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Abstract

We study the solvability of boundary-value problems for differential-operator equa-
tions of the second order in LP(0,1; X), with 1 < p < 400, X being a UMD complex
Banach space. The originality of this work lies in the fact that we have considered the
case when spectral complex parameters appear in the equation and in the abstract Robin
boundary condition illustrated by some unbounded operator non commuting with the
one used in the equation. Existence, uniqueness, representation formula, maximal reg-
ularity of the solution, sharp estimates and generation of strongly continuous analytic
semigroup are proved. Many concrete applications are given for which our theory applies.
This work gives news considerations with respect to all those studied by the authors in
[7] and is a continuation, in some sense, of the results in [1] studied in Hilbertian spaces.
Key Words and Phrases: Second order boundary value problem with two spectral
parameters, Robin boundary condition, spectral estimates, functional calculus, genera-
tion of analytic semigroups.
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1 Introduction
In this article, we consider a new spectral problem that is equation
u”’(z) + Au(z) — Mu(z) = f(x), =€ (0,1), (1)
together with the abstract Robin boundary conditions
u'(0) — Hu(0) — pu(0) = do, (1) = uy. (2)

Here, A\, i are complex parameters; A, H are closed linear operators in a complex Banach
space X; f belongs to LP(0,1; X) with 1 < p < +o0; dy, u; are given elements of X. We
develop a completely different approach from those used until now where it is more easy to
verify the assumptions and to apply this approach to concrete problems.

Many boundary value problems with a spectral parameter in the equation and in the
boundary conditions arise in different concrete problems. Let us cite some interesting studied
problems. One of the first works, was treated in [5], where the author have considered a
class of boundary problems with a spectral parameter in the boundary conditions. In [4],



the author has considered some second order elliptic boundary value problems on bounded
domains with boundary conditions depending nonlinearly on the spectral parameter. In [2],
we find a study, in a separable Hilbert space, of the following boundary-value second-order
elliptic differential-operator equation:

{ u’(z) + Au(z) — Mu(z) = f(z), =€ (0,1)
A/ (0) — au(l) = f1, u(l) = fo,

where \ is the spectral parameter, « is a complex number with Re(a) > 0 and —A is a
linear self-adjoint operator garanteeing the ellipticity of the equation. Note that here, the
parameter A\ appears in the nonlocal boundary condition. Recently, in [1], the authors have
considered the following boundary-value problem for an elliptic differential-operator equation

of second order
{ Nu(z) —u"(z) + Au(x) = f(z), z€(0,1)
u'(0) + Au(l) = f1, Bu/(1) + Au(0) = fo,

where the same spectral parameter appears in the equation quadratically; here — A is a closed
positive linear operator in some separable complex Hilbert space. In [7], the authors have
considered in a complex Banach space X, Problem (1)-(2) where A\ = w is some positive
spectral parameter and p = 0. For w large enough, under some geometrical assumption on
the space X and hypotheses on operators A—wl and H including the fact that they commute
in the resolvent sense, the authors have furnished necessary and sufficient conditions on the
data dp,u; to obtain the existence and uniqueness of a solution u of (1)-(2) with maximal
regularity. Recently, in [9], the authors have developed an interesting new approach in a non
commutative framework, concerning some general Sturm-Liouville problems with the same
Robin boundary condition in 0.

In our study of Problem (1)-(2), the ellipticity of the equation is guaranteed by hypothesis
(5) below, this assumption allows us to consider, for suitable A, i, the operators

Ay = (@x— Hy) + 2@ (@x+ Hy)
Qrx=—V—-A+ X, H,=H+ ul.

In all the sequel, for any closed linear operator T' on X, D(T) denotes the domain of T
and p(T) the resolvent set of T. The key point will be to obtain the invertibility of the

determinant Ay , of system (1)-(2) with estimates of HA;LH“X), for appropriate A, u. To

this end, we consider two different situations:
1. D(H) Cc D(A)
2. D(vV—A) C D(H),

where in the first case, we say that operator H is principal, while in the second case, it is
operator v/—A which is principal. Concrete applications will illustrate these two cases in the
end of this work: the first one is adapted to related problems concerning some heat equations
with dynamical boundary conditions of reactive-diffusion type or with Wentzell boundary
conditions, whereas the second one will concern, for instance, problems involving the Caputo
derivative in the boundary conditions. Moreover, using the same tools, we study the Dirichlet
case and obtain similar results to those obtained with Robin boundary conditions.

Three new and essential results sum up this work. First, we solve the above equation by
giving an explicit and simplified representation of the solution adapted to each case and we
show that it is verifying the optimal regularity that is

w e W?P(0,1; X) N LP(0,1; D(A)).



Then we give sharp estimates of this solution in each case according to the complex spectral
parameters A, 4 belonging to some appropriate precised set. This part essencially uses the
results of [14] where some inequalities on resolvent operators are precised. Finally, using these
estimates, we obtain the generation of two kinds of analytic semigroups each corresponding
to a situation when we specify the complex parameters A, p.

This article is organized as follows. Section 2 describes the assumptions, including two
spectral parameters A, u, studied in this work. In Section 3, we deal with our model without
spectral parameter, we retrieve in a simple manner results of previous works. Section 4 is
devoted to some precise estimates of Dore-Yakubov type, which will be useful to analyze our
model. Sections 5 and 6 concern the study of our model with spectral parameters A, u under
two different types of behaviour concerning operators with respect to their domains and to
the parameters. Moreover sharp estimates in A, i are furnished for the solution. In Section 7,
we furnish results for (1) together with Dirichlet boundary conditions. Then, in Section 8§,
we apply the results of Sections 5, 6, 7 to generation of semigroups. Finally, Section 9 deals
with examples of applications.

2 Assumptions

In all this work, we will use the following notation: for ¢ € (0,7), we set

Se = {z € C\ {0} : Jarg(2)| < »} U{0}. (3)
Our goal is to seek for a classical solution of Problem (1)-(2), that is a function u such that
i) u € W2P(0,1; X) N LP(0,1; D(A)),
ii) u(0) € D(H),
ii1) u satisfies (1)-(2).

We suppose that
X is a UMD space, (4)

Recall that X is a UM D space means that for all ¢ > 1 the Hilbert transform is continuous
from L4(R; X) into itself, see [6].

J o€ (0,7): Spy Cp(A) and 3C4 > 0:
Ca (5)
£x) S 1+ |A

{WeR,pm“eﬁayahemmy

VAE Sp,,  [(A-AD)7

< +o0. (6)

sl

seR

We now set for A € S, pn € C
H,=H+pl, Qy=—-V—-A+X and Q=-V-A,

The existence of the previous square roots is ensured by subsection 5.1 below and for operator
H we consider the two following types of hypotheses:

First case
D (H) c D(4), (7)
and
Jpy € (0,7),3CH >0
S,. C p(—H) and sup (1 + bz < COp. (8)
(Cp(=H) and sup (1+|u) [, < O



Second case

D(Q) c D(H), (9)
Je € (0,1/2], ICHq > 0, te[%uf )(1 +8)° | HQ; ' o)< Cryg- (10)
(Q—H)" ((D(Q), X)) €Q 7 ((D(Q), X)y,,) (11)

here () — H is not supposed to be boundedly invertible and
(@—H) " ((D(Q),X)1,,) ={€€D@Q): (Q-H)E€(D(Q),X)y,}-

In order to obtain spectral estimates for the solutions of (1)-(2) we will replace as-
sumption (11) by the new assumption:

(Q-H)" (D(Q) cD(Q), (12)
where (Q — H)™'(D(Q)) ={¢€D(Q): (Q—H){ € D(Q)}.

Remark 2.1. In these two cases we do not suppose the commutativity between the resolvent
operators of H and A. On the other hand, there is no reason a priori so that the solution u
verifies u(0) € D(H).

Remark 2.2. Assume (5) and (9).

1. If we have the commutativity assumption
V(e D(H), Q'H(=HQ
then (12) is satisfied.
2. Let (A, pn) € Spy x C. If £ € D (Q), there exists ¢ € X such that { = Q¢ so
(Q-H)E = [Qx—Hy+pl+(Q—- Q)¢
@y = H)E+uE+(Q - Q) Q7'¢,
and it will be seen in Lemma 4.4 below that there exists T) € £(X) such that
Q=Q\+T, and Q'T, =T,Q".

then
(Q-H){—(Qx—Hy)E=pé+Q '\ e D(Q).

This proves that (Q — H)™' (D (Q)) = (Qx — H,) ™" (D (Q)) and then (12) is equiva-
lent to

(@x—H,)"1(D(@Q) c D(Q°). (13)
Remark 2.3. Assume (5).
1. If H € £(X) then, for t >0

I HQ  lcoo<I H lzcoll Qi llec)s

so due to (37) below, we have (9) and (10) with ¢ = 1/2.



2. If there exists w € [0,1/2) such that D((—A)“) C D (H) then, in virtue of Lemma 2.6
statement a) in [14], there exists C,, > 0 such that, for ¢t > 0

THQ ey < IH (=A™ lleeoll (A% (—A+tD) 2 g
Cu

S oo
(14 ¢)/2

so we have (9) and (10) with e =1/2 —w € (0,1/2].
3. It will be seen, see (57) below, that (10) can be written as

Chq

Je € (0,1/2], 3CH,g >0, VA E Sy = || HQ;l Hﬁ(x)< W

4. In [20], the authors have considered (1)-(2) (with the complex number A replaced by
w > 0 and g = 0) under assumptions (4)~(6) together with

D(A)C D(H) and 3wy > 0,3v € (0,1/2),3C > 0,Vo > 0,Vw > wy :

HH(A—(erU)I)AHE(X) < wacﬂ/“ (14)

Then they prove the existence of w; > wqg such that for any w > wy

&la

0€p(QuEH), D(Q,) CD(H) and | HQ," |x)<

They have supposed moreover that
Yw>w, Qu(Qur H) ' ((D(Qu), X)) € (D(Qu), X))y, (15)

These assumptions are, in some sense, stronger than (9)~(11).
5. For suitable A, u we can observe that in the first case
Qr— Hy = (QuH' — 1) H,,
is boundedly invertible and in the second case
Qx— Hy = (1 - H,Q3") Qa,
is also boundedly invertible. In fact, in the two cases we can prove that
Ary = (Qx— Hy) + 2 (Qa + Hy),

is boundedly invertible which will allow us to build a representation formula of the
classical solution u. So we could generalize these two cases by considering A, u for

which @) — H, is boundedly invertible and H(QA + H“)AHL(X) is small enough in
order to get that

M= (1) (12 (1- ) @ (@u 1))

is boundedly invertible, see for example [7]. In this generalization we suppose neither
D(H) ¢ D(A) nor D(Q) C D(H), but it could be difficult to obtain estimates of

H(QA + HM)AHE(X) with respect to A, .



3 Problem without parameters

In this section we study a problem similar to (1)-(2), but without the parameters A and p,

that is
{ u'(x) + Au(z) = f(z), =€ (0,1)

ul(o) - HU(O) = dp, u(l) = uj. (16)

3.1 Hypotheses

Here our hypotheses are

(H1) X is a UMD space,

C
Hj) [0,400) C p(A d A—tD)7t <—,
(H2) [0,+00) C p(A4) an te[sol,l—ll—)oo)H( ) HE(X) 1+t
(H3) Vs € R, (—A)"* € L(X) and
304 € (0,7) : —Oalsl(— )i < 400,
A sup e A ) < oo

(Hy) A:=(Q — H)+ e*@(Q + H) is closed and boundedly invertible, where Q := —/—A.
(Hs) QA1 ((D(Q),X)yy,,) € (D(Q),X) 1),

Note that here we are neither in case 1, nor in case 2.
In the following remark we discuss about assumption (Hs).

Remark 3.1.
1. Assume (Hj) and (Hy). If we suppose moreover
ATIAT = ATTATY (17)
then (Hs) is satisfied. In fact, the following assertions are equivalent.

(a) ATA1=A"1A-T

(b) YAep(A), (A=X)'TA1=A"1A-X)",

(c) QAT =ATIQ N
Then, under (17), we have

Q- QA =QATQQ -t
and since
(D(Q), X)), = {z € X :t7PQQ—tD) " w € LRy X)),

we get (Hs) .

Finally we remark that if
V¢eD(H), A'¢eD(H) and A 'H(=HAT(, (18)

then (17) and (Hjs) are satisfied.



2. Assume (Hj) and (Hy); then (Hs) is equivalent to
AT ((D(Q), X)) € (D(Q), X) 141/

3. In [8], problem (16) has been studied under more restrictive assumptions, that are
(H1) ~ (Hy) and the commutativity hypothesis

Ioep(H): ATV(H-XNI) T =(H-XI)tAT, (19)

which, from statement 1., implies (Hs).

4. Assume (Hs) and (Hy). If Q — H is boundedly invertible then, due to AA~! = I and
A~'A = I, we get that

Al=(Q-H) "' —(Q-H) ' (Q+H)A™!
{ Q-—H) '=A"1+A2Q+H)(Q-H) ",

from which we deduce that for any ¢ € (D (Q), X)

(20)

1/p.p
QA e (D(Q).X),,,] = [QQ-H) ¢ e (D@Q).X)y,,].

so we can replace in the previous proposition assumption (Hj) by the equivalent one
(HY) Q@Q—H)" ((D(Q), X)) € (D(Q), X)), (21)
5. Assume (Hz) and (Hy). If we suppose that

V¢ e D(Q), QA '¢ e D(Q),

then we have (Hs), see Lemma 5 p. 76 in ([9]).
Similarly, when @ — H is boundedly invertible, using (20) we have that

v e D(Q), Q(Q-H) (e D),
implies (Hf) and then (Hs).
Remark 3.2. Problem (16) has been already studied (with or without spectral parameters):

o In [9], with hypotheses similar to those given here, as a particular case (B =0) of a
more general problem

{ u'(x) + 2Bu (z) + Au(x) = f(z), x € (0,1)
u'(0) — Hu(0) = dp, u(l) = uy.

where A and B are not supposed to commute. The representation formula of the
solution given in [9] was obtained after long calculations.

o In [20], the authors also furnishes a representation formula of the solution of

{ u'(z) + Au(z) — wu (z) = f(z), z € (0,1)
u'(0) — Hu(0) = dp, u(l) = uq,

under (4)~(6), (14) and (15), but the method is quite long and laborious.

We propose in the following, see subsection 3.3, a simple way to obtain in our case a
representation formula written in a condensed form, which will be useful for the study
of the problem with a spectral parameter.



3.2 Interpolation spaces

Let us give now some necessary conditions to obtain a classical solution for our problem (16)
using known properties of interpolation spaces.

Lemma 3.3. Suppose that Problem (16) has a classical solution u. Then:

L u(0),u(l) € (D(Q?),X)r = (X,D(QQ))l_%vp, which implies that

1
%71)

w(0), u(1) € D(Q) and Qu(0), Qu(1) € (D(Q),X),,,.

2. u'(0), v/ (1) € (D(Q2)7X)%+ﬁ,p =(D(Q), X)1,,.

Proof. Suppose that Problem (16) has a classical solution u. Then, from
we WP (0,1; X) N LP (o, 1;D(Q2)) , 1< p< too,

we have u (0),u (1) € (D(Q?),X) 1

1= (X,D(Q%),_ 1, (see [17], Teorema 2’, p. 678 ).
2 7p 2p7p
But

P

(P(@).X),,,, = Do (1=1/20.0) = (D(Q), X)111,
= {,€D(@:Qpe(D(Q),X),,} CDQ),
from which it follows that
w(0),u(1) € D(Q) and Qu(0),Qu(1) € (D(Q),X),,,.

Similarly, by using Teorema 2’, in [17], p. 678, we have

W' (0),4/ (1) € (D(Q?), X),

= (D X .
s (D(@), X)1,
]
3.3 Representation formula
Under (Hz), if u is a classical solution of (16) then there exist £y,&; € X such that
u(r) = " + 179 + I () + J (x), x€]0,1], (22)

where
I(x)= %Q‘l /0 " e@e=Qf(s)ds and J (z) = %Q_l /x Lota f(s)ds, (23)

see [7], p. 989. Note that here, unlike [7], we do not supposed that A and H commute. Now,
-1
taking into account the fact that I — €2 is invertible, we set T = (I — eQQ) € L(X) and

S(x)=T (er - e(l_:‘)QeQ> eL(X), ze€]0,1],
then formula (22) writes in the following form

w(@) =S (@) po+SA -2y +1(x)+J(z), xe[01],



with p1g = & + €9&1, 1 = e9€y + &1 and we deal with this new writing. We note that

uo = u(0) = po + J (0)
ur =u(l) = +1(1)
W (0) = TQ (I +€2) po — 2TQe%n — QJ (0),

and now we determine ug, 1 by using the boundary conditions
uw(l) =w; and u'(0) — Hu(0) = do.
So p1 =wu; — I (1) and
TQ (I +€*?) jig — 2TQe%p — QJ (0) = H (o + J (0)) = do,
hence

TQ(I+¢2) (o +7(0) = H (o + 7 (0)) = do+2TQe%m
+QJ (0) +TQ (I +¢22) J (0),

thus

Q(I+¢) = (1=e*) H] (to+J(0) = (I-¢*?)do+2Qe%u
+(1=¢*2) QI (0)+Q (I +¢*2) J (0),

butA:Q<I+62Q)—<I—e2Q>Hso

pr=uy — I (1)
po = AL [ (1 = €22) do + 2Qeu1 +2QJ (0)] = J (0).

Finally, if u is a classical solution of (16) then

u(w) =S @) po+SA—z)pur +1(z)+J(z), z€][0,1], (24)
where
pr=ur —I(1)
po = AL [(1 = €22) do +2Qeu1 +2QJ (0)] = J (0) (25)

-1
S(z) = (I — eQQ) (e“”Q — e(l_I)QeQ) .
When (19) is satisfied, we can check that this representation formula coincides with the
one given in [8] p. 528. We can also, after computations, verify that (24) is the same formula
as the one p. 92 (with L = M = Q) in [9] and also compare it with (34)~(38) pp. 54-55, in
[20].
3.4 Regularity results
The following results will be useful to study the regularity of the solution of (16).

Lemma 3.4. Let p € (1,400),% € X and n € N\ {0}. Then, under (H3), we have
1.z e*@yp e LP(0,1,X).

2.z Qme™@ € LP (0,1, X) if and only if ¢ € (D (Q™),X) 1

np’p ’



See for instance [25], Theorem, p. 96.

Lemma 3.5. For f € LP (0,1, X) with 1 < p < 400, under (H;) ~ (Hs), we have
x
1. x— Q/ e f (s)ds € LP (0,1, X),
0

1
x Q/ e f (s)ds € LP (0,1, X).

1
2. Q/ @R f (s)ds € LP (0,1, X).
0
For statements 1 and 2 which are consequences of the Dore-Venni Theorem, see [16],
p. 167-168 and also (24), (25) and (26) in [15].

Lemma 3.6. Let ¢,y € X and 1 < p < 400. Then, under (Hj), we have

Lo Q%S (z)v € LP(0,1; X) <= ¢ € (D (Q?),X) 1

z— Q*S(1—x)x € LP(0,1;X) < x € (D (Q?),X) 1

2. x> Q*S () +Q*S(1—2)x € LP(0,1; X) <=9, x € (D (Q*), X) 1

2p 7p :
Proof.

1. T = (I— eQQ)il =T1+e¢ (I — eQQ)il SO

then, by lemma 3.4

Q%S () € LP(0,1;X) <= Q%9 e LP(0,1;X)
= Y€ (D(Q).X)

2. For any ¢, x € X, we have
Q*S () e LP(1/2,1;X) and Q*S(1—-)x € LP(0,1/2; X).

Then
Q*S () +@Q*S(1—-)x € LP(0,1; X),

if and only if Q%S ()¢ € LP(0,1; X) and Q%S (1 — ) x € LP(0,1; X).

Lemma 3.7. Consider pyp, p11 defined in (25). Then

25" 2P
M1€(D(A),X)1 <:>U16(D(A),X)1

%71’ %’p.

{ po € (D(A),X) 1, < A ldy € (D(A),X)

10



Proof. From [18], Proposition 3.5, p. 1676, we have J (0),1 (1) € (D (A),X) thus:

1
%J)’

M1€(D(A),X)i <~ ule(D(A),X)

25 P
Moreover g = A~ dy — A1 [eQQdo +2Qe%uy +2QJ (0)} — J(0), with

e*?dy +2Qe 1 +2QJ (0) € (D (Q), X) 1,

and from (Hs)

OA~! [GQQCZO + QQQQM +2QJ (0)} €(D(Q) ’X)l/np’

which means that

AT [y + 2Qe% +2Q7 (0)] € (D(Q), X)y11,, = (D (4), X)

1 .
Tp’p

Finally: uo € (D (A),X)1 < A7 'dy € (D(4),X)

1 .
%7]2 %71)

3.5 Resolution of Problem (16)

We are now in a position to retrieve (in the case L = M) in a simple manner, the result of
Corollary 1, p. 92 in [9] and also Theorem 2, p. 56, in [20].

Proposition 3.8. Let f € LP(0,1; X) with 1 < p < +00 and assume that (H;) ~ (Hs) are
satisfied. Then the following assertions are equivalent:

1. Problem (16) admits a classical solution u.

2. uy, A"ldy € (D (A), X)

1
ﬂ»p

Moreover in this case u is unique and it is given by (24).

Proof. From the previous study we know that if Problem (16) admits a classical solution u
then u is unique and given by (24). Moreover u defined by (24) satisfies

w(0) = o+ J (0) = A7 [ (1 = @) dy + 2Qep1 +2QJ (0)] € D (H),

and then u is a classical solution of (16) if and only if Q%u (-) € L?(0,1; X).
But from Lemma 3.5, Q%I (-),Q?J (-) € L?(0,1; X), so Lemma 3.6 and Lemma 3.7 imply
that
Q%u(-) € LP(0,1;X) <= Q*S(x)po+Q>S (1 —=x)m € LP(0,1; X)

= po,m € (D(A), X)L,
2p”

<~ ul,A71d0€(D(A),X)1

2P’

this proves that statement 1. is equivalent to statement 2. O

Remark 3.9. In the previous Proposition, if moreover, () — H is boundedly invertible,
then using (20) we can replace the condition A=tdy € (D (A),X) 1 , Dy the simplest one
2p?

(Q-H)"do € (D(4),X) 1,

11



4 Dore-Yakubov estimates

This section is devoted to Dore-Yakubov Estimates and applications. The results are essen-
tially based on those given in [14] and we have used the definitions and notations of this
paper. We consider here a complex Banach space E.

In the following we fix ¢ in (0,7) and L : D (L) C E — E is a closed densely defined
linear operator. Note that here E is not supposed to be a UMD space and there is no BIP
assumption on operator L.

Definition 4.1. L is said to be an operator of type ¢ with bound Cf, if S, C p(—L) and

VA€ S, H(L + )‘I)_IHE(E) S1 fLI)\\’

where S, is defined by (3).

In all this section L is an operator of type ¢ with bound Cr. We fix A € S, and we set
Dy = L+ M,
and .
elp)=¢ if € (0,7/2]
ep)=m—¢ if pelr/2,m),
note that ¢ (p) € (0,7/2). The first Lemma below is essentially based on Lemmas 2.3 and
2.4 in [14]. The novelty is in some precisions given on the estimate of

e (p) :=min{p, 7 — p} :{

9

—1
H ((L+ A0 4 1) .

which integrates the behaviour with respect to the complex parameters A and v.

Lemma 4.2.

1. Let 6 € (0,e(¢)); then D, is an operator of type 6 with bound

Cy := Cp/ cos <g0—2|—0) € (0, 400).

Moreover for v € Sy we have
Chy

D n! < ——. 2
H( At vl) H[Z(E) Al + v+ 1 (26)
In particular, setting Cyp = C/ cos (¢/2), we have for any v > 0
_ Co
D Nt S R — 2
H( A+ vl) HL(E) Al +v+1 (27)

/
2. Di/ % is well defined and —Di/ 2 generates a semigroup (e_tDi 2> which is bounded,
t>0

analytic for ¢ > 0 and strongly continuous for ¢ > 0.
3. Let § € R such that § = ’@‘ € (0,e(¢)). Then, for a complex number v with
Re (1/6_’@/ 2) > 0 we get : Di/ >4 ul is boundedly invertible and
_ C -
1/2 1 v,0
Dy + vl < —
H( A ) cey v+ VIA+1

where C 5 :=CL/ {cos (arg (v) — @/2) cos (@ggﬂ .

12



g, g + 8(2¢)>; then Di/Q is of type ¥ with bound K, := Cr/ cos? (By)

4.Let1/1€(

where

6¢:Z+¢_2€(‘p)e(o,w/2).

Moreover for v € Sy, we have

1/2 -1 Ky
DyY? vl < —f (28)
H< A ) cE) v+ VIA+T
In particular, setting K, := C/ cos? (p/2), we have for any v € Sr/2
1/2 -1 Ky,
DY? vl s — (29)
H( A ) cE) v+ VIA+T

Proof.

1. See [14], (2.1) in Lemma 2.4, p. 99 and also Theorem 10.3, p. 320 in [21]. Remark
6
that we have cos (ﬁ) > (0 . Moreover, noting that for any v > 0 we have

Ve ﬂ Sy,
0€(0,e(¢))

we get (27) with Cp = , lim+09.
—0

2. See [14], Lemma 2.4.

3. The idea is to use the calculus given in [14], in Lemma 2.4, at the end of p. 99

1 +ooei?  1/2
_ 7/ S (Dy+2l)tdz
0

1/2 -1
H <D’\ * VI) L(E) T z 4+ 12

L(E)

Dy + re® ] ! et dr
( )

I

1 [+oo p1/2,i0/2
b

ret + 2

™

L(E)
but now we apply the estimate (DA et )1H < L instead of
L(E) ’/\| +r+1
oo\ -1 C
H (D/\ + rewl) <2,
L(E) r+1
and so
-1 C, +oo 1/2 1
H (Dy?+vr) < =2 i dr
L(E) T Jo 7“6’9—{—1/2‘ Al +7r+1
+00 1/2
< @ 5 7: 3 1 1dr
m Jo cos (arg(u2 )0)‘ (7“ n |y|2) Al + 7+
1/2
< Co A dr.

/+oo
T oS (arg (v) — g) 0 (r + Mg) (r+|Al+1)

13



For a,b > 0,a # b, we have

/-i-oo y1/2 J 2 /+oo 1 p 2 /+oo 1 p
S — v = dx
o (r+a)(r+bd) " b—alo 2240 b-aly 2+a
™

Vo +/a’

from which we deduce
< CL

L(E)  mcos (arg(y)—?/Q) cos ((p +6) /2) W+ VIA[+ 1

|(py+0)”

4. Estimate (28) is deduced from statement 2. as in [14], Lemma 2.4, p. 100. Since

Srj2 C Sy for any ¢ € (W T ((p))’ we get (29) with
292 2
Cr, 207, Cr
L w—1>?rl/2+ YT cos? ((m—e(p))/2) 14cos(p) cos?(p/2)

O]

Here, since D) is boundedly invertible, we have also that Di/ % s boundedly invertible
and then p (Di/ 2) contains a ball centered in 0. The following Lemma precises the size of
this ball with respect to A € S,.

/-1
Lemma 4.3. Setting r) = ||D 1/2 > 0 and K7, := Cr/cos? (p/2), we have
A e

Loy, <
CORVIES
2. B(0,ry) C p(D, D2 ) and for z € B(0,7y)
K 1
s X ~1/2 .
L 1 205 o)
3. B (O, W) C B(0,ry) and for z € B (0’ \/ﬁ)

2KL 2I<L

I(DY? = 2D~ 2y

2K,

2 _
H(D,l\/ - ZI) 1||11(E) < W
Proof.

1. It enough to consider (29) with » = 0. Note that we can obtain a best estimate:
H(Diﬂ)_l o Cr/cos(¢/2)

cm - VIATHT
2. We consider z € B(0,ry). Then HzD;l/QHL(E) <1, s0

1/2 1/2 ~1/2
DY? =21 = D)? (1 - 2D,'?),

is boundedly invertible with

, by using similar arguments as in [14], (2.4) p. 100.

_ - _1/2\ 1
1Y =20 ey < DY llece < | (1= 2D377)

Ky, 1

VIAL+1 1 - HZD_I/QHL(E)

L(E)

14



3. We consider z € B (0, Y |2/\K+1). Then

—1/2 < \/|/\‘+1 KL

—1/2
0. < 112D5" ey = 12105 leqey < Vg NES]

=1/2<1,

so z € B(0,ry) and

Ky, 1 2K,

X < .
VI 1 12D Py VI

1Dy = 2D) M oo <

O]

Now we will compare D}\/ % and Dé/ ?. This has been already done for A > 0 in [19],

Proposition 3.1.7 p. 65. Here X is a complex parameter: we furnish a precise estimate for

the bounded operator T which extends Di/ 2 Dé/ 2

-1
respect to (Di\/2 + D(l)/z) .

; we give also a new writing of T with

Lemma 4.4.
1. There exists a unique T € L£(F) such that
Dy* = Dy + 1, (30)

A
moreover T = % / Vz(zI — D)) ' (2 — L) ' dz € L(E), where 7 is the boundary
of Sy, positively oriented, with 7 fixed in (7 — e (¢),7), and T does not depend on 7.

2. T\D;,"/* = D},'/*T), for any X € S,,.
Ci T

4. 0€p (D}\/Q —i—Dé/Q) and

Ty = A (Di/2 + D(l)/2>_1 - zir[ym (2 — L) 'dz,
so that
vee D (LY2), (DY?-Dy?)e=x(DY?+ Dy ' ceD(D).
Proof.

L. First, notice that L = Do and D (L) C D (Dy*) n D (Dy'*). Thus, if Ty € L(E)

satisfies (30) then T} is unique since D (L) = E and

T¢ = DY?¢ — Dy*¢, ¢eD(L),

We fix > 0 such that 7—¢ (¢) < n < m. Then 7—n € (0,¢ (¢)) and, from Lemma 4.2,
statement 1., L = Dy and D) are operators of type m — 7; in particular for w > 0 small
enough we have

o (Do)Uo (Dy) Cw+ S, CSy.

15



So, we can define D, o172 Dy 1/2 by using functional calculus and considering -, the
positively oriented boundary of Sy:

_ 1 1
(21 —Dy) 'd d Dy'*= 7/7 I— Do) da:
22#/[ : A dz o an 24 7\/E(Z o) dz

it is well known that these integrals do not depend on 7. We write

D—1/2

. ) 1 ) )
D>\ 1/2 — DO 1/2 ﬂ /7 ﬁ |:(ZI — D)\) 1 — (ZI — DO) 1:| dz
A 1 -1 -1
— 2 [ L Gr-Dy (eI - Do) td
o / 75 L= D)7 1= Do)
A a1 -1 ~1
_ 2ML / To I =D (L sl ) (o - L) e

= —% _1/\[2.7 Dy) tdz
+ —1/\[ (21— Dy) "2 (2 — L) " dz

2im
— ! (_AD;W = L Vz (2l — D)) (2T — L)} dz)
= AL'DIVP 4Ly,
where T) := 2)\/ Vz (2l — Dy) ' (21 — L) ' dz € L(E).
i Jy
This proves that for £ € F
D¢ =Dy ¢ — AL 'D M2+ LT\ € D (Dé/Q)
D¢ = D VPe + ALTID M2 — LI T\¢ € D (D§/2) :

: /2\ _ 1/2\ _ 1/2 .
thus we obtain D (D/l\ ) =D (DO ) =D (L ) We then deduce (30) by writing,
for ( € D (L1/2)

D1/2§ Dl/QC — (L+AD) D;l/QQ _ LDO—1/2C

- I (D;l/2 - D*W) ¢+ AD; V3¢
_ -l
= 5 / Vz(zI — D))t (2] — L) ¢dz

= T)¢.

2. This is an easy consequence of the above definition of T).

3. We have
T = —% Ve (reml DA) ! (re”’] - L>_1 e dr
2m S Ve (re ing _ D)\) ' (re_ml - L)_l e~y
_ % \/r?‘n (r 74 D)) (re T 4 L) ey
m T Ve (re'™ 1+ D)) 1 (re'™=m1 + L)_l e dr,

16



Cr
cos((p+m—m)/2)

m F00 Cr_y Cr, -
27 Jo |)\|+r—|—11+r
Al CrL
o \[W—i—r—l—ll—l—rT
Lt e S S
m o (r+A+1D)(r+1)
Al CrnClL
VIAIF1+1
ct
cos ((p+m—mn)/2)

Moreover, since T does not depend on 7, then

but re* 1= € S, and using (26) with Cr_, = we get

ITallgy <

[Al-

C
T < i VIAl = —E— I\l
1Ty nﬁ—cos((cp%—ﬂ— )/2) cos (p/2) Al
4. The integral below is absolutely convergent, then 0 € p (Dl/ 24 é/ 2) and

(DY + Dy?) (21 — L) 'dz.

2Z7T/ W+\f
Moreover for £ € D (L)
Di/zf B Dé/Qf _ (D1/2 B D1/2> <D1/2 +Dé/2> (D/l\/Q +D(1)/2>_1§
— A (Di/2 + D1/2) ¢,
and from the uniqueness of T\ € L(F) satisfying (30) we get :

T = (DY + Dé/?)_1

Remark 4.5.

1/2 1/2 .

+D,
but, Dl/ 2 é/ is not boundedly invertible unless L € L(FE).

1. From the previous Lemma, statement 4, we see that D is boundedly invertible

2. In the three previous Lemmas the most important fact is that the constants Cy, Cy,
Cu,@? Ky, Ky, depend only on L and ¢, but do not depend on .
Lemma 4.6. Let —co < a < b < 400. Then:
1. For A € Sy, G = —D/l\/ ? which generates a semigroup (etG*)DO bounded, analytic

for ¢ > 0 and strongly continuous for ¢ > 0 satisfies moreover

1/2

{3K0>0 Jeg > 0, Vo = 1/2, VA€ S,

max {|| €7 || g, || Gae™@ Hw} —

17



2. For z € [a,b], A € S, and f € LP(a,b; E) we set,

Uny(x) = / @) f(5)ds, a <w
. (31)

b
Vag (2) = / =) f(5)ds, = < b.

There exists My, > 0 such that for any f € LP(a,b; E) and any A € S,

U < My,

1Ol 2o (a.:5) < NOES] 1N 2o (a5 )
My,

Vil oy < NS 11 o (a,0:) -

™ e(p)
2’2 " 3

Proof. We fix ¢ € ( ) and use notations and estimates of Lemma 4.2.

1. See Lemma 2.6, p. 103, in [14].

2. We first focus on Uy f. Let € [a,b]. We apply the Dunford-Riesz Calculus to define
e 9, and obtain

1 [* -
Uy f(x) = %/ /e(xfs)z (zI —Gx)"" f(s) dz ds
a Jy
— (z—s)z 1/2\-1 >
2m// (2I + D))" f(s) dz ds, x> a,

VAT

where the path v is the boundary positively oriented of Sy, UB(0, ¢) with € =

2K,

Then

1 o [too w .

Urflx) = ﬂ/a / e(x_s)rew(re“l’f—i-D}\/Q)_lf(s)e“pdrds
/ / LE S)Eele( Z@I+D1/2) lf( )glezededs
217? 27— ¢,
5 / / e@=s)re™™ (re_iwl + D}\/Q)_lf(s)e_wdrds,
i

hence

sl < e [ [ e g D s

[ [ ol e o4

N % /m /:‘”He(x_s)rew ()| |re1 + DY) H o) 4rds:

18



We deduce, from Lemma 4.2, statement 4. and Lemma 4.3, statement 3., that

||U/\,f($)|| drds

N

1 +oo i
?/a /E He(:c s)re wf(S)H wi/\ﬁ
+% /x /QW_IP e(ﬂc—s)eewf(s H 2)\[|(L

Hoo (z—s)re W
27r// H Hr+,/)\‘

Ky (z—s)r cos(¥)
Ir—S)r Ccos d d
T /a/ ‘ Ol by \Ay+1”

P
ele=120s0) | 1(s) | dps

drds

N

€KL

1 x 2m—
s w/‘)\’ﬁ-l/a /w
K z 400 e(;r s)rcos(w)
= (/ o 1@l

EKL

N

e(x—s)acos‘v(w) Hf(s)” dsdf

m/w/a
K (/ - L;Tf) )Hf 9lds

2e K
ERL [T eemszeostv) | £(s)|| ds.

TN a

N

So, setting

U +o0 63: s)rcos(¢) p
2€KL

U = =L
MR,

o= | £(5)] s,

we have

+ vz

1UNA Lo 0y < HUAlvf

LP(a,b) Lr(ab)

Estimate of HU}\J . Define g € L' (R), F € LP (R) by

LP(a,b)
[T SO i€ (0.0
— —dr ift>0 )| ift e (a,
gt):=93 Jo  r+ VA +1 and F(t) :=
0 else,
0 else,
thus

x b
Ulse) = 22 [Cge -9 15@lds+ 22 [yt 156)] ds

K b
- 71” 9z =) f(s)ll ds
_ % +00 g(z — s)F(s) ds

= Mger @),
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then from the Young inequality, we obtain

K
< g * Fllp)

K
< gl 1) e
. (R) (R)

H Us.s LP(a,b)

Setting ¢ = \/|A\| + 1 and noting that /¢ = 1/2K we have

+o00 etr cos(
/ Y vt

+oo e r/@ £ cos(y) dr
Y

+00 etpfcos(w
/ —dp | dt
p+1

/+OO tpl cos( dt) dp
0 p+1

etpl cos w)] dp
0 p+1

ol = /
+
J

L
“+o0o
B /e/e

()
|—|/—\/_\/_\

7/ _dp
lcos (V) Jij2k, p(p+1)
In (2K7, + 1) / cos ()

VIA[F1 ’

o KyIn (2K + 1) /7 cos () T
Lp(ab) /N +1 LP(ab;E)

Estimate of HUifHLP(a,b) . Define h € L' (R), F € L” (R) by

finally

|

ets—:cos(z/)) ift>0 Hf(t)” ifte (CL, b)
h(t) :== { 0 else and F(t):= 0 else:

b
Uiste) = i (/ ha = )|f@) ds+ [ 9@ = 5)f)] ds>

2Ky, /
= h(z —s)|[f(s)|| ds
VIHT
2e Ky, +oo
—_— h(x — s)F(s) ds
S L e E )
2€KL
= ———=(h*xF)(x);
(e @)
therefore from the Young inequality, we get
2¢e K
2 < ==L
|3 b)) /N +1 s Ellzoa
2€KL
< ————||h F
NES 12l 1wy 1l o (e
2K71,/ |cos (¢)

!
\/W ”fHLP (a,b;F) *
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From (32) and the two previous estimates, there exists My > 0 such that for any
feLP(abE)

My,
HU)\v.fHLP(a,b;E) < W Hf”LP(a,b;E) .

We note that
Vs (z) = U)\f(b +a—2x), (33)

with f(-) := f(- — a — b); then
My,

HVA,f LP(a,b:E) = W HfHLp(a,b;E) .

vty < T I
O

Definition 4.7. We say that a closed linear operator A on F, has the L regularity property
on [a,b], if the Cauchy problem

{ u'(t) = Au(t) + f(t), te (a,b)
u(a) =0,

admits, for any f € LP(a,b; E), a unique solution
up € WHP (a,b; E) N LP (a,b; D(A)).

In this case, there exists K > 0 such that for any f € LP (a,b; E)

sl oy + || vrtanss) T AU ey S B L pm -

For details on the LP regularity property we refer to [12] and [13].

Lemma 4.8. Assume that G = —L'/2 has the LP regularity property on [a, b], and consider
Uz, f, Vs defined in (31). Let A € S, then:

1. The linear operator Gy = — (=L + )\I)I/2 has the L? regularity property on [a, b].
2. For any f € LP(a,b; E), Uy f,Var € WP (a,b; E) N LP (a,b; D(G)), Uy 5 is the unique

solution of
{ J(t) = Gau(t) + f(t), t € (a,b)

v(a) =0, (34)

and V) ; is the unique solution of

V(t) = —Gyv(t) + f(t), t € (a,b)
v(b) = 0.

3. There exists M, > 0 (which does not depend on ) such that for any f € LP(a,b; E)
we have

VIAL+1[Ux s

|oame) + | U NG A ooy < Me S oy

Lpr(a,b;E

VITFTIVa ooy + VA A NCNVA oy < ML oy -

LP(a,b;E
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Proof. Let A € S,. We consider T, defined in Lemma 4.4, statement 1. and due to (30),
we have Gy = G —T).

1. Let f € LP(a,b; E). Here, we want to show that (34) admits a unique solution in
WP (a,b; E) N LP (a,b; D(G)).

o First, we define g € LP (a,b; E) by
g(t) =e"=IDf(1), te(ab).

o Then we consider Uy, defined by (31) which is the solution of

{ Z(S)) :gu(t) +9(t), te(ab) (35)

but G has the LP regularity property on [a, b], so
Uoy € WHP (a,b; B) N LP (a,b; D(G)).
e Since Ty € L(E) and Uy g € WP (a,b; E) N LP (a,b; D(G)) we get that
vi=e (O Uo,g, (36)
is also in WP (a,b; E) N LP (a,b; D(G)) with
v = —The I, + e~ Up.g-

So using (35) and the fact that T\G = GT) on D (G) (see Lemma 4.4, statement
2.) we deduce that

v = e TINYy 4 e I (GU 4 + g)
_ (G N T)\) e—(~—a)T)\ U(],g 4 e—(-—a)T/\g.

Finally v satisfies

{ v'(t) = (G =Ty)v(t) + f(t), t€(ab)
0.

e From Lemma 4.2, statement 5, we have Gy = G —T) so v = e*('*“)TAU(],g is a
solution of (34) with the expected regularity. Moreover if w is another solution
of (34) then e~ (=9 satisfies (35), so e~ (4w = Uy, and w = v; this proves
the uniqueness of the solution of (34).

2. From (31) we have that Uy s is a formal solution of (34) then
U)\7f = 67(701)’1‘)\ l_]‘(lg7
and has the expected regularity. We use (33) to study V) ;.

3. Since G has the LP regularity property on [a,b], there exists K > 0 such for any
h € LP(a,b; E)

Uo,n

H ) HLp(a,b;E) + ”GUo’hHL”(a,b;E) S K HhHLz’(mb;E) '
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Now let A € S,. U, s satisfies (34) so

{ Uy (0) = (G =T\ Uny(t) + f(t), t€(ab)
U)\7f(a) = 0,

thus setting hy = —T\Ux s + f

{ Ui,f( ) = GU)\,f(t) + hy(t), te(a,b)
U)\ f(a) 0

o~

then Uy y = Upp, and

HU/I\’f‘ LP(a,b;E) * HG’\U’\’fHLP(ab;E) - HU(/)”” LP(a,b;E) +11GUon HLp(a,b;E)
< K Pl e ap e
< HTAH/; HUA oo + 1l e (ape)
< ot \/>JA!7+ 1 oy
1 2o (s
< Mg 1Nl Lo s ) -

We use again (33) to study V) ;.

5 Spectral problem (1)-(2): first case

5.1 Preliminary estimates

In this subsection we suppose that X, A, H satisfy (4)~(6). Note that the results of Section 4,
can be applied to our operator —A, since due to (4), (5), —A is densely defined and from
(5) we have that —A is an operator of type o with bound C4. For A € Sy, —A + A[ is
an operator of type @ (for any 6 € (0, (0)); in particular if we set Q) = —(—A 4+ \)/2,
then from Lemma 4.2, statement 2., () generates a semigroup (e‘tQk)t 0Which is bounded,

=

analytic for t > 0 and strongly continuous for ¢ > 0. Moreover, there exists K > 0, such that

K

G+ B7

YAE Sp QX" o<

furthermore, from Lemma 4.3, statement 3., we have

B(0,1/2K) C p(Qr),

so there exists § > 0, which does not depend on A such that Q) + 61 generates a bounded
analytic semigroup thus, for some K; > 1

YA€ Spq, Y2 =20, || €9 |l o)< Kie ™. (38)
There exist also Ky > 0 and ¢y > 0 such that
{ VA€ Sy, Vo >1/2, Vje{0,1,2}:

39
H Q)\er)‘ ||[,(X)< Koef2co|)\|l/2. ( )
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Lemma 5.1. There exists a constant M > 0 independent of A € S,,, such that for any
A € Sy, operators I + e are invertible in £ (X) and

<M, (40)

YA € S, H(Iie%)_l "
X

Proof. Let A € S,,. For x > 0, we have

6xQ)\ < Kle—w5’

L(X)

we choose k € N\{0} such that Kije 2% < 1/2 < 1. Then I — ¢%*@x is invertible with

<1
cxy  1-1/2

H 2ka

thus 0 € p(I — e2@*) since

I = (I-e2) (I+ 2@ 4. +€2(k—1)QA) (I — e2*Qx)~1
= (I— erQ/\)—l ([ 2@ oy 62(16—1)62/\) (I— ).

Moreover
H e202) " [(1+ @ 4 g 209 (1 - eszx)—lHaX)
< (1 + H€2Qx £(X) Tt Hem L(X)) H )" Hc(X)
< 2Kk

We obtain the result for I+e2@» = J— (—eQQA) if we replace e2¥@x | 2@ by —e2k@x 2@
in the above proof. O

5.2 Spectral estimates

In this subsection we assume that X, A, H satisfy (4)~(8).

Let A € Sy, 0 € Sy, We recall that H, = H + pl and furnish estimates concerning
operators (), H,, which are easy consequences of our assumptions.

In the following M denotes various constants, independent of A, u, which can vary from
line to line.

Lemma 5.2. Let A € Sy, 0 € Sp,. Then (—A + M) H;l € L (X), moreover there exists a
constant M > 0 independent of A\ € S,; and i € S, such that

e 2 JN Yl F S 14 (41)

HQg‘H"_IHL(X) = W’ (42)

and HQ —1H L+ Al + |p] (43)
e T ) (L )Y
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Proof. Note that (—A + AI) is closed, so due to (7), (—A+ AI) H,! is bounded. Then

s PR (R
< llogy + | (B + u[)_IHC(X) <1+ Cp,
moreover
48y < Bt EED
< A i B
o1 gy 1+ i =
and
[y = caranm,,
_ _ A
S A T e
Finally, since
@ty = O3 QRE |y < 03" | |9

we deduce (43) from (41) and (37). O

For A € Sy, 10 € Sy, , let us recall that

= (Qx — Hy) + € (Qa+ Hy).

Note that, since D (H,) C D(Qi), we have D (Ay ) = D (H,) = D(H). We now introduce,
for > 0, the notation

Qoo = {O‘vl‘) € Spy X Spy 1 |A| 2 r and ’r;\“ > r}

and furnish results on Ay .

Lemma 5.3. There exist 19 > 0 and M > 0 such that for all (A, 1) € Qyg.0,,r, We have

0€p ((I — ) (14 29) QuH;! - I)

-1 (44)
H ¢22) (I + €200 ) QuH, ! — I} <2,
L(X)
0€p(Ar,) and HA WHL(X) < ym', (45)
e . L+ 1A+ Il y
HQ’\ /\:NHL:(X) S 1+ g (46)

Note that Q2A7! has the same behaviour as Qy\H !, see (43) and (53).
AT\ H
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Proof. Let (A, 1) € Qg for some 7 > 0. From (7), we have Qx\H,' € L(X), hence
~1
(I - eQQ*> (I + eZQA> Q)\Hljl — I € L(X); moreover, from (39), (40) and (43), we obtain

~1
I—e@) " (I4+e*P)QuH,! < M|QnH,!

H( ) ( ) @Hy, £0X) HQA p Hc(X)
1 |>\|1/2
< M +—

<|)\|1/2 |

2M
So there exists 1o > 0 such that for all (A, 1) € Q01 We have
H ) (I + D) QuH, <1/2. (47)

Let (A, i) € Qgg.01,70- Then (47) proves (44). We deduce that

Ly, = (I -~ 62%) [(I ~ eQQA)*l (I T e%?A) O\H ! - I} € L(X),

is boundedly invertible. Moreover

k= [(1-e)” (1+e2) Qi 1] (1- @)

)

satisfies
-1
HL/\vﬂHc(X) <2M.
Now, we write Ay, = (I+€2Q’\) Qx — (I— eZQ*) H, = Ly,H,, so Ay, is boundedly
invertible with

-1 _ —1 1
A =H Ly

this furnish (45). Finally, ‘

-1 .
L)\#HE(X) < 2M and (42) gives

-1 L+ [A[ + [ul

- HQ?\HJIHL(X) HL/\#HL(X) = 1+ |

|otasi]

£(X)

5.3 Main results
Let rg fixed as in Lemma 5.3.

Theorem 5.4. Assume (4)~(8). Let dp € X,u1 € X, (A, it) € Qo170 and f € LP(0,1; X)
with 1 < p < 400; the two following statements are equivalent:

1. Problem (1)-(2) has a classical solution u, that is,

ue WP (0,1; X)NLP(0,1; D (A)), u0) € D(H),

and u satisfies (1)-(2).

2. up € (D(A),X)i

2p

Moreover in this case u is unique and given by (24) where @, A are replaced by Qx, Ay ..

P
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Proof. We apply Proposition 3.8, with A, H, Q and A replaced by
A=, H+pl,Qy and Ay,

since in this case Problem (16) becomes Problem (1)-(2). So, it is enough to verify that
(4)~(8) imply (Hi) ~ (Hs).

It is clear that (4), (5), (6) imply (H1),(H2), (H3) mentioned in section 3. Moreover,
due to (45), assumptions (4)~(7) imply (Hy4). Finally, under (4)~(7)

Ay (X) € D(QND(H) € D(Q?),

so that QA;’L (X) € D(Q) and then (Hsj) is satisfied.
Note that here, the condition A;Ldo € (D(A4),X) , is automatically realized since for
K 2p7

any dg € X, we have A7 dy € D(Q)ND(H) c D (Q?). O
Yy A

Lemma 5.5. Assume (4)~(6), let f € LP (0,1; X) with 1 < p < 400 and set for = € [0, 1]

Iy () = 5@37 [ eI p(s)ds

(48)
fo@0==§Q;1/‘e“‘”Qkf@ﬂB
then, there exists M > 0 (independent of A and f) such that
[Q:Ly (DI < MIfl, 0y, and 1Qadag O <MIfl,, 0. (49
moreover I ¢, Jy 5 € WP (0,1; X) N LP (0,1; D (A)) with
2
HQ’\IAJ‘ Lr(0,1; X) MIIfl o5y 2nd HQ’\ A f‘ Lr(0,1; X) MIFN o1,
Proof. From (38), we have
1 1
Qg (DI < [ 991 () ds < 1[5 )l ds <M, g,
@ra s O < [ [e95 (9)]ds <21 [ 17 )l ds < MSl e,
We apply Lemma 4.8 with £ = X, L =—A, Gy, =Q), a =0, b=1 so that
1 1 __
I>\7f = iQ)\lUAvf and J,\,f = §Q)\1V,\,f;
1 1
then Q?\I,\J = iQ/\U’\’f and Qg\‘])\,f = EQ)‘V/\’f have the desired estimates. O

Lemma 5.6. Assume (4)~(6) and let f € LP (0,1; X) with 1 < p < +00. We use notations
(48) and set for x € [0, 1]

vo (z) = eIQ*JA,f (0) and v (x)= eIQAIAyf (1).
Then, for j € {0,1}, v; € W?P(0,1; X) N LP (0,1; D (A)) with
v;- =@\v; and v;’ = Q?\vj.
Moreover, there exists M > 0 (independent of A and f) such that

|@3es Ml g gz =051 (50)

Lp( OlX)
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Proof. We write, for z €]0, 1]

2 —  LTQx ! sQx
Q/\Uo (l‘) = € Q/\/O e f(s) ds
1
_ QxQAQA/ (s— $)Q/\f( )ds + Q)\/ e(z—s)QAGZSQAf (s)ds
= 287Dy (2) +2Q3 0 (2),

with g = 2@ f (-). From Lemma 5.5, statement 1. and (38), we have

{ 2981 O 0, € M@ Olanioaiy < Ml
HQAJA f||LP 0,1;X) MHgHmex) M||f||w<o,1;x> )

from which we deduce {|Q>\v0||Lp 0.1:x) S <M Hf||Lp(071;X>.

The same estimate runs for vy since

vy =€y pa- (0) and [|f(1— ‘)HLP(OJ;X) = 1l o1, -
]

Recall that X is a Banach space with norm ||-|| and (D(A4), X) 1
2

» is the Banach space
p7

equipped with the norm defined by

T e

leloun, = lel+ ([ - aca
"

Theorem 5.7. Assume (4)~(8), dg € X and u; € (D(A),X)zgp Then, there exists a
p7

constant M > 0 such that, for (A, ) € Qg1 and f € LP(0,1; X) with 1 < p < +o0, the
unique classical solution u of (1)-(2) satisfies

M« (d07u17)‘7u7f)
||u”LP(O,1;X) < 1+ |)\|

a(do’ub)\a/'baf)
max {”u,HLP(O,l;X) ) ”QUHLP(O,I;X) ) HQ)\UHLP(O,I;X)} < NGEEN]

{4010 s 10 gy NQR g, § < M2 o Ao ),

where

L+ Al + lul

a(d07u1’)\auaf): 1+’M’

.
(Idoll + 11/ o0y + Itllparxy, .+ N2 ]
2p>

Proof. Let (A, 1) € Qpy,01,m and f € LP(0,1; X). We recall that, taking into account the
notations (48), we have, for = € [0, 1]

u(x) = Sx (z) po + Sx (1 — ) 1 + Iy g (z) + In g (2),

where
pr =wur — Iy 5 (1)

po = Ay, KI B 62%) do +2Qxe9 1y +2Qx T 5 (0)} — .z (0)
Sy (x) = (I - eQQA)_l (er* - e(l_x)Q*er) eL(X).
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So we can write u = hg + h1 — ho + hz + hy with

ho (x) = Sx () Ay, [ (T = €22) do +2Qx (1 (0) = @1y 5 (1))

hi (z) = 25y () A}, QaePuy

ha () = Sx () a g (0) + Sy (1 — 2) I 5 (1) (52)
hs (x) =S\ (1 — ) uy

hy (z) = Inyg () + Jrg ().

Estimate of Q3hg. For £ € X and z € (0,1), we have

|@35x (@) A3 L] = H (1-9) ™ (1 - 20799 =0 QiasLe

20\ (7 _ 2020, Qx 2A-1
<o) -t e [@iani ] e
(X)
L+ A+ |l
<M €1l
L+ ||
so, from (46) and (49), we deduce
L+ AL+ (4l
2 Qx
@t @) < MR (ol + 21@0m s 1+ 26 I@aT s (1)1)
L+ AL+ (4l
s M= (Hdo|| + ||f||LP(0,1;X)) :
Then L A 1l
+ A+ |u
[@300] 153 < M7 (ol 170103
Estimate of Q%\hl. As above, we have for £ € X and z € (0,1)
1+ [A[ + [ul
2 Qx
@ @) < == (HQAe . Hulu) :
and from (39), we deduce that
(@3 (@)]| < M [fual],
hence
2
HQ’\hl LX) S Ml
Estimate of Q3hs. For £ € X and z €]0, 1], we have
-1
[@si@¢] = [(1-e9) 7 (1-20m2) ggerre
-1
< I — 2@ T — 2(1—2)Qx Q3e™¢
T
< M HQiezQAg , (53)

T | @m @) < (@i ) + |, 1)),
and then, from (50)
1 ([ @

M1l o o0

|

+ Qv -

LP(0,1;X) LP(0,1;X) LP(O,I;X)>

<
<
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Estimate of Q3hs. Due to (53), we have, for z € [0,1]
|@3hs @] < M @t aa.
From Theorem 2.1 in [14], since

uy € (D(A),X) 1

= (X D(A), g

2p’p’

we get

HQ?\hs

< M HQ%\e(lfﬂﬁ)qul

LP(0,1;X) LP(0,1;X)

1—L
< M (HUIH(D(A),X)Ql,p + A2 HU1H> :

Estimate of Q§h4. From Lemma 5.5, we get

s

LP01X) Hf”LP(OlX)

Summarizing the previous study we obtain that

gMOZ(dO,Ul,)\,,UJ,f)o (54)

LP(0,1;X)

|Q3u

Moreover since u satisfies (1) that is

u"(z) — Q3u(x) = f(x), ae. ze(0,1),

we deduce that
< M()é(do,l“,)\/i,f) :

[[u]
LP(0,1;X)

Writing u = Q;2Q?\u and Q) u = Q;lQiu, we obtain the estimates concerning v and @ yu.
Setting, for x € [0, 1]

~ -1

Sn(@) = (I—e*P) (5@ 4190 € £(X),
we have

/() = QxS (z) pro — QuSx (1 =)t + QI 5 () — Qx5 (2) = Q3 Qw (w)
the terms in w(z) = S (z) po — Sx (1 — x) p1 + In g (x) — Jy s (z) are (in absolute value)
those of u(z), so (54) runs when we replace u by w , this furnishes the estimate for u’'.
From Lemma 2.6 a) p. 103 in [14] we have
0ax |, = 2 an] ) <o (59

2
so writing Qu = QQ;IQ)\U Q*u = (QQ;\l) Q3u, we deduce the estimates of ||Qul|
and ||Q2u||

LP(0,1;X)

P(onx from those of ||Q>\u||Lp 0,1;x) and HQ)\UHLP 0.1,X)" O
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Remark 5.8. Under the assumptions of the previous theorem, we obtain moreover that

M —9en|\[1/2
) < 7 (Il + 272 411, ) (56)
Indeed
U(O) = A;\’L [(I — €2QA) do + 2@)\6QA (u1 - I)\7f (1)) + QQAJ)\J (O)} R
SO
—1 . 20x -1 Qx
O < A5l - 2 g 5853 2052 o

2458 (6, 103 )1+ @3 1)
M

L+ |pl

L(X)

~X

o A1/2
(1doll + M2e™20N g |+ 1711, ) -

6 Spectral problem (1)-(2): second case

In all this section we suppose that X, A, H satisfy (4)~(6) and (9)~(11).
Note that the results of the previous section obtained under assumption (4)~(6) can be
used here, in particular results of subsection 5.1, Lemma 5.5, Lemma 5.6 and also estimate

(55).

6.1 Spectral estimates

Let A € Sy, 1t € C. Recall that H, = H + ul and Qy = —(—A + XI)Y/2. We first furnish
estimates concerning operators @, H, which are easy consequences of our assumptions.

Again, in the following M denotes various constants, independent of A, 1, which can vary
from one line to another.

Lemma 6.1. Let A € S, € C. Then H,Qy" € £(X), moreover there exists a constant
M > 0 independent of A € S, and ;1 € C such that

_ 1
HH“Q/\IHc(X) S M(li_y‘)/f]‘)a (57)
Proof. From (55), we deduce
lowes, = l-a+nineregiear],,,
< [aereniear,, + [Weenea]
< Q@] oy Q5w + M@ sy 195 s
< M,
and, from (10)
I HQY e <l HQ\_MI lecoll @@y llzco< mj\/“[)\‘)g
Moreover
HHHQKIHE(X) < HHQXIHL(X) +ul HQXIHL(X)
M L+ [u| 1+ |p
S @Ay Faep? S aEnrE
]
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We now introduce the notation : for p > 0

A

A

= +oo for 4 = 0 and furnished results on
ul'/®

where we have set

AA,# = (Qx — Hu) + &2 (Qx + Hu) )
where A € S, pn € C.

Lemma 6.2. There exist pg > 0 and M > 0 such that for all (A, ) € Iy p, :

max {‘ H#QXIH ([ + 62Q>\)71 (I _ 62QA) H#Q)—\l

}<1/2,

LX)’ £(X)

oeofo- (1o (1= ) )

ey -cmymar]

0€p(Ar,) and HA;LHL(X) S W’

HQAA;LHc(X) <M

and
Oep (QA - HM)
M

_ g )t < —
<Q/\ H) HC(X) (1—|—‘)\D1/2

Qr (@~ H) |, <M

(Qx+ H,) (Qx — H")_luc(x) <M

2 (Qy + H,) (Qx — HM)_lH 1/2.

<
L(X)

Proof. Let p > 0 and (A, p) € I1,, ,. Then
-1
[—(I4e) (1-eP) H,Qy' € £(X),

and from (57) together with Lemma 5.1

bear oz

L+ |
(1 +[A)°

()

{1,057 (1) (129 s

x)’

<M

32

L(X)

]!/

R

(59)
(60)

(61)

(62)
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So there exists pg > 0 such that for all (A, pu) € Il po: (58) and (59) hold. Now, let
(A, i) € gy po- We deduce that

Ayy = (I+€2Q)‘)Q/\—(I—€2Q)‘)H“

= (14 1= (14+69) 7 (1-29) 1,67 ox

is boundedly invertible with

= [I - (1+ eQQA)_1 (1-e2) Hqul]_l (r+ e?@x)‘l

Q)\A)\L [I—(I—i—e?Qx) (I_(;QQA)HMQ;l]1<I+62Q,\)_1

S0
5y < M@ |1 () (1= 29 mar! el
M
RNV
and HQAA)\HH < M. Moreover, from (58), Q\ — H, = (I H,Qy )Q,\ is boundedly

invertible Wlth
-1

(@ - H) ™' =0t (1 - H.0y")

SO
) - M
[@-m Hcm @3], H (- HuQxl) 1 o NTEmEE
HQA (@ = Hz:(x ‘ “QA H
and
H(QAJrHu)(QA—Hu)_lHﬁ(X) = H( @x + Hu +20x) (Qx — )_1H£(X)
< 12f@-H)
< M.
Finally
|2 @+ ) (Q/\_H“)_IHL(X) < e £(X) |(@x+1,) (QA_H“)_IHL(M
S MH‘;QA £(x)’

and due to (39), we can eventually increase pg, for (A, p) € Il,, 5, which implies that
IA| = po, in order to have

e

<1/2.
cox) S 1/2
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6.2 Main results
Let pg fixed as in Lemma 6.2.

Theorem 6.3. Assume (4)~(6) and (9)~(11). Let
doe X, w1 € X, (A p) €Iy pos
and f € LP(0,1; X) with 1 < p < +00. Then, the two following statements are equivalent:

1. Problem (1)-(2) has a classical solution u, that is,

we W?P(0,1; X)NLP(0,1; D (A)), u(0) € D(H),

and u satisfies (1)-(2).
2. uy € (D(A),X) 1, and (Qx— Hu) 'do € (D (A),X) 1

2p° 2p'P

Moreover in this case u is unique and given by (24) where @, A are replaced by Qx, Ay ..

Proof. As in the proof of Theorem 5.4, we want to apply Proposition 3.8, with A, H,Q, A
replaced by A — A, H + puI,Qx, Ay ,. Assumptions (H;) ~ (Hy) are easily deduced from
(4)~(6), (9) and Lemma 6.2. To obtain (Hs), it is enough, due to (21), to prove (H}). So,
for £ € (D(Qx), X)), = (D(Q),X)y,,, we just have to show that

n=Qx(@Qx—H,) ¢ €(D(Q), X))
but, from Lemma 4.2, statement 5. we have Q\ = Q + A (Qx + Q)_l, thus

(@ —H)Qy'=@Q—-H) Q' + X (Qx+ Q)" Q) — nQy",
SO
E=(Qr—H)Q "= (Q—H)Qy'"n+X(Qx+ Q)7 Q' — nQy'n,
and

Q-H)Qy'=¢- 2@+ Q'+ 1@y e (D(Q), X))y,

which means that Q3 'n € (Q — H)™! ((D (Q) ,X)l/np) and, from (11), we get

QA eQ T ((D(Q), X))

then n € (D(Q),X)y/,,-
Here the condition (@) — Hu)_l do € (D(A4), X)L,

2p*

alent to A)_\Ldo € (D(A), X)) > appears naturally, since we have not, as in Theorem 5.4,
b 2p7
Ay (X) C D(Q?). O

which is, from Remark 3.9, equiv-

The proof of the following Lemma will use (13), wich is equivalent to (12) from Re-
mark 2.2, to study, for a given (A, ) € Iy, ,,, the operator Q3 (@ — H,L)f1 Q'

Lemma 6.4. Assume (5), (9),(10) and (12). Fix (A1, 1) € Il po- Then, there exists M > 0
such that for any (A, ) € Iy 0, we have

L (Qx—H) Q' = (Qx, — Hyy) ' Q7' Py, where Py, € £(X) with

||P>\,;L”£(X) < M.
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2. Q3 (@ — Hy) ™' Qy' € L(X) with

2 _ 1 -1
|3 @ - m) e, <M (63)
3. There exists W), € £(X) such that
Ay = (@ = H) T T+ 2Dw),), (64)
with
2A—1 -1
Wanllpe) <M and [|Q3A5,Q5 HL(X) <M. (65)

Proof. Let (A, p) € ey po-
1. We have

(Q/\ - HH>_1 Q)T1 - (QM - Hm)_l (QM - Hm) (QA - HM)_l Q)T1

= (Q)q - Hm)il [Qx — H,+ (= p1) I (Qx — Hu)il Q)Tl
+(Qa — Hu) 7 (@Qr, — Q) (Qx — Hy) Q3!

= (Qn — Hu) Q3+ (= ) (@a— Hy) 7' Q]
+(Qx = Hu) 7 (@ — @0) (Qx — Hy)H @3,

but, Qx, —Q») = (Q — Q) —(Q — @Q),) and from Lemma 4.4, there exists T\ », € £(X)
such that @y, = Q\ + T

||T)\7,\1H£(X) <M (1 + |/\|> and QilTA,/\l = T/\V\1 Q*l7 (66)

so
(@ = Hy) ™' Q3" = (Qx = Hu) ' Q7' Pag
where Py, € £(X) is defined by

Py = QO3 [T+ (m—m Q@ — Hy) ' Q + T, Qa (@ — Hy) Q)]

Moreover, using (37), (55), (66) and (62)

||P/\,u

oo < M| Gn= i Q@ = B0 105 i

0T ey @3 @3 = 107 957

< M1+ |M—M11’2+ 1+v\>1\!2
@+ DY @+ Ay

but since (A, 1) € Iy, 5, We have

L+ A =14 po |ul™E =14 poul?,

thus ||PA,AL||[;(X) < M.
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2. Since @3 is closed then, from (13) and the closed graph theorem, we obtain that
Q3 (Qx — H,LY1 Q;\l € L(X). Moreover we have

HQi (@r—Hy) ™! Qiluc(x) H(_A +AD) (Qx = Hu) ™ Q;1H£(X)

< Ja@-m e,
+ Al H(QA - Hu)_IHE(X) HQ;1HL(X)
< M.

The last inequality is obtained, from statement 1, which gives

[-a@ -7 Q| =A@ DT QTR

|~a@u =B @ 1Pl
M,

X)

NN

and, from (62), (37), which furnishes

/

A H(QA B H“)_lHa(X) HQngm S M

3. We set Ry, = (Qx + H,) (Qx — H,)™' € £(X) and write
M= (Q — Hy) + 2 (Qu+ Hy) = (T+ PRy, ) (Qa— ),
but Ay ., (@x — H,) are boundedly invertible, so I 4 €2 R) ,, is boundedly invertible
with . .
(I+e@Ry,) =1 PRy, (I+PRy,)
~1

Now setting Wy , = Ry, (I + e2QAR)\7“) € L(X) we have

_ -1 _

Ay = (@ —H) T+ EPRy,) = (@ = H) ™ (T-2PW),),

and, due to (62), we have

—1
HWA,M”L(X) < HRA,;LHqX) H(I‘i‘ezQAR)\,p) .

(X)
||R)\,u||[;(x)
S I- 1292 R ol )
< M.
Finally
HQKA;,LQfHL(X) HQi (Qx—H,)™ <I a ezQAWA”J Q;lHE(X)
< @@ -H) @y,
+ HQi Qv —H,)™! Q;‘IHL(X) H62QA L(X) W |£(X)

< M.
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O]

Remark 6.5. Assume (4)~(6) and (9), (10), (12). Let (A, p) € IL,, 5. From Lemma 6.4,
statement 2., we have

VEED(Qr), Qa(Qx—Hy) "¢ € D(Qy),
then (11) is satisfied, see Remark 3.1 statement 5, and we can apply Theorem 6.3.

Theorem 6.6. Assume (4)~(6) and (9), (10), (12). Let (X, ) € gy po, do € X with
(Q)\_ ) d()E( (A)7X>2ip7 U'le(D(A)?X)Lp and fGLp(O,l;X),
o

2p?

with 1 < p < 400. Then, there exists a constant M > 0, which does not depend on
dp,u1, (A, ) and f, such that the unique classical solution u of (1)-(2) satisfies

Mp (dOvulv )\,,U,, f)
HUHLP(O,I;X) < 1+ |)\|

Mﬁ (d(),’LLl,A,,U, f)
max {||U/”Lp(o,1;X) ) HQUHLP(O,l;X) ) HQ/\UHLP(O,LX)} < NG

’HQiuH gMﬁ(d(),’l“,A,[LL,f),

max {HUHHLP(O,l;X) ) HQZUH Lp(0,1;x)}

LP(0,1;X)
where
_ - -1
B (do,ur, A i, f) = Hdou+HfHLp(o,1;X>+H<QA H,) doH(D(A)X)le
.

1—L
N2 [(@a = H) T o]+ el pay AT ]
2p°

see (51).

Note that 8 (do,u1, A, g, f) contains [luy[| since it is in [lui{| pay x) ,
k) %yp

Proof. Again we adapt the proof of Theorem 5.7 and write u = k1 + ko + k3 — ho + hg + hy
with

1 () = 3 () AL @3 [0 do + 203D — 203D Dy (1)]
ke (z) =25, (x )AMQAJAf( )

ks (z) = Sy (x )A do

hy (z) = Sy (z )JA,f( )+ S (1 —z) L (1)

hs (x) =S\ (1 —z)uy

ha (@) = Ing (x) + a5 ().

Estimate of Q3k1. Due to (65), we have for £ € X and z € [0,1]
|@35x (@) A5 @5 ¢

’(I — eQQ*)_l (I — 62(1*35)Q>\> eIQinA;LQxl

-1
< (=) (-0 o | e [T o e
< Mgl
then
|@3k1 @) < M (lidoll + lhuall + 11 oo.1.x))
and
| @3], g 1.0y < M (ldoll + el + 1o
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Estimate of Q3ko. We write, for z €]0, 1]
REPATLAI (0) = Ge@as) [ e s(sas
—l—QiemQAA_l /1 eSQ*f(s)ds
= Q[ IRCR QUL f(5)ds
+e P QRN Qe Q) / 5P f(s)ds
= Qx/ "Dy (s) ds
FEBRALQ D, [ eI f(5)ds

T

where F)\ (s) = eSQAQAA)_\jLeSQ*f(s). So

fose

< MHQA (=92 (5) ds

LP(0,1;X) P 0.1X)

BT @1 [ e 010

)
LP(0,1;X)

but, from Lemma 5.5, (38), (62), (63) and (65), we deduce

HQA (I F, (5) ds

< MBI poo,13) < M Sl 2o o,1,x)

LP(0,1;X)

A5 @ [ e ) as

< M ”fHLP(O,l;X) ’

therefore

fosi

pons <M Il
Estimate of Qf\k:g. Due to (64) we write k3 = ifg + k3 with

{ ks (z) = Sy () (Qx — H,) " do
k3 (z) = Sy () (Qx — Hy) ™' e2W)y do.

Due to (53), we have for z €]0, 1]
H@i% (m)H _ HQ?\ I— €2Q>\)_1 (I— 62(171)62/\) QA (Qx— H,)~ dO
< M| Qe (Qa—Hy) do|-

From Theorem 2.1 in [14], since

@y — Hy) ™ do € (D(4), X) 1, = (X, D(A))y_1 .

2p

we get

| @3k

S@ - dou)

o < (H(QA —H) dOH(D(A),X),;p, + A
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We have also, taking into account (38), (63), (39) and (65)

|Q3Fs (@) = HQZ; (1- 62%)_1 (1= e2079) " (Q = Hy) ™ D) ,do
< M |e"PQ3(Qx — Hy) ' Q11 Qxe*d W,\,udoH
< M| @} @ = 5T Q3 [|@ae@ | 1wl ol
< do]l-
Finally
|Q3ks ()| < M (H(@ — H,) ™ do| o, A (@ = H) o+ ||d0||) .
.

Estimate of Q3h2, Q3hs, Q3hs. In theses terms, A)_\L does not appear so the estimates are
the same as in Theorem 5.7.

O
7 Results for Dirichlet boundary conditions
We can find, in [15] and [16], the study of the following problem
u’(z) + Au(z) = f(z), x€(0,1) (67)
u(0) = ug, u(l) = uy.

A classical solution of this problem is a function u € W?2P(0,1; X) N LP(0,1; D(A)),
satisfying (67). The authors obtain the following result (see Theorem 4, p. 200 in [15] and
Theorem 5 p. 173 (with A = L = M) in [16]).

Proposition 7.1 ([15],[16]). Let f € LP(0,1;X) with 1 < p < 400 and assume that
(Hy) ~ (Hj3) are satisfied. Then the following assertions are equivalent:

1. Problem (67) admits a classical solution u.

2. uy,ug € (D(A),X)%J)

Moreover in this case v is unique and given by

u(z) = S(@)up+S(1—x)u; —S(x)J(0) (68)
-SA-x)I(1)+I(x)+J(z), x€(0,1).

Note that assumptions (Hj) ~ (Hs) are described in Section 3 and S(-),I(-),J(-) are
precised in (23) and (25) with Q = —/—A.

Now we are in position to study, as in Sections 5 and 6, the spectral corresponding
problem

{ u(x) + Au(z) — hu(z) = f(2), @€ (0,1) (69)

u(0) = ug, u(l) = uy.
Applying the previous Theorem with A replaced by A — A\l we obtain
Theorem 7.2. Assume that (4)~(6) hold. Let ug, u; € X, A € S, and f € LP(0,1; X)

with 1 < p < 400; the two following statements are equivalent:
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1. Problem (69) has a classical solution w.

2. ug,ur € (D(A), X)L .
2p?

Moreover in this case u is unique and given by (68) where @ is replaced by Q).

We have also

Theorem 7.3. Assume (4)~(6) and ug,u1 € (D(A),X) 1 . Then, there exists a constant
2p

M > 0 such that, for A € Sy, and f € LP(0,1; X) with 1 < p < 400, the unique classical
solution u of (1)-(2) satisfies

M6 (’MO,’U,l,)\,f)
||U||LP(0,1;X) < 1+ A

M5 (U’Ovula)\)f)
maX{HUIHLP(O,l;X) ) ”QUHLI’(OJ;X) ) HQ)\UHLP(OJ;X)} < T+ N

maxc {0 | o o100+ [Q2ull vy QRN g 1, § < MO (uosur, A ).

where

_ 1
0 (uo,ut, A f) = [[fllzo(o,15x) + llwoll (peay,x) s A2 g

1
2p’

1—L
HIAL 2 fJua ]

+lluall pay,x) .
2p’p

Proof. Let A € Sy, and f € LP (0,1; X). Taking into account (48) and (68) with @ replacing
Q, for z € [0, 1], we have

w(x) =Sx(@)ug +Sx(1—z)ur —S(x) Jns(0) =S —a) L5+ Inys(x)+ Irs ().

So we can write uw = —hg + g3 + hs + hy with

As in the proof of Theorem 5.7 we get

|Q3hs Moy | @3kl

LP(OlX) Lp OlX) Hf”LP(OlX)

and also

HQihzﬂ

1—L
sM <”“1H(D(A),X)1 + A HU1||X> :
LP(0,1;X) P

2p’

Moreover, Q?\gg is treated like Q%\hg SO

HQ?\Q:&

1—L
<M <Hu0\|(D(A),X) + A HUOHX> -

1
LP(0,1;X) 2p’

We finish as in the proof of Theorem 5.7. O
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8 Generation of Semigroups
In this section, we set Y = LP(0, 1; X) with p € (1, +00) and, under (5), we consider operator

A: DA CY — Y

with the following domain
D(A)={uveY :u(z)e D(A) ae. z€ X and A(u(-)) € Y}.

Note that this operator is well defined from [11], Proposition 7.1, p. 359.

8.1 First case

Here, under (4)~(8), we consider the Banach space Z :=Y x X normed by
[(w, )|z = lully +llvll,  (u,v) € Z.
For ;i € C, we build a linear operator Py p,, on Z, by setting

Papyp: DPapu)Z — Z
(u,v) — (v 4+ Au,u'(0) — Hu — pw),

where D (Pa.ry) = {(u,v) € W x D(H) : u(1) = 0,u(0) = v} with
W =W?2P(0,1; X) N LP(0,1; D(A)) C Y.
Remark 8.1. Let (f,7) € Z. We consider the following problem

'+ Au—du=f
' (0) — Hu(0) — (A + ) u(0) = 7 (70)
u(l) =0,

then the two following assertions are equivalent:

L. (u,v) € D(Pamu) and (Pamu — M) (u,v) = (f,7).

2. u € W2P(0,1; X)NLP(0,1; D(A)) is a classical solution of (70) together with v = u(0).
So to study P, H,, it remains to solve (70).

We set o := min {pg, ¢1}, we define for p3 € (0,7 — p2), 7y, € (10, +00) by

70
Tpy i= ————————.
v3 cos2 (@245303)
Proposition 8.2. Let ¢3 € (0,7 — p2).
1. If A€ Sy, o€ Spy with |[A| = 7oy, then (A + 1) € Qg o1 r0-
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2. Let u € Sy,. Then Py g, is a closed linear operator on Z with
S \B (0,70,) C p(PaHu) -
Moreover, let A € S,,\B (0,7y,) and (f,7) € Z, then
(u,0) = (Pasu = M) (f,7),
satisfies, for z € [0, 1]
u(z) = Sy (x) A;iﬂt (I - eQQA> T
+53 (2) [20531,@x [as (0) = @D (1)] = T s (0)]
=Sx(L—2) Iny (1) 4+ In g () + Iy g (2)
v(x) = u(0),
where Sy () = (I - eQQA)_l (erA - e(l_z)QAeQA> e L(X).

3. There exists Ma p,,, > 0 such that for A € S,,\B (0,7,,) and p € S,, we have

P =20, < Yotk

Proof.

1. We have (A, A+ p) € Sy, X Sy, C Sy X Sy, , moreover |A| > ry, > rg and, due to [14],
Lemma 2.3, p. 98, we have

)\ _|_ 'u 2 )\ + 2
| i | > cos? (902-5@3) (Al |>\|‘:U*D > cos? (@2-5%’3) X || = ro.

2. It is a consequence of statement 1. and Theorem 5.4.

3. As in statement 1., we have, |\ + p| > cos (%) X |A| so setting

we have

LA+l A L4 A+ p
T N T N e e D
Let (f,7) € Z, then Theorem 5.7 and (56) imply that
(’LL,’U) = (PA,H,/J, - )‘I)_l (fvT) >

satisfies

MC,.
[ll Lo o,1,x) < 1+ ‘T’ (Il +1£1ly)
MC
= |lu(0)|| < £3 ,
v = [lu(0)] TE Al + 11y )
that is

[(Pass= A7 (1), < T I
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We then obtain:

Theorem 8.3. Assume (4)~(8). For each u € C with |arg (u)| < 7 — 2.

1. Pa,H,u is the infinitesimal generator of a Cp-semigroup.

2. Moreover, if ¢y € [7/2,7), then P4 g, is the infinitesimal generator of an analytic
semigroup.

8.2 Second case

Assume that (4)~(6) and (9), (10), (12) hold.
We define for u € C, operators

ﬁAaH#: D(£A7H,M)CY — Y
u — u” + Au,

where D (L£4,1,) is the subspace of Y of the functions u satisfying

u € W2P(0,1; X) N LP(0,1; D(A))
u(0) € D (H)
w'(0) — Hu(0) — pu(0) = u(1) = 0.

Remark 8.4. From Theorems 6.3 and Theorem 6.6, there exists M > 0 such that for any
weC

1. La,g, is a closed linear operator on Y.
2. Spo\B(0,p4) C p(Lan,y) where p, := max {PO’PO |N|1/€} > 0.
3. VA€ Sp\B(0,p,), VfeY, Ve |0,]1]

(Lamp=AD71F) (@) = S(@) [2A50,Qx [Ig (0) = €Ly 5 (1)] = Ja s (0)]
=Sx (A=) Iy (1) + Iy (2) + oy (),

where Sy (z) = (I - eZQ*)il (eU”QA - e(lfx)Q*eQA) .

M
1+ [\

LNESNBOA) (Came— A <
We then obtain:
Theorem 8.5. Assume (4)~(6), (9), (10) and (12). Then, for any p € C:

1. La,g,, is the infinitesimal generator of a Cp-semigroup.

2. Moreover, if ¢g € [7/2,7), then L4 g, is the infinitesimal generator of an analytic
semigroup.
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8.3 Dirichlet case
Assume (H;) ~ (H3). We define operator

La: D(La)CY — Y
U — u” + Au.

where D (L£4) = {u € W*P(0,1; X) N LP(0,1; D(A)) : u(0) = u(1) = 0}.

Remark 8.6. From Theorems 5.7 and Theorem 6.6, there exists M > 0 such that
1. L4 is a closed linear operator on Y.
2. Spo Cp(La).
3. VA € Sy,

(Lagp =MD F) (@) = =Sx(2) Jas (0) = Sx(1=2) Ly s (1)
+x 5 (@) + Iy (@),

where Sy (z) = (I - eQQ*)_l (er* - e(l_f‘)Q*eQA> € L(X).

M
. 71 = .1
4. YA€ Sy, - H(EA—/\I) HL‘(Y) < 1+ [\

We then obtain:

Theorem 8.7. Assume (H;) ~ (Hs). We have

1. L4 is the infinitesimal generator of a Cy-semigroup.

2. Moreover, if ¢g € [7/2,7), then L4 is the infinitesimal generator of an analytic semi-
group.

Remark 8.8. For simplicity, in this paper we have supposed that 0 € p(A), see (5), but
in the theorems above written for |\| large enough, and those concerning generation of
semigroups, we can drop this invertibility assumption; more precisely Theorems 5.4, 5.7, 6.3,
6.6, 8.3, 8.5, 8.7) remain true if we replace (5) by

Jdpo € (0,7), Jwg >0: Sy, C p(A—wol) and 3C4 > 0 :
Ca
< ;
LX) ~ 14|\l

VA e Sy,

(A= wol =217

In fact it is enough to write (1) in the following form
u(z) + (A —wol) u(z) — (A —wo) u(z) = f(z), z€(0,1),

to apply our results replacing A by A —wpl, A by A —wp and to notice that for |\| > 2wy we
have:

1 3
a g - <7A7
S I = wol < S

of course the constants rg, pg may change.
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9 Applications

9.1 A model example for the first case

In view to illustrate the results obtained in this work, we will consider the concrete problem
of the heat equation in the square domain Q = (0,1) x (0,1) with a dynamical-Wentzell
condition in one of its lateral boundaries

0
Stay) = Agultay), (t.y) € (0,+00) x ©
ou ou 0%u
—(t,0 = —(t,0 —(t,0 t,0 0 T
8t(7 7y) ax(? 7y)+8y2(’ ’y)7 (’ ’y)e( 7+OO)X 0
(P)
u(t,Ly) = 0, (t,1,y) € (0,400) x I'y
u(t,z,0) = wu(t,z,1)=0, z € (0,1)
U(O, xz, y) = UO(':I;’ y) (l’,y) € (07 1) X (07 1)a
where
{ Lo ={0} x (0,1), T'i={1}x(0,1),
’70:(0a1)><{0}7 71:(071)X{1}'
2 . ) ou ou
Here — is the Laplace-Beltrami operator on I'y. Physically, —— and — represent the
Oy? Oz Ox

2
interaction between the domain € and the lateral boundaries while —— is the boundary

Oy

diffusion.
Set &€ = LP(Q2) x LP(Ty); this Banach space is well defined and endowed with its natural
norm. Define operator P by

D(P) = {UJ = (U7U0) LU, Ax,yu € LP(Q)aUO S W27P(FO)7U\F0 = o,

v
P 0
(Azyt)p, = (a%)wo + B2 and. Ujyouyur, = 0} ;

0%v,
Pw = (Am/u, (%)\Fo + 3y20> , for w = (u,v) € D(P).

The boundary conditions are defined in LP(T'y) and Pw € €.

On the other hand it is not difficult to see that this operator is closed since all the actions
which describe the boundary conditions are "closed". We conclude that P is closed and well
defined on £.

When we integrate the time variable ¢, the following Cauchy problem

ow 0 _ (Ou Ouwg\ B
e &(u, Vo) = (at, 875) = Pw = P(u,vp)
w(0) = (u(0,.),v0(0,.)) given,
writes 9
U
a = A'LL
v 0%v

UlygUy Uy = 0
(u(0,.),v9(0,.)) given;
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since (u,vo) € D(P) and % = Au, we obtain

ou 9% ou
- (8),,+(52) - (2,
ITo 9z /|, dy? - L,

and since ur, = vg, by using the tangential derivative, we obtain
821}0 o aQU
oy? —\oy? ’

ITo ITo
summarizing we deduce the same equation as in Problem (P) :
ou
Z A
ot~ "
(8u> 3 (8u> N (a%)

ot ITo Ox ITo 8y2 -

u(0,.) is given

0

Ulypuy Uy = 0.

Now it is well known that the complete study of the abstract evolution equation above is
based on the study of the following spectral equation

P(u,v0) — A(u,vo) = (h, do) (72)
(u, 1)0) S D(P), (h,do) S 5,
and since u|r, = vo, (72) is equivalent to
Au—Au=nh
ou 0%u
gu U g, =d
((%) . + <8y2> ) U, = do (73)
0

Ulyguy Uy = 0,

which is an elliptic partial differential equation with the same spectral parameter in the
equation and in the boundary condition on I'y.

We will write (73) in an operational differential form. We consider the Banach space
X = LP(0,1) and identify & with LP(0, 1; X) by writing as usual, for g € £

g(z,y)=(9(@) (y), xye(0,1).
We define operator A on X by

{ D(A) = {1 € W2P(0,1) : ¢ (0) = 2 (1) = 0}
Ap(y) =" (),

and operator H := —A. So, equation
Au(z,y) — Au(z,y) = h(z,y),
takes the following form in space X

u”(x) + Au(z) — Mu(x) = h(z), = € (0,1),
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while the boundary condition
ou 0%u
— — — A =d
To

v/ (0) — Hu(0) — Au(0) = do;

writes as

the condition u|,,,, = 0 (which means that u(0,y) and u(1,y) vanish in y = 0 and y = 1)
is implicitely included in the fact that u(0) := «(0,.) and u(1) := u(1,.) are in D(H).
Therefore (73) or equivalently (72), write in the following abstract form

' (x) + Au(z) — Mu(z) = h(x), = € (0,1)
v/ (0) — Hu(0) — Au(0) = dy (75)
u(l) =0,

where (h,dy) € € = LP(0,1; X) x LP(X) and we are in the situation of Subsection 8.1 with
u=0.
Let u be the classical solution of (75), then u € W2P(0,1; X) N LP(0,1; D(A)) and

(u,u(0)) € D(P),

so that (u,u (0)) = (P — X))~ (h,dp).
Taking into account the fact that, here, we can take o9 =7 — ¢ (¢ > 0 as close to 0 as
we want), we can use Proposition 8.2 and Theorem 8.3, to obtain :

M

M >0, YA€ Spy 1 ¥ (hodo) €€, [(P—AD)™! (h,do)Hg <

1(h, do)ll¢ »

and deduce that our operator P defined above generates an analytic semigroup in &.
This example can be extended to the following problem

Au—Au=nh

ag (Ou/0x)p, + bogaz;o — Avg = dp
a1 (8u/8nr:)‘F1 + by 88;21 v =dy
Upyouy, = 0

9.2 Some concrete examples for the second case
9.2.1 Example 1

Here, we set 2 = (0,1) x (0,1). Our concrete spectral partial differential problem is

0%u 0%u
@(x,y)—kafyz(x,y)—)\U(ﬂc,y):f(:c,y), (z,y) € Q2
(P1) t(;il,y)z(), ) y € (0,1)
G 0.) =~ [(0(.u(0.ds =0, ye )
x 0
u(z,0) = u(z,1) =0, z € (0,1),

where we can take A\ € S, with g fixed in (7/2, 7).
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Define operator A on X := LP(0,1), with 1 < p < 400, as in (74), then the square root
of the opposite of this operator is well defined and

Wy(0,1) € D((=A)Y2) c W(0,1) and || (=A)"26| & /]| o1y + ¥ oo

see [3]. We know also that Q = —v/—A generates an analytic semigroup in X, on the other
hand @) = —v—A + M is well defined and generates an analytic semigroup in X for all
A€ Sy

Now let us define operator H by

Hu) = | Y o, E)u()de, v € X, (76)

with an appropiate function ¢ having the following properties. Let ¢ € (1,400) such that
1/q¢+1/p =1. We then assume that
9¢
(ZS (y7 ) ) 87 (y7 ) € Lq(07 1)7 for a.e. Yy € (07 1)
Yy
Fo0) )
(I)j Yy 87311 (ya ) S Lp(o, 1; Lq(oa 1))a for J= Oa 1
o1y —> ¢(y7y) S Lp(O, 1)

We can build a simple example of a function ¢ satisfying (77), setting, for a fixed n € N\ {0}

¢, 8 =10-y)"v(), &y e(0,1),
where ¢ € Wh4(0,1) N W?(0,1). We have

IH@)y = ( / 1 pdy)l/p
(/o K/o 6 (4, )" df)l/q ( / 1 |¢<§>|Pds)””rdy>
(/01 [(/01 ’¢(y,§)\qd§> 1/qrdy> v (/01 (€| d§) 1/p

1 1/p
([ 16 @ Maon @) 10l

< @l zego1;0900,1)) % ¥l x5

/0 "6 (4.6 p(©)de

1/p

N

N

N

so H € L(X).
Our concrete problem (P1) writes in the following abstract form

u’ () + Au(x) — Au(z) = f (z), ae. z€(0,1)
u(1l) =0, /(0) — Hu(0) = 0.

The following assumptions are satisfied:
1. X is a UMD space and operator A verifies

J o€ (0,7): Spy Cp(A) and 3C4 > 0:

VA€ Sp,, (A= MVlHam ! fTA\

)
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VseR, (—A)* e L(X), 304 €(0,7):
< +00.

sup He—9A|s| (_A)is
s€R

L(X)
this last property is proved explicitely in [23].

2. Since H is bounded, from Remark 2.3, statement 1, we get D(Q) C D (H) and,

ICug >0,  sup (1+0Y? | HQ7' )< Crg-
t€[0,+00)
3. We verifiy that (Q — H) ™' (D (Q)) € D (Q?).
Let ¢ € D (Q) such that (Q — H) (¢) € D (Q), then

QY—-Hy=g€D(Q),

with

W,?(0,1) € D(Q) € WHP(0,1).
To obtain 1 € D (Q?), it suffices to have Hy € Wol’p(O, 1) for ¢» € D (Q) € WP(0,1).
We have

y
) = [0 (€ veds
then H(0) =0, and Hy(1) = 0 due to (77) and

(HY (5) = 6 0.)60) + [ gj (5, €) (€ de.

In virtue of the assumptions verified by ¢, we then get Hy € VVO1 ?(0,1). Therefore
YeD(Q).

Now, we set Y = LP(0,1; X) = LP(Q2) and considering A, H defined by (74) and (76), we
build, as in (71)
EA,H,O : D(ﬁA,H,O) cY — Y
u — o+ Au())).

Note that in this example, in general, operators  and H do not commute.

We can apply Theorems 8.5 (with p = 0), to obtain that £4 g is the infinitesimal
generator of an analytic semigroup.

This result allows us to consider and solve the corresponding Cauchy problem with respect
to (P1).

9.2.2 Example 2

Here, we are considering a quasi-elliptic problem under an oblique derivative boundary con-
dition. Let Q = (0,1)? and consider the following spectral problem

0%u 0*u
W(x7y)_aiy4(w7y)_Au(xay>:f<x7y)7 (x7y)€Q
u(l,y) =0, y € (0,1)
P2 ou ou
0? 0?
U(]},O) = U({L‘, 1) = 87;;(‘1‘70) = aiyfg’(xvo) =0, z¢€ (Ov 1)
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We will assume that
c€C?0,1]: c(0) =c(1) = 0.

Here the boundary condition on I' = {0} x (0,1):

ou ou

— (0,y) + c(y)@

D (0,y) =0,

can be written as
Vu(o)-a(c) =0in T, (78)

with a(o) a vector on I' equal to (1, ¢(y)) which is pointing inwardly of Q. It is known that
(78) is called oblique derivative boundary condition on I". We set, in space X = LP(0, 1), as

above
{ D(A) = {¢ € W*(0,1) : 9 (0) = 9 (1) = 9" (0) = 9" (1) = 0}
AY(y) = =W (y),

so, as we have seen

{ D(V=A4) = {¢ e W>P(0,1) : v (0) = (1) = 0}

(79)

V=AY(y) = =" (y),

and clearly Q@ = —v—A and Q) = —vV—A + A, for all A € S, generate analytic semigroups
in X. We note also that /—@Q = (—A)Y* is well defined and

Wo(0,1) € D((=A)Y) c W(0,1) and  ||(=A)"*%| = [ /]| oo 1) + ¥ oo,y

see [3]. Now, define operator H by setting and

{ D(H) = Whr(0,1) (80)

[HY] (y) = —c(y)¥'(y).

We then have D((—A)1/4) C D(H), therefore, see Remark 2.3, statement 2, there exists
C > 0 such that, for ¢t > 0, we have

THQ llexy < I H A leooll (Y (—A+ D)™ || 2 x)
C

< —
(14 )44

Now, we will prove that (@ — H)*l (D(Q)) C D (Q?). To this end, let ¢ € D (Q) such that
(@ — H) (¢) € D(Q), then

W — e =g e D(Q)=W>(0,1) N WP (0,1),

so 1 € W4P(0,1). We have ¢ € D(Q), then 1 (0) = ¢ (1) = 0. But g € D(Q) thus
9(0) =g (1) = 0 and
V) = () () +90G) =0, j=01,
that is ¢” (0) = 9" (1) = 0, therefore 1 € D (Q?).
Note that in this example () — H is boundedly invertible and from equation Qv — Hvy = g,

it follows that
{ Y (y) — ()Y (y) = 9(v)
¥(0) = (1) = 0.
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Let ¥1and 5 two linearly independent solutions of
¥(y) — c(y)d'(y) = 0,
such that ¢1(0) = 0 and 2(1) = 0. Then we have

v = ) [ ads =) [ R alos

= [(@-H)"g| (v,
where the wronskian W is given by

W (s) = ¥1(s)¥(s) — P2(s)¥ (s)-

We have . )
——uil) [ gt~ i) [ {2 et
. h( ! ya(s)
/l 1 8 Zi 2\ S
P / W)? 1(y)/y W(s)g(s)ds +9(y)
If g € D(Q) = W2P(0,1) N WyP(0,1), it is clear that ¢ € W*2(0,1) and
w//(o) _ %(3)9 S

W)
= 0 [e(0)44(0) /0 ‘;Ejgg(s)ds

similarly we obtain ¢”(1) = 0.
Again, our concrete problem (P3) writes in the abstract form

u' () + Au(x) — Au(z) = f(z), forae. z € (0,1)
(1) =0, ¥/(0) — Hu(0) = 0,

with A and H defined by (79) (80) and setting

Lano: D(Lapo)CY — Y
U — u”—i—A(u(.)).

We can apply Theorem 8.5 (with 1 = 0), to obtain that £4 g is the infinitesimal generator
of an analytic semigroup.
9.2.3 Example 3

Here, we are considering a quasi-elliptic problem under an oblique derivative boundary con-
dition. Let © = (0,1) x R and consider the following spectral problem

0%u o*u

@(x,y)—a—yll(x,y)—/\u(x,y)zf(:r,y), (xvy)eﬂ
(P3)¢ u(l,y) =0, yeR

u g 0 (0, ) = 0, R

%(73/)—{_0( )87( y)_ Y € R,
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where the function ¢ is assumed to be a positive regular function. Here the boundary

condition on I' = {0} x R:
ou Ou

+-(0,y) + c(y) 3y (0,y) =0,

ox

can be written as
Vu(o)-a(c) =0in T,

with a(o) a vector equal to (1,c¢(y)) which is pointing inwardly of Q. It is known that
condition is called oblique derivative boundary condition on I'. We set, in space X = L?(R) :

{ D(A) = H*(R)
AY(y) = —pW(y),

SO

V=AY(y) = =" (y).

So, we know that the spectrum of v/—A is exactly [0,+00). This follows from the fact that
the Fourier transform:

{ D(V-4) = H*(R)

VA -3 =g = (4% - \) D=3,
gives

(A=) = (e -2) ),

for all A € C\[0,400). Same arguments are used to see that A verify our assumption (5) but
only on S,\ {0}. We do not have the invertibility of A.

Clearly Q@ = —v/—A and Q) = —V/—A+ A, for all A € S, (with A # 0) generate
analytic semigroups in X. We note also that /—Q = (—A)'/* is well defined. Note that

(—A+tI)"Y? and (—A + tl)_1/4 are well defined and bounded for all ¢ > 0.
D((-4)"*) = H'®R) and |(—4)"4y] ~ '],

see Theorem 3.1, p.5 in [3].
Now, define

we then have

D ((—A)Y*) = D (H).

Therefore, as we have seen, there exists C' > 0 such that, for ¢ > 0

IHQ  lexy < 1HEA+D™ ool (FA+ DY (A + D)™ | 2x)
C

< —
(1+6)Y4

Now, we will prove that
(Q-H)"(D(Q)cD(Q).

Let v € D(Q) = H?(R) such that (Q — H) () € D(Q). Then ¢" — ¢y’ = g € H%(R),
therefore ¢ = ¢y’ + g € H' (R) and

¢l//:Cw//+c/w/+g/:CQQ/)I_i_Cg_i_C/w/_'_gl eHl (R),
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from which it follows that
wll/l — C2/¢/l+QCC/w/+Cg/+C/g+C/1/1// +C///lp/+g//7

so ¢ € HY(R) = D (Q?).

Here 0 ¢ p(A), but using Remark 8.8, as in the two previous examples, we get that
LA 1o is the infinitesimal generator of an analytic semigroup.

Note that in this example, operators @ and H do not commute necessarily. Remark that
in this example we can also take X = LP(R), with 1 < p < 400, the same arguments apply.

9.2.4 Example 4

In [22] the authors have considered and studied the following problem

@( t)—l—ﬁ( t)=f( t), ( t)eRy xR x (0,7)
o2 z,y, ayg z,y, - z,y,t), z,Y, + )
U(anao):fl(y)a yER

ou

%(Ovz%t)_Dé/u(O?ny):f2(y7t)7 (y,t)GRX<O,T),

where Dy, for v € (0,1), denotes the fractional time derivative (or Caputo Derivative)
defined, for instance, by

y B 1 t 1  dg
DYg(.,1) = m_y)/o g LT

for functions g of classe C' with respect to the second variable; for this derivative, see for
instance [10]. This derivative has been extended to functions in L}, (R) verifying some
integrability condition, see [24].

Analysis of the above problem is useful to study the free boundary problem for the
Laplace equation in the case of subdiffusion as illustrated by the fractional derivative, see
[26]. We recall that this subdiffusion expressed by this Caputo Derivative means that the
square displacement of the diffusing species has a behaviour as t¥ for some real number v.
When v € (0,1), we are in the presence of a subdiffusion.

Our objective is not to study this problem, but it helps us to consider a class of similar
problems illustrating our theory of the second case. So, setting Qr = (0,1) x (0,1) x (0,T),
we will take inspiration from this example to consider the following spectral elliptic problem:

0? 0?
G2 )+ Gy t) = My t) = [ (0pt). (ey0) €O
(P4) 4 u(1,9,0) = fi (y), ye(0,1)
oL (0,,1) — Dyul0,,6) = 2 (3:1). (4.0) € (0.1) x (0.7),

for X € S, with ¢g € (7/2,7).
In view to write this problem in an abstract form, we will hide the variable (y,t) by
considering the following anisotropic Sobolev Banach space

X =W>H(0,1) x (0,7)),
consisting of all functions (y,t) — w(y,t) which are in LP((0,1) x (0,7")) such that we have

681;1 € LP((0,1) x (0,T)); it is endowed with the following natural norm

Lr((0,1)x(0,7))

B ow
lwllx = ||wHLp((0,1)x(0,T)) + ot
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Now, define operator A in X by

D(A) = {w € X: (?;:, ({;2;5 € LP(R x (0,7)) and w(0,t) = w(1,t) =0 for t € (O,T)}
0*w
[Aw] (y’t) = aiyg(yat)'

We also define H by
{ D(H) = WM (R x (0,T)) = X

[Huw] (y,t) = Dfw(y,1).
This problem can be written in the following abstract form:
u” (x) + Au(xz) — Mu(z) = f(z), fora.e. z€(0,1)
u(l)=fi
u'(0) — Hu(0) = fo,

where we have used the usual abstract writting

u(z,y,t) = u(z)(y,t) and f(z,y,t) = f(z)(y1).

Now we must verify the following statements.

1. X is a UMD space.

In fact, consider the application

T @ WeH(0,1) x (0,7)) — Z=[LP((0,1) x (0,T))]?
ow
w — (w78t>7

then T <W19’1((0, 1) x (0, T))) is a closed subspace of Z and thus has a UMD property.
Since it is isometric to X , we deduce that X is a UMD space.

2. Operator A verifies
Seo Cp(A) and 3C4 > 0:

A= <

VA € Sy,

and

VseR, (—A)® e L(X), 304 € (0,7):
< +00.

sup H670A|s| (_A)is
seR

L(X)

For the first property we note that the spectral properties on operator A are based on
the equation

0%w

w(0,t) = w(l,t) =0 for ¢t € (0,7T),

where h € W'((0,1) x (0,T)). Then, for all X € S, we have
1
Vg, t) € (0.1) % (0.7), w(yt) = | K5y 9)hs.t)ds.
0
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where the kernel K ﬁ(y, s) is well known. Using the Schur Lemma, we obtain, for all
€ (0,1), we obtain

1 » C p 1 »
DPdy < / hs, D) ds:
[ e orar< || [ e o s
T rl » C p T rl »
SO P dydt < //hs,t dsdt,
L wwtor avar< | [ ingson

C
lwll Lo (0,1y% (0,7)) < TH 12l o ((0,1)x (0,7)) -

then

that is

Since we have

8w oh
Wst) € 0.1 % 0.1), Di,00= [ K 3(0,5) 3y (5, 0)ds,
we deduce
|5 <tmla ’
r(01)x0r) 1+ |)\| LP((0,1)x(0,T))
and then

C
< ——||h]l -
Jollx < 77 Il

The second property is proved explicitely in [23].

3. Since H is bounded then from Remark 2.3, statement 1, D(Q) C D (H) and

ICug >0, sup (1+0Y? | HQ7' )< Crg-
t€[0,400)

4. Now, we must verifiy that (Q — H) " (D (Q)) € D (Q?). It is enough to verify that
DYA~! = A71DY on X. We have

1
Y(y,t) € (0,1) x (0,7, [Ailw} (y,t) :/0 Gy, s)w(s,t)ds

where the kernel G is well known. So, for any (y,t) € (0,1) x (0,7
[DfA_lw} y,t / G(y, s)D{w(s,t)ds = [A_IDQ’} w(y,t).

Again, as in the previous examples , we get that L4 g is the infinitesimal generator of
an analytic semigroup.
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