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Figure 1: A tadpole-to-frog authoring sequence with our system. After forming a plain base shape in the first frame,
the user continues to sculpt and manipulate the following shapes with topological and motion changes. Along with
user’s manual editing, our system can predict what the user might want to do next, as indicated by transparent yellow
suggestions for brush strokes (e.g. (a)) and manipulation operations (e.g. (b)). The user can also clone prior strokes as
visualized via the green gesture (e.g. (g)). The final shapes with manual and autocompleted edits are shown at the
bottom row. Please refer to the accompanying video for live actions.

ABSTRACT
Keyframe-based sculpting provides unprecedented free-
dom to author animated organic models, which can be
difficult to create with other methods such as simulation,
scripting, and rigging. However, sculpting animated ob-
jects can require significant artistic skill and manual labor,
even more so than sculpting static 3D shapes or drawing
2D animations, which are already quite challenging.

We present a keyframe-based animated sculpting system
with the capability to autocomplete user editing under
a simple and intuitive brushing interface. Similar to
current desktop sculpting and VR brushing tools, users
can brush surface details and volume structures. Mean-
while, our system analyzes their workflows and predicts
what they might do in the future, both spatially and
temporally. Users can accept or ignore these sugges-
tions and thus maintain full control. We propose the
first interactive suggestive keyframe sculpting system,
specifically for spatio-temporal repetitive tasks, including
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low-level spatial details and high-level brushing struc-
tures across multiple frames. Our key ideas include a
deformation-based optimization framework to analyze
recorded workflows and synthesize predictions, and a
semi-causal global similarity measurement to support
flexible brushing stroke sequences and complex shape
changes. Our system supports a variety of shape and mo-
tion styles, including those difficult to achieve via existing
animation systems, such as topological changes that can-
not be accomplished via simple rig-based deformations
and stylized physically-implausible motions that cannot
be simulated. We evaluate our system via a pilot user
study that demonstrates the effectiveness of our system.

Author Keywords
workflow, autocomplete, clone, sculpting, modeling,
animation, user interface

CCS Concepts
�Human-centered computing→User interface de-
sign; �Computing methodologies→ Shape model-
ing; Animation;

INTRODUCTION
Sculpting and animating shapes is a common form of con-
tent creation, and has found various applications among
users with different expertise, such as tutorial and ed-
ucation for novice users, films and games production
for expert users. Yet it remains challenging due to the



required level of quality and diverse range of effects. Auto-
matic methods such as physical simulation and procedural
scripting can achieve high realism, but are limited to spe-
cific effects. Keyframe-based sculpting provides complete
creative freedom, but requires significant manual labor
and artistic expertise. In recent years, time-based or shot
sculpting [35, 13] has emerged as a way to propagate
manual keyframe edits over an imported animation cache.
However, it is mostly a post-process for refining a reason-
ably complete animated model sequence, which the users
still need to obtain via other means, such as simulation,
scripting, and capture. As a typical example, users
would need to sculpt a static model with ZBrush [41]),
import it into Maya [5] for animation planning, then load
the animation cache into Mush3D [35] for refinement.
Therefore, the whole process requires high expertise and
efforts working across multiple tools, imposing a steep
learning curve for users.

The keyframe sculpting animation authoring workflows
contain two main types of operations: brush (sculpting
tools such as drag and clay) and manipulation (such as
object translation and rotation). Repetitive and tedious
tasks can occur within individual frames (spatial dimen-
sion) and across multiple frames (temporal dimension).
We present an interactive system to help users, espe-
cially novices with limited animated sculpting experience,
freely author keyframe sculpting animations with a suite
of interactive autocomplete tools, without requiring any
external system or data. Our interface functions like
traditional desktop and immersive VR keyframe brushing
systems [5, 35, 13, 17], with which users can freely brush
spatial structures and their temporal changes. Mean-
while, our system records and analyzes their workflows
and predicts what they might do in the future, both
spatially and temporally, and in real-time. As exempli-
fied in Figure 1, users can brush broad strokes in a new
frame to indicate the overall structure, from which our
system can predict what they might do next, a feature
we refer to as brush hint. They can further edit com-
pleted frames and automatically propagate the edits to
other frames via edit propagation, and manually clone
workflows from one spatial-temporal region to another
via workflow clone. Users can accept, partially accept, or
ignore these suggestions thus maintain full control.

Similar to existing sculpting tools, we focus on
soft/organic instead of hard/CAD-like objects with ex-
pressive brushing interface and diverse effects. Our sys-
tem assists users with repetitive tasks via our autocom-
plete features for a variety of shape and motion styles,
including those difficult to achieve via existing animation
systems, such as topological changes (tree growing, cell
mutation, frog metamorphosis, and other organic trans-
formations) that cannot be accomplished via simple rig-
based deformations and stylized physically-implausible
motions that cannot be simulated. It can also interpolate
or extrapolate new frames for inbetween and prediction by
considering both sculpting strokes and manipulation op-
erations, to produce smoother shape/motion transitions

than pure geometry-based interpolations/extrapolations,
especially for motion sequences with topological changes.

Method-wise, our main idea is to extend static sculpting
[39] towards the temporal dimension, analogous to how
2D hand-drawn animation [53] extends 2D drawing [51].
Specifically, [51] analyzes 2D sketching workflows to pro-
vide online painting suggestions, and [53] extends [51] for
2D hand-drawn animations. Similarly, [39] analyzes 3D
sculpting workflows to provide brushing strokes predic-
tions, and we extend [39] towards the temporal dimension
for 3D sculpting animations. However, a direct extension
would not work, due to several fundamental differences
between 2D sketching and 3D sculpting. In 2D sketching,
brush strokes usually indicate straightforward first-order
and final outcomes (stroke to stroke), whereas in 3D
sculpting, first-order brush strokes can indicate indirect
controls for second-order mesh deformations (stroke to
deformation), and later edits can change earlier results.
2D sketching can be placed anywhere in the canvas and
thus the predicted strokes are only constrained by prior
strokes, while 3D sculpting strokes should start from
(freeform brush) or adhere to (surface brush) the mesh
surface in the sculpting canvas. Furthermore, the core
method in [53] assumes that the users would follow coher-
ent temporal drawing orders across frames, which might
not hold for more general and complex 2D animations.
This will become even more so for 3D sculpting due to
viewpoint changes and invisible/intermediate strokes of-
ten in different temporal orders across frames. Our core
algorithm can match sculpting strokes with different ex-
plicit properties such as spatial length or temporal order
and yet have similar implicit user intentions, and provide
more meaningful predictions. In addition to sculpting
strokes, this also applies to manipulation operations.

We evaluate our prototype system with a pilot user study,
to collect user feedbacks and their animated models. The
evaluation indicates that our system can reduce input
workload and enhance output quality without restricting
the artistic freedom and achievable range of effects.

In summary, the main contributions of this paper include:

• The first suggestive keyframe-based sculpting system
that can help users, including novices, create animated
models from scratch without requiring external tools
or data.

• An intuitive user interface with a set of interactive
autocomplete tools (hint, edit propagation, workflow
clone, and interpolation/extrapolation) that assist in
repetitive tasks across different scales and dimensions.

• A deformation-based optimization framework to ana-
lyze recorded temporal sculpting workflows and syn-
thesize predictions.

• A semi-causal across-frames global similarity measure-
ment to support flexible brushing stroke sequences and
complex shape changes.



• A pilot user study to evaluate our prototype and create
various keyframe sculpting animation sequences.

RELATED WORK
3D animation remains a tedious and challenging task that
involves two key aspects: shape and motion. To assist
this task, different prior methods are proposed.

Keyframe animation
Keyframe-based animation is a well-established tradition,
with manually authored keyframes followed by inbetween-
ing. Keyframing interface provides full control but can
be quite tedious to author from scratch. To assist shape
posing, various approaches have been proposed, including
skeletons and rigs [8, 21], cages [45], stick figures [14], and
blend shapes [29]. Keyframe animation has also been re-
cently introduced into VR, such as Quill [17]. Our system
inherits this traditional and popular interface design, but
maintains the brush-based workflow which tends to be
more intuitive than requiring these extra manipulators.

Sketch-based animation
2D sketches can be leveraged for intuitive 3D anima-
tion authoring, such as [27, 19, 12]. However, due to
depth, these systems focus more on drafting overall move-
ment, may require projective constraints, and provide
less fine-grained shape and motion controls. Recent ad-
vancements in VR can provide more intuitive sketching
gestures for animation authoring [3]. Instead of ask-
ing users to provide explicit sketches, our system takes
brushing strokes as implicit manipulators to support both
coarse (frame-level) and fine-scale (stroke-level) controls,
including motion transitions and shape changes.

Suggestive authoring interfaces
Suggestive interfaces can help reduce input efforts and en-
hance output quality without disrupting user workflows,
and have been applied to 2D sketching [33, 28, 51], 2D
animations [53, 38], 3D modeling [18, 39, 48, 52], and
video-guided VR content creation [49]. Our system fol-
lows this route to design a suggestive authoring interface
but aims at keyframe sculpting animations, including
both shape and motion suggestions. Like 2D stylized
animations [25, 24, 26], our scope is freeform stylized
animations instead of physically realistic animations. In-
spired by prior planar animations works such as [55], we
also aim at supporting topology changes with exagger-
ated deformations across frames, but without requiring
external annotations or correspondences for the input to
preserve users’ natural flow.

OBSERVATIONS AND DESIGN GOALS
In this section, we analyze existing tools to understand
the nature and practice for keyframe sculpting. We in-
vestigated and studied existing tools with online tutorials,
authoring sessions/results, and users’ discussions on cur-
rent workflows in different forums. Furthermore, we also
interviewed an expert animator (P0) with seven years
of experience with keyframe sculpting to validate our
observations. This helped us better understand the pain

points and limitations of existing workflow and motivate
our design goals.

Existing tools and workflows
Sculpting tools [41] provide intuitive and freestyle brush-
ing interaction to create organic models for a large com-
munity of users with different expertise. However, in
keyframe-based sculpting, the temporal dimension adds
significant complexity to the task - “it becomes much
harder to create sculpting animations” - (P0).

Desktop time-based sculpting tools [13, 35] facilitate
intuitive keyframe-based sculpting, but usually require
combining of other tools for the entire process [41, 4, 5].
Regarding existing pipeline, P0 commented: “Current
pipeline is mature for commercial large project produc-
tion with experienced team collaborations, but I think
it is overly complicated for fast prototyping and concept
illustration. It is also not friendly for novice users or
less-skilled animators, given the steep learning curve and
needed tricks”.

VR brushing animation such as [17] does not require
rigging but relies on direct manipulation and brushing to
create frame-by-frame animations from scratch, and thus
is more intuitive and straightforward for users. However,
current VR animation interfaces focus on manual creation
of low-resolution and rigid strokes instead of detailed
organic objects that can be more easily created in existing
desktop tools such as [5].

System and workflow studies also suggest that the tedious
brushing strokes and repetitions for 3D sculpting [44] and
the multi-departments collaboration for animation pro-
duction [56], are among the significant reasons that make
sculpting animation time-consuming and challenging.

Design goals
Based on these observations and insights, we have formu-
lated the following design goals for our system:

Efficiency We employ a mixed-initiative interface [22]
with novel autocomplete tools, providing computa-
tional assistance to spatio-temporal tasks while retain-
ing user control and flexibility. We believe that such an
efficient workflow would also make keyframe sculpting
more accessible to a broader audience.

Flexibility Like [13, 35], our system mainly targets at
high-resolution organic sculpting animation via ZBrush-
like [41] freestyle brushing.

Coherence Like [17], our system is designed to be in-
tuitive and standalone, instead of requiring switch-
ing among multiple tools and techniques. We aim to
present a new possibility, rather than a replacement,
for traditional multi-stage pipelines. Our system is de-
ployed at a desktop environment but the method and
features could be applied for VR and other platforms.



Comparing 2D/3D Brushing Workflows
Inspired by predictive 2D sketching animation [53], we
aim at a keyframe-based suggestive animation system by
recording and analyzing users’ workflows.

For static sketching or sculpting, the temporal and spatial
editing is often local and coherent [51, 39]. For animation,
[53] follows coherent drawing assumptions, which means
the workflows such as drawing order (e.g., top-down or
bottom-up) and strokes number should be mostly similar
for neighboring frames. However, in practice, it is rarely
the case [34]. Such an assumption cannot generalize for
more realistic and complex animation [23]. This will
become even more so for 3D sculpting due to several
major differences from 2D sketching detailed below.
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(b) 3D strokes

Figure 2: Stroke coherence in 2D sketching and 3D sculpt-
ing. The prediction in [53] assumes similar brushing or-
ders across frames and thus could not handle the situation
depicted in (a). We relax their assumptions to support
more general sculpting practice (b).

3D viewpoint adjustments
If users need to follow the temporal coherent editing as-
sumption, when they are editing the current new frame,
besides the brush strokes order, they also need to remem-
ber the intermediate viewpoint adjustment history, which
is not practical for 3D sculpting as illustrated in Figure 2.

Visible shape changes from invisible user strokes
Sculpting strokes are invisible, what users can visual-
ize are the mesh shape deformations via different brush
strokes. With onion-skinning shadow of the previous
frame, users can reproduce the content to have similar
spatial shape appearance but not necessarily with consis-
tent stroke numbers and orders.

Sculpting strokes preference
Users may use a single long stroke or several short over-
lapping strokes to achieve similar end effects. This means

Figure 3: UI of our system. Our UI contains the main
sculpting canvas (left), a tools widget panel (right), and
an animation timeline (bottom). Users place sculpting
brushes and manipulate the objects on the main canvas
with tools selected from the right widget, and control the
keyframe via the timeline frame slider. The main canvas
shows a sculpt object in the current frame, and users can
decide whether to display the onion skin of the previous
frame(s) (rendered in grey with different transparency)
for guidance. Our system can predict what the users
might want to brush or manipulate next (rendered in
transparent yellow) based on recorded workflows.

that a similar feature can be accomplished via different
sculpting preferences across frames.

Therefore, a direct extension of [53] will not suffice. Be-
sides manual strokes, another key difference lies in the
validity of the predicted strokes, as detailed below.

2D prediction
In 2D, brush strokes directly formulate the visible/final
results on the canvas. The predicted strokes are only
constrained by prior strokes. The content will be the
same as the predicted strokes once accepted, regardless
of the prediction quality. There are looser connections
among strokes, e.g. strokes do not have to be precisely
connected with one another.

3D prediction
In 3D, brush strokes are the first-order inputs placed by
users, what exactly will be generated are second-order
mesh deformations. Different from 2D strokes which are
loosely constrained by the planar canvas, meaningful and
valid 3D sculpting strokes have to start from (freeform
brush) or adhere to the mesh surface (surface brush). And
sculpting strokes can carry semantic structural connection
meanings, e.g. connected shorter freeform strokes to
produce elongated shape deformation.

Hence, we need to consider extra sculpting context to
design the prediction algorithm.

USER INTERFACE
The UI of our prototype sculpting animation system,
as shown in Figure 3, combines the brush models as in



(a) freeform brush hints (b) accept all hints

(c) brush selection (d) surface brush hints

Figure 4: Brush hint. Along with the user’s brushing, our
system displays both the onion skin of the previous frame
(rendered in transparent grey) and the brushing hints
(either freeform (a) or surface brush hints (d)) for the
current frame (rendered in transparent yellow). The user
can accept all hints via the hotkey (b), or select partial
hints (c) (selected brushes are rendered in transparent
blue), or ignore the hints by continuing brushing.

popular digital sculpting tools such as ZBrush [41] and
the keyframe/timeline-based digital animation tools such
as in Maya [5]. Below we describe the overall process and
main features of our system.

Overall process
Starting from the default or imported base shape, users
sculpt and manipulate the object in the current frame,
and control the timeline to add new frames or edit an
existing frame. Meanwhile, our system records and an-
alyzes their workflows, including sculpting brushes and
manipulation operations, to provide online suggestions
via a set of interactive autocomplete tools. Our system
follows the spatial-temporal sculpting brushing behaviors
and assumptions to support general sculpting [44, 15].
Some authoring examples are shown in Figure 1 and the
supplementary video.

Sculpting and manipulation tools
The surface and freeform brush strokes perform various
sculpting operations as in popular sculpting systems (such
as clay, drag, grab, crease) to create low-level details and
deformations. The manipulation operations (such as
rotation, translation, and scaling) facilitate the creation
of the overall motion of the object.

(a) frame Fκ−2 (b) frame Fκ−1 (c) hint for Fκ

Figure 5: Manipulation hint. The user can perform
continuous manipulation operations across the frames.
Subsequent rotation, scaling, and translation operations
occur from Fκ−2 in (a) to Fκ−1 in (b). When adding
a new frame Fκ, our system suggests the initial shape
(rendered in yellow) in (c). The user can accept the
manipulation hint via the hotkey or ignore the suggestion.

Interactive autocomplete tools
Following our observations and design goals, we provide
a set of interactive autocomplete tools. One tool will be
active at a given time. Users can press the button on the
right widget panel to select the tool. For all suggestions
on the interface, users can fully accept via the hotkey
A, partially accept via the brushing selection gesture, or
ignore by continuing brushing, thus maintain full control.

Brush hint
Repetitive brushing operations can occur within an indi-
vidual frame and across multiple frames. Manually per-
forming these operations can be very tedious. Therefore,
along with user editing, our system provides brushing
stroke hints exemplified in Figure 4. With more strokes,
the hints are updated accordingly, including coarser-scale
structures (e.g. drag brush) and finer-scale details (e.g.
clay brush) for both spatial repetitions within one frame
and temporal repetitions across neighboring frames.

Manipulation hint
Manipulation operations, such as translation, rotation,
and scaling, control the coarser scale object positions and
motions across frames. Such manipulation operations
can be cumbersome for continuous shape and motion
posing across multiple frames. Our system also records
and analyzes these manipulation operations and provides
suggestions such as extrapolations for bootstrapping new
keyframes, as shown in Figure 5.

Edit propagation
Keyframe sculpting involves both coarse and fine scale
editing, often in an iterative fashion. Repeating details
across frames with coarse edits in shape or motion is ex-
tremely tedious. In a 3D interface, the constant viewpoint
changes [10] make the process even more cumbersome.
The edit propagation tool, shown in Figure 6, automates
finer-scale additive strokes performed in one frame across
multiple spatial regions and temporal frames.

Workflow clone
Clone is a common tool among different interactive con-
tent authoring systems, such as image regions [40]. The



(a) frame Fκ (b) frame Fκ+1 (c) edit Fκ

(d) in Fκ (e) to Fκ+1 (f) accept

Figure 6: Edit propagation. After manipulating the over-
all spatial transformation and sculpting initial outlining
shapes in (a) and (b), the user starts to add details in
one frame (c). Our system can automatically propagate
the edits (rendered in transparent yellow), both within
the current frame (d) and across multiple frames (e). (f)
shows the shape after accepting the suggestions in (e).

method in [51] extended the clone to consider not only
static image pixel data but also dynamic 2D sketching
workflows, and [39] further considered 3D sculpting work-
flows. Our system allows users to clone brushing work-
flows across frames. With our brushing interface, users
can specify source and target regions, as well as cus-
tomized parameters such as orientation and brush sizes.
Figure 7 shows an example.

Workflow interpolation
Manually authored keyframes are often too sparse for
smooth motion and require the addition of inbetweens,
whose generation has been a main focus of research in
graphics and image processing [42, 50]. To assist the out-
puts of smooth sculpting animation, we extend traditional
inbetweening methods to consider not only mesh objects
but also user workflows. Figure 8 shows an example.

METHOD
Our system analyzes the recorded workflows across frames
to synthesize online predictions. We illustrate our
method with concrete brush strokes in Figure 9. In order
to predict what strokes might be performed for current
frame Fκ, we deform strokes in the previous frame Fκ−1

to match the current user strokes in Fκ. Intuitively,
user strokes in Fκ act as implicit deformation handles to
decide how to deform strokes in Fκ−1 for prediction. To
achieve this deformation, we match strokes across frames
via a global registration framework, whose core lies in a
global similarity to dynamically measure the similarities
and update the correspondences.

Our global measurement can capture large, complex
shape deformations and movements across frames, such

(a) clone source (b) within the current frame

(c) accept workflow clone (d) clone to the other frame

Figure 7: Workflow clone. Users can clone the source
in one frame via a red gesture brush (a), to other target
regions, either within the current frame (b) or other
frames (d) via a green gesture brush. They can re-apply
the target gesture if not satisfy with the cloning preview
(rendered in transparent yellow). (c) shows the shape if
accepting the suggestions for (b).

as tree growing, virus mutating, octopus moving, and
tadpole-to-frog metamorphosis. This could be viewed as
an extension of [39] which only detects local similarities to
provide suggestions for single object sculpting. Our mea-
surement can also handle general sculpting practice such
as different number and order of strokes across frames.

Let us start with brush representation that will be used in
the remaining sections. We represent each brush stroke
b as a set of samples {s}. Each sample s is associated
with a set of attributes u(s):

u(s) = (p(s), a(s), t(s),m(s)), (1)

where p(s) records the sample position; a(s) is a set of ap-
pearance parameters such as brush type, radius, pressure,
and normal; t(s) indicates temporal parameters including
the global frame index, the parent brush stroke index,
and the sample index for the relative position within its
parent stroke; m(s) records the local deformation across
frames.

In the remainder of this section, we will overview our
brushing prediction method. We formulate the prediction
as an energy-minimization problem, where we optimize
for the predicted brushes as a deformation of brushes in
Fκ−1 towards Fκ. In order to formulate our energy, we
need to find similar brush strokes across frames. For this,
we propose the global similarity measurement and sample



(a) Fκ (b) interpolation (c) Fκ+1

Figure 8: Workflow interpolation. With user-created
keyframes such as (a) and (c), our system can perform
workflow-driven interpolations to generate their inbe-
tween frame in (b).

matching techniques. Finally, we describe how our brush
prediction could be used for deploying various interactive
features on the interface. Algorithm 1 illustrates the

procedure {bκ} ← Predict(I)
//{bκ}: predicted remaining strokes for Fκ
//I: input keyframes Fκ−1 and Fκ
I with deformation model Equations (2) to (5)
Erigid ← Equations (7) and (8)
Ereg ← Equation (9)
Efitness ← Equation (10)
Econf ← Equation (11)
Esculpt ← Equation (12)
E ← Equation (6)
{bκ} ← Optimize(E )

end procedure

procedure Optimize(E )
solver ← Levenberg Marquardt method
update sample correspondence of Equation (10)

backward deform (Fκ → Fκ−1) via ICP [30, 47]
forward deform (Fκ−1 → Fκ) via Equation (16)

end procedure

Algorithm 1: Overview of keyframe prediction algorithm.

overall flow of our method.

Brush prediction
Sculpting strokes are often coherent across adjacent
frames. Thus, strokes in Fκ−1 can guidestrokes in Fκ
(Figure 9a). With strokes in Fκ as implicit control han-
dles, we deform strokes in Fκ−1 to predict what else
might be performed for Fκ (Figure 9c). We design a
deformation framework tailored for keyframe sculpting
with both deformation and sculpting constraints. We
customize the optimization process to achieve interactive
high-quality predictions. Figure 10 illustrates the basic
ideas and steps.

Deformation model
Let us start with our deformation model. The defor-
mation parameter m(sκ−1) in Equation (1), inspired by
[47, 53], records the local deformation at s from Fκ−1 to
Fκ, via a 3×3 matrix A and a 3×1 translation vector δ.
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Figure 9: Algorithm overview via an example. The user
authors Fκ−1 (top) followed by Fκ (bottom). As the user
places a new stroke b in Fκ, our system analyzes how well
it matches to each stroke b′ in Fκ−1 via their constituent
samples {s}/{s′}. These matchings are often ambiguous
during the early stages with only a few strokes. For
example, with only two strokes in (b), s5 could match
with s′14 better than s′9. With more strokes in (c), the
updated global similarities become more robust to sug-
gest s′9 for s5. With these matched strokes (b1 ↔ b′1,
b2 ↔ b′4, b3 ↔ b′2), we optimize the prediction framework
(Equation (6)) to deform the remaining strokes b′3,5,6 from
Fκ−1 to Fκ for predictions, visualized in yellow (c).

Under the influence of sample sκ−1
i , the nearby sample

sκ−1
j is deformed to a new position qκ−1

ji :

qκ−1
ji = Ai(p

κ−1
j − pκ−1

i ) + pκ−1
i + δκ−1

i (2)

sκ−1
j can be influenced by multiple neighbor samples, thus

the accumulated local deformation for sκ−1
j is defined by:

qκ−1
j =

∑
si∈n(sκ−1

j )

ωi(s
κ−1
j )qκ−1

ji , (3)

where n(s) is the local sample neighborhood of s and
will be detailed in the next subsection. The weighting
ωi(s

κ−1
j ) is computed via:

ωi(s
κ−1
j ) =

1−
∥∥pκ−1

j − pκ−1
i

∥∥ /Θ∑`
m=1 1−

∥∥pκ−1
j − pκ−1

m

∥∥ /Θ , (4)

where Θ is the distance to the `-nearest sample, the pa-
rameter ` will be detailed in the implementation section.

Sculpting strokes/samples deformation across frames
should contain global transformation in addition to local
deformations. Inspired by [30], we enhance the model
with a global rigid transformation defined by a rotation
matrix R and a translation vector T . R is relative to the
center-of-mass χ of the source samples. Thus the locally



(a) source Fκ−1 (b) target Fκ (c) source G

(d) deformed (c) (e) Esculpt + (d) (f) prediction

Figure 10: Prediction deformation graph example. We
take Fκ−1 as the source (a) and Fκ as the target (b),
with strokes augmented with a graph-based deformation
model (c). With user input strokes in Fκ as implicit
deformation handles, we deform the source graph G to
predict remaining strokes in Fκ. The deformation con-
straints alone (Equations (7) to (11)) might not produce
valid deformation (d), which can be enhanced by extra
sculpting constraint (Equation (12)) shown in (e). The
deformed source strokes are visualized as transparent
yellow hints on the user interface (f).

deformed sκ−1
j is further transformed according to:

%κ−1
j = R(qκ−1

j − χ) + χ+ T (5)

Constraints
We formulate the prediction issue as an optimization
problem of deforming brushes in Fκ−1 towards Fκ. We
assume that similar brushes/samples across frames have
been determined as described in the next subsections.

To guide the optimization, we include various constraints:

E = αErigid + βEreg + γEfitness + ηEconf + ξEsculpt
(6)

The first four are deformation constraints extended from
prior registration methods [47, 30, 53]) while the last
constraint is new and tailored for digital sculpting. We
detail these individual constraints as follows.

Erigid penalizes the deviation of each sample transforma-
tion from a pure rotation, making the local deformations
become as rigid as possible to avoid artifacts:

Erigid =
∑

sκ−1
i ∈κ−1

Rot
(
A
(
sκ−1
i

))
(7)

Rot(A) = (aT1 a2)2 + (aT1 a3)2 + (aT2 a3)2+

(1− aT1 a1)2 + (1− aT2 a2)2 + (1− aT3 a3)2,
(8)

where a1,2,3 are the column vectors of A.

Ereg serves as a regularizer for the deformation, expecting
adjacent samples to agree with one another:

Ereg =
∑
sκ−1
i

∑
sκ−1
j ∈n(sκ−1

i )

∣∣qκ−1
ji − qκ−1

jj

∣∣2 (9)

Efitness pulls the deformation from Fκ−1 towards desired
positions in Fκ:

Efitness =
∑
sκ−1
i

ϕ2
i

∣∣%κ−1
i − pκi

∣∣2 , (10)

where sκi is a sample on a user-deformed stroke in Fκ
with position pκi , matched to sample sκ−1

i in Fκ−1 with

a deformed position %κ−1
i according to Equation (5), ϕi

is the correspondence confidence weight discussed below.

Econf targets at maximizing the reliable sample corre-
spondence in Equation (10), where the values of ϕi close
to 1 suggest a reliable correspondence via our sample
matching, while values close to 0 indicate that no proper
matching is determined:

Econf =
∑
sκ−1
i

(1− ϕ2
i )

2 (11)

(a) valid strokes (b) invalid strokes (red circles)

Figure 11: 3D sculpting strokes semantics. Only valid
predicted strokes can deform the target mesh correctly.
Predicted strokes in (a) can deform the shape correctly,
while the bottom strokes in (b) are invalid due to discon-
nections from the target.

The prediction [53] on static 2D canvas only needs to con-
sider brushing strokes. However, with only the above de-
formation constraints, it is unlikely to produce valid pre-
dictions for dynamic objects, as illustrated in Figure 11b.
Thus we have specifically designed a sculpting constraint
to consider the target shape. Surface strokes adhere
to the mesh surface, while freeform strokes start from
the surface and grow into the space. Thus for freeform
strokes, we include Esculpt to push the starting samples

{s̃κ−1} in Fκ−1 to adhere to mesh surface in Fκ:

Esculpt =
∑

sκ−1
i ∈s̃κ−1

∣∣%κ−1
i − p̌κi

∣∣2 , (12)

where p̌κ is the corresponding freeform on-surface sam-
ple position for sκ−1

i ∈ s̃κ−1. To compute {p̌κ}, we



ignore the non-surface samples of freeform strokes and
consider only the on-surface samples to perform surface
registration from Fκ−1 to Fκ. The surface registration is
performed in the geodesic surface parameterization space
[39], and the surface results are then reconstructed back
to 3D for {p̌κ}.

Sample similarity measurement
Similar to other registration methods [47, 30], our predic-
tion quality highly depends on the accuracy of correspon-
dences between source and target objects, i.e. the dashed
line connections for matched samples in Figure 9. For ex-
ample, with more accurate correspondences from source
(Figure 10a) to target (Figure 10b), the input brushing in
the target frame will contribute more as implicit deforma-
tion handles, which will make the underlying deformation
more reliable. However, unlike traditional registration
applications, interactive sculpting can have incomplete
information (i.e. strokes) in the current frame, and brush-
ing practice can vary among users and authoring stages.
To address these challenges, we propose a global similar-
ity measurement to dynamically determine and update
correspondences between Fκ−1 and Fκ. Specifically, we
measure the similarity based on their neighbors as in the
neighborhood-based texture synthesis optimizations [39,
53, 31].

In the remainder of this section, we will start from the
local similarity measurement, then proceed to our global
one, and finally highlight the core difference from [53].

Sample differential
The differential between sa and sb is represented as:

û(sa, sb) =

(ωpp̂(sa, sb), ωaâ(sa, sb), ωtt̂(sa, sb), ωmm̂(sa, sb)), (13)

where p̂, â, t̂, m̂ represent the sample pair differentials
defined in Equation (1), and all are calculated w.r.t. sb.
We compute p̂ via the stroke parameterization as in [39],

and other differentials â, t̂, m̂ via direct numerical differ-
ence (i.e., scalar or vector difference). Corresponding
weighting parameters ωp, ωa, ωt, and ωm are summarized
in the implementation section.

Local neighborhood similarity
We define the local neighborhood n(s) to contain samples
of the same brush type with s and fall within its spatial
vicinity in the same frame. Unlike [53], we do not enforce
n(s) to be temporally causal to gain broader spatial
context, as compared in Figures 12b and 12c.

We measure the similarity between n(s′) and n(s) by
summing up their paired sample differentials:

∆(s′, s) =
∑

sj∈n(s)

exp
(
−
∣∣û(s′j , s

′)− û(sj , s)
∣∣2) , (14)

where sj iterates through n(s), and s′j ∈ n(s′) pairs with
sj . We follow [53] to measure the similarity via the
exponential sample differential with a consistent range;
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Figure 12: Brush strokes/samples and local sample neigh-
borhood. Frame Fκ−1 in (a) contains ordered strokes b1,2,3,
and samples along each stroke, e.g. s′1,2,3 for b′1. The left
grey regions indicate the base shapes. The neighborhood
n(s′6) via [53] in (b) contains only samples placed before
(s′3,5, marked with green stars). Ours in (c) relaxes the
temporal restriction but emphasizes more spatial vicinity,
to include s′3,5,7,10.

consequently the similarity will be larger with a smaller
differential. We determine the pairings by first iden-
tifying the pair (s′j , sj) with the largest similarity and
then exclude them from further consideration, and repeat
the process to find the next pair until n(s) runs out of
samples.

Global neighborhood similarity
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(a) υ(s′3)
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(b) υ(s′6)
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(c) {n(υ(s′3))}

Figure 13: Predecessor samples and global semi-causal
sample neighborhood. The predecessor samples (marked
with blue stars) of s′3 in (a) and s′6 in (b) include s′1,2,3
and s′4,5,6 respectively. Our global semi-causal sample
neighborhood N of s′3 in (c) starts from itself and only
goes back along with its predecessor samples. Thus
N(s′3) = {n(υ(s′3))} = s′1,2,3,4,5,6.

In order to better capture the sample semantics among
strokes, we define the predecessor samples υ(s) as those
sculpted at or before s along the parent stroke. υ(s) is
temporally causal and remains fixed once computed, as
in Figures 13a and 13b.

The local sample neighborhood difference in Equation (14)
works on individual samples. In order to capture broader
context among strokes, we design a global semi-causal
sample neighborhood N as the accumulation of predeces-
sor samples’ neighborhoods, as illustrated in Figure 13c.
N(s) combines the temporally-noncausal local sample



neighborhood centered at the temporally-causal prede-
cessor samples, thus we call it semi-causal.

We measure the similarity between N(s′) and N(s), by
accumulating the local sample neighborhood similarity
of their predecessor samples υ(s′) and υ(s):

Υ(s′, s) =
∑

sυ∈υ(s)

∆(s′υ, sυ), (15)

where sυ only goes backward and diffuses from s towards
the nearby predecessor sample ∈ υ(s), s′υ ∈ υ(s′) is the
matching sample of sυ with the same relative diffusion
depth. To prevent υ(s′) from running out of samples
before υ(s), we adaptively set the diffusion length to be
the smaller between ||υ(s)|| and ||υ(s′)||.

Sample matching
Every time the user places a new brush stroke in the cur-
rent frame Fκ, our system analyzes the global similarity
between the strokes in Fκ−1 and Fκ, and updates their
matching. The matching quality will be improved with
more brushes. Here we discuss how to determine sample
pairs {(s′, s)} across frames.

Normalization
For each s placed into current frame Fκ, we compute its
global similarity Υ(s′, s) with each s′ in previous frame
Fκ−1 of the same brush type as s. Since strokes can have
different numbers of samples, we divide each Υ(s′, s) by∑
s′ Υ(s′, s) to fall within (0, 1) without being affected

by the diffusion depth.

Candidate matching samples
Inspired by [39, 53], an online method is adopted to
determine the threshold when choosing the candidate
matches {s′} for each s. For each s in Fκ, after we
compute and normalize its global similarity to Fκ−1, we
find the largest global similarity Υmax first, and then
collect samples with global similarity over the threshold
(set as 35% of Υmax) to its candidate matching samples.

Update matching sample
We decide the matching sample sκi for each sκ−1

i via:

sκi = arg max
s

(Υ(sκ−1
i , s)), (16)

where s runs through all candidate matching samples of
sκ−1
i .

Optimization process
We optimize the prediction framework in Equation (6) to
compute the predictions. The unknowns of Equation (6)
include affine transformations of the deformation graph,
global rigid transformation, sample correspondences in
Equation (10), and confidence weights ϕ for each sample.

To enhance the prediction quality, we perform a two-pass
optimization. In the first-pass, we deform Fκ to Fκ−1

and update the correspondence via ICP as in [30, 47].
With these initial sample correspondences, we deform
Fκ−1 to Fκ in the second-pass. For higher accuracy, we

update the matched sample of each sκ−1
i with our global

similarity measurement via Equation (16). Fκ−1 is usu-
ally more complete than Fκ which is currently being
edited. Thus, in the backward pass, each sκi is likely to
find a match in Fκ−1, and thus ICP is a good choice.
However, in the forward pass, not all samples in Fκ−1

will have unique matching samples in Fκ. We thus apply
Equation (16) to find the best match, with potential du-
plicating target samples in Fκ for multiple Fκ−1 source
samples. The brushing semantic information encoded
in the global similarity also provides more accurate and
meaningful correspondences, to push the optimization
and predictions towards higher quality with users’ inten-
tions. We then compute the deformed sample positions
via the local deformation model and interpolate samples
to form the predicted strokes. More details for the weight-
ing initializations (α, β, γ, η, and ξ) and optimization
iterations are summarized in the implementation section.

Difference from [53]
The 2D drawing stroke in [53] adopts a temporally causal
global neighborhood. Thus as also pointed out in [53],
their method is heavily influenced by the brushing order.

Compared to [53], our global semi-causal sample simi-
larity measurement relaxes the strict temporal causality
assumptions, to adapt to more general sculpting ani-
mation practice. It is designed to emphasize more on
sculpting stroke semantics and aim at capturing larger-
scale similarity. The relaxed local neighborhood n(s)
takes over more responsibility to capture samples’ rela-
tionships across different strokes. Though the diffusion
path becomes shorter compared to [53], the accumulated
enlarged local sample neighborhoods n(υ(s)) contribute
to capture global structures and relax the original strict
coherent temporal strokes order assumption. In contrast,
the diffusion paths via [53] are much deeper, which will
make it less robust if a certain intermediate strokes break
its temporal causality assumption, as illustrated in Fig-
ure 14. Furthermore, the broken diffusing routes will
propagate to future brush strokes due to its incremental
recursive structure. Thus our global semi-causal neigh-
borhood leads to a more robust matching for sculpting
strokes samples across frames. One concrete example is
shown in Figure 15. Our method can also match input
strokes in different numbers and lengths which achieve
similar output, as illustrated in Figure 16.

Our global sample similarity depends on the temporal
coherence of sample orders within matching strokes. For
example, if users place a stroke in the previous frame from
left to right, and then change the direction from right
to left in the current frame, the global context can be
different due to reverse diffusing direction. Fortunately,
as statistically analyzed in [44] for sculpting workflows,
brushing parameters and preferences are rarely changed
and users would prefer repeated brushing. Furthermore,
for freeform strokes, the samples ordering within each
stroke will naturally be consistent across frames, as they
need to start from the mesh shape to perform valid de-
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Figure 14: Causal neighborhood in [53] versus our semi-
causal neighborhood. After finishing Fκ−1, the user con-
tinues to author Fκ. (a) to (c) visualize Fκ−1 while (d)
through (i) visualize Fκ. In the middle row (d) to (f),
Fκ and Fκ−1 have the same strokes order, and ideally,
s6 should match s′6. In the bottom row (g) through (i)
the strokes are placed in a different order, and ideally,
s8 should match s′6. The method in [53] accumulates
the neighborhood N(s) recursively in temporally causal
order, as shown in (a), (b), (e), (h). The accumulated
recursive path (arrows in different colors correspond to
diffusing branches along with different brush strokes) is
indicated right above the diffusing neighborhoods (shown
in circles in the same colors as the corresponding branch
strokes). This works when Fκ−1 and Fκ have similar
stroke orders (e.g., (a) and (e)) but not otherwise (e.g.,
(a) and (h)). And s8 in (h) will match with s′18 in (b)
incorrectly. Our semi-causal neighborhood, which ac-
cumulates (temporally-non-causal) local neighborhoods
from (temporally-causal) samples from the same stroke,
can work for both cases, both (f) and (i) can match (c)
and decide the correct s′6 for s6 and s8.

formations. Thus our method works well for general
brushing preference.

Implementation

Software environment and hardware platform
Our prototype is developed via C++ and Qt 5.12 under
macOS 10.14 Mojave with a Wacom Intuos Pen Tablet
to support pressure-sensitive brushing input.
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(a) frame Fκ−1

b1 b2

(b) frame Fκ

Figure 15: Semi-causal global similarity example. The
user placed the brushing strokes in Fκ−1 in the order
shown in (a). Though the user did not follow the same
brushing order in Fκ (b), our semi-causal global neighbor-
hood can still lead to meaningful prediction via a more
robust matching to alleviate the need of strict brushing
orders.
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Figure 16: Matching strokes in different numbers and
lengths. In the first frame (left), there are four strokes
b′1,2,3,4. In the current frame (right), the user inputs two
strokes b1,2. Note that the two short strokes b′2,3 and the
long stroke b2 achieve similar deformation effects. Our
method adaptively sets the diffusion length to be the
smaller predecessor set size between υ(s) and υ(s′). So
the accumulated global neighborhood would suggest s6

matches with s′6; similarly, s7 matches with s′8.

Mesh
Interaction efficiency for sculpting is a significant concern
[9], even more so for animated sculpting. We adopt a
triangle-based mesh representation with the adaptive
subdivision option as in Dyntopo [7]. To ensure real-
time mesh updates with different sculpting brushes, we
employ the octree structure to support instant local mesh
deformation.

Manipulation hint
The predicted initial mesh shapes, when starting a new
frame, are transformed via the extrapolated manipulation
hints, and rendered in light yellow.

Brush hint
The predicted brush strokes are rendered in transparent
yellow. Users can partially select hints via the selection
brush, rendered in transparent blue.

Workflow clone
The source and target gesture brushes are rendered in
red and green respectively. Since gesture brushes are



(a) plain base shape (b) frame 1 (c) frame 2 (d) frame 3 (e) frame 4

Figure 17: Target sculpting animation task (onion growing).

usually specified with different lengths and orientations,
we normalize the gesture stroke parameterization w.r.t.
the gesture arc length.

Workflow interpolation
To produce the workflow-driven interpolated shapes (e.g.
Figure 8b), we utilize the optimized transformations via
our prediction framework. The optimized transformation
suggests how to fully deform Fκ−1 towards Fκ; for the
inbetween frame, we deform Fκ−1 with halved transfor-
mations, rendered in light purple.

Neighborhood
Inspired by [31], for sample neighborhood similarity in
Equation (14), to prevent n(s′) from running out of
samples before n(s), we set the size of n(s′) to be 6,
and n(s) to be 4. The ` parameter in Equation (4) is set
to the full sample neighborhood size 6.

Optimization
We optimize this nonlinear least-squares problem of our
prediction framework using the Levenberg Marquardt
algorithm. For this sparse system matrix, we solve the
normal equations in each iteration via a direct solver that
adopts sparse Cholesky factorization to enhance perfor-
mance. We alternate two steps until convergence: update
correspondence Equation (10) with transformations fixed,
then optimize transformations with correspondences fixed.
The Ai in Equation (8) is initialized as an identity matrix.
The unknowns are jointly determined by the optimization
solver. We follow a heuristic to automatically adapt the
optimization weights in Equation (6), to initially favor a
rigid alignment, and then lower the stiffness to increase
deformation as the optimization progresses. Specifically,
we initialize α, β, γ, η, and ξ to be 1000, 100, 10, 100,
and 10 respectively. α, β, and η are halved whenever
|Ei − Ei−1| < 10−3(1 + Ei), where Ei is the total cost of
i-th iteration, until α < 1, β < 1, and η < 1. Other
weights remain fixed.

Other parameters
For Equation (13), we set ωp, ωa, ωm to be 1. To observe
the brush stroke topology for neighborhood matching, we
set ωt to be 10 when samples belong to the same brush
stroke and set to 0 otherwise.

USER STUDY
We conducted a pilot user study to gain insights on how
our system compares with the traditional fully manual
keyframe sculpting pipeline. We invited two professionals
(P1,2) and four novices (P3,4,5,6) with different levels of
sculpting animation experiences as participants. All tasks
were conducted on a 13-inch laptop with a Wacom tablet.
The study consisted of four sessions: tutorial, target
session, open creation, and final interview. The first
author provided guidance to all participants, observed
their behaviors, took notes, recoreded their feedback, and
collected animation results.

Tutorial (30 minutes)
The goal is to help participants familiarize themselves
with sculpting animation. The participants were given an
overview of our system, as well as the traditional pipeline
composed of modeling followed with animation, including
the popular tools for each stage (ZBrush and Blender
for the modeling, Maya and Mush3D for the animation).
For the extra tutorial, since sculpting animations often
contain topological changes, we taught all users how to
handle topological changes on the interface of traditional
pipeline, while our system does not require any extra
tutorial. The first author provided the same amount of
guidance to all participants.

Target session (1 hour)
The goal is to measure and compare the objective perfor-
mance and subjective experience of our system compared
to the existing pipeline. The participants were asked to
reproduce a target sculpting animation sequence (Fig-
ures 17b to 17e) in two separate conditions (traditional
pipeline and our system). The target animation consists
of an onion life cycle [32], a typical example of sculpting
animations with organic shape, motion, and topological
changes, with complexity suitable for the user study. In
the traditional baseline condition, participants were al-
lowed to use whichever tools they felt comfortable with.
Specifically, the professional users (P1, 2) completed the
baseline condition via the traditional pipeline as they
normally do. Participants were provided with the neces-
sary input base mesh file (Figure 17a) to be imported as
the start point for both conditions. The condition orders
were fully counterbalanced among participants, and there
was no time limit for each condition.
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Figure 18: User study results.
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Figure 19: Resulting artifacts (ending frame) in the target session using traditional pipeline (top row) and our system
(bottom row) by the participants. The number indicates the authoring time required to complete the whole target
session (traditional/our).

Open session (20 minutes)
The goal is to observe user behaviors and identify merits
and issues of our systems. Participants were encouraged
to explore various functions and perform open-ended
sculpting animations using our system.

Interview (10 minutes)
The goal is to collect feedback from each participant
on different aspects of our system, including different
features, overall satisfaction, and open-ended feedback.

RESULTS
Quantitative measurement
All participants (P1 to P6) were able to complete the tar-
get session under both conditions, as shown in Figure 18a.
The outcomes are shown in Figure 19. On average, the
target session took 28 minutes for the traditional pipeline,
and 12 minutes for our unified system, indicating the core
design goal efficiency is realized. The ratio of completed
time by traditional pipeline versus our system was 2.33.
We observed that novice users tended to struggle with
topological changes across frames (commonly produced
using sculpting animations) using traditional condition,

and required extra training during the tutorial session. In
contrast, the participants did not need an extra tutorial
for our system, indicating that our system is easier to
learn.

Subjective feedback
Figure 18c summarizes the subjective feedbacks about
the individual features of our system. Overall, the partic-
ipants responded positively to the features of our system.
The users commented that the suggestions provided by
our system were fast and efficient (P1,2,3,4,5,6), interest-
ing (P5), easy to learn and use (P5,6).

In the post-study questionnaire, when asked “which one
do you prefer for sculpting animation for the target ses-
sion”, all participants preferred our system compared to
traditional workflows for the given task. Participants
were also asked to “score the two conditions to perform
the target sculpting animation sessions” based on a 7-
Likert scale (the higher the better). As demonstrated
in Figure 18b, participants found our system easier and
faster, and they felt more satisfied with the sculpting
animation created by our system compared to the tradi-



(a) initial suggestions (b) updated suggestions

Figure 20: User iterations with system suggestions. Our
system might not produce suggestions that the users
would like as in (a), for which the users can ignore and
continue brushing. Our system can then incorporate user
edits to update the suggestions in real-time (b).

tional pipeline, e.g. “The yellow suggestions are fast, the
brushes are more suitable for the target sculpting details,
no need for platform switching, such topology changes
are not easy to handle within maya-like toolset” (P1).
Participants (P2,3,4,6) commented that they preferred
our unified system instead of switching around different
tools with different interaction designs via traditional
pipeline, such as “I can reduce manual input with autos
in a single interface” (P2) and “I prefere one independent
system, easy to learn with basic brushing knowledge and
experience” (P6), which indicates our design goal coher-
ence is realized. Participants also liked the inherent
ZBrush/Blender-like high-quality sculpting tools (P1,2,3),
suggesting our goal flexibility is fulfilled; and suggestive
visualizations to reduce workload (P1,2,3,4,6), indicat-
ing our design goal efficiency is achieved. Participants
also favored our keyframing manipulation with 2D-cell
animation-like onion skin and commented it to be more
straightforward than traditional condition (P1,2,5), e.g.
“The previous frames’ shadows are helpful as guidance,
they are straightforward without extra setups” (P2). We
observed that novices with limited animation experience
required more time to get familiar with the traditional
interfaces and they commented it was much easier to
get familiar with our unified interface for animation au-
thoring, such as “the navigation is similar to Blender so
I do not need to change the sculpting navigation prac-
tice” (P3) and “the interface and icons are not complex
compared to traditional one” (P5). Participants also
suggested that we can try to combine with Maya when
designing more advanced features to support sculpting
and non-sculpting object animations, e.g. “adding simi-
lar keyframe curve of maya/mush3d to control density”
(P1); and more widgets for feature options, e.g. “add a
slider widget for users to adjust the interpolated frames”
(P2).

Sample results
Figure 21 presents some sample results created by our
study participants during the open session. The results
show that our standalone system can support creating

sculpting animation sequences from scratch with con-
tinuous topological changes (such as a growing tree in
Figure 21c or transforming virus in Figure 21b), spatial
movements (such as Figure 21d), larger-scale deforma-
tions (such as the octopus animations in Figure 21a which
may require external manipulators for rigging in tradi-
tional condition), and surface details changes (such as
Figure 21e).

CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
Brush strokes have been demonstrated as a flexible and
intuitive means to author 2D sketches, 2D animations,
and 3D sculptures. A main goal of this work is to con-
tinue and expand this line of inquiry for 3D animation,
which naturally requires high artistic/technical skills and
manual labors, even more so than 2D sketching, 2D an-
imation, and 3D sculpting. Our autocomplete system
provides opportunities to reduce these expertise and ef-
forts barriers for users with different backgrounds while
respecting their freedom of exploration and individual
expression of styles.

Like other autocomplete systems, our method might not
always suggest what the users would like to do, due to
the inherent complexity and subjective nature of artistic
creation, such as Figure 20a during the animation author-
ing for Figure 1. For such cases, users can ignore the
suggestions and continue brushing, and let our system in-
corporate the latest inputs to update the suggestions with
higher quality in real-time, as illustrated in Figure 20b.
This can be an effective way to balance automation and
customization for assistive freestyle content creation. A
pilot study indicated that our system can help users cre-
ate compelling animated objects through an intuitive
sculpting interface without requiring other data or tools.
We plan to engage with more users to elicit feedback and
create more varied outputs to further explore and expand
our design and method, such as displaying multiple possi-
ble solutions [54, 20] and incorporating machine learning
[6].

Our prototype is deployed in a desktop environment, but
the proposed features and methods are general and inde-
pendent of the platforms. VR sculpting can be a particu-
larly interesting platform to pursue given the immersive
brushing experience. A potential work is to extend the
scope to handle spatial strokes like in Medium [36] for
more freeform topological changes, such as adding compo-
nents and punching holes. Supporting tangible feedback
[2, 1] is also of interest for VR sculpting.

We focus on shape and motion for this project, and plan
to consider textures and colors [16, 48] for a more feature-
complete authoring environment. One potential direction
is to apply our autocomplete algorithms beyond a single
user session for applications such as tutorials (leveraging
expert workflows to help novices) [11] and collaborations
(combining workflows from multiple users and multiple
sessions) [37, 43, 9]. Another direction is to predict UI
commands and automatically free up screen space by



(a) swimming octopus: 62/83(15+68) manual/autocomplete strokes, 11 min

(b) mutating virus: 86/112(18+94) manual/autocomplete strokes, 12 min

(c) growing tree: 45/89(0+89) manual/autocomplete strokes, 7 min

(d) flying insect: 92/80(20+60) manual/autocomplete strokes, 12 min

(e) fracturing egg: 31/55(0+55) manual/autocomplete strokes, 8 min

(f) wandering jellyfish: 35/42(12+30) manual/autocomplete strokes, 7 min

Figure 21: Sample outputs. Results shown here are example sculpting animations produced by our system. Each
sequence is denoted with the following statistics: number of manual brushes, number of autocomplete brushes
(within-frame hints via [39] + our across-frame hints), and sculpting animation time in minutes. Please refer to the
accompanying video for animations.



hiding inactive UI elements, towards a dynamic and less
cluttered UI [46].
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