(1) + λu(0) = f2,

where the same spectral parameter appears in the equation quadratically; here −A is a closed
positive linear operator in some separable complex Hilbert space. In [7], the authors have
considered in a complex Banach space X, Problem (1)-(2) where λ = ω is some positive
spectral parameter and µ = 0. For ω large enough, under some geometrical assumption on
the space X and hypotheses on operators A−ωI and H including the fact that they commute
in the resolvent sense, the authors have furnished necessary and sufficient conditions on the
data d0, u1 to obtain the existence and uniqueness of a solution u of (1)-(2) with maximal
regularity. Recently, in [9], the authors have developed an interesting new approach in a non
commutative framework, concerning some general Sturm-Liouville problems with the same
Robin boundary condition in 0.

In our study of Problem (1)-(2), the ellipticity of the equation is guaranteed by hypothesis
(5) below, this assumption allows us to consider, for suitable λ, µ, the operators{

Λλ,µ := (Qλ −Hµ) + e2Qλ (Qλ +Hµ)
Qλ = −

√
−A+ λI, Hµ = H + µI.

In all the sequel, for any closed linear operator T on X, D(T ) denotes the domain of T
and ρ(T ) the resolvent set of T . The key point will be to obtain the invertibility of the
determinant Λλ,µ of system (1)-(2) with estimates of

∥∥∥Λ−1
λ,µ

∥∥∥
L(X)

, for appropriate λ, µ. To
this end, we consider two different situations:

1. D(H) ⊂ D(A)

2. D(
√
−A) ⊂ D(H),

where in the first case, we say that operator H is principal, while in the second case, it is
operator

√
−A which is principal. Concrete applications will illustrate these two cases in the

end of this work: the first one is adapted to related problems concerning some heat equations
with dynamical boundary conditions of reactive-diffusion type or with Wentzell boundary
conditions, whereas the second one will concern, for instance, problems involving the Caputo
derivative in the boundary conditions. Moreover, using the same tools, we study the Dirichlet
case and obtain similar results to those obtained with Robin boundary conditions.

Three new and essential results sum up this work. First, we solve the above equation by
giving an explicit and simplified representation of the solution adapted to each case and we
show that it is verifying the optimal regularity that is

u ∈W 2,p(0, 1;X) ∩ Lp(0, 1;D(A)).
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Then we give sharp estimates of this solution in each case according to the complex spectral
parameters λ, µ belonging to some appropriate precised set. This part essencially uses the
results of [14] where some inequalities on resolvent operators are precised. Finally, using these
estimates, we obtain the generation of two kinds of analytic semigroups each corresponding
to a situation when we specify the complex parameters λ, µ.

This article is organized as follows. Section 2 describes the assumptions, including two
spectral parameters λ, µ, studied in this work. In Section 3, we deal with our model without
spectral parameter, we retrieve in a simple manner results of previous works. Section 4 is
devoted to some precise estimates of Dore-Yakubov type, which will be useful to analyze our
model. Sections 5 and 6 concern the study of our model with spectral parameters λ, µ under
two different types of behaviour concerning operators with respect to their domains and to
the parameters. Moreover sharp estimates in λ, µ are furnished for the solution. In Section 7,
we furnish results for (1) together with Dirichlet boundary conditions. Then, in Section 8,
we apply the results of Sections 5, 6, 7 to generation of semigroups. Finally, Section 9 deals
with examples of applications.

2 Assumptions
In all this work, we will use the following notation: for ϕ ∈ (0, π), we set

Sϕ := {z ∈ C\ {0} : |arg(z)| 6 ϕ} ∪ {0} . (3)

Our goal is to seek for a classical solution of Problem (1)-(2), that is a function u such that

i) u ∈W 2,p(0, 1;X) ∩ Lp(0, 1;D(A)),
ii) u(0) ∈ D(H),
iii) u satisfies (1)-(2).

We suppose that
X is a UMD space, (4)

Recall that X is a UMD space means that for all q > 1 the Hilbert transform is continuous
from Lq(R;X) into itself, see [6].

∃ ϕ0 ∈ (0, π) : Sϕ0 ⊂ ρ (A) and ∃CA > 0 :

∀λ ∈ Sϕ0 ,
∥∥∥(A− λI)−1

∥∥∥
L(X)

6
CA

1 + |λ| ,
(5)

 ∀s ∈ R, (−A)is ∈ L (X) , ∃θA ∈ (0, π) :
sup
s∈R

∥∥∥e−θA|s|(−A)is
∥∥∥
L(X)

< +∞. (6)

We now set for λ ∈ Sϕ0 , µ ∈ C

Hµ = H + µI, Qλ = −
√
−A+ λI and Q = −

√
−A,

The existence of the previous square roots is ensured by subsection 5.1 below and for operator
H we consider the two following types of hypotheses:

First case
D (H) ⊂ D(A), (7)

and 
∃ϕ1 ∈ (0, π) ,∃CH > 0 :
Sϕ1⊂ ρ (−H) and sup

µ∈Sϕ1

(1 + |µ|)
∥∥∥H−1

µ

∥∥∥
L(X)

6 CH .
(8)
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Second case
D(Q) ⊂ D (H) , (9)

∃ε ∈ (0, 1/2], ∃CH,Q > 0, sup
t∈[0,+∞)

(1 + t)ε ‖ HQ−1
t ‖L(X)6 CH,Q, (10)

(Q−H)−1
(
(D (Q) , X)1/p,p

)
⊂ Q−1

(
(D (Q) , X)1/p,p

)
, (11)

here Q−H is not supposed to be boundedly invertible and

(Q−H)−1
(
(D (Q) , X)1/p,p

)
=
{
ξ ∈ D (Q) : (Q−H) ξ ∈ (D (Q) , X)1/p,p

}
.

In order to obtain spectral estimates for the solutions of (1)-(2) we will replace as-
sumption (11) by the new assumption:

(Q−H)−1 (D (Q)) ⊂ D
(
Q2
)
, (12)

where (Q−H)−1 (D (Q)) = {ξ ∈ D (Q) : (Q−H) ξ ∈ D (Q)} .

Remark 2.1. In these two cases we do not suppose the commutativity between the resolvent
operators of H and A. On the other hand, there is no reason a priori so that the solution u
verifies u(0) ∈ D(H).

Remark 2.2. Assume (5) and (9).

1. If we have the commutativity assumption

∀ζ ∈ D (H) , Q−1Hζ = HQ−1ζ,

then (12) is satisfied.

2. Let (λ, µ) ∈ Sϕ0 × C. If ξ ∈ D (Q), there exists ζ ∈ X such that ξ = Q−1ζ, so

(Q−H) ξ = [Qλ −Hµ + µI + (Q−Qλ)] ξ
= (Qλ −Hµ) ξ + µξ + (Q−Qλ)Q−1ζ,

and it will be seen in Lemma 4.4 below that there exists Tλ ∈ L(X) such that

Q = Qλ + T
λ

and Q−1T
λ

= T
λ
Q−1.

then
(Q−H) ξ − (Qλ −Hµ) ξ = µξ +Q−1T

λ
ζ ∈ D (Q) .

This proves that (Q−H)−1 (D (Q)) = (Qλ −Hµ)−1 (D (Q)) and then (12) is equiva-
lent to

(Qλ −Hµ)−1 (D (Q)) ⊂ D
(
Q2
)
. (13)

Remark 2.3. Assume (5).

1. If H ∈ L (X) then, for t > 0

‖ HQ−1
t ‖L(X)6‖ H ‖L(X)‖ Q−1

t ‖L(X),

so due to (37) below, we have (9) and (10) with ε = 1/2.
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2. If there exists ω ∈ [0, 1/2) such that D((−A)ω) ⊂ D (H) then, in virtue of Lemma 2.6
statement a) in [14], there exists Cω > 0 such that, for t > 0

‖ HQ−1
t ‖L(X) 6 ‖ H (−A)−ω ‖L(X)‖ (−A)ω (−A+ tI)−1/2 ‖L(X)

6
Cω

(1 + t)1/2−ω ,

so we have (9) and (10) with ε = 1/2− ω ∈ (0, 1/2].

3. It will be seen, see (57) below, that (10) can be written as

∃ε ∈ (0, 1/2], ∃CH,Q > 0, ∀λ ∈ Sϕ0 : ‖ HQ−1
λ ‖L(X)6

CH,Q
(1 + |λ|)ε .

4. In [20], the authors have considered (1)-(2) (with the complex number λ replaced by
ω > 0 and µ = 0) under assumptions (4)∼(6) together with

D (A) ⊂ D (H) and ∃ω0 > 0,∃ν ∈ (0, 1/2) , ∃C > 0, ∀σ > 0, ∀ω > ω0 :∥∥∥H (A− (ω + σ) I)−1
∥∥∥
L(X)

6
C

|ω + σ|1/2+ν .
(14)

Then they prove the existence of ω1 > ω0 such that for any ω > ω1

0 ∈ ρ (Qω ±H) , D (Qω) ⊂ D (H) and ‖ HQ−1
ω ‖L(X)6

C

ων
.

They have supposed moreover that

∀ω > ω1, Qω (Qω ±H)−1
(
(D (Qω) , X)1/p,p

)
⊂ (D (Qω) , X)1/p,p . (15)

These assumptions are, in some sense, stronger than (9)∼(11).

5. For suitable λ, µ we can observe that in the first case

Qλ −Hµ =
(
QλH

−1
µ − I

)
Hµ,

is boundedly invertible and in the second case

Qλ −Hµ =
(
I −HµQ

−1
λ

)
Qλ,

is also boundedly invertible. In fact, in the two cases we can prove that

Λλ,µ := (Qλ −Hµ) + e2Qλ (Qλ +Hµ) ,

is boundedly invertible which will allow us to build a representation formula of the
classical solution u. So we could generalize these two cases by considering λ, µ for
which Qλ − Hµ is boundedly invertible and

∥∥∥(Qλ +Hµ)−1
∥∥∥
L(X)

is small enough in
order to get that

Λλ,µ =
(
I − e2Qλ

)(
I − 2

(
I − e2Qλ

)−1
Qλe

2Qλ (Qλ +Hµ)−1
)
,

is boundedly invertible, see for example [7]. In this generalization we suppose neither
D (H) ⊂ D(A) nor D(Q) ⊂ D (H), but it could be difficult to obtain estimates of∥∥∥(Qλ +Hµ)−1

∥∥∥
L(X)

with respect to λ, µ.
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3 Problem without parameters
In this section we study a problem similar to (1)-(2), but without the parameters λ and µ,
that is {

u′′(x) +Au(x) = f(x), x ∈ (0, 1)
u′(0)−Hu(0) = d0, u(1) = u1.

(16)

3.1 Hypotheses

Here our hypotheses are

(H1) X is a UMD space,

(H2) [0,+∞) ⊂ ρ (A) and sup
t∈[0,+∞)

∥∥∥(A− tI)−1
∥∥∥
L(X)

6
C

1 + t
,

(H3) ∀s ∈ R, (−A)is ∈ L (X) and

∃θA ∈ (0, π) : sup
s∈R

∥∥∥e−θA|s|(−A)is
∥∥∥
L(X)

< +∞,

(H4) Λ := (Q−H) + e2Q (Q+H) is closed and boundedly invertible, where Q := −
√
−A.

(H5) QΛ−1
(
(D (Q) , X)1/p,p

)
⊂ (D (Q) , X)1/p,p .

Note that here we are neither in case 1, nor in case 2.
In the following remark we discuss about assumption (H5).

Remark 3.1.

1. Assume (H2) and (H4). If we suppose moreover

A−1Λ−1 = Λ−1A−1, (17)

then (H5) is satisfied. In fact, the following assertions are equivalent.

(a) A−1Λ−1 = Λ−1A−1,

(b) ∀λ ∈ ρ (A) , (A− λI)−1 Λ−1 = Λ−1 (A− λI)−1 ,

(c) Q−1Λ−1 = Λ−1Q−1.

Then, under (17), we have

Q (Q− tI)−1QΛ−1 = QΛ−1Q (Q− tI)−1 ,

and since

(D (Q) , X)1/p,p =
{
x ∈ X : t1−1/pQ (Q− tI)−1 x ∈ Lp∗(R+;X)

}
,

we get (H5) .
Finally we remark that if

∀ζ ∈ D (H) , A−1ζ ∈ D (H) and A−1Hζ = HA−1ζ, (18)

then (17) and (H5) are satisfied.
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2. Assume (H2) and (H4); then (H5) is equivalent to

Λ−1
(
(D (Q) , X)1/p,p

)
⊂ (D (Q) , X)1+1/p,p .

3. In [8], problem (16) has been studied under more restrictive assumptions, that are
(H1) ∼ (H4) and the commutativity hypothesis

∃λ0 ∈ ρ(H) : A−1 (H − λ0I)−1 = (H − λ0I)−1A−1, (19)

which, from statement 1., implies (H5).

4. Assume (H2) and (H4). If Q−H is boundedly invertible then, due to ΛΛ−1 = I and
Λ−1Λ = I, we get that{

Λ−1 = (Q−H)−1 − (Q−H)−1 e2Q (Q+H) Λ−1

(Q−H)−1 = Λ−1 + Λ−1e2Q (Q+H) (Q−H)−1 ,
(20)

from which we deduce that for any ξ ∈ (D (Q) , X)1/p,p[
QΛ−1ξ ∈ (D (Q) , X)1/p,p

]
⇐⇒

[
Q (Q−H)−1 ξ ∈ (D (Q) , X)1/p,p

]
,

so we can replace in the previous proposition assumption (H5) by the equivalent one

(H ′5) Q (Q−H)−1
(
(D (Q) , X)1/p,p

)
⊂ (D (Q) , X)1/p,p , (21)

5. Assume (H2) and (H4). If we suppose that

∀ξ ∈ D(Q), QΛ−1ξ ∈ D(Q),

then we have (H5), see Lemma 5 p. 76 in ([9]).
Similarly, when Q−H is boundedly invertible, using (20) we have that

∀ξ ∈ D(Q), Q (Q−H)−1 ξ ∈ D(Q),

implies (H ′5) and then (H5).

Remark 3.2. Problem (16) has been already studied (with or without spectral parameters):

• In [9], with hypotheses similar to those given here, as a particular case (B = 0) of a
more general problem{

u′′(x) + 2Bu′ (x) +Au(x) = f(x), x ∈ (0, 1)
u′(0)−Hu(0) = d0, u(1) = u1.

where A and B are not supposed to commute. The representation formula of the
solution given in [9] was obtained after long calculations.

• In [20], the authors also furnishes a representation formula of the solution of{
u′′(x) +Au(x)− ωu (x) = f(x), x ∈ (0, 1)
u′(0)−Hu(0) = d0, u(1) = u1,

under (4)∼(6), (14) and (15), but the method is quite long and laborious.
We propose in the following, see subsection 3.3, a simple way to obtain in our case a
representation formula written in a condensed form, which will be useful for the study
of the problem with a spectral parameter.
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3.2 Interpolation spaces

Let us give now some necessary conditions to obtain a classical solution for our problem (16)
using known properties of interpolation spaces.

Lemma 3.3. Suppose that Problem (16) has a classical solution u. Then:

1. u (0) , u (1) ∈
(
D(Q2), X

)
1
2p ,p

=
(
X,D(Q2)

)
1− 1

2p ,p
, which implies that

u (0) , u (1) ∈ D(Q) and Qu (0) , Qu (1) ∈ (D (Q) , X)1/p,p .

2. u′ (0) , u′ (1) ∈
(
D(Q2), X

)
1
2 + 1

2p ,p
= (D(Q), X) 1

p
,p .

Proof. Suppose that Problem (16) has a classical solution u. Then, from

u ∈W 2,p (0, 1;X) ∩ Lp
(
0, 1;D(Q2)

)
, 1 < p < +∞,

we have u (0) , u (1) ∈
(
D(Q2), X

)
1
2p ,p

=
(
X,D(Q2)

)
1− 1

2p ,p
, (see [17], Teorema 2’, p. 678 ).

But (
D
(
Q2
)
, X
)

1/2p,p
= DQ2 (1− 1/2p, p) = (D (Q) , X)1+1/p,p

=
{
ϕ ∈ D (Q) : Qϕ ∈ (D (Q) , X)1/p,p

}
⊂ D (Q) ,

from which it follows that

u (0) , u (1) ∈ D(Q) and Qu (0) , Qu (1) ∈ (D (Q) , X)1/p,p .

Similarly, by using Teorema 2’, in [17], p. 678, we have

u′ (0) , u′ (1) ∈
(
D(Q2), X

)
1
2 + 1

2p ,p
= (D(Q), X) 1

p
,p .

3.3 Representation formula

Under (H2), if u is a classical solution of (16) then there exist ξ0, ξ1 ∈ X such that

u(x) = exQξ0 + e(1−x)Qξ1 + I (x) + J (x) , x ∈ [0, 1] , (22)

where

I (x) = 1
2Q
−1
∫ x

0
e(x−s)Qf(s)ds and J (x) = 1

2Q
−1
∫ 1

x
e(s−x)Qf(s)ds, (23)

see [7], p. 989. Note that here, unlike [7], we do not supposed that A and H commute. Now,
taking into account the fact that I − e2Q is invertible, we set T =

(
I − e2Q

)−1
∈ L (X) and

S (x) = T
(
exQ − e(1−x)QeQ

)
∈ L (X) , x ∈ [0, 1] ,

then formula (22) writes in the following form

u(x) = S (x)µ0 + S (1− x)µ1 + I (x) + J (x) , x ∈ [0, 1] ,
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with µ0 = ξ0 + eQξ1, µ1 = eQξ0 + ξ1 and we deal with this new writing. We note that
u0 = u(0) = µ0 + J (0)
u1 = u(1) = µ1 + I (1)
u′ (0) = TQ

(
I + e2Q

)
µ0 − 2TQeQµ1 −QJ (0) ,

and now we determine µ0, µ1 by using the boundary conditions

u(1) = u1 and u′(0)−Hu(0) = d0.

So µ1 = u1 − I (1) and

TQ
(
I + e2Q

)
µ0 − 2TQeQµ1 −QJ (0)−H (µ0 + J (0)) = d0,

hence

TQ
(
I + e2Q

)
(µ0 + J (0))−H (µ0 + J (0)) = d0 + 2TQeQµ1

+QJ (0) + TQ
(
I + e2Q

)
J (0) ,

thus[
Q
(
I + e2Q

)
−
(
I − e2Q

)
H
]

(µ0 + J (0)) =
(
I − e2Q

)
d0 + 2QeQµ1

+
(
I − e2Q

)
QJ (0) +Q

(
I + e2Q

)
J (0) ,

but Λ = Q
(
I + e2Q

)
−
(
I − e2Q

)
H so µ1 = u1 − I (1)

µ0 = Λ−1
[(
I − e2Q

)
d0 + 2QeQµ1 + 2QJ (0)

]
− J (0) .

Finally, if u is a classical solution of (16) then

u(x) = S (x)µ0 + S (1− x)µ1 + I (x) + J (x) , x ∈ [0, 1] , (24)

where 
µ1 = u1 − I (1)
µ0 = Λ−1

[(
I − e2Q

)
d0 + 2QeQµ1 + 2QJ (0)

]
− J (0)

S (x) =
(
I − e2Q

)−1 (
exQ − e(1−x)QeQ

)
.

(25)

When (19) is satisfied, we can check that this representation formula coincides with the
one given in [8] p. 528. We can also, after computations, verify that (24) is the same formula
as the one p. 92 (with L = M = Q) in [9] and also compare it with (34)∼(38) pp. 54-55, in
[20].

3.4 Regularity results

The following results will be useful to study the regularity of the solution of (16).

Lemma 3.4. Let p ∈ (1,+∞) , ψ ∈ X and n ∈ N\ {0}. Then, under (H2), we have

1. x 7→ exQψ ∈ Lp (0, 1, X) .

2. x 7→ QnexQψ ∈ Lp (0, 1, X) if and only if ψ ∈ (D (Qn) , X) 1
np
,p .
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See for instance [25], Theorem, p. 96.

Lemma 3.5. For f ∈ Lp (0, 1, X) with 1 < p < +∞, under (H1) ∼ (H3), we have

1. x 7→ Q

∫ x

0
e(x−s)Qf (s) ds ∈ Lp (0, 1, X) ,

x 7→ Q

∫ 1

x
e(s−x)Qf (s) ds ∈ Lp (0, 1, X) .

2. x 7→ Q

∫ 1

0
e(x+s)Qf (s) ds ∈ Lp (0, 1, X) .

For statements 1 and 2 which are consequences of the Dore-Venni Theorem, see [16],
p. 167-168 and also (24), (25) and (26) in [15].

Lemma 3.6. Let ψ, χ ∈ X and 1 < p < +∞. Then, under (H2), we have

1. x 7→ Q2S (x)ψ ∈ Lp(0, 1;X) ⇐⇒ ψ ∈
(
D
(
Q2) , X) 1

2p ,p
,

x 7→ Q2S (1− x)χ ∈ Lp(0, 1;X) ⇐⇒ χ ∈
(
D
(
Q2) , X) 1

2p ,p
.

2. x 7→ Q2S (x)ψ +Q2S (1− x)χ ∈ Lp(0, 1;X)⇐⇒ ψ, χ ∈
(
D
(
Q2) , X) 1

2p ,p
.

Proof.

1. T =
(
I − e2Q

)−1
= I + e2Q

(
I − e2Q

)−1
so

S (x) = exQ +
(
I − e2Q

)−1
exQe2Q −

(
I + e2Q

(
I − e2Q

)−1
)
e(1−x)QeQ;

then, by lemma 3.4

Q2S (·)ψ ∈ Lp(0, 1;X) ⇐⇒ Q2e·Qψ ∈ Lp(0, 1;X)
⇐⇒ ψ ∈

(
D
(
Q2) , X) 1

2p ,p
.

2. For any ψ, χ ∈ X, we have

Q2S (·)ψ ∈ Lp(1/2, 1;X) and Q2S (1− ·)χ ∈ Lp(0, 1/2;X).

Then
Q2S (·)ψ +Q2S (1− ·)χ ∈ Lp(0, 1;X),

if and only if Q2S (·)ψ ∈ Lp(0, 1;X) and Q2S (1− ·)χ ∈ Lp(0, 1;X).

Lemma 3.7. Consider µ0, µ1 defined in (25). Then µ0 ∈ (D (A) , X) 1
2p ,p

⇐⇒ Λ−1d0 ∈ (D (A) , X) 1
2p ,p

µ1 ∈ (D (A) , X) 1
2p ,p

⇐⇒ u1 ∈ (D (A) , X) 1
2p ,p

.
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Proof. From [18], Proposition 3.5, p. 1676, we have J (0) , I (1) ∈ (D (A) , X) 1
2p ,p

, thus:

µ1 ∈ (D (A) , X) 1
2p ,p

⇐⇒ u1 ∈ (D (A) , X) 1
2p ,p

.

Moreover µ0 = Λ−1d0 − Λ−1
[
e2Qd0 + 2QeQµ1 + 2QJ (0)

]
− J (0), with

e2Qd0 + 2QeQµ1 + 2QJ (0) ∈ (D (Q) , X)1/p,p ,

and from (H5)

QΛ−1
[
e2Qd0 + 2QeQµ1 + 2QJ (0)

]
∈ (D (Q) , X)1/p,p ,

which means that

Λ−1
[
e2Qd0 + 2QeQµ1 + 2QJ (0)

]
∈ (D (Q) , X)1+1/p,p = (D (A) , X) 1

2p ,p
.

Finally: µ0 ∈ (D (A) , X) 1
2p ,p

⇐⇒ Λ−1d0 ∈ (D (A) , X) 1
2p ,p

.

3.5 Resolution of Problem (16)

We are now in a position to retrieve (in the case L = M) in a simple manner, the result of
Corollary 1, p. 92 in [9] and also Theorem 2, p. 56, in [20].

Proposition 3.8. Let f ∈ Lp(0, 1;X) with 1 < p < +∞ and assume that (H1) ∼ (H5) are
satisfied. Then the following assertions are equivalent:

1. Problem (16) admits a classical solution u.

2. u1,Λ−1d0 ∈ (D (A) , X) 1
2p ,p

Moreover in this case u is unique and it is given by (24).

Proof. From the previous study we know that if Problem (16) admits a classical solution u
then u is unique and given by (24). Moreover u defined by (24) satisfies

u(0) = µ0 + J (0) = Λ−1
[(
I − e2Q

)
d0 + 2QeQµ1 + 2QJ (0)

]
∈ D (H) ,

and then u is a classical solution of (16) if and only if Q2u (·) ∈ Lp(0, 1;X).
But from Lemma 3.5, Q2I (·) , Q2J (·) ∈ Lp(0, 1;X), so Lemma 3.6 and Lemma 3.7 imply

that
Q2u (·) ∈ Lp(0, 1;X) ⇐⇒ Q2S (x)µ0 +Q2S (1− x)µ1 ∈ Lp(0, 1;X)

⇐⇒ µ0, µ1 ∈ (D (A) , X) 1
2p ,p

⇐⇒ u1,Λ−1d0 ∈ (D (A) , X) 1
2p ,p

,

this proves that statement 1. is equivalent to statement 2.

Remark 3.9. In the previous Proposition, if moreover, Q − H is boundedly invertible,
then using (20) we can replace the condition Λ−1d0 ∈ (D (A) , X) 1

2p ,p
by the simplest one

(Q−H)−1 d0 ∈ (D (A) , X) 1
2p ,p

.
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4 Dore-Yakubov estimates
This section is devoted to Dore-Yakubov Estimates and applications. The results are essen-
tially based on those given in [14] and we have used the definitions and notations of this
paper. We consider here a complex Banach space E.

In the following we fix ϕ in (0, π) and L : D (L) ⊂ E −→ E is a closed densely defined
linear operator. Note that here E is not supposed to be a UMD space and there is no BIP
assumption on operator L.
Definition 4.1. L is said to be an operator of type ϕ with bound CL if Sϕ ⊂ ρ (−L) and

∀λ ∈ Sϕ,
∥∥∥(L+ λI)−1

∥∥∥
L(E)

6
CL

1 + |λ| ,

where Sϕ is defined by (3).
In all this section L is an operator of type ϕ with bound CL. We fix λ ∈ Sϕ and we set

Dλ := L+ λI,

and
ε (ϕ) := min {ϕ, π − ϕ} =

{
ε (ϕ) = ϕ if ϕ ∈ (0, π/2]
ε (ϕ) = π − ϕ if ϕ ∈ [π/2, π),

note that ε (ϕ) ∈ (0, π/2). The first Lemma below is essentially based on Lemmas 2.3 and
2.4 in [14]. The novelty is in some precisions given on the estimate of∥∥∥∥((L+ λI)1/2 + νI

)−1
∥∥∥∥
L(E)

,

which integrates the behaviour with respect to the complex parameters λ and ν.
Lemma 4.2.

1. Let θ ∈ (0, ε (ϕ)); then Dλ is an operator of type θ with bound

Cθ := CL/ cos
(
ϕ+ θ

2

)
∈ (0,+∞).

Moreover for ν ∈ Sθ we have∥∥∥(Dλ + νI)−1
∥∥∥
L(E)

6
Cθ

|λ|+ |ν|+ 1 . (26)

In particular, setting C0 = C/ cos (ϕ/2), we have for any ν > 0∥∥∥(Dλ + νI)−1
∥∥∥
L(E)

6
C0

|λ|+ ν + 1 . (27)

2. D1/2
λ is well defined and −D1/2

λ generates a semigroup
(
e−tD

1/2
λ

)
t>0

which is bounded,

analytic for t > 0 and strongly continuous for t > 0.

3. Let θ ∈ R such that θ =
∣∣∣θ∣∣∣ ∈ (0, ε (ϕ)). Then, for a complex number ν with

Re
(
νe−iθ/2

)
> 0 we get : D1/2

λ + νI is boundedly invertible and∥∥∥∥(D1/2
λ + νI

)−1
∥∥∥∥
L(E)

6
Cν,θ

|ν|+
√
|λ|+ 1

,

where Cν,θ := CL/

[
cos

(
arg (ν)− θ/2

)
cos

(
ϕ+ θ

2

)]
.
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4. Let ψ ∈
(
π

2 ,
π

2 + ε (ϕ)
2

)
; then D

1/2
λ is of type ψ with bound Kψ := CL/ cos2 (βψ)

where
βψ = π

4 + ψ − ε (ϕ)
2 ∈ (0, π/2) .

Moreover for ν ∈ Sψ we have∥∥∥∥(D1/2
λ + νI

)−1
∥∥∥∥
L(E)

6
Kψ

|ν|+
√
|λ|+ 1

. (28)

In particular, setting KL := CL/ cos2 (ϕ/2), we have for any ν ∈ Sπ/2∥∥∥∥(D1/2
λ + νI

)−1
∥∥∥∥
L(E)

6
KL

|ν|+
√
|λ|+ 1

. (29)

Proof.

1. See [14], (2.1) in Lemma 2.4, p. 99 and also Theorem 10.3, p. 320 in [21]. Remark
that we have cos

(
ϕ+ θ

2

)
> 0 . Moreover, noting that for any ν > 0 we have

ν ∈
⋂

θ∈(0,ε(ϕ))
Sθ,

we get (27) with C0 = lim
θ−→0+

Cθ.

2. See [14], Lemma 2.4.

3. The idea is to use the calculus given in [14], in Lemma 2.4, at the end of p. 99

∥∥∥∥(D1/2
λ + νI

)−1
∥∥∥∥
L(E)

=

∥∥∥∥∥∥ 1
π

∫ +∞eiθ

0

z1/2

z + ν2 (Dλ + zI)−1 dz

∥∥∥∥∥∥
L(E)

=
∥∥∥∥∥ 1
π

∫ +∞

0

r1/2eiθ/2

reiθ + ν2

(
Dλ + reiθI

)−1
eiθdr

∥∥∥∥∥
L(E)

,

but now we apply the estimate
∥∥∥∥(Dλ + reiθI

)−1
∥∥∥∥
L(E)

6
Cθ

|λ|+ r + 1 , instead of

∥∥∥∥(Dλ + reiθI
)−1

∥∥∥∥
L(E)

6
Cθ
r + 1 ,

and so∥∥∥∥(D1/2
λ + νI

)−1
∥∥∥∥
L(E)

6
Cθ
π

∫ +∞

0

r1/2∣∣∣reiθ + ν2
∣∣∣ 1
|λ|+ r + 1dr

6
Cθ
π

∫ +∞

0

r1/2∣∣∣∣cos
(

arg(ν2)−θ
2

)∣∣∣∣ (r + |ν|2
) 1
|λ|+ r + 1dr

6
Cθ

π cos
(
arg (ν)− θ

2

) ∫ +∞

0

r1/2(
r + |ν|2

)
(r + |λ|+ 1)

dr.
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For a, b > 0, a 6= b, we have∫ +∞

0

r1/2

(r + a) (r + b)dr = 2b
b− a

∫ +∞

0

1
x2 + b

dx− 2a
b− a

∫ +∞

0

1
x2 + a

dx

= π√
b+
√
a
,

from which we deduce∥∥∥∥(D1/2
λ + νI

)−1
∥∥∥∥
L(E)

6
CL

π cos
(
arg (ν)− θ/2

)
cos ((ϕ+ θ) /2)

π

|ν|+
√
|λ|+ 1

.

4. Estimate (28) is deduced from statement 2. as in [14], Lemma 2.4, p. 100. Since
Sπ/2 ⊂ Sψ for any ψ ∈

(
π

2 ,
π

2 + ε (ϕ)
2

)
, we get (29) with

KL := lim
ψ−→π/2+

Kψ = CL
cos2 ((π − ε (ϕ)) /2) = 2CL

1 + cos (ϕ) = CL
cos2 (ϕ/2) .

Here, since Dλ is boundedly invertible, we have also that D1/2
λ is boundedly invertible

and then ρ
(
D

1/2
λ

)
contains a ball centered in 0. The following Lemma precises the size of

this ball with respect to λ ∈ Sϕ.

Lemma 4.3. Setting rλ =
∥∥∥D−1/2

λ

∥∥∥−1

L(E)
> 0 and KL := CL/ cos2 (ϕ/2), we have

1.
∥∥∥D−1/2

λ

∥∥∥
L(E)

6
KL√
|λ|+ 1

.

2. B(0, rλ) ⊂ ρ(D1/2
λ ) and for z ∈ B(0, rλ)

‖(D1/2
λ − zI)−1‖L(E) 6

KL√
|λ|+ 1

× 1
1− ‖zD−1/2

λ ‖L(E)
.

3. B
(

0,
√
|λ|+1

2KL

)
⊂ B(0, rλ) and for z ∈ B

(
0,
√
|λ|+1

2KL

)
‖(D1/2

λ − zI)−1‖L(E) 6
2KL√
|λ|+ 1

.

Proof.

1. It enough to consider (29) with ν = 0. Note that we can obtain a best estimate:∥∥∥∥(D1/2
λ

)−1
∥∥∥∥
L(E)

6
CL/ cos (ϕ/2)√
|λ|+ 1

, by using similar arguments as in [14], (2.4) p. 100.

2. We consider z ∈ B(0, rλ). Then ‖zD−1/2
λ ‖L(E) < 1, so

D
1/2
λ − zI = D

1/2
λ

(
I − zD−1/2

λ

)
,

is boundedly invertible with

‖(D1/2
λ − zI)−1‖L(E) 6 ‖D−1/2

λ ‖L(E) ×
∥∥∥∥(I − zD−1/2

λ

)−1
∥∥∥∥
L(E)

6
KL√
|λ|+ 1

× 1
1− ‖zD−1/2

λ ‖L(E)
.
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3. We consider z ∈ B
(

0,
√
|λ|+1
2K

)
. Then

0 6 ‖zD−1/2
λ ‖L(E) = |z| ‖D−1/2

λ ‖L(E) 6

√
|λ|+ 1
2KL

KL√
|λ|+ 1

= 1/2 < 1,

so z ∈ B(0, rλ) and

‖(D1/2
λ − zI)−1‖L(E) 6

KL√
|λ|+ 1

× 1
1− ‖zD−1/2

λ ‖L(E)
6

2KL√
|λ|+ 1

.

Now we will compare D1/2
λ and D

1/2
0 . This has been already done for λ > 0 in [19],

Proposition 3.1.7 p. 65. Here λ is a complex parameter: we furnish a precise estimate for
the bounded operator Tλ which extends D1/2

λ −D1/2
0 ; we give also a new writing of Tλ with

respect to
(
D

1/2
λ +D

1/2
0

)−1
.

Lemma 4.4.

1. There exists a unique Tλ ∈ L(E) such that

D
1/2
λ = D

1/2
0 + Tλ, (30)

moreover Tλ = λ

2iπ

∫
γ

√
z (zI −Dλ)−1 (zI − L)−1 dz ∈ L(E), where γ is the boundary

of Sη, positively oriented, with η fixed in (π − ε (ϕ) , π), and Tλ does not depend on η.

2. TλD−1/2
λ′ = D

−1/2
λ′ Tλ for any λ′ ∈ Sϕ.

3. ‖Tλ‖L(E) 6
C2
L

cos ((ϕ+ π) /2)
√
|λ|.

4. 0 ∈ ρ
(
D

1/2
λ +D

1/2
0

)
and

Tλ = λ
(
D

1/2
λ +D

1/2
0

)−1
= λ

2iπ

∫
γ

1√
z + λ+

√
z

(zI − L)−1 dz,

so that

∀ξ ∈ D
(
L1/2

)
,
(
D

1/2
λ −D1/2

0

)
ξ = λ

(
D

1/2
λ +D

1/2
0

)−1
ξ ∈ D (L) .

Proof.

1. First, notice that L = D0 and D (L) ⊂ D
(
D

1/2
λ

)
∩ D

(
D

1/2
0

)
. Thus, if Tλ ∈ L(E)

satisfies (30) then Tλ is unique since D (L) = E and

Tλξ = D
1/2
λ ξ −D1/2

0 ξ, ξ ∈ D (L) ,

We fix η > 0 such that π−ε (ϕ) < η < π. Then π−η ∈ (0, ε (ϕ)) and, from Lemma 4.2,
statement 1., L = D0 and Dλ are operators of type π− η; in particular for ω > 0 small
enough we have

σ (D0) ∪ σ (Dλ) ⊂ ω + Sη ⊂ Sη.
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So, we can define D−1/2
λ , D

−1/2
0 by using functional calculus and considering γ, the

positively oriented boundary of Sη:

D
−1/2
λ = 1

2iπ

∫
γ

1√
z

(zI −Dλ)−1 dz and D
−1/2
0 = 1

2iπ

∫
γ

1√
z

(zI −D0)−1 dz;

it is well known that these integrals do not depend on η. We write

D
−1/2
λ −D−1/2

0 = 1
2iπ

∫
γ

1√
z

[
(zI −Dλ)−1 − (zI −D0)−1

]
dz

= λ

2iπ

∫
γ

1√
z

(zI −Dλ)−1 (zI −D0)−1 dz

= λ

2iπL
−1
∫
γ

1√
z

(zI −Dλ)−1 (L− zI + zI) (zI − L)−1 dz

= − λ

2iπL
−1
∫
γ

1√
z

(zI −Dλ)−1 dz

+ λ

2iπL
−1
∫
γ

1√
z

(zI −Dλ)−1 z (zI − L)−1 dz

= L−1
(
−λD−1/2

λ + λ

2iπ

∫
γ

√
z (zI −Dλ)−1 (zI − L)−1 dz

)
= −λL−1D

−1/2
λ + L−1Tλ,

where Tλ := λ

2iπ

∫
γ

√
z (zI −Dλ)−1 (zI − L)−1 dz ∈ L(E).

This proves that for ξ ∈ E D
−1/2
λ ξ = D

−1/2
0 ξ − λL−1D

−1/2
λ ξ + L−1Tλξ ∈ D

(
D

1/2
0

)
D
−1/2
0 ξ = D

−1/2
λ ξ + λL−1D

−1/2
λ ξ − L−1Tλξ ∈ D

(
D

1/2
λ

)
;

thus we obtain D
(
D

1/2
λ

)
= D

(
D

1/2
0

)
= D

(
L1/2

)
. We then deduce (30) by writing,

for ζ ∈ D
(
L1/2

)
D

1/2
λ ζ −D1/2

0 ζ = (L+ λI)D−1/2
λ ζ − LD−1/2

0 ζ

= L
(
D
−1/2
λ −D−1/2

0

)
ζ + λD

−1/2
λ ζ

= λ

2iπ

∫
γ

√
z (zI −Dλ)−1 (zI − L)−1 ζdz

= Tλζ.

2. This is an easy consequence of the above definition of Tλ.

3. We have

Tλ = − λ

2iπ

∫ +∞

0

√
reiη

(
reiηI −Dλ

)−1 (
reiηI − L

)−1
eiηdr

+ λ

2iπ

∫ +∞

0

√
re−iη

(
re−iηI −Dλ

)−1 (
re−iηI − L

)−1
e−iηdr

= λ

2iπ

∫ +∞

0

√
reiη

(
rei(η−π)I +Dλ

)−1 (
rei(η−π)I + L

)−1
eiηdr

− λ

2iπ

∫ +∞

0

√
re−iη

(
rei(π−η)I +Dλ

)−1 (
rei(π−η)I + L

)−1
e−iηdr,
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but re±i(η−π) ∈ Sπ−η and using (26) with Cπ−η = CL
cos ((ϕ+ π − η) /2) we get

‖Tλ‖L(E) 6
|λ|
2π

∫ +∞

0

√
r

Cπ−η
|λ|+ r + 1

CL
1 + r

dr

+ |λ|2π

∫ +∞

0

√
r

Cπ−η
|λ|+ r + 1

CL
1 + r

dr

= |λ|Cπ−ηCL
π

∫ +∞

0

√
r

(r + |λ|+ 1) (r + 1)dr

= |λ|Cπ−ηCL√
|λ|+ 1 + 1

6
C2
L

cos ((ϕ+ π − η) /2)

√
|λ|.

Moreover, since Tλ does not depend on η, then

‖Tλ‖L(E) 6 lim
η−→π−

C2
L

cos ((ϕ+ π − η) /2)

√
|λ| = C2

L

cos (ϕ/2)

√
|λ|.

4. The integral below is absolutely convergent, then 0 ∈ ρ
(
D

1/2
λ +D

1/2
0

)
and

(
D

1/2
λ +D

1/2
0

)−1
= 1

2iπ

∫
γ

1√
z + λ+

√
z

(zI − L)−1 dz.

Moreover for ξ ∈ D (L)

D
1/2
λ ξ −D1/2

0 ξ =
(
D

1/2
λ −D1/2

0

) (
D

1/2
λ +D

1/2
0

) (
D

1/2
λ +D

1/2
0

)−1
ξ

= λ
(
D

1/2
λ +D

1/2
0

)−1
ξ,

and from the uniqueness of Tλ ∈ L(E) satisfying (30) we get :

Tλ = λ
(
D

1/2
λ +D

1/2
0

)−1
.

Remark 4.5.

1. From the previous Lemma, statement 4, we see thatD1/2
λ +D1/2

0 is boundedly invertible
but, D1/2

λ −D1/2
0 is not boundedly invertible unless L ∈ L(E).

2. In the three previous Lemmas the most important fact is that the constants Cθ, C0,
Cν,θ, Kψ, KL depend only on L and ϕ, but do not depend on λ.

Lemma 4.6. Let −∞ < a < b < +∞. Then:

1. For λ ∈ Sϕ, Gλ = −D1/2
λ which generates a semigroup

(
etGλ

)
t>0

bounded, analytic
for t > 0 and strongly continuous for t > 0 satisfies moreover ∃K0 > 0, ∃c0 > 0, ∀x > 1/2, ∀λ ∈ Sϕ :

max
{
‖ exGλ ‖L(E), ‖ GλexGλ ‖L(E)

}
6 K0e

−xc0|λ|1/2 .
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2. For x ∈ [a, b], λ ∈ Sϕ and f ∈ Lp(a, b;E) we set,

Uλ,f (x) =

∫ x

a
e(x−s)Gλf(s)ds, a 6 x

Vλ,f (x) =
∫ b

x
e(s−x)Gλf(s)ds, x 6 b.

(31)

There exists ML > 0 such that for any f ∈ Lp(a, b;E) and any λ ∈ Sϕ

‖Uλ,f‖Lp(a,b;E) 6

ML√
|λ|+ 1

‖f‖Lp(a,b;E)

‖Vλ,f‖Lp(a,b;E) 6
ML√
|λ|+ 1

‖f‖Lp(a,b;E) .

Proof. We fix ψ ∈
(
π

2 ,
π

2 + ε (ϕ)
2

)
and use notations and estimates of Lemma 4.2.

1. See Lemma 2.6, p. 103, in [14].

2. We first focus on Uλ,f . Let x ∈ [a, b]. We apply the Dunford-Riesz Calculus to define
e·Qλ , and obtain

Uλ,f (x) = 1
2iπ

∫ x

a

∫
γ
e(x−s)z (zI −Gλ)−1 f(s) dz ds

= 1
2iπ

∫ x

a

∫
γ
e(x−s)z(zI +D

1/2
λ )−1f(s) dz ds, x > a,

where the path γ is the boundary positively oriented of Sψ∪B(0, ε) with ε =
√
|λ|+ 1
2KL

.

Then

Uλ,f (x) = 1
2iπ

∫ x

a

∫ +∞

ε
e(x−s)reiψ(reiψI +D

1/2
λ )−1f(s)eiψdrds

+ 1
2iπ

∫ x

a

∫ ψ

2π−ψ
e(x−s)εeiθ(εeiθI +D

1/2
λ )−1f(s)εieiθdθds

− 1
2iπ

∫ x

a

∫ +∞

ε
e(x−s)re−iψ(re−iψI +D

1/2
λ )−1f(s)e−iψdrds,

hence

‖Uλ,f (x)‖ 6
1

2π

∫ x

a

∫ +∞

ε

∥∥∥e(x−s)reiψf(s)
∥∥∥ ∥∥∥(reiψI +D

1/2
λ )−1

∥∥∥
L(E)

drds

+ ε

2π

∫ x

a

∫ 2π−ψ

ψ

∥∥∥e(x−s)εeiθf(s)
∥∥∥ ∥∥∥(εeiθI +D

1/2
λ )−1

∥∥∥
L(E)

dθds

+ 1
2π

∫ x

a

∫ +∞

ε

∥∥∥e(x−s)re−iψf(s)
∥∥∥ ∥∥∥(re−iψI +D

1/2
λ )−1

∥∥∥
L(E)

drds.
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We deduce, from Lemma 4.2, statement 4. and Lemma 4.3, statement 3., that

‖Uλ,f (x)‖ 6
1

2π

∫ x

a

∫ +∞

ε

∥∥∥e(x−s)reiψf(s)
∥∥∥ Kψ

r +
√
|λ|+ 1

drds

+ ε

2π

∫ x

a

∫ 2π−ψ

ψ

∥∥∥e(x−s)εeiθf(s)
∥∥∥ 2KL√
|λ|+ 1

dθds

+ 1
2π

∫ x

a

∫ +∞

ε

∥∥∥e(x−s)re−iψf(s)
∥∥∥ Kψ

r +
√
|λ|+ 1

drds

6
Kψ

π

∫ x

a

∫ +∞

ε
e(x−s)r cos(ψ) ‖f(s)‖ 1

r +
√
|λ|+ 1

drds

+εKL

π

1√
|λ|+ 1

∫ x

a

∫ 2π−ψ

ψ
e(x−s)ε cos(θ) ‖f(s)‖ dθds

6
Kψ

π

∫ x

a

(∫ +∞

ε

e(x−s)r cos(ψ)

r +
√
|λ|+ 1

dr

)
‖f(s)‖ ds

+εKL

π

1√
|λ|+ 1

∫ 2π−ψ

ψ

∫ x

a
e(x−s)ε cos(ψ) ‖f(s)‖ dsdθ

6
Kψ

π

∫ x

a

(∫ +∞

ε

e(x−s)r cos(ψ)

r +
√
|λ|+ 1

dr

)
‖f(s)‖ ds

+ 2εKL√
|λ|+ 1

∫ x

a
e(x−s)ε cos(ψ) ‖f(s)‖ ds.

So, setting 
U1
λ,f (x) = Kψ

π

∫ x

a

(∫ +∞

ε

e(x−s)r cos(ψ)

r +
√
|λ|+ 1

dr

)
‖f(s)‖ ds

U2
λ,f (x) = 2εKL√

|λ|+ 1

∫ x

a
e(x−s)ε cos(ψ) ‖f(s)‖ ds,

we have
‖Uλ,f‖Lp(a,b;E) 6

∥∥∥U1
λ,f

∥∥∥
Lp(a,b)

+
∥∥∥U2

λ,f

∥∥∥
Lp(a,b)

. (32)

Estimate of
∥∥∥U1

λ,f

∥∥∥
Lp(a,b)

. Define g ∈ L1 (R) , F ∈ Lp (R) by

g(t) :=


∫ +∞

ε

etr cos(ψ)

r +
√
|λ|+ 1

dr if t > 0

0 else,
and F (t) :=

{
‖f(t)‖ if t ∈ (a, b)
0 else,

thus

U1
λ,f (x) = Kψ

π

∫ x

a
g(x− s) ‖f(s)‖ ds+ Kψ

π

∫ b

x
g(x− s) ‖f(s)‖ ds

= Kψ

π

∫ b

a
g(x− s)‖f(s)‖ ds

= Kψ

π

∫ +∞

−∞
g(x− s)F (s) ds

= Kψ

π
(g ∗ F ) (x) ,
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then from the Young inequality, we obtain∥∥∥U1
λ,f

∥∥∥
Lp(a,b)

6
Kψ

π
‖g ∗ F‖Lp(R)

6
Kψ

π
‖g‖L1(R) ‖F‖Lp(R) .

Setting ` =
√
|λ|+ 1 and noting that ε/` = 1/2K, we have

‖g‖L1(R) =
∫ +∞

0

∫ +∞

ε

etr cos(ψ)

r + `
drdt

=
∫ +∞

0

(∫ +∞

ε

et(r/`)` cos(ψ)

r/`+ 1
dr

`

)
dt

=
∫ +∞

0

(∫ +∞

ε/`

etρ` cos(ψ)

ρ+ 1 dρ

)
dt

=
∫ +∞

ε/`

(∫ +∞

0
etρ` cos(ψ)dt

)
dρ

ρ+ 1

=
∫ +∞

1/2K

[
etρ` cos(ψ)

ρ` cos (ψ)

]+∞

0

dρ

ρ+ 1

= 1
` cos (ψ)

∫ +∞

1/2KL

dρ

ρ (ρ+ 1)

= ln (2KL + 1) / cos (ψ)√
|λ|+ 1

,

finally ∥∥∥U1
λ,f

∥∥∥
Lp(a,b)

6
Kψ ln (2KL + 1) /π cos (ψ)√

|λ|+ 1
‖f‖Lp(a,b;E) .

Estimate of
∥∥∥U2

λ,f

∥∥∥
Lp(a,b)

. Define h ∈ L1 (R) , F ∈ Lp (R) by

h(t) :=
{
etε cos(ψ) if t > 0
0 else and F (t) :=

{
‖f(t)‖ if t ∈ (a, b)
0 else;

then

U2
λ,f (x) = 2εKL√

|λ|+ 1

(∫ x

a
h(x− s)‖f(s)‖ ds+

∫ b

x
g(x− s)‖f(s)‖ ds

)

= 2εKL√
|λ|+ 1

∫ b

a
h(x− s)‖f(s)‖ ds

= 2εKL√
|λ|+ 1

∫ +∞

−∞
h(x− s)F (s) ds

= 2εKL√
|λ|+ 1

(h ∗ F ) (x) ;

therefore from the Young inequality, we get∥∥∥U2
λ,f

∥∥∥
Lp(a,b)

6
2εKL√
|λ|+ 1

‖h ∗ F‖Lp(R)

6
2εKL√
|λ|+ 1

‖h‖L1(R) ‖F‖Lp(R)

= 2KL/ |cos (ψ)|√
|λ|+ 1

‖f‖Lp(a,b;E) .
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From (32) and the two previous estimates, there exists ML > 0 such that for any
f ∈ Lp(a, b;E)

‖Uλ,f‖Lp(a,b;E) 6
ML√
|λ|+ 1

‖f‖Lp(a,b;E) .

We note that
Vλ,f (x) = U

λ,f̃
(b+ a− x) , (33)

with f̃(·) := f(· − a− b); then

‖Vλ,f‖Lp(a,b;E) 6
ML√
|λ|+ 1

∥∥∥f̃∥∥∥
Lp(a,b;E)

= ML√
|λ|+ 1

‖f‖Lp(a,b;E) .

Definition 4.7. We say that a closed linear operator A on E, has the Lp regularity property
on [a, b], if the Cauchy problem{

u′(t) = Au(t) + f(t), t ∈ (a, b)
u(a) = 0,

admits, for any f ∈ Lp(a, b;E), a unique solution

uf ∈W 1,p (a, b;E) ∩ Lp (a, b;D(A)) .

In this case, there exists K > 0 such that for any f ∈ Lp (a, b;E)

‖uf‖Lp(a,b;E) +
∥∥∥u′f∥∥∥

Lp(a,b;E)
+ ‖Auf‖Lp(a,b;E) 6 K ‖f‖Lp(a,b;E) .

For details on the Lp regularity property we refer to [12] and [13].

Lemma 4.8. Assume that G = −L1/2 has the Lp regularity property on [a, b], and consider
Uλ,f , Vλ,f defined in (31). Let λ ∈ Sϕ, then:

1. The linear operator Gλ = − (−L+ λI)1/2 has the Lp regularity property on [a, b].

2. For any f ∈ Lp(a, b;E), Uλ,f , Vλ,f ∈W 1,p (a, b;E) ∩ Lp (a, b;D(G)), Uλ,f is the unique
solution of {

v′(t) = Gλv(t) + f(t), t ∈ (a, b)
v(a) = 0,

(34)

and Vλ,f is the unique solution of{
v′(t) = −Gλv(t) + f(t), t ∈ (a, b)
v(b) = 0.

3. There exists M̃L > 0 (which does not depend on λ) such that for any f ∈ Lp(a, b;E)
we have

√
|λ|+ 1 ‖Uλ,f‖Lp(a,b;E) +

∥∥∥U ′λ,f∥∥∥Lp(a,b;E)
+ ‖GλUλ,f‖Lp(a,b;E) 6 M̃L ‖f‖Lp(a,b;E)

√
|λ|+ 1 ‖Vλ,f‖Lp(a,b;E) +

∥∥∥V ′λ,f∥∥∥Lp(a,b;E)
+ ‖GλVλ,f‖Lp(a,b;E) 6 M̃L ‖f‖Lp(a,b;E) .
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Proof. Let λ ∈ Sϕ. We consider Tλ, defined in Lemma 4.4, statement 1. and due to (30),
we have Gλ = G− Tλ.

1. Let f ∈ Lp (a, b;E). Here, we want to show that (34) admits a unique solution in
W 1,p (a, b;E) ∩ Lp (a, b;D(G)).

• First, we define g ∈ Lp (a, b;E) by

g (t) = e(t−a)Tλf(t), t ∈ (a, b) .

• Then we consider U0,g defined by (31) which is the solution of{
u′(t) = Gu(t) + g(t), t ∈ (a, b)
u(a) = 0, (35)

but G has the Lp regularity property on [a, b], so

U0,g ∈W 1,p (a, b;E) ∩ Lp (a, b;D(G)) .

• Since Tλ ∈ L(E) and U0,g ∈W 1,p (a, b;E) ∩ Lp (a, b;D(G)) we get that

v := e−(·−a)TλU0,g, (36)

is also in W 1,p (a, b;E) ∩ Lp (a, b;D(G)) with

v′ = −Tλe−(·−a)TλU0,g + e−(·−a)TλU ′0,g.

So using (35) and the fact that TλG = GTλ on D (G) (see Lemma 4.4, statement
2.) we deduce that

v′ = −Tλe−(·−a)TλU0,g + e−(·−a)Tλ (GU0,g + g)
= (G− Tλ) e−(·−a)TλU0,g + e−(·−a)Tλg.

Finally v satisfies {
v′(t) = (G− Tλ) v(t) + f(t), t ∈ (a, b)
v(a) = 0.

• From Lemma 4.2, statement 5, we have Gλ = G − Tλ so v = e−(·−a)TλU0,g is a
solution of (34) with the expected regularity. Moreover if w is another solution
of (34) then e−(·−a)Tλw satisfies (35), so e−(·−a)Tλw = U0,g and w = v; this proves
the uniqueness of the solution of (34).

2. From (31) we have that Uλ,f is a formal solution of (34) then

Uλ,f = e−(·−a)TλU0,g,

and has the expected regularity. We use (33) to study Vλ,f .

3. Since G has the Lp regularity property on [a, b], there exists K > 0 such for any
h ∈ Lp(a, b;E) ∥∥∥U ′0,h∥∥∥

Lp(a,b;E)
+ ‖GU0,h‖Lp(a,b;E) 6 K ‖h‖Lp(a,b;E) .
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Now let λ ∈ Sϕ. Uλ,f satisfies (34) so{
U ′λ,f (t) = (G− Tλ)Uλ,f (t) + f(t), t ∈ (a, b)
Uλ,f (a) = 0,

thus setting hλ = −TλUλ,f + f{
U ′λ,f (t) = GUλ,f (t) + hλ (t) , t ∈ (a, b)
Uλ,f (a) = 0,

then Uλ,f = U0,hλ and∥∥∥U ′λ,f∥∥∥
Lp(a,b;E)

+ ‖GλUλ,f‖Lp(a,b;E) =
∥∥∥U ′0,hλ∥∥∥Lp(a,b;E)

+ ‖GU0,hλ‖Lp(a,b;E)

6 K ‖hλ‖Lp(a,b;E)
6 ‖Tλ‖L(E) ‖Uλ,f‖Lp(a,b;E) + ‖f‖Lp(a,b;E)

6
C2
L

cos ((ϕ+ π) /2)

√
|λ| ML√

|λ|+ 1
‖f‖Lp(a,b;E)

+ ‖f‖Lp(a,b;E)

6 M̃L ‖f‖Lp(a,b;E) .

We use again (33) to study Vλ,f .

5 Spectral problem (1)-(2): first case

5.1 Preliminary estimates

In this subsection we suppose thatX,A,H satisfy (4)∼(6). Note that the results of Section 4,
can be applied to our operator −A, since due to (4), (5), −A is densely defined and from
(5) we have that −A is an operator of type ϕ0 with bound CA. For λ ∈ Sϕ0 , −A + λI is
an operator of type θ (for any θ ∈ (0, ε (ϕ0)); in particular if we set Qλ = −(−A + λI)1/2,
then from Lemma 4.2, statement 2., Qλ generates a semigroup

(
e−tQλ

)
t>0

which is bounded,
analytic for t > 0 and strongly continuous for t > 0. Moreover, there exists K > 0, such that

∀λ ∈ Sϕ0 , ‖ Q−1
λ ‖L(X)6

K

(1 + |λ|)1/2 ; (37)

furthermore, from Lemma 4.3, statement 3., we have

B (0, 1/2K) ⊂ ρ (Qλ) ,

so there exists δ > 0, which does not depend on λ such that Qλ + δI generates a bounded
analytic semigroup thus, for some K1 > 1

∀λ ∈ Sϕ0 , ∀x > 0, ‖ exQλ ‖L(X)6 K1e
−δx. (38)

There exist also K0 > 0 and c0 > 0 such that{
∀λ ∈ Sϕ0 , ∀x > 1/2, ∀j ∈ {0, 1, 2} :
‖ QjλexQλ ‖L(X)6 K0e

−2c0|λ|1/2 .
(39)
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Lemma 5.1. There exists a constant M > 0 independent of λ ∈ Sϕ0 , such that for any
λ ∈ Sϕ0 , operators I ± e2Qλ are invertible in L (X) and

∀λ ∈ Sϕ0 ,

∥∥∥∥(I ± e2Qλ
)−1

∥∥∥∥
L(X)

6M, (40)

Proof. Let λ ∈ Sϕ0 . For x > 0, we have∥∥∥exQλ∥∥∥
L(X)

6 K1e
−xδ,

we choose k ∈ N\{0} such that K1e
−2kδ 6 1/2 < 1. Then I − e2kQλ is invertible with∥∥∥∥(I − e2kQλ

)−1
∥∥∥∥
L(X)

6
1

1− 1/2 = 2,

thus 0 ∈ ρ(I − e2Qλ) since

I = (I − e2Qλ)
(
I + e2Qλ + · · ·+ e2(k−1)Qλ

)
(I − e2kQλ)−1

= (I − e2kQλ)−1
(
I + e2Qλ + · · ·+ e2(k−1)Qλ

)
(I − e2Qλ).

Moreover∥∥∥∥(I − e2Qλ
)−1

∥∥∥∥
L(X)

6
∥∥∥(I + e2Qλ + · · ·+ e2(k−1)Qλ

)
(I − e2kQλ)−1

∥∥∥
L(X)

6
(

1 +
∥∥∥e2Qλ

∥∥∥
L(X)

+ · · ·+
∥∥∥e2Qλ

∥∥∥k−1

L(X)

)∥∥∥(I − e2kQλ)−1
∥∥∥
L(X)

6 2Kk
1 .

We obtain the result for I+e2Qλ = I−
(
−e2Qλ

)
if we replace e2kQλ , e2Qλ by−e2kQλ ,−e2Qλ

in the above proof.

5.2 Spectral estimates

In this subsection we assume that X,A,H satisfy (4)∼(8).
Let λ ∈ Sϕ0 , µ ∈ Sϕ1 . We recall that Hµ = H + µI and furnish estimates concerning

operators Qλ, Hµ which are easy consequences of our assumptions.
In the following M denotes various constants, independent of λ, µ, which can vary from

line to line.

Lemma 5.2. Let λ ∈ Sϕ0 , µ ∈ Sϕ1 . Then (−A+ λI)H−1
µ ∈ L (X), moreover there exists a

constant M > 0 independent of λ ∈ Sϕ0 and µ ∈ Sϕ1 such that

max
{∥∥∥HH−1

µ

∥∥∥
L(X)

,
∥∥∥AH−1

µ

∥∥∥
L(X)

}
6M, (41)

∥∥∥Q2
λH
−1
µ

∥∥∥
L(X)

6M
1 + |λ|+ |µ|

1 + |µ| , (42)

and ∥∥∥QλH−1
µ

∥∥∥
L(X)

6M
1 + |λ|+ |µ|

(1 + |µ|) (1 + |λ|)1/2 . (43)
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Proof. Note that (−A+ λI) is closed, so due to (7), (−A+ λI)H−1
µ is bounded. Then∥∥∥HH−1

µ

∥∥∥
L(X)

=
∥∥∥(H + µI)H−1

µ − µH−1
µ

∥∥∥
6 ‖I‖L(X) +

∥∥∥µ (H + µI)−1
∥∥∥
L(X)

6 1 + CH ,

moreover ∥∥∥AH−1
µ

∥∥∥
L(X)

6
∥∥∥AH−1HH−1

µ

∥∥∥
L(X)

6
∥∥∥AH−1

∥∥∥
L(X)

∥∥∥HH−1
µ

∥∥∥
L(X)

6
∥∥∥AH−1

∥∥∥
L(X)

(1 + CH) = C ′,

and ∥∥∥Q2
λH
−1
µ

∥∥∥
L(X)

=
∥∥∥(−A+ λI)H−1

µ

∥∥∥
L(X)

6
∥∥∥AH−1

µ

∥∥∥
L(X)

+
∥∥∥λ (H + µI)−1

∥∥∥
L(X)

6 C ′ + CH
|λ|

1 + |µ| .

Finally, since∥∥∥QλH−1
µ

∥∥∥
L(X)

=
∥∥∥Q−1

λ Q2
λH
−1
µ

∥∥∥
L(X)

6
∥∥∥Q−1

λ

∥∥∥
L(X)

∥∥∥Q2
λH
−1
µ

∥∥∥
L(X)

,

we deduce (43) from (41) and (37).

For λ ∈ Sϕ0 , µ ∈ Sϕ1 , let us recall that

Λλ,µ := (Qλ −Hµ) + e2Qλ (Qλ +Hµ) .

Note that, since D (Hµ) ⊂ D(Q2
λ), we have D (Λλ,µ) = D (Hµ) = D(H). We now introduce,

for r > 0, the notation

Ωϕ0,ϕ1,r =
{

(λ, µ) ∈ Sϕ0 × Sϕ1 : |λ| > r and |µ|
2

|λ|
> r

}
,

and furnish results on Λλ,µ.

Lemma 5.3. There exist r0 > 0 and M > 0 such that for all (λ, µ) ∈ Ωϕ0,ϕ1,r0 we have
0 ∈ ρ

((
I − e2Qλ

)−1 (
I + e2Qλ

)
QλH

−1
µ − I

)
∥∥∥∥∥
[(
I − e2Qλ

)−1 (
I + e2Qλ

)
QλH

−1
µ − I

]−1
∥∥∥∥∥
L(X)

6 2,
(44)

0 ∈ ρ (Λλ,µ) and
∥∥∥Λ−1

λ,µ

∥∥∥
L(X)

6
M

1 + |µ| , (45)

and ∥∥∥Q2
λΛ−1

λ,µ

∥∥∥
L(X)

6M
1 + |λ|+ |µ|

1 + |µ| . (46)

Note that Q2
λΛ−1

λ,µ has the same behaviour as QλH−1
µ , see (43) and (53).
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Proof. Let (λ, µ) ∈ Ωϕ0,ϕ1,r for some r > 0. From (7), we have QλH−1
µ ∈ L(X), hence(

I − e2Qλ
)−1 (

I + e2Qλ
)
QλH

−1
µ − I ∈ L(X); moreover, from (39), (40) and (43), we obtain∥∥∥∥(I − e2Qλ

)−1 (
I + e2Qλ

)
QλH

−1
µ

∥∥∥∥
L(X)

6 M
∥∥∥QλH−1

µ

∥∥∥
L(X)

6 M

(
1
|λ|1/2

+ |λ|
1/2

|µ|

)

6
2M
r1/2 .

So there exists r0 > 0 such that for all (λ, µ) ∈ Ωϕ0,ϕ1,r0 we have∥∥∥∥(I − e2Qλ
)−1 (

I + e2Qλ
)
QλH

−1
µ

∥∥∥∥
L(X)

6 1/2. (47)

Let (λ, µ) ∈ Ωϕ0,ϕ1,r0 . Then (47) proves (44). We deduce that

Lλ,µ :=
(
I − e2Qλ

) [(
I − e2Qλ

)−1 (
I + e2Qλ

)
QλH

−1
µ − I

]
∈ L(X),

is boundedly invertible. Moreover

L−1
λ,µ =

[(
I − e2Qλ

)−1 (
I + e2Qλ

)
QλH

−1
µ − I

]−1 (
I − e2Qλ

)−1
,

satisfies ∥∥∥L−1
λ,µ

∥∥∥
L(X)

6 2M.

Now, we write Λλ,µ =
(
I + e2Qλ

)
Qλ −

(
I − e2Qλ

)
Hµ = Lλ,µHµ, so Λλ,µ is boundedly

invertible with
Λ−1
λ,µ = H−1

µ L−1
λ,µ,

this furnish (45). Finally,
∥∥∥L−1

λ,µ

∥∥∥
L(X)

6 2M and (42) gives

∥∥∥Q2
λΛ−1

λ,µ

∥∥∥
L(X)

=
∥∥∥Q2

λH
−1
µ

∥∥∥
L(X)

∥∥∥L−1
λ,µ

∥∥∥
L(X)

6M
1 + |λ|+ |µ|

1 + |µ| .

5.3 Main results

Let r0 fixed as in Lemma 5.3.

Theorem 5.4. Assume (4)∼(8). Let d0 ∈ X,u1 ∈ X, (λ, µ) ∈ Ωϕ0,ϕ1,r0 and f ∈ Lp (0, 1;X)
with 1 < p < +∞; the two following statements are equivalent:

1. Problem (1)-(2) has a classical solution u, that is,

u ∈W 2,p (0, 1;X) ∩ Lp (0, 1;D (A)) , u(0) ∈ D(H),

and u satisfies (1)-(2).

2. u1 ∈ (D(A), X) 1
2p ,p

.

Moreover in this case u is unique and given by (24) where Q,Λ are replaced by Qλ,Λλ,µ.
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Proof. We apply Proposition 3.8, with A,H,Q and Λ replaced by

A− λI,H + µI,Qλ and Λλ,µ,

since in this case Problem (16) becomes Problem (1)-(2). So, it is enough to verify that
(4)∼(8) imply (H1) ∼ (H5).

It is clear that (4), (5), (6) imply (H1), (H2) , (H3) mentioned in section 3. Moreover,
due to (45), assumptions (4)∼(7) imply (H4). Finally, under (4)∼(7)

Λ−1
λ,µ (X) ⊂ D (Q) ∩D(H) ⊂ D

(
Q2
)
,

so that QΛ−1
λ,µ (X) ⊂ D (Q) and then (H5) is satisfied.

Note that here, the condition Λ−1
λ,µd0 ∈ (D (A) , X) 1

2p ,p
is automatically realized since for

any d0 ∈ X, we have Λ−1
λ,µd0 ∈ D (Q) ∩D(H) ⊂ D

(
Q2) .

Lemma 5.5. Assume (4)∼(6), let f ∈ Lp (0, 1;X) with 1 < p < +∞ and set for x ∈ [0, 1]
Iλ,f (x) = 1

2Q
−1
λ

∫ x

0
e(x−s)Qλf(s)ds

Jλ,f (x) = 1
2Q
−1
λ

∫ 1

x
e(s−x)Qλf(s)ds,

(48)

then, there exists M > 0 (independent of λ and f) such that

‖QλIλ,f (1)‖ 6M ‖f‖
Lp(0,1;X)

and ‖QλJλ,f (0)‖ 6M ‖f‖
Lp(0,1;X)

, (49)

moreover Iλ,f , Jλ,f ∈W 2,p (0, 1;X) ∩ Lp (0, 1;D (A)) with∥∥∥Q2
λIλ,f

∥∥∥
Lp(0,1;X)

6M ‖f‖
Lp(0,1;X)

and
∥∥∥Q2

λJλ,f
∥∥∥
Lp(0,1;X)

6M ‖f‖
Lp(0,1;X)

.

Proof. From (38), we have
‖QλIλ,f (1)‖ 6

∫ 1

0

∥∥∥e(1−s)Qλf (s)
∥∥∥ ds 6M

∫ 1

0
‖f (s)‖ ds 6M ‖f‖

Lp(0,1;X)

‖QλJλ,f (0)‖ 6
∫ 1

0

∥∥∥esQλf (s)
∥∥∥ ds 6M

∫ 1

0
‖f (s)‖ ds 6M ‖f‖

Lp(0,1;X)
.

We apply Lemma 4.8 with E = X,L = −A, Gλ = Qλ, a = 0, b = 1 so that

Iλ,f = 1
2Q
−1
λ Uλ,f and Jλ,f = 1

2Q
−1
λ Vλ,f ;

then Q2
λIλ,f = 1

2QλUλ,f and Q2
λJλ,f = 1

2QλVλ,f have the desired estimates.

Lemma 5.6. Assume (4)∼(6) and let f ∈ Lp (0, 1;X) with 1 < p < +∞. We use notations
(48) and set for x ∈ [0, 1]

v0 (x) = exQλJλ,f (0) and v1 (x) = exQλIλ,f (1) .

Then, for j ∈ {0, 1}, vj ∈W 2,p (0, 1;X) ∩ Lp (0, 1;D (A)) with

v′j = Qλvj and v′′j = Q2
λvj .

Moreover, there exists M > 0 (independent of λ and f) such that∥∥∥Q2
λvj
∥∥∥
Lp(0,1;X)

6M ‖f‖
Lp(0,1;X)

, j = 0, 1. (50)
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Proof. We write, for x ∈]0, 1]

Q2
λv0 (x) = exQλQλ

∫ 1

0
esQλf (s) ds

= e2xQλQλ

∫ x

0
e(s−x)Qλf (s) ds+Qλ

∫ 1

x
e(x−s)Qλe2sQλf (s) ds

= 2e2xQλQ2
λIλ,f (x) + 2Q2

λJλ,g (x) ,

with g = e2·Qλf (·). From Lemma 5.5, statement 1. and (38), we have
∥∥∥e2·QλQ2

λIλ,f (·)
∥∥∥
Lp(0,1;X)

6M
∥∥Q2

λIλ,f (·)
∥∥
Lp(0,1;X) 6M ‖f‖

Lp(0,1;X)∥∥Q2
λJλ,f

∥∥
Lp(0,1;X) 6M ‖g‖

Lp(0,1;X)
6M ‖f‖

Lp(0,1;X)
,

from which we deduce
∥∥Q2

λv0
∥∥
Lp(0,1;X) 6M ‖f‖

Lp(0,1;X)
.

The same estimate runs for v1 since

v1 = e·QλJλ,f(1−·) (0) and ‖f (1− ·)‖
Lp(0,1;X)

= ‖f‖
Lp(0,1;X)

.

Recall that X is a Banach space with norm ‖·‖ and (D(A), X) 1
2p ,p

is the Banach space
equipped with the norm defined by

‖ϕ‖(D(A),X) 1
2p ,p

= ‖ϕ‖+
(∫ +∞

0

∥∥∥t1−1/2pA (A− tI)−1 ϕ
∥∥∥p dt

t

)1/p
. (51)

Theorem 5.7. Assume (4)∼(8), d0 ∈ X and u1 ∈ (D(A), X) 1
2p ,p

. Then, there exists a
constant M > 0 such that, for (λ, µ) ∈ Ωϕ0,ϕ1,r0 and f ∈ Lp (0, 1;X) with 1 < p < +∞, the
unique classical solution u of (1)-(2) satisfies

‖u‖Lp(0,1;X) 6
Mα (d0, u1, λ, µ, f)

1 + |λ|

max
{
‖u′‖Lp(0,1;X) , ‖Qu‖Lp(0,1;X) , ‖Qλu‖Lp(0,1;X)

}
6
Mα (d0, u1, λ, µ, f)√

1 + |λ|
max

{
‖u′′‖Lp(0,1;X) ,

∥∥Q2u
∥∥
Lp(0,1;X)

,
∥∥Q2

λu
∥∥
Lp(0,1;X)

}
6Mα (d0, u1, λ, µ, f) ,

where

α (d0, u1, λ, µ, f) = 1 + |λ|+ |µ|
1 + |µ|

(
‖d0‖+ ‖f‖Lp(0,1;X)

)
+ ‖u1‖(D(A),X) 1

2p ,p
+ |λ|1−

1
2p ‖u1‖ .

Proof. Let (λ, µ) ∈ Ωϕ0,ϕ1,r0 and f ∈ Lp (0, 1;X). We recall that, taking into account the
notations (48), we have, for x ∈ [0, 1]

u(x) = Sλ (x)µ0 + Sλ (1− x)µ1 + Iλ,f (x) + Jλ,f (x) ,

where 
µ1 = u1 − Iλ,f (1)
µ0 = Λ−1

λ,µ

[(
I − e2Qλ

)
d0 + 2QλeQλµ1 + 2QλJλ,f (0)

]
− Jλ,f (0)

Sλ (x) =
(
I − e2Qλ

)−1 (
exQλ − e(1−x)QλeQλ

)
∈ L (X) .
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So we can write u = h0 + h1 − h2 + h3 + h4 with

h0 (x) = Sλ (x) Λ−1
λ,µ

[(
I − e2Qλ

)
d0 + 2Qλ

(
Jλ,f (0)− eQλIλ,f (1)

)]
h1 (x) = 2Sλ (x) Λ−1

λ,µQλe
Qλu1

h2 (x) = Sλ (x) Jλ,f (0) + Sλ (1− x) Iλ,f (1)
h3 (x) = Sλ (1− x)u1

h4 (x) = Iλ,f (x) + Jλ,f (x) .

(52)

Estimate of Q2
λh0. For ξ ∈ X and x ∈ (0, 1), we have∥∥∥Q2

λSλ (x) Λ−1
λ,µξ

∥∥∥=
∥∥∥∥(I − e2Qλ

)−1 (
I − e2(1−x)Qλ

)
exQλQ2

λΛ−1
λ,µξ

∥∥∥∥
6
∥∥∥∥(I − e2Qλ

)−1 (
I − e2(1−x)Qλ

)∥∥∥∥
L(X)

∥∥∥exQλ∥∥∥
L(X)

∥∥∥Q2
λΛ−1

λ,µ

∥∥∥
L(X)

‖ξ‖

6M
1 + |λ|+ |µ|

1 + |µ| ‖ξ‖ ,

so, from (46) and (49), we deduce∥∥∥Q2
λh0 (x)

∥∥∥ 6 M
1 + |λ|+ |µ|

1 + |µ|

(
‖d0‖+ 2 ‖QλJλ,f (0)‖+ 2

∥∥∥eQλ∥∥∥
L(X)

‖QλIλ,f (1)‖
)

6 M
1 + |λ|+ |µ|

1 + |µ|
(
‖d0‖+ ‖f‖Lp(0,1;X)

)
.

Then ∥∥∥Q2
λh0

∥∥∥
Lp(0,1;X)

6M
1 + |λ|+ |µ|

1 + |µ|
(
‖d0‖+ ‖f‖Lp(0,1;X)

)
.

Estimate of Q2
λh1. As above, we have for ξ ∈ X and x ∈ (0, 1)∥∥∥Q2

λh1 (x)
∥∥∥ 6M

1 + |λ|+ |µ|
1 + |µ|

(∥∥∥QλeQλ∥∥∥L(X)
‖u1‖

)
,

and from (39), we deduce that ∥∥∥Q2
λh1 (x)

∥∥∥ 6M ‖u1‖ ,

hence ∥∥∥Q2
λh1

∥∥∥
Lp(0,1;X)

6M ‖u1‖ .

Estimate of Q2
λh2. For ξ ∈ X and x ∈]0, 1], we have∥∥∥Q2

λSλ (x) ξ
∥∥∥ =

∥∥∥∥(I − e2Qλ
)−1 (

I − e2(1−x)Qλ
)
Q2
λe
xQλξ

∥∥∥∥
6

∥∥∥∥(I − e2Qλ
)−1 (

I − e2(1−x)Qλ
)∥∥∥∥
L(X)

∥∥∥Q2
λe
xQλξ

∥∥∥
6 M

∥∥∥Q2
λe
xQλξ

∥∥∥ , (53)

so ∥∥∥Q2
λh2 (x)

∥∥∥ 6M
(∥∥∥Q2

λe
xQλJλ,f (0)

∥∥∥+
∥∥∥Q2

λe
(1−x)QλIλ,f (1)

∥∥∥) ,
and then, from (50)∥∥∥Q2

λh2
∥∥∥
Lp(0,1;X)

6 M

(∥∥∥Q2v0
∥∥∥
Lp(0,1;X)

+
∥∥∥Q2v1 (1− ·)

∥∥∥
Lp(0,1;X)

)
6 M ‖f‖Lp(0,1;X) .
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Estimate of Q2
λh3. Due to (53), we have, for x ∈ [0, 1[∥∥∥Q2

λh3 (x)
∥∥∥ 6M

∥∥∥Q2
λe

(1−x)Qλu1
∥∥∥ .

From Theorem 2.1 in [14], since

u1 ∈ (D(A), X) 1
2p ,p

= (X,D(A))1− 1
2p ,p

,

we get ∥∥∥Q2
λh3

∥∥∥
Lp(0,1;X)

6 M
∥∥∥Q2

λe
(1−x)Qλu1

∥∥∥
Lp(0,1;X)

6 M

(
‖u1‖(D(A),X) 1

2p ,p
+ |λ|1−

1
2p ‖u1‖

)
.

Estimate of Q2
λh4. From Lemma 5.5, we get∥∥∥Q2

λh4
∥∥∥
Lp(0,1;X)

6M ‖f‖
Lp(0,1;X)

.

Summarizing the previous study we obtain that∥∥∥Q2
λu
∥∥∥
Lp(0,1;X)

6Mα (d0, u1, λ, µ, f) . (54)

Moreover since u satisfies (1) that is

u′′(x)−Q2
λu(x) = f(x), a.e. x ∈ (0, 1),

we deduce that ∥∥u′′∥∥
Lp(0,1;X)

6Mα (d0, u1, λ, µ, f) .

Writing u = Q−2
λ Q2

λu and Qλu = Q−1
λ Q2

λu, we obtain the estimates concerning u and Qλu.
Setting, for x ∈ [0, 1]

S̃λ (x) =
(
I − e2Qλ

)−1 (
exQλ + e(1−x)QλeQλ

)
∈ L (X) ,

we have

u′(x) = QλS̃λ (x)µ0 −QλS̃λ (1− x)µ1 +QIλ,f (x)−QJλ,f (x) = Q−1
λ Q2

λω (x) ,

the terms in ω (x) = S̃λ (x)µ0 − S̃λ (1− x)µ1 + Iλ,f (x) − Jλ,f (x) are (in absolute value)
those of u(x), so (54) runs when we replace u by ω , this furnishes the estimate for u′.

From Lemma 2.6 a) p. 103 in [14] we have∥∥∥QQ−1
λ

∥∥∥
L(X)

=
∥∥∥(−A)1/2(−A+ λI)−1/2

∥∥∥
L(X)

6M ; (55)

so writing Qu = QQ−1
λ Qλu,Q

2u =
(
QQ−1

λ

)2
Q2
λu, we deduce the estimates of ‖Qu‖

Lp(0,1;X)

and
∥∥Q2u

∥∥
Lp(0,1;X)

from those of ‖Qλu‖Lp(0,1;X) and
∥∥Q2

λu
∥∥
Lp(0,1;X).
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Remark 5.8. Under the assumptions of the previous theorem, we obtain moreover that

‖u(0)‖ 6 M

1 + |µ|
(
‖d0‖+Me−2c0|λ|1/2 ‖u1‖+ ‖f‖

Lp(0,1;X)

)
. (56)

Indeed
u(0) = Λ−1

λ,µ

[(
I − e2Qλ

)
d0 + 2QλeQλ (u1 − Iλ,f (1)) + 2QλJλ,f (0)

]
,

so

‖u(0)‖ 6
∥∥∥Λ−1

λ,µ

∥∥∥
L(X)

∥∥∥I − e2Qλ
∥∥∥
L(X)

‖d0‖+
∥∥∥Λ−1

λ,µ

∥∥∥
L(X)

∥∥∥2QλeQλ∥∥∥L(X)
‖u1‖

+2
∥∥∥Λ−1

λ,µ

∥∥∥
L(X)

(∥∥∥eQλ∥∥∥
L(X)

‖QλIλ,f (1)‖+ ‖QλJλ,f (0)‖
)

6
M

1 + |µ|
(
‖d0‖+Me−2c0|λ|1/2 ‖u1‖+ ‖f‖

Lp(0,1;X)

)
.

6 Spectral problem (1)-(2): second case
In all this section we suppose that X,A,H satisfy (4)∼(6) and (9)∼(11).

Note that the results of the previous section obtained under assumption (4)∼(6) can be
used here, in particular results of subsection 5.1, Lemma 5.5, Lemma 5.6 and also estimate
(55).

6.1 Spectral estimates

Let λ ∈ Sϕ0 , µ ∈ C. Recall that Hµ = H + µI and Qλ = −(−A + λI)1/2. We first furnish
estimates concerning operators Qλ, Hµ which are easy consequences of our assumptions.

Again, in the followingM denotes various constants, independent of λ, µ, which can vary
from one line to another.
Lemma 6.1. Let λ ∈ Sϕ0 , µ ∈ C. Then HµQ

−1
λ ∈ L (X), moreover there exists a constant

M > 0 independent of λ ∈ Sϕ0 and µ ∈ C such that∥∥∥HµQ
−1
λ

∥∥∥
L(X)

6M
1 + |µ|

(1 + |λ|)ε . (57)

Proof. From (55), we deduce∥∥∥Q|λ|Q−1
λ

∥∥∥
L(X)

=
∥∥∥(−A+ |λ| I)Q−1Q−1

|λ|QQ
−1
λ

∥∥∥
L(X)

6
∥∥∥AQ−1Q−1

|λ|QQ
−1
λ

∥∥∥
L(X)

+
∥∥∥|λ|Q−1Q−1

|λ|QQ
−1
λ

∥∥∥
L(X)

6
∥∥∥QQ−1

|λ|

∥∥∥
L(X)

∥∥∥QQ−1
λ

∥∥∥
L(X)

+ |λ|
∥∥∥Q−1
|λ|

∥∥∥
L(X)

∥∥∥Q−1
λ

∥∥∥
L(X)

6 M,

and, from (10)

‖ HQ−1
λ ‖L(X)6‖ HQ−1

|λ| ‖L(X)‖ Q|λ|Q−1
λ ‖L(X)6

M

(1 + |λ|)ε .

Moreover ∥∥∥HµQ
−1
λ

∥∥∥
L(X)

6
∥∥∥HQ−1

λ

∥∥∥
L(X)

+ |µ|
∥∥∥Q−1

λ

∥∥∥
L(X)

6
M

(1 + |λ|)ε + 1 + |µ|
(1 + |λ|)1/2 6M

1 + |µ|
(1 + |λ|)ε .
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We now introduce the notation : for ρ > 0

Πϕ0,ρ =
{

(λ, µ) ∈ Sϕ0 × C : |λ| > ρ and |λ|
|µ|1/ε

> ρ

}
,

where we have set |λ|
|µ|1/ε

= +∞ for µ = 0 and furnished results on

Λλ,µ = (Qλ −Hµ) + e2Qλ (Qλ +Hµ) ,

where λ ∈ Sϕ0 , µ ∈ C.

Lemma 6.2. There exist ρ0 > 0 and M > 0 such that for all (λ, µ) ∈ Πϕ0,ρ0 :

max
{∥∥∥HµQ

−1
λ

∥∥∥
L(X)

,

∥∥∥∥(I + e2Qλ
)−1 (

I − e2Qλ
)
HµQ

−1
λ

∥∥∥∥
L(X)

}
6 1/2, (58)


0 ∈ ρ

(
I −

(
I + e2Qλ

)−1 (
I − e2Qλ

)
HµQ

−1
λ

)
∥∥∥∥∥
[
I −

(
I + e2Qλ

)−1 (
I − e2Qλ

)
HµQ

−1
λ

]−1
∥∥∥∥∥
L(X)

6 2,
(59)

0 ∈ ρ (Λλ,µ) and
∥∥∥Λ−1

λ,µ

∥∥∥
L(X)

6
M

(1 + |λ|)1/2 , (60)

∥∥∥QλΛ−1
λ,µ

∥∥∥
L(X)

6M, (61)

and 

0 ∈ ρ (Qλ −Hµ)∥∥∥(Qλ −Hµ)−1
∥∥∥
L(X)

6
M

(1 + |λ|)1/2∥∥∥Qλ (Qλ −Hµ)−1
∥∥∥
L(X)

6M∥∥∥(Qλ +Hµ) (Qλ −Hµ)−1
∥∥∥
L(X)

6M∥∥∥e2Qλ (Qλ +Hµ) (Qλ −Hµ)−1
∥∥∥
L(X)

6 1/2.

(62)

Proof. Let ρ > 0 and (λ, µ) ∈ Πϕ0,ρ. Then

I −
(
I + e2Qλ

)−1 (
I − e2Qλ

)
HµQ

−1
λ ∈ L(X),

and from (57) together with Lemma 5.1

max
{∥∥∥HµQ

−1
λ

∥∥∥
L(X)

,

∥∥∥∥(I + e2Qλ
)−1 (

I − e2Qλ
)
HµQ

−1
λ

∥∥∥∥
L(X)

}
6M

∥∥∥HµQ
−1
λ

∥∥∥
L(X)

6M
1 + |µ|

(1 + |λ|)ε

6M

(( 1
|λ|

)ε
+
(
|µ|1/ε

|λ|

)ε)
.
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So there exists ρ0 > 0 such that for all (λ, µ) ∈ Πϕ0,ρ0 : (58) and (59) hold. Now, let
(λ, µ) ∈ Πϕ0,ρ0 . We deduce that

Λλ,µ =
(
I + e2Qλ

)
Qλ −

(
I − e2Qλ

)
Hµ

=
(
I + e2Qλ

) [
I −

(
I + e2Qλ

)−1 (
I − e2Qλ

)
HµQ

−1
λ

]
Qλ,

is boundedly invertible with
Λ−1
λ,µ = Q−1

λ

[
I −

(
I + e2Qλ

)−1 (
I − e2Qλ

)
HµQ

−1
λ

]−1 (
I + e2Qλ

)−1

QλΛ−1
λ,µ =

[
I −

(
I + e2Qλ

)−1 (
I − e2Qλ

)
HµQ

−1
λ

]−1 (
I + e2Qλ

)−1
,

so∥∥∥Λ−1
λ,µ

∥∥∥
L(X)

6 M
∥∥∥Q−1

λ

∥∥∥
L(X)

∥∥∥∥I − (I + e2Qλ
)−1 (

I − e2Qλ
)
HµQ

−1
λ

∥∥∥∥
L(X)

∥∥∥I + e2Qλ
∥∥∥
L(X)

6
M

(1 + |λ|)1/2 ,

and
∥∥∥QλΛ−1

λ,µ

∥∥∥
L(X)

6 M . Moreover, from (58), Qλ − Hµ =
(
I −HµQ

−1
λ

)
Qλ is boundedly

invertible with
(Qλ −Hµ)−1 = Q−1

λ

(
I −HµQ

−1
λ

)−1
,

so 
∥∥∥(Qλ −Hµ)−1

∥∥∥
L(X)

6
∥∥∥Q−1

λ

∥∥∥
L(X)

∥∥∥∥(I −HµQ
−1
λ

)−1
∥∥∥∥
L(X)

6
M

(1 + |λ|)1/2∥∥∥Qλ (Qλ −Hµ)−1
∥∥∥
L(X)

=
∥∥∥∥(I −HµQ

−1
λ

)−1
∥∥∥∥
L(X)

6M,

and ∥∥∥(Qλ +Hµ) (Qλ −Hµ)−1
∥∥∥
L(X)

=
∥∥∥(−Qλ +Hµ + 2Qλ) (Qλ −Hµ)−1

∥∥∥
L(X)

6 1 + 2
∥∥∥Qλ (Qλ −Hµ)−1

∥∥∥
L(X)

6 M.

Finally∥∥∥e2Qλ (Qλ +Hµ) (Qλ −Hµ)−1
∥∥∥
L(X)

6
∥∥∥e2Qλ

∥∥∥
L(X)

∥∥∥(Qλ +Hµ) (Qλ −Hµ)−1
∥∥∥
L(X)

6 M
∥∥∥e2Qλ

∥∥∥
L(X)

,

and due to (39), we can eventually increase ρ0, for (λ, µ) ∈ Πϕ0,ρ0 , which implies that
|λ| > ρ0, in order to have

M
∥∥∥e2Qλ

∥∥∥
L(X)

6 1/2.
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6.2 Main results

Let ρ0 fixed as in Lemma 6.2.

Theorem 6.3. Assume (4)∼(6) and (9)∼(11). Let

d0 ∈ X, u1 ∈ X, (λ, µ) ∈ Πϕ0,ρ0 ,

and f ∈ Lp (0, 1;X) with 1 < p < +∞. Then, the two following statements are equivalent:

1. Problem (1)-(2) has a classical solution u, that is,

u ∈W 2,p (0, 1;X) ∩ Lp (0, 1;D (A)) , u(0) ∈ D(H),

and u satisfies (1)-(2).

2. u1 ∈ (D(A), X) 1
2p ,p

and (Qλ −Hµ)−1 d0 ∈ (D (A) , X) 1
2p ,p

.

Moreover in this case u is unique and given by (24) where Q,Λ are replaced by Qλ,Λλ,µ.

Proof. As in the proof of Theorem 5.4, we want to apply Proposition 3.8, with A,H,Q,Λ
replaced by A − λI,H + µI,Qλ,Λλ,µ. Assumptions (H1) ∼ (H4) are easily deduced from
(4)∼(6), (9) and Lemma 6.2. To obtain (H5), it is enough, due to (21), to prove (H ′5). So,
for ξ ∈ (D (Qλ) , X)1/p,p = (D (Q) , X)1/p,p, we just have to show that

η = Qλ (Qλ −Hµ)−1 ξ ∈ (D (Q) , X)1/p,p ,

but, from Lemma 4.2, statement 5. we have Qλ = Q+ λ (Qλ +Q)−1, thus

(Qλ −Hµ)Q−1
λ = (Q−H)Q−1

λ + λ (Qλ +Q)−1Q−1
λ − µQ

−1
λ ,

so
ξ = (Qλ −Hµ)Q−1

λ η = (Q−H)Q−1
λ η + λ (Qλ +Q)−1Q−1

λ η − µQ−1
λ η,

and
(Q−H)Q−1

λ η = ξ − λ (Qλ +Q)−1Q−1
λ η + µQ−1

λ η ∈ (D (Q) , X)1/p,p ,

which means that Q−1
λ η ∈ (Q−H)−1

(
(D (Q) , X)1/p,p

)
and, from (11), we get

Q−1
λ η ∈ Q−1

(
(D (Q) , X)1/p,p

)
,

then η ∈ (D (Q) , X)1/p,p.
Here the condition (Qλ −Hµ)−1 d0 ∈ (D (A) , X) 1

2p ,p
which is, from Remark 3.9, equiv-

alent to Λ−1
λ,µd0 ∈ (D (A) , X) 1

2p ,p
, appears naturally, since we have not, as in Theorem 5.4,

Λ−1
λ,µ (X) ⊂ D

(
Q2) .

The proof of the following Lemma will use (13), wich is equivalent to (12) from Re-
mark 2.2, to study, for a given (λ, µ) ∈ Πϕ0,ρ0 , the operator Q2

λ (Qλ −Hµ)−1Q−1
λ .

Lemma 6.4. Assume (5), (9),(10) and (12). Fix (λ1, µ1) ∈ Πϕ0,ρ0 . Then, there existsM > 0
such that for any (λ, µ) ∈ Πϕ0,ρ0 , we have

1. (Qλ −Hµ)−1Q−1
λ = (Qλ1 −Hµ1)−1Q−1Pλ,µ, where Pλ,µ ∈ L(X) with

‖Pλ,µ‖L(X) 6M.
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2. Q2
λ (Qλ −Hµ)−1Q−1

λ ∈ L(X) with∥∥∥Q2
λ (Qλ −Hµ)−1Q−1

λ

∥∥∥
L(X)

6M. (63)

3. There exists Wλ,µ ∈ L(X) such that

Λ−1
λ,µ = (Qλ −Hµ)−1

(
I + e2QλWλ,µ

)
, (64)

with
‖Wλ,µ‖L(X) 6M and

∥∥∥Q2
λΛ−1

λ,µQ
−1
λ

∥∥∥
L(X)

6M. (65)

Proof. Let (λ, µ) ∈ Πϕ0,ρ0 .

1. We have

(Qλ −Hµ)−1Q−1
λ = (Qλ1 −Hµ1)−1 (Qλ1 −Hµ1) (Qλ −Hµ)−1Q−1

λ

= (Qλ1 −Hµ1)−1 [Qλ −Hµ + (µ− µ1) I] (Qλ −Hµ)−1Q−1
λ

+ (Qλ1 −Hµ1)−1 (Qλ1 −Qλ) (Qλ −Hµ)−1Q−1
λ

= (Qλ1 −Hµ1)−1
[
Q−1
λ + (µ− µ1) (Qλ −Hµ)−1Q−1

λ

]
+ (Qλ1 −Hµ1)−1 (Qλ1 −Qλ) (Qλ −Hµ)−1Q−1

λ ,

but, Qλ1−Qλ = (Q−Qλ)−(Q−Qλ1) and from Lemma 4.4, there exists Tλ,λ1 ∈ L(X)
such that Qλ1 = Qλ + T

λ

‖Tλ,λ1‖L(X) 6M

(
1 +

√
|λ|
)

and Q−1T
λ,λ1

= T
λ,λ1

Q−1, (66)

so
(Qλ −Hµ)−1Q−1

λ = (Qλ1 −Hµ1)−1Q−1Pλ,µ,

where Pλ,µ ∈ L(X) is defined by

Pλ,µ = QQ−1
λ

[
I + (µ1 − µ)Qλ (Qλ −Hµ)−1Q−1

λ + T
λ,λ1

Qλ (Qλ −Hµ)−1Q−1
λ

]
.

Moreover, using (37), (55), (66) and (62)

‖Pλ,µ‖L(X) 6 M

[
1 + (|µ− µ1|)

∥∥∥Qλ (Qλ −Hµ)−1
∥∥∥
L(X)

∥∥∥Q−1
λ

∥∥∥
L(X)

]
+M

[
‖Tλ,λ1‖L(X)

∥∥∥Qλ (Qλ −Hµ)−1
∥∥∥
L(X)

∥∥∥Q−1
λ

∥∥∥
L(X)

]
6 M

[
1 + |µ− µ1|

(1 + |λ|)1/2 + 1 +
√
|λ|

(1 + |λ|)1/2

]
,

but since (λ, µ) ∈ Πϕ0,ρ0 we have

1 + |λ| > 1 + ρ0 |µ|1/ε > 1 + ρ0 |µ|2 ,

thus ‖Pλ,µ‖L(X) 6M.
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2. Since Q2
λ is closed then, from (13) and the closed graph theorem, we obtain that

Q2
λ (Qλ −Hµ)−1Q−1

λ ∈ L(X). Moreover we have∥∥∥Q2
λ (Qλ −Hµ)−1Q−1

λ

∥∥∥
L(X)

=
∥∥∥(−A+ λI) (Qλ −Hµ)−1Q−1

λ

∥∥∥
L(X)

6
∥∥∥A (Qλ −Hµ)−1Q−1

λ

∥∥∥
L(X)

+ |λ|
∥∥∥(Qλ −Hµ)−1

∥∥∥
L(X)

∥∥∥Q−1
λ

∥∥∥
L(X)

6 M.

The last inequality is obtained, from statement 1, which gives∥∥∥−A (Qλ −Hµ)−1Q−1
λ

∥∥∥
L(X)

=
∥∥∥A (Qλ1 −Hµ1)−1Q−1Pλ,µ

∥∥∥
L(X)

6
∥∥∥−A (Qλ1 −Hµ1)−1Q−1

∥∥∥
L(X)

‖Pλ,µ‖L(X)

6 M,

and, from (62), (37), which furnishes

|λ|
∥∥∥(Qλ −Hµ)−1

∥∥∥
L(X)

∥∥∥Q−1
λ

∥∥∥
L(X)

6M.

3. We set Rλ,µ = (Qλ +Hµ) (Qλ −Hµ)−1 ∈ L(X) and write

Λλ,µ = (Qλ −Hµ) + e2Qλ (Qλ +Hµ) =
(
I + e2QλRλ,µ

)
(Qλ −Hµ) ,

but Λλ,µ, (Qλ −Hµ) are boundedly invertible, so I + e2QλRλ,µ is boundedly invertible
with (

I + e2QλRλ,µ
)−1

= I − e2QλRλ,µ
(
I + e2QλRλ,µ

)−1
.

Now setting Wλ,µ = Rλ,µ
(
I + e2QλRλ,µ

)−1
∈ L(X) we have

Λ−1
λ,µ = (Qλ −Hµ)−1

(
I + e2QλRλ,µ

)−1
= (Qλ −Hµ)−1

(
I − e2QλWλ,µ

)
,

and, due to (62), we have

‖Wλ,µ‖L(X) 6 ‖Rλ,µ‖L(X)

∥∥∥∥(I + e2QλRλ,µ
)−1

∥∥∥∥
L(X)

6
‖Rλ,µ‖L(X)

1− ‖e2QλRλ,µ‖L(X)
6 M.

Finally∥∥∥Q2
λΛ−1

λ,µQ
−1
λ

∥∥∥
L(X)

=
∥∥∥Q2

λ (Qλ −Hµ)−1
(
I − e2QλWλ,µ

)
Q−1
λ

∥∥∥
L(X)

6
∥∥∥Q2

λ (Qλ −Hµ)−1Q−1
λ

∥∥∥
L(X)

+
∥∥∥Q2

λ (Qλ −Hµ)−1Q−1
λ

∥∥∥
L(X)

∥∥∥e2Qλ
∥∥∥
L(X)

‖Wλ,µ‖L(X)

6 M.
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Remark 6.5. Assume (4)∼(6) and (9), (10), (12). Let (λ, µ) ∈ Πϕ0,ρ0 . From Lemma 6.4,
statement 2., we have

∀ξ ∈ D(Qλ), Qλ (Qλ −Hµ)−1 ξ ∈ D(Qλ),

then (11) is satisfied, see Remark 3.1 statement 5, and we can apply Theorem 6.3.
Theorem 6.6. Assume (4)∼(6) and (9), (10), (12). Let (λ, µ) ∈ Πϕ0,ρ0 , d0 ∈ X with

(Qλ −Hµ)−1 d0 ∈ (D (A) , X) 1
2p ,p

, u1 ∈ (D(A), X) 1
2p ,p

and f ∈ Lp (0, 1;X) ,

with 1 < p < +∞. Then, there exists a constant M > 0, which does not depend on
d0, u1, (λ, µ) and f , such that the unique classical solution u of (1)-(2) satisfies

‖u‖Lp(0,1;X) 6
Mβ (d0, u1, λ, µ, f)

1 + |λ|

max
{
‖u′‖Lp(0,1;X) , ‖Qu‖Lp(0,1;X) , ‖Qλu‖Lp(0,1;X)

}
6
Mβ (d0, u1, λ, µ, f)√

1 + |λ|
max

{
‖u′′‖Lp(0,1;X) ,

∥∥Q2u
∥∥
Lp(0,1;X)

,
∥∥Q2

λu
∥∥
Lp(0,1;X)

}
6Mβ (d0, u1, λ, µ, f) ,

where

β (d0, u1, λ, µ, f) = ‖d0‖+ ‖f‖Lp(0,1;X) +
∥∥∥(Qλ −Hµ)−1 d0

∥∥∥
(D(A),X) 1

2p ,p

+ |λ|1−
1
2p
∥∥∥(Qλ −Hµ)−1 d0

∥∥∥
X

+ ‖u1‖(D(A),X) 1
2p ,p

+ |λ|1−
1
2p ‖u1‖ .

Note that β (d0, u1, λ, µ, f) contains ‖u1‖ since it is in ‖u1‖(D(A),X) 1
2p ,p

see (51).

Proof. Again we adapt the proof of Theorem 5.7 and write u = k1 + k2 + k3 − h2 + h3 + h4
with 

k1 (x) = Sλ (x) Λ−1
λ,µQ

−1
λ

[
−Qλe2Qλd0 + 2Q2

λe
Qλu1 − 2QλeQλIλ,f (1)

]
k2 (x) = 2Sλ (x) Λ−1

λ,µQλJλ,f (0)
k3 (x) = Sλ (x) Λ−1

λ,µd0

h2 (x) = Sλ (x) Jλ,f (0) + Sλ (1− x) Iλ,f (1)
h3 (x) = Sλ (1− x)u1

h4 (x) = Iλ,f (x) + Jλ,f (x) .

Estimate of Q2
λk1. Due to (65), we have for ξ ∈ X and x ∈ [0, 1]∥∥∥Q2

λSλ (x) Λ−1
λ,µQ

−1
λ ξ

∥∥∥
=
∥∥∥∥(I − e2Qλ

)−1 (
I − e2(1−x)Qλ

)
exQλQ2

λΛ−1
λ,µQ

−1
λ ξ

∥∥∥∥
6
∥∥∥∥(I − e2Qλ

)−1 (
I − e2(1−x)Qλ

)∥∥∥∥
L(X)

∥∥∥exQλ∥∥∥
L(X)

∥∥∥Q2
λΛ−1

λ,µQ
−1
λ

∥∥∥
L(X)

‖ξ‖

6 M ‖ξ‖ ,

then ∥∥∥Q2
λk1 (x)

∥∥∥ 6M
(
‖d0‖+ ‖u1‖+ ‖f‖Lp(0,1;X)

)
,

and ∥∥∥Q2
λk1

∥∥∥
Lp(0,1;X)

6M
(
‖d0‖+ ‖u1‖+ ‖f‖Lp(0,1;X)

)
.
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Estimate of Q2
λk2. We write, for x ∈]0, 1]

Q2
λe
xQλΛ−1

λ,µQλJλ,f (0) = Q2
λe
xQλΛ−1

λ,µ

∫ x

0
esQλf(s)ds

+Q2
λe
xQλΛ−1

λ,µ

∫ 1

x
esQλf(s)ds

= Qλ

∫ x

0
e(x−s)QλesQλQλΛ−1

λ,µe
sQλf(s)ds

+exQλQ2
λΛ−1

λ,µQ
−1
λ exQλQλ

∫ 1

x
e(s−x)Qλf(s)ds

= Qλ

∫ x

0
e(x−s)QλFλ (s) ds

+exQλQ2
λΛ−1

λ,µQ
−1
λ exQλQλ

∫ 1

x
e(s−x)Qλf(s)ds,

where Fλ (s) = esQλQλΛ−1
λ,µe

sQλf(s). So

∥∥∥Q2
λk2

∥∥∥
Lp(0,1;X)

6 M

∥∥∥∥Qλ ∫ ·
0
e(·−s)QλFλ (s) ds

∥∥∥∥
Lp(0,1;X)

+M
∥∥∥Q2

λΛ−1
λ,µQ

−1
λ

∥∥∥
L(X)

∥∥∥∥Qλ ∫ 1

·
e(s−·)Qλf (s) ds

∥∥∥∥
Lp(0,1;X)

,

but, from Lemma 5.5, (38), (62), (63) and (65), we deduce
∥∥∥∥Qλ ∫ ·

0
e(·−s)QλFλ (s) ds

∥∥∥∥
Lp(0,1;X)

6M ‖Fλ‖Lp(0,1;X) 6M ‖f‖Lp(0,1;X)∥∥∥Q2
λΛ−1

λ,µQ
−1
λ

∥∥∥
L(X)

∥∥∥∥Qλ ∫ 1

·
e(s−·)Qλf (s) ds

∥∥∥∥ 6M ‖f‖Lp(0,1;X) ,

therefore ∥∥∥Q2
λk2

∥∥∥
Lp(0,1;X)

6M ‖f‖Lp(0,1;X) .

Estimate of Q2
λk3. Due to (64) we write k3 = k̃3 + k3 with{

k̃3 (x) = Sλ (x) (Qλ −Hµ)−1 d0

k3 (x) = Sλ (x) (Qλ −Hµ)−1 e2QλWλ,µd0.

Due to (53), we have for x ∈]0, 1]∥∥∥Q2
λk̃3 (x)

∥∥∥ =
∥∥∥∥Q2

λ

(
I − e2Qλ

)−1 (
I − e2(1−x)Qλ

)
exQλ (Qλ −Hµ)−1 d0

∥∥∥∥
6 M

∥∥∥Q2
λe
xQλ (Qλ −Hµ)−1 d0

∥∥∥ .
From Theorem 2.1 in [14], since

(Qλ −Hµ)−1 d0 ∈ (D(A), X) 1
2p ,p

= (X,D(A))1− 1
2p ,p

,

we get

∥∥∥Q2
λk̃3

∥∥∥
Lp(0,1;X)

6 M

∥∥∥(Qλ −Hµ)−1 d0
∥∥∥

(D(A),X) 1
2p ,p

+ |λ|1−
1
2p
∥∥∥(Qλ −Hµ)−1 d0

∥∥∥
 .
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We have also, taking into account (38), (63), (39) and (65)∥∥∥Q2
λk3 (x)

∥∥∥ =
∥∥∥∥Q2

λ

(
I − e2Qλ

)−1 (
I − e2(1−x)Qλ

)
exQλ (Qλ −Hµ)−1 e2QλWλ,µd0

∥∥∥∥
6 M

∥∥∥exQλQ2
λ (Qλ −Hµ)−1Q−1

λ Qλe
2QλWλ,µd0

∥∥∥
6 M

∥∥∥exQλ∥∥∥ ∥∥∥Q2
λ (Qλ −Hµ)−1Q−1

λ

∥∥∥ ∥∥∥Qλe2Qλ
∥∥∥ ‖Wλ,µ‖ ‖d0‖

6 ‖d0‖ .

Finally

∥∥∥Q2
λk̃3 (x)

∥∥∥ 6M

∥∥∥(Qλ −Hµ)−1 d0
∥∥∥

(D(A),X) 1
2p ,p

+ |λ|1−
1
2p
∥∥∥(Qλ −Hµ)−1 d0

∥∥∥
X

+ ‖d0‖

 .
Estimate of Q2

λh2, Q
2
λh3, Q

2
λh4 . In theses terms, Λ−1

λ,µ does not appear so the estimates are
the same as in Theorem 5.7.

7 Results for Dirichlet boundary conditions
We can find, in [15] and [16], the study of the following problem{

u′′(x) +Au(x) = f(x), x ∈ (0, 1)
u(0) = u0, u(1) = u1.

(67)

A classical solution of this problem is a function u ∈ W 2,p(0, 1;X) ∩ Lp(0, 1;D(A)),
satisfying (67). The authors obtain the following result (see Theorem 4, p. 200 in [15] and
Theorem 5 p. 173 (with A = L = M) in [16]).

Proposition 7.1 ([15],[16]). Let f ∈ Lp(0, 1;X) with 1 < p < +∞ and assume that
(H1) ∼ (H3) are satisfied. Then the following assertions are equivalent:

1. Problem (67) admits a classical solution u.

2. u1, u0 ∈ (D (A) , X) 1
2p ,p

Moreover in this case u is unique and given by

u(x) = S (x)u0 + S (1− x)u1 − S (x) J (0) (68)
−S (1− x) I (1) + I (x) + J (x) , x ∈ (0, 1).

Note that assumptions (H1) ∼ (H3) are described in Section 3 and S(·), I (·) , J (·) are
precised in (23) and (25) with Q = −

√
−A.

Now we are in position to study, as in Sections 5 and 6, the spectral corresponding
problem {

u′′(x) +Au(x)− λu(x) = f(x), x ∈ (0, 1)
u(0) = u0, u(1) = u1.

(69)

Applying the previous Theorem with A replaced by A− λI we obtain

Theorem 7.2. Assume that (4)∼(6) hold. Let u0, u1 ∈ X, λ ∈ Sϕ0 and f ∈ Lp (0, 1;X)
with 1 < p < +∞; the two following statements are equivalent:
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1. Problem (69) has a classical solution u.

2. u0, u1 ∈ (D(A), X) 1
2p ,p

.

Moreover in this case u is unique and given by (68) where Q is replaced by Qλ.

We have also

Theorem 7.3. Assume (4)∼(6) and u0, u1 ∈ (D(A), X) 1
2p ,p

. Then, there exists a constant
M > 0 such that, for λ ∈ Sϕ0 and f ∈ Lp (0, 1;X) with 1 < p < +∞, the unique classical
solution u of (1)-(2) satisfies



‖u‖Lp(0,1;X) 6
Mδ (u0, u1, λ, f)

1 + |λ|

max
{
‖u′‖Lp(0,1;X) , ‖Qu‖Lp(0,1;X) , ‖Qλu‖Lp(0,1;X)

}
6
Mδ (u0, u1, λ, f)√

1 + |λ|
max

{
‖u′′‖Lp(0,1;X) ,

∥∥Q2u
∥∥
Lp(0,1;X)

,
∥∥Q2

λu
∥∥
Lp(0,1;X)

}
6Mδ (u0, u1, λ, f) ,

where

δ (u0, u1, λ, f) = ‖f‖Lp(0,1;X) + ‖u0‖(D(A),X) 1
2p ,p

+ |λ|1−
1
2p ‖u0‖X

+ ‖u1‖(D(A),X) 1
2p ,p

+ |λ|1−
1
2p ‖u1‖ .

Proof. Let λ ∈ Sϕ0 and f ∈ Lp (0, 1;X). Taking into account (48) and (68) with Qλ replacing
Q, for x ∈ [0, 1], we have

u(x) = Sλ (x)u0 + Sλ (1− x)u1 − S (x) Jλ,f (0)− S (1− x) Iλ,f + Iλ,f (x) + Jλ,f (x) .

So we can write u = −h2 + g3 + h3 + h4 with
h2 (x) = Sλ (x) Jλ,f (0) + Sλ (1− x) Iλ,f (1)
g3 (x) = Sλ (x)u0

h3 (x) = Sλ (1− x)u1

h4 (x) = Iλ,f (x) + Jλ,f (x) .

As in the proof of Theorem 5.7 we get∥∥∥Q2
λh2

∥∥∥
Lp(0,1;X)

6M ‖f‖Lp(0,1;X) ,
∥∥∥Q2

λh4
∥∥∥
Lp(0,1;X)

6M ‖f‖
Lp(0,1;X)

,

and also ∥∥∥Q2
λh3

∥∥∥
Lp(0,1;X)

6M

(
‖u1‖(D(A),X) 1

2p ,p
+ |λ|1−

1
2p ‖u1‖X

)
.

Moreover, Q2
λg3 is treated like Q2

λh3 so

∥∥∥Q2
λg3
∥∥∥
Lp(0,1;X)

6M

(
‖u0‖(D(A),X) 1

2p ,p
+ |λ|1−

1
2p ‖u0‖X

)
.

We finish as in the proof of Theorem 5.7.
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8 Generation of Semigroups

In this section, we set Y = Lp(0, 1;X) with p ∈ (1,+∞) and, under (5), we consider operator

A : D (A) ⊂ Y −→ Y
u 7−→ A (u (·)) ,

with the following domain

D (A) = {u ∈ Y : u (x) ∈ D(A) a.e. x ∈ X and A (u (·)) ∈ Y } .

Note that this operator is well defined from [11], Proposition 7.1, p. 359.

8.1 First case

Here, under (4)∼(8), we consider the Banach space Z := Y ×X normed by

‖(u, v)‖Z := ‖u‖Y + ‖v‖ , (u, v) ∈ Z.

For µ ∈ C, we build a linear operator PA,H,µ on Z, by setting

PA,H,µ : D (PA,H,µ) ⊂ Z −→ Z
(u, v) 7−→ (u′′ +Au, u′(0)−Hv − µv),

where D (PA,H,µ) = {(u, v) ∈W ×D(H) : u (1) = 0, u(0) = v} with

W = W 2,p(0, 1;X) ∩ Lp(0, 1;D(A)) ⊂ Y.

Remark 8.1. Let (f, τ) ∈ Z. We consider the following problem

u′′ +Au− λu = f

u′(0)−Hu(0)− (λ+ µ)u(0) = τ

u (1) = 0,
(70)

then the two following assertions are equivalent:

1. (u, v) ∈ D (PA,H,µ) and (PA,H,µ − λI) (u, v) = (f, τ).

2. u ∈W 2,p(0, 1;X)∩Lp(0, 1;D(A)) is a classical solution of (70) together with v = u(0).

So to study PA,H,µ, it remains to solve (70).

We set ϕ2 := min {ϕ0, ϕ1}, we define for ϕ3 ∈ (0, π − ϕ2), rϕ3 ∈ (r0,+∞) by

rϕ3 := r0

cos2
(
ϕ2+ϕ3

2

) .
Proposition 8.2. Let ϕ3 ∈ (0, π − ϕ2) .

1. If λ ∈ Sϕ2 , µ ∈ Sϕ3 with |λ| > rϕ3 , then (λ, λ+ µ) ∈ Ωϕ0,ϕ1,r0 .
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2. Let µ ∈ Sϕ3 . Then PA,H,µ is a closed linear operator on Z with

Sϕ2\B (0, rϕ3) ⊂ ρ (PA,H,µ) .

Moreover, let λ ∈ Sϕ2\B (0, rϕ3) and (f, τ) ∈ Z, then

(u, v) = (PA,H,µ − λI)−1 (f, τ) ,

satisfies, for x ∈ [0, 1]

u(x) = Sλ (x) Λ−1
λ,λ+µ

(
I − e2Qλ

)
τ

+Sλ (x)
[
2Λ−1

λ,λ+µQλ
[
Jλ,f (0)− eQλIλ,f (1)

]
− Jλ,f (0)

]
−Sλ (1− x) Iλ,f (1) + Iλ,f (x) + Jλ,f (x)

v(x) = u (0) ,

where Sλ (x) =
(
I − e2Qλ

)−1 (
exQλ − e(1−x)QλeQλ

)
∈ L (X).

3. There exists MA,H,ϕ3 > 0 such that for λ ∈ Sϕ2\B (0, rϕ3) and µ ∈ Sϕ3 we have∥∥∥(PA,H,µ − λI)−1
∥∥∥
L(Z)

6
MA,H,ϕ3

1 + |λ| .

Proof.

1. We have (λ, λ+ µ) ∈ Sϕ2 ×Sϕ2 ⊂ Sϕ0 ×Sϕ1 , moreover |λ| > rϕ3 > r0 and, due to [14],
Lemma 2.3, p. 98, we have

|λ+ µ|2

|λ|
> cos2

(
ϕ2+ϕ3

2

) (|λ|+ |µ|)2

|λ|
> cos2

(
ϕ2+ϕ3

2

)
× |λ| > r0.

2. It is a consequence of statement 1. and Theorem 5.4.

3. As in statement 1., we have, |λ+ µ| > cos
(
ϕ2+ϕ3

2

)
× |λ| so setting

Cϕ3 := 1
cos

(
ϕ2+ϕ3

2

) + 1,

we have
1 + |λ|+ |λ+ µ|

1 + |λ+ µ|
6

|λ|
1 + |λ+ µ|

+ 1 + |λ+ µ|
1 + |λ+ µ|

6 Cϕ3 .

Let (f, τ) ∈ Z, then Theorem 5.7 and (56) imply that

(u, v) = (PA,H,µ − λI)−1 (f, τ) ,

satisfies 
‖u‖Lp(0,1;X) 6

MCϕ3

1 + |λ| (‖τ‖+ ‖f‖Y )

v = ‖u(0)‖ 6 MCϕ3

1 + |λ| (‖τ‖+ ‖f‖Y ) ,

that is ∥∥∥(PA,H,µ − λI)−1 (f, τ)
∥∥∥
Z
6
MCϕ3

1 + |λ| ‖(f, τ)‖Z .
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We then obtain:

Theorem 8.3. Assume (4)∼(8). For each µ ∈ C with |arg (µ)| < π − ϕ2.

1. PA,H,µ is the infinitesimal generator of a C0-semigroup.

2. Moreover, if ϕ2 ∈ [π/2, π), then PA,H,µ is the infinitesimal generator of an analytic
semigroup.

8.2 Second case

Assume that (4)∼(6) and (9), (10), (12) hold.
We define for µ ∈ C, operators

LA,H,µ : D (LA,H,µ) ⊂ Y −→ Y
u 7−→ u′′ +Au, (71)

where D (LA,H,µ) is the subspace of Y of the functions u satisfying

u ∈W 2,p(0, 1;X) ∩ Lp(0, 1;D(A))
u (0) ∈ D (H)
u′(0)−Hu(0)− µu(0) = u(1) = 0.

Remark 8.4. From Theorems 6.3 and Theorem 6.6, there exists M > 0 such that for any
µ ∈ C

1. LA,H,µ is a closed linear operator on Y.

2. Sϕ0\B (0, ρµ) ⊂ ρ (LA,H,µ) where ρµ := max
{
ρ0, ρ0 |µ|1/ε

}
> 0.

3. ∀λ ∈ Sϕ0\B (0, ρµ) , ∀f ∈ Y, ∀x ∈ [0, 1](
LA,H,µ − λI)−1f

)
(x) = Sλ (x)

[
2Λ−1

λ,µQλ
[
Jλ,f (0)− eQλIλ,f (1)

]
− Jλ,f (0)

]
−Sλ (1− x) Iλ,f (1) + Iλ,f (x) + Jλ,f (x) ,

where Sλ (x) =
(
I − e2Qλ

)−1 (
exQλ − e(1−x)QλeQλ

)
.

4. ∀λ ∈ Sϕ0\B (0, ρµ) :
∥∥(LA,H,µ − λI)−1∥∥

L(Y ) 6
M

1 + |λ| .

We then obtain:

Theorem 8.5. Assume (4)∼(6), (9), (10) and (12). Then, for any µ ∈ C:

1. LA,H,µ is the infinitesimal generator of a C0-semigroup.

2. Moreover, if ϕ0 ∈ [π/2, π), then LA,H,µ is the infinitesimal generator of an analytic
semigroup.
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8.3 Dirichlet case

Assume (H1) ∼ (H3). We define operator

LA : D (LA) ⊂ Y −→ Y
u 7−→ u′′ +Au.

where D (LA) =
{
u ∈W 2,p(0, 1;X) ∩ Lp(0, 1;D(A)) : u(0) = u(1) = 0

}
.

Remark 8.6. From Theorems 5.7 and Theorem 6.6, there exists M > 0 such that

1. LA is a closed linear operator on Y.

2. Sϕ0 ⊂ ρ (LA) .

3. ∀λ ∈ Sϕ0 (
LA,H,µ − λI)−1f

)
(x) = −Sλ (x) Jλ,f (0)− Sλ (1− x) Iλ,f (1)

+Iλ,f (x) + Jλ,f (x) ,

where Sλ (x) =
(
I − e2Qλ

)−1 (
exQλ − e(1−x)QλeQλ

)
∈ L (X) .

4. ∀λ ∈ Sϕ0 :
∥∥(LA − λI)−1∥∥

L(Y ) 6
M

1 + |λ| .

We then obtain:

Theorem 8.7. Assume (H1) ∼ (H3). We have

1. LA is the infinitesimal generator of a C0-semigroup.

2. Moreover, if ϕ0 ∈ [π/2, π), then LA is the infinitesimal generator of an analytic semi-
group.

Remark 8.8. For simplicity, in this paper we have supposed that 0 ∈ ρ(A), see (5), but
in the theorems above written for |λ| large enough, and those concerning generation of
semigroups, we can drop this invertibility assumption; more precisely Theorems 5.4, 5.7, 6.3,
6.6, 8.3, 8.5, 8.7) remain true if we replace (5) by

∃ϕ0 ∈ (0, π) , ∃ω0 > 0 : Sϕ0 ⊂ ρ (A− ω0I) and ∃CA > 0 :

∀λ ∈ Sϕ0 ,
∥∥∥(A− ω0I − λI)−1

∥∥∥
L(X)

6
CA

1 + |λ| ,

In fact it is enough to write (1) in the following form

u′′(x) + (A− ω0I)u(x)− (λ− ω0)u(x) = f(x), x ∈ (0, 1),

to apply our results replacing A by A−ω0I, λ by λ−ω0 and to notice that for |λ| > 2ω0 we
have:

1
2 |λ| 6 |λ− ω0| 6

3
2 |λ| ,

of course the constants r0, ρ0 may change.
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9 Applications

9.1 A model example for the first case

In view to illustrate the results obtained in this work, we will consider the concrete problem
of the heat equation in the square domain Ω = (0, 1) × (0, 1) with a dynamical-Wentzell
condition in one of its lateral boundaries

(P )



∂u

∂t
(t, x, y) = ∆x,yu(t, x, y), (t, x, y) ∈ (0,+∞)× Ω

∂u

∂t
(t, 0, y) = ∂u

∂x
(t, 0, y) + ∂2u

∂y2 (t, 0, y), (t, 0, y) ∈ (0,+∞)× Γ0

u(t, 1, y) = 0, (t, 1, y) ∈ (0,+∞)× Γ1

u(t, x, 0) = u(t, x, 1) = 0, x ∈ (0, 1)

u(0, x, y) = u0(x, y) (x, y) ∈ (0, 1)× (0, 1),
where {

Γ0 = {0} × (0, 1), Γ1 = {1} × (0, 1),
γ0 = (0, 1)× {0} , γ1 = (0, 1)× {1} .

Here ∂2

∂y2 is the Laplace-Beltrami operator on Γ0. Physically, −∂u
∂x

and ∂u

∂x
represent the

interaction between the domain Ω and the lateral boundaries while ∂2u

∂y2 is the boundary
diffusion.

Set E = Lp(Ω)× Lp(Γ0); this Banach space is well defined and endowed with its natural
norm. Define operator P by

D(P) =
{
w = (u, v0) : u,∆x,yu ∈ Lp(Ω), v0 ∈W 2,p(Γ0), u|Γ0 = v0,

(∆x,yu)|Γ0
=
(
∂u
∂x

)
|Γ0

+ ∂2v0
∂y2 and u|γ0∪γ1∪Γ1 = 0

}
,

Pw =
(

∆x,yu,
(
∂u
∂x

)
|Γ0

+ ∂2v0
∂y2

)
, for w = (u, v0) ∈ D(P).

The boundary conditions are defined in Lp(Γ0) and Pw ∈ E .
On the other hand it is not difficult to see that this operator is closed since all the actions

which describe the boundary conditions are "closed". We conclude that P is closed and well
defined on E .

When we integrate the time variable t, the following Cauchy problem
∂w

∂t
= ∂

∂t
(u, v0) =

(
∂u

∂t
,
∂v0
∂t

)
= Pw = P(u, v0)

w(0) = (u(0, .), v0(0, .)) given,
writes 

∂u

∂t
= ∆u

∂v0
∂t

= (∂u/∂x)|Γ0
+ ∂2v0

∂y2

u|γ0∪γ1∪Γ1 = 0

(u(0, .), v0(0, .)) given;

45



since (u, v0) ∈ D(P) and ∂u

∂t
= ∆u, we obtain

(∆u)|Γ0
=
(
∂u

∂x

)
|Γ0

+
(
∂2v0
∂y2

)
|Γ0

=
(
∂u

∂t

)
|Γ0

,

and since u|Γ0 = v0, by using the tangential derivative, we obtain(
∂2v0
∂y2

)
|Γ0

=
(
∂2u

∂y2

)
|Γ0

,

summarizing we deduce the same equation as in Problem (P ) :

∂u

∂t
= ∆u(

∂u

∂t

)
|Γ0

=
(
∂u

∂x

)
|Γ0

+
(
∂2u

∂y2

)
|Γ0

u(0, .) is given
u|γ0∪γ1∪Γ1 = 0.

Now it is well known that the complete study of the abstract evolution equation above is
based on the study of the following spectral equation{

P(u, v0)− λ(u, v0) = (h, d0)
(u, v0) ∈ D(P), (h, d0) ∈ E ,

(72)

and since u|Γ0 = v0, (72) is equivalent to

∆u− λu = h(
∂u

∂x

)
|Γ0

+
(
∂2u

∂y2

)
|Γ0

− λu|Γ0 = d0

u|γ0∪γ1∪Γ0 = 0,

(73)

which is an elliptic partial differential equation with the same spectral parameter in the
equation and in the boundary condition on Γ0.

We will write (73) in an operational differential form. We consider the Banach space
X = Lp(0, 1) and identify E with Lp(0, 1;X) by writing as usual, for g ∈ E

g (x, y) = (g(x)) (y) , x, y ∈ (0, 1) .

We define operator A on X by{
D(A) =

{
ψ ∈W 2,p(0, 1) : ψ (0) = ψ (1) = 0

}
Aψ(y) = ψ′′(y),

(74)

and operator H := −A. So, equation

∆u(x, y)− λu(x, y) = h(x, y),

takes the following form in space X

u′′(x) +Au(x)− λu(x) = h(x), x ∈ (0, 1),
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while the boundary condition(
∂u

∂x

)
|Γ0

+
(
∂2u

∂y2

)
|Γ0

− λu|Γ0 = d0,

writes as
u′(0)−Hu(0)− λu(0) = d0;

the condition u|γ0∪γ1 = 0 (which means that u(0, y) and u(1, y) vanish in y = 0 and y = 1)
is implicitely included in the fact that u(0) := u(0, .) and u(1) := u(1, .) are in D(H).

Therefore (73) or equivalently (72), write in the following abstract form
u′′(x) +Au(x)− λu(x) = h(x), x ∈ (0, 1)
u′(0)−Hu(0)− λu(0) = d0

u(1) = 0,
(75)

where (h, d0) ∈ E ≡ Lp(0, 1;X)× Lp(X) and we are in the situation of Subsection 8.1 with
µ = 0.

Let u be the classical solution of (75), then u ∈W 2,p(0, 1;X) ∩ Lp(0, 1;D(A)) and

(u, u (0)) ∈ D (P) ,

so that (u, u (0)) = (P − λI)−1 (h, d0) .
Taking into account the fact that, here, we can take ϕ0 = π − ε (ε > 0 as close to 0 as

we want), we can use Proposition 8.2 and Theorem 8.3, to obtain :

∃M > 0, ∀λ ∈ Sϕ0 : ∀ (h, d0) ∈ E ,
∥∥∥(P − λI)−1 (h, d0)

∥∥∥
E
6

M

1 + |λ| ‖(h, d0)‖E ,

and deduce that our operator P defined above generates an analytic semigroup in E .
This example can be extended to the following problem

∆u− λu = h

a0 (∂u/∂x)|Γ0
+ b0

∂2v0
∂y2 − λv0 = d0

a1 (∂u/∂x)|Γ1
+ b1

∂2v1
∂y2 − λv1 = d1

u|γ0∪γ1 = 0.

9.2 Some concrete examples for the second case

9.2.1 Example 1

Here, we set Ω = (0, 1)× (0, 1). Our concrete spectral partial differential problem is

(P1)



∂2u

∂x2 (x, y) + ∂2u

∂y2 (x, y)− λu (x, y) = f (x, y) , (x, y) ∈ Ω

u (1, y) = 0, y ∈ (0, 1)
∂u

∂x
(0, y)−

∫ y

0
φ (y, ξ)u (0, ξ) dξ = 0, y ∈ (0, 1)

u(x, 0) = u(x, 1) = 0, x ∈ (0, 1),

where we can take λ ∈ Sϕ0with ϕ0 fixed in (π/2, π).
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Define operator A on X := Lp(0, 1), with 1 < p < +∞, as in (74), then the square root
of the opposite of this operator is well defined and

W 1,p
0 (0, 1) ⊂ D((−A)1/2) ⊂W 1,p(0, 1) and

∥∥∥(−A)1/2ψ
∥∥∥ ≈ ∥∥ψ′∥∥Lp(0,1) + ‖ψ‖Lp(0,1) ,

see [3]. We know also that Q = −
√
−A generates an analytic semigroup in X, on the other

hand Qλ = −
√
−A+ λI is well defined and generates an analytic semigroup in X for all

λ ∈ Sϕ0 .
Now let us define operator H by

Hψ(y) =
∫ y

0
φ(y, ξ)ψ(ξ)dξ, ψ ∈ X, (76)

with an appropiate function φ having the following properties. Let q ∈ (1,+∞) such that
1/q + 1/p = 1. We then assume that

φ (y, ·) , ∂φ
∂y

(y, ·) ∈ Lq(0, 1), for a.e. y ∈ (0, 1)

φ (1, ·) = 0

Φj : y 7−→ ∂jφ

∂yj
(y, ·) ∈ Lp(0, 1;Lq(0, 1)), for j = 0, 1

φ1 : y 7−→ φ (y, y) ∈ Lp(0, 1).

(77)

We can build a simple example of a function φ satisfying (77), setting, for a fixed n ∈ N\ {0}

φ (y, ξ) = (1− y)n ψ̃ (ξ) , ξ, y ∈ (0, 1),

where ψ̃ ∈W 1,q(0, 1) ∩W 1,p(0, 1). We have

‖H(ψ)‖X =
(∫ 1

0

∣∣∣∣∫ y

0
φ (y, ξ)ψ(ξ)dξ

∣∣∣∣p dy)1/p

6

(∫ 1

0

[(∫ 1

0
|φ (y, ξ)|q dξ

)1/q (∫ 1

0
|ψ(ξ)|p dξ

)1/p]p
dy

)1/p

6

(∫ 1

0

[(∫ 1

0
|φ (y, ξ)|q dξ

)1/q]p
dy

)1/p (∫ 1

0
|ψ(ξ)|p dξ

)1/p

6
(∫ 1

0
‖φ (y, ·)‖pLq(0,1) dy

)1/p
‖ψ‖X

6 ‖Φ‖Lp(0,1;Lq(0,1)) × ‖ψ‖X ,

so H ∈ L(X).
Our concrete problem (P1) writes in the following abstract form{

u′′ (x) +Au (x)− λu (x) = f (x) , a.e. x ∈ (0, 1)
u (1) = 0, u′(0)−Hu(0) = 0.

The following assumptions are satisfied:

1. X is a UMD space and operator A verifies
∃ ϕ0 ∈ (0, π) : Sϕ0 ⊂ ρ (A) and ∃CA > 0 :

∀λ ∈ Sϕ0 ,
∥∥∥(A− λI)−1

∥∥∥
L(X)

6
CA

1 + |λ| ,
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 ∀s ∈ R, (−A)is ∈ L (X) , ∃θA ∈ (0, π) :
sup
s∈R

∥∥∥e−θA|s|(−A)is
∥∥∥
L(X)

< +∞.

this last property is proved explicitely in [23].

2. Since H is bounded, from Remark 2.3, statement 1, we get D(Q) ⊂ D (H) and,

∃CH,Q > 0, sup
t∈[0,+∞)

(1 + t)1/2 ‖ HQ−1
t ‖L(X)6 CH,Q.

3. We verifiy that (Q−H)−1 (D (Q)) ⊂ D
(
Q2).

Let ψ ∈ D (Q) such that (Q−H) (ψ) ∈ D (Q), then

Qψ −Hψ = g ∈ D (Q) ,

with
W 1,p

0 (0, 1) ⊂ D (Q) ⊂W 1,p(0, 1).
To obtain ψ ∈ D

(
Q2), it suffices to have Hψ ∈W 1,p

0 (0, 1) for ψ ∈ D (Q) ⊂W 1,p(0, 1).
We have

Hψ(y) =
∫ y

0
φ (y, ξ)ψ(ξ)dξ,

then Hψ(0) = 0, and Hψ(1) = 0 due to (77) and

(Hψ)′ (y) = φ (y, y)ψ(y) +
∫ y

0

∂φ

∂y
(y, ξ)ψ(ξ)dξ.

In virtue of the assumptions verified by φ, we then get Hψ ∈ W 1,p
0 (0, 1). Therefore

ψ ∈ D
(
Q2) .

Now, we set Y = Lp(0, 1;X) = Lp(Ω) and considering A, H defined by (74) and (76), we
build, as in (71)

LA,H,0 : D (LA,H,0) ⊂ Y −→ Y
u 7−→ u′′ +A(u(.)).

Note that in this example, in general, operators Q and H do not commute.
We can apply Theorems 8.5 (with µ = 0), to obtain that LA,H,0 is the infinitesimal

generator of an analytic semigroup.
This result allows us to consider and solve the corresponding Cauchy problem with respect

to (P1).

9.2.2 Example 2

Here, we are considering a quasi-elliptic problem under an oblique derivative boundary con-
dition. Let Ω = (0, 1)2 and consider the following spectral problem

(P2)



∂2u

∂x2 (x, y)− ∂4u

∂y4 (x, y)− λu (x, y) = f (x, y) , (x, y) ∈ Ω

u (1, y) = 0, y ∈ (0, 1)
∂u

∂x
(0, y) + c(y)∂u

∂y
(0, y) = 0, y ∈ (0, 1)

u(x, 0) = u(x, 1) = ∂2u

∂y2 (x, 0) = ∂2u

∂y2 (x, 0) = 0, x ∈ (0, 1).
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We will assume that
c ∈ C2[0, 1] : c (0) = c (1) = 0.

Here the boundary condition on Γ = {0} × (0, 1):

∂u

∂x
(0, y) + c(y)∂u

∂y
(0, y) = 0,

can be written as
∇u(σ) · α(σ) = 0 in Γ, (78)

with α(σ) a vector on Γ equal to (1, c(y)) which is pointing inwardly of Ω. It is known that
(78) is called oblique derivative boundary condition on Γ. We set, in space X = Lp(0, 1), as
above {

D(A) =
{
ψ ∈W 4,p(0, 1) : ψ (0) = ψ (1) = ψ′′ (0) = ψ′′ (1) = 0

}
Aψ(y) = −ψ(4)(y),

(79)

so, as we have seen {
D(
√
−A) =

{
ψ ∈W 2,p(0, 1) : ψ (0) = ψ (1) = 0

}
√
−Aψ(y) = −ψ′′(y),

and clearly Q = −
√
−A and Qλ = −

√
−A+ λI, for all λ ∈ Sϕ generate analytic semigroups

in X. We note also that
√
−Q = (−A)1/4 is well defined and

W 1,p
0 (0, 1) ⊂ D((−A)1/4) ⊂W 1,p(0, 1) and

∥∥∥(−A)1/4ψ
∥∥∥ ≈ ∥∥ψ′∥∥Lp(0,1) + ‖ψ‖Lp(0,1) ,

see [3]. Now, define operator H by setting and{
D(H) = W 1,p(0, 1)
[Hψ] (y) = −c(y)ψ′(y).

(80)

We then have D((−A)1/4) ⊂ D (H), therefore, see Remark 2.3, statement 2, there exists
C > 0 such that, for t > 0, we have

‖ HQ−1
t ‖L(X) 6 ‖ H (−A)−1/4 ‖L(X)‖ (−A)1/4 (−A+ tI)−1/2 ‖L(X)

6
C

(1 + t)1/4 .

Now, we will prove that (Q−H)−1 (D (Q)) ⊂ D
(
Q2). To this end, let ψ ∈ D (Q) such that

(Q−H) (ψ) ∈ D (Q), then

ψ′′ − cψ′ = g ∈ D (Q) = W 2,p(0, 1) ∩W 1,p
0 (0, 1),

so ψ ∈ W 4,p (0, 1). We have ψ ∈ D (Q), then ψ (0) = ψ (1) = 0. But g ∈ D (Q) thus
g(0) = g (1) = 0 and

ψ′′ (j) =
(
cψ′
)

(j) + g (j) = 0, j = 0, 1,

that is ψ′′ (0) = ψ′′ (1) = 0, therefore ψ ∈ D
(
Q2).

Note that in this example Q−H is boundedly invertible and from equation Qψ−Hψ = g,
it follows that {

ψ′′(y)− c(y)ψ′(y) = g(y)
ψ(0) = ψ(1) = 0.

50



Let ψ1and ψ2 two linearly independent solutions of

ψ′′(y)− c(y)ψ′(y) = 0,

such that ψ1(0) = 0 and ψ2(1) = 0. Then we have

ψ(y) = −ψ2(y)
∫ y

0

ψ1(s)
W (s)g(s)ds− ψ1(y)

∫ 1

y

ψ2(s)
W (s)g(s)ds

=
[
(Q−H)−1 g

]
(y),

where the wronskian W is given by

W (s) = ψ1(s)ψ′2(s)− ψ2(s)ψ′1(s).

We have
ψ′(y) = −ψ′2(y)

∫ y

0

ψ1(s)
W (s)g(s)ds− ψ′1(y)

∫ 1

y

ψ2(s)
W (s)g(s)ds,

and
ψ′′(y) = −ψ′′2(y)

∫ y

0

ψ1(s)
W (s)g(s)ds− ψ′′1(y)

∫ 1

y

ψ2(s)
W (s)g(s)ds+ g(y).

If g ∈ D (Q) = W 2,p(0, 1) ∩W 1,p
0 (0, 1), it is clear that ψ ∈W 4,p(0, 1) and

ψ′′(0) = g(0)− ψ′′1(0)
∫ 1

0

ψ2(s)
W (s)g(s)ds

= 0−
[
c(0)ψ′1(0)

] ∫ 1

0

ψ2(s)
W (s)g(s)ds

= 0;

similarly we obtain ψ′′(1) = 0.
Again, our concrete problem (P3) writes in the abstract form{

u′′ (x) +Au (x)− λu (x) = f (x) , for a.e. x ∈ (0, 1)
u (1) = 0, u′(0)−Hu(0) = 0,

with A and H defined by (79) (80) and setting

LA,H,0 : D (LA,H,0) ⊂ Y −→ Y
u 7−→ u′′ +A(u(.)).

We can apply Theorem 8.5 (with µ = 0), to obtain that LA,H,0 is the infinitesimal generator
of an analytic semigroup.

9.2.3 Example 3

Here, we are considering a quasi-elliptic problem under an oblique derivative boundary con-
dition. Let Ω = (0, 1)× R and consider the following spectral problem

(P3)



∂2u

∂x2 (x, y)− ∂4u

∂y4 (x, y)− λu (x, y) = f (x, y) , (x, y) ∈ Ω

u (1, y) = 0, y ∈ R
∂u

∂x
(0, y) + c(y)∂u

∂y
(0, y) = 0, y ∈ R,
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where the function c is assumed to be a positive regular function. Here the boundary
condition on Γ = {0} × R:

∂u

∂x
(0, y) + c(y)∂u

∂y
(0, y) = 0,

can be written as
∇u(σ) · α(σ) = 0 in Γ,

with α(σ) a vector equal to (1, c(y)) which is pointing inwardly of Ω. It is known that
condition is called oblique derivative boundary condition on Γ. We set, in space X = L2(R) :{

D(A) = H4(R)
Aψ(y) = −ψ(4)(y),

so {
D(
√
−A) = H2(R)

√
−Aψ(y) = −ψ′′(y).

So, we know that the spectrum of
√
−A is exactly [0,+∞). This follows from the fact that

the Fourier transform:
√
−Aψ − λψ = g ⇐⇒

(
4π2ξ2 − λ

)
ψ̂ = ĝ,

gives (√
−A− λI

)−1
g = F−1

((
4π2ξ2 − λ

)−1
ĝ

)
,

for all λ ∈ C\[0,+∞). Same arguments are used to see that A verify our assumption (5) but
only on Sϕ\ {0}. We do not have the invertibility of A.

Clearly Q = −
√
−A and Qλ = −

√
−A+ λI, for all λ ∈ Sϕ (with λ 6= 0) generate

analytic semigroups in X. We note also that
√
−Q = (−A)1/4 is well defined. Note that

(−A+ tI)−1/2 and (−A+ tI)−1/4 are well defined and bounded for all t > 0.

D
(
(−A)1/4

)
= H1(R) and

∥∥∥(−A)1/4ψ
∥∥∥ ≈ ∥∥ψ′∥∥X ,

see Theorem 3.1, p.5 in [3].
Now, define {

D(H) = H1(R),
[Hψ] (y) = −c(y)ψ′(y),

we then have
D
(
(−A)1/4

)
= D (H) .

Therefore, as we have seen, there exists C > 0 such that, for t > 0

‖ HQ−1
t ‖L(X) 6 ‖ H (−A+ I)−1/4 ‖L(X)‖ (−A+ I)1/4 (−A+ tI)−1/2 ‖L(X)

6
C

(1 + t)1/4 .

Now, we will prove that
(Q−H)−1 (D (Q)) ⊂ D

(
Q2
)
.

Let ψ ∈ D (Q) = H2 (R) such that (Q−H) (ψ) ∈ D (Q). Then ψ′′ − cψ′ = g ∈ H2 (R),
therefore ψ′′ = cψ′ + g ∈ H1 (R) and

ψ′′′ = cψ′′ + c′ψ′ + g′ = c2ψ′ + cg + c′ψ′ + g′ ∈ H1 (R) ,
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from which it follows that

ψ′′′′ = c2ψ′′ + 2cc′ψ′ + cg′ + c′g + c′ψ′′ + c′′ψ′ + g′′,

so ψ ∈ H4 (R) = D
(
Q2).

Here 0 6∈ ρ (A), but using Remark 8.8, as in the two previous examples, we get that
LA,H,0 is the infinitesimal generator of an analytic semigroup.

Note that in this example, operators Q and H do not commute necessarily. Remark that
in this example we can also take X = Lp(R), with 1 < p < +∞, the same arguments apply.

9.2.4 Example 4

In [22] the authors have considered and studied the following problem

∂2u

∂x2 (x, y, t) + ∂2u

∂y2 (x, y, t) = f (x, y, t) , (x, y, t) ∈ R+ × R× (0, T )

u (0, y, 0) = f1 (y) , y ∈ R
∂u

∂x
(0, y, t)−Dν

t u(0, y, t) = f2 (y, t) , (y, t) ∈ R× (0, T ),

where Dν
t , for ν ∈ (0, 1), denotes the fractional time derivative (or Caputo Derivative)

defined, for instance, by

Dν
t g(., t) = 1

Γ(1− ν)

∫ t

0

1
(t− τ)ν

∂g

∂τ
(., τ)dτ,

for functions g of classe C1 with respect to the second variable; for this derivative, see for
instance [10]. This derivative has been extended to functions in L1

loc (R) verifying some
integrability condition, see [24].

Analysis of the above problem is useful to study the free boundary problem for the
Laplace equation in the case of subdiffusion as illustrated by the fractional derivative, see
[26]. We recall that this subdiffusion expressed by this Caputo Derivative means that the
square displacement of the diffusing species has a behaviour as tν for some real number ν.
When ν ∈ (0, 1), we are in the presence of a subdiffusion.

Our objective is not to study this problem, but it helps us to consider a class of similar
problems illustrating our theory of the second case. So, setting ΩT = (0, 1)× (0, 1)× (0, T ),
we will take inspiration from this example to consider the following spectral elliptic problem:

(P4)



∂2u

∂x2 (x, y, t) + ∂2u

∂y2 (x, y, t)− λu (x, y, t) = f (x, y, t) , (x, y, t) ∈ ΩT

u (1, y, 0) = f1 (y) , y ∈ (0, 1)
∂u

∂x
(0, y, t)−Dν

t u(0, y, t) = f2 (y, t) , (y, t) ∈ (0, 1)× (0, T ),

for λ ∈ Sϕ0with ϕ0 ∈ (π/2, π).
In view to write this problem in an abstract form, we will hide the variable (y, t) by

considering the following anisotropic Sobolev Banach space

X = W 0,1
p ((0, 1)× (0, T )),

consisting of all functions (y, t) 7−→ w(y, t) which are in Lp((0, 1)× (0, T )) such that we have
∂w

∂t
∈ Lp((0, 1)× (0, T )); it is endowed with the following natural norm

‖w‖X = ‖w‖Lp((0,1)×(0,T )) +
∥∥∥∥∂w∂t

∥∥∥∥
Lp((0,1)×(0,T ))

.
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Now, define operator A in X by
D(A) =

{
w ∈ X : ∂w

∂y
,
∂2w

∂y2 ∈ L
p(R× (0, T )) and w(0, t) = w(1, t) = 0 for t ∈ (0, T )

}
[Aw] (y, t) = ∂2w

∂y2 (y, t).

We also define H by {
D(H) = W 0,1

p (R× (0, T )) = X

[Hw] (y, t) = Dν
t w(y, t).

This problem can be written in the following abstract form:
u′′ (x) +Au (x)− λu (x) = f (x) , for a.e. x ∈ (0, 1)
u (1) = f1

u′(0)−Hu(0) = f2,

where we have used the usual abstract writting

u(x, y, t) = u(x)(y, t) and f(x, y, t) = f (x) (y, t).

Now we must verify the following statements.

1. X is a UMD space.
In fact, consider the application

T : W 0,1
p ((0, 1)× (0, T )) −→ Z = [Lp((0, 1)× (0, T ))]2

w 7−→
(
w,
∂w

∂t

)
,

then T
(
W 0,1
p ((0, 1)× (0, T ))

)
is a closed subspace of Z and thus has a UMD property.

Since it is isometric to X , we deduce that X is a UMD space.

2. Operator A verifies 
Sϕ0 ⊂ ρ (A) and ∃CA > 0 :

∀λ ∈ Sϕ0 ,
∥∥∥(A− λI)−1

∥∥∥
L(X)

6
CA

1 + |λ| ,

and  ∀s ∈ R, (−A)is ∈ L (X) , ∃θA ∈ (0, π) :
sup
s∈R

∥∥∥e−θA|s|(−A)is
∥∥∥
L(X)

< +∞.

For the first property we note that the spectral properties on operator A are based on
the equation 

∂2w

∂y2 (y, t)− λw(y, t) = h(y, t)

w(0, t) = w(1, t) = 0 for t ∈ (0, T ),

where h ∈W 0,1
p ((0, 1)× (0, T )). Then, for all λ ∈ Sϕ0 , we have

∀(y, t) ∈ (0, 1)× (0, T ), w(y, t) =
∫ 1

0
K√λ(y, s)h(s, t)ds,
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where the kernel K√λ(y, s) is well known. Using the Schur Lemma, we obtain, for all
t ∈ (0, 1), we obtain ∫ 1

0
|w(y, t)|p dy 6

[
C

1 + |λ|

]p ∫ 1

0
|h(s, t)|p ds;

then ∫ T

0

∫ 1

0
|w(y, t)|p dydt 6

[
C

1 + |λ|

]p ∫ T

0

∫ 1

0
|h(s, t)|p dsdt,

that is
‖w‖Lp((0,1)×(0,T )) 6

C

1 + |λ| ‖h‖Lp((0,1)×(0,T )) .

Since we have

∀(y, t) ∈ (0, 1)× (0, T ), ∂w

∂t
(y, t) =

∫ 1

0
K√λ(y, s)∂h

∂t
(s, t)ds,

we deduce ∥∥∥∥∂w∂t
∥∥∥∥
Lp((0,1)×(0,T ))

6
C

1 + |λ|

∥∥∥∥∂h∂t
∥∥∥∥
Lp((0,1)×(0,T ))

,

and then
‖w‖X 6

C

1 + |λ| ‖h‖X .

The second property is proved explicitely in [23].

3. Since H is bounded then from Remark 2.3, statement 1, D(Q) ⊂ D (H) and

∃CH,Q > 0, sup
t∈[0,+∞)

(1 + t)1/2 ‖ HQ−1
t ‖L(X)6 CH,Q.

4. Now, we must verifiy that (Q−H)−1 (D (Q)) ⊂ D
(
Q2). It is enough to verify that

Dν
tA
−1 = A−1Dν

t on X. We have

∀(y, t) ∈ (0, 1)× (0, T ),
[
A−1w

]
(y, t) =

∫ 1

0
G(y, s)w(s, t)ds,

where the kernel G is well known. So, for any (y, t) ∈ (0, 1)× (0, T )
[
Dν
tA
−1w

]
(y, t) =

∫ 1

0
G(y, s)Dν

t w(s, t)ds =
[
A−1Dν

t

]
w(y, t).

Again, as in the previous examples , we get that LA,H,0 is the infinitesimal generator of
an analytic semigroup.
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