

First identification of dopamine receptors in pikeperch, Sander lucioperca, during the pre-ovulatory period

Jennifer Roche, Sébastien Hergalant, Amandine Depp, Imen Ben Ammar, Anne-Gaelle Lafont, Tomas Policar, Pascal Fontaine, Sylvain Milla

▶ To cite this version:

Jennifer Roche, Sébastien Hergalant, Amandine Depp, Imen Ben Ammar, Anne-Gaelle Lafont, et al.. First identification of dopamine receptors in pikeperch, Sander lucioperca, during the pre-ovulatory period. Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics, 2020, 36, pp.100747. 10.1016/j.cbd.2020.100747. hal-02975537

HAL Id: hal-02975537 https://hal.science/hal-02975537

Submitted on 22 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Title: First identification of dopamine receptors in pikeperch, Sander lucioperca, during
2	the pre-ovulatory period.
3	Jennifer Roche ^a , Sébastien Hergalant ^b , Amandine Depp ^a , Imen Ben Ammar ^{a,1} , Anne-Gaëlle
4	Lafont ^d , Tomas Policar ^c , Pascal Fontaine ^a and Sylvain Milla ^a .
5	^a UR AFPA, USC INRA 340, Université de Lorraine, Boulevard des Aiguillettes, 54506,
6	Vandœuvre-lès-Nancy, France
7	^b INSERM U1256, Université de Lorraine, Avenue de la Forêt de Haye, 54505, Vandœuvre-
8	lès-Nancy, France
9	^c South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty
10	of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice,
11	Zatisi 728/II, 389 25, Vodnany, Czech Republic
12	^d Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), Muséum National
13	d'Histoire Naturelle, CNRS, IRD, SU, UCN, UA, 75231 Paris Cedex 05, France.
14	
15	¹ Present address: URBE, Université de Namur, Rue de Bruxelles, 5000, Namur, Belgique.
16	
17	Corresponding author: Sylvain Milla. Email: sylvain.milla@univ-lorraine.fr
18	
19	
20	
21	

22 Abstract

Dopamine (DA) is a ubiquitous neurotransmitter exerting a range of pleiotropic actions 23 through two DA receptor families, the D1 and the D2. To date in vertebrates, a maximum of 24 four receptor subtypes have been identified within the D1 family, D_1 (former D_{1A}), D_5 (former 25 D_{1B}), D_6 (former D_{1C}) and D_7 (former D_{1E}), while the D2 family encloses five subtypes, D_2 , 26 $D_3,\,D_4,\,D_8$ (former $D_{2like}\,\text{or}\,\,D_{2l})$ and D_9 (former $D_{4\text{-related sequence}}\,\text{or}\,\,D_{4\text{-rs}}).$ In teleosts, no study 27 has investigated in parallel all the DA receptors to identify and localize the whole receptor 28 repertoire from both families. In pikeperch, Sander lucioperca, a species of interest for 29 aquaculture development, the existence, number and location of the DA receptors are totally 30 31 unknown. To address these questions, RNA-seq with de novo transcriptome reconstruction, functional annotation and phylogenetic analysis were performed to characterize the transcript 32 repertoire of DA receptors in the brain of female pikeperch at the pre-ovulatory period. Ten 33 34 different cDNA were identified and showed to belong to the D1 family: two D1, one D5a, one D_{6a} and one D_{6b} and to the D2 family: two spliced variants of D_2 , one D_3 , one D_8 and one D_9 . 35 Unlike zebrafish, the subtypes D₄ and D₇ have not yet been isolated in pikeperch. As expected 36 D_1 , D_3 , D_8 and D_9 are mostly expressed in brain parts except for the cerebellum (D_1 and D_3). 37 The inter-species differences in the number of DA receptors and the inter-organ differences in 38 39 the gene expression of all receptors support the complexity of the dopaminergic actions in vertebrate. 40

41 Keywords: dopamine, RNA-sequencing, *de novo* transcriptome assembly, pikeperch

- 42
- 43
- 44
- 45
- 46

47 **1.** Introduction

Dopamine (DA) is an ubiquitous neurotransmitter found in both central and peripheral nervous systems in many vertebrate species. In the central nervous system, it exerts a range of pleiotropic actions ranging from the control of locomotion, learning, emotion and sexual behaviour to the regulation of pituitary hormone release. This neuro-hormone also plays multiple roles in the peripheral tissues like regulation of the gastrointestinal motility, respiration, blood pressure and insulin secretion (Missale et al., 1998; Ben-Jonathan and Hnasko, 2001; Rubí and Maechler, 2010).

DA actions are mediated through seven transmembrane domain receptors (or G-protein 55 coupled receptors GPCR) divided into two receptor families, namely D1 and D2 families. 56 These receptor families are distinguished according to their intron-exon gene organization, 57 their primary structure, their pharmacological properties and the stimulatory (D1 family) or 58 59 inhibitory (D2 family) effects on adenylate cyclase throughout their signalling pathways. Notably, the D1 genes of the D1 family are intronless, their deduced protein structure exhibit 60 61 a short third cytoplasmic loop and a long C-terminal tail while the genes of the D2 family contains introns, and the corresponding receptors a long third cytoplasmic loop and a short C-62 terminal tail (Missale et al., 1998). According to the authors and databases, different 63 64 nomenclatures of genes and receptor subtypes exist, often leading to confusion when it comes to the designation of DA receptors in vertebrates (Yamamoto et al., 2015). Also, the set of 65 genes and receptors existing into each family is dependent of vertebrate groups. During 66 67 vertebrate evolution, many DA receptor genes and subtypes have been lost in mammals in comparison with non-mammalian species. Mammals kept only two subtypes in the D1 family 68 $(D_{1A}/D_1 \text{ and } D_{1B}/D_5)$ and three subtypes in the D2 family $(D_2, D_3 \text{ and } D_4)$ each encoded by 69 one gene (Missale et al., 1998; Yamamoto et al., 2015). In addition, in this vertebrate 70 subgroup, the presence of introns in the D2 family allowed the generation of two receptor 71

variants, D_{2long} (D_{2L}) and D_{2short} (D_{2S}) by an alternative splicing of the D₂ gene (Dal Toso et 72 al., 1989). This phenomenon has already been described in an amphibian, the bullfrog, Rana 73 catesbeiana, but has not yet been found in teleosts, except for the goldfish, Carassius auratus 74 (Nakano et al., 2010; Popesku et al., 2011). To date, a maximum of nine DA receptor 75 subtypes have been reported in the clade of Osteichthyes (Yamamoto et al., 2015). Four 76 subtypes would be assigned to the D1 family, D1 (former D1A), D5 (former D1B), D6 (former 77 D_{1C}) and D_7 (former D_{1E}) while the D2 family would enclose five subtypes, D_2 , D_3 , D_4 , D_8 78 (former D₂₁) and D₉ (former D_{4rs}). In zebrafish, *Danio rerio*, these nine DA receptors subtypes 79 have been isolated (Yamamoto et al., 2015). In this species, except for D7, D8 (D2b in 80 81 Boehmler et al., 2004), D₃ and D₉ (D_{4b} in Boehmler et al., 2007) encoded by a unique gene, the D₁, D₅, D₆, D₂ and D₄ receptor subtypes are encoded by two paralogous genes giving two 82 distinct receptors per subtype, D_{1a} and D_{1b}, D_{5a} and D_{5b}, D_{6a} and D_{6b}, D_{2a} and D_{2b} (called D_{2a} 83 and D_{2c} , respectively in Boehmler et al., 2004), and D_{4a} and D_{4b} (called D_{4a} and D_{4c} , 84 respectively in Boehmler et al., 2007; Yamamoto et al., 2015). As suggested by Yamamoto et 85 al. (2015), these copies likely result from the 3R teleost-specific genome duplication. 86 However, the duplicated copies resulting from 3R may have not been conserved in all teleost 87 species. For example, in common carp, Cyprinus carpio, and in Nile tilapia, Oreochromis 88 89 *niloticus*, only one copy of the D_2 receptor gene has been identified (Hirano et al., 1998; Levavi-Sivan et al., 2005) whereas in European eel, Anguilla anguilla, rainbow trout, 90 Oncorhynchus mykiss, and goldfish, at least two D₂ receptor genes have been found (Vacher 91 et al., 2003; Pasqualini et al., 2009; Popesku et al., 2011). In rainbow trout, these duplicated 92 copies may result directly from the salmonid-specific genome duplication 4R (Dufour et al., 93 2010). As observed in vertebrate species, there is a high diversity and complexity in the 94 transcript profile of DA receptors, which should be deciphered for each species separately. 95

This high complexity raises the question about the specificities of each receptor in their 96 97 respective biological functions. The literature provides some indications that the DA receptors roles depend on the receptor subtype and its location. For instance, receptors of the D2 family 98 seems to play an inhibitory or stimulatory role in mammal locomotion whereas receptors of 99 the D1 family would have little or no effect (Jackson and Westlind-Danielsson, 1994; Missale 100 et al., 1998). However, a synergistic effect between D2 and D1 receptor activation was 101 102 suggested to increase forward locomotion (Missale et al., 1998). In pikeperch, Sander 103 lucioperca, in vivo experiments suggested that the D1 receptor family, but not D2 family, is involved in the regulation of sex-steroid production during the final oocyte meiotic maturation 104 (Roche et al., 2018). In zebrafish, Boehmler et al. (2004) suggested that D₂(D_{2a} and D_{2c}), D₃ 105 and D₈ (D_{2b}) receptor subtypes may be involved in visual function. Also, they showed that 106 receptors D_{2a} and D_8 (or D_{2b}) are both expressed in the pineal gland but not at the same 107 developmental stage, leading to the possibility of two different roles within this tissue 108 (Boehmler et al., 2004). The study of DA receptor functions is often managed through the 109 investigation of their central and peripheral distributions. However, unlike mammals, data 110 111 regarding the location of DA receptors are very scarce in teleosts. Using in situ hybridization or q-PCR analyses, some studies showed that D₂ receptors are differentially expressed in the 112 113 brain of species such as European eel, rainbow trout, Nile tilapia, and zebrafish (Vacher et al., 2003; Boehmler et al., 2004; Levavi-Sivan et al., 2005; Pasqualini et al., 2009). D_{2A} and D_{2B} 114 in European eel and the D₂ receptors in rainbow trout display high expression levels in most 115 116 of the brain areas such as the olfactory bulbs, the telencephalon, the optic tectum, and also in the pituitary (Vacher et al., 2003; Pasqualini et al., 2009). However, in European eel, only 117 D_{2A} , but not D_{2B} , is expressed in the retina, the olfactory epithelium, the spinal cord and the 118 adipose tissue (Pasqualini et al., 2009). Similarly, receptors from D1 family are differentially 119 expressed according to the brain areas but only $D_{1,1}$ and $D_{1,2}$ (D_{1A1} and D_{1A2}) are expressed in 120

the pituitary (Kapsimali et al., 2000). Regarding the location in the peripheral tissues, there 121 122 are also inter-species peculiarities. Indeed, D₂ receptors are not detected in European eel ovaries, liver, kidney, muscle and gills whereas in Nile tilapia, D₂ receptor gene expression 123 was measured in these tissues, except for kidney and muscle (Levavi-Sivan et al., 2005; 124 Pasqualini et al., 2009). More information about the presence and abundance level of all DA 125 receptors would provide indications about their respective roles in teleost physiology. To date, 126 experimental studies about DA receptors are very scarce, making genomic and protein 127 databases the main informative sources. No investigation has aimed to identify and locate the 128 full DA receptors repertoire for one given teleost species in a single study. 129

Pikeperch is a percid fish from the perciform order and a species of interest for aquaculture 130 diversification (Kestemont et al., 2015). Contrary to the situation in cyprinids, salmonids, or 131 anguillids, no data have been evidenced so far on the existence, number and location of DA 132 133 receptors in percid fishes. Furthermore, few information exists on the expression profile of DA receptors during the final stages of reproduction, a period of huge behavioural and 134 135 endocrine balance changes. To address these questions, we gathered the repertoire of DA 136 receptors in the brain of maturing pikeperch using whole transcriptome reconstruction from RNA sequencing, analysed their cDNA, inferred protein sequences, compared them with 137 138 other species and investigated a multi-tissue gene expression pattern of these receptors.

139

2. Material & Methods 140

141

Animal and sampling procedures 2.1.

The experiment was performed according to the European and French legislation for fish 142 welfare approved the institutional Ethics Committee (APAFIS3073-143 and by 2015120813148770). Mature pikeperch females (n=9; 3-4 years old; 1.54 ± 0.07 kg) from 144 Czech Republic (origin: production pond Bynovsky, Fishery Nove Hrady Ltd) were 145

transported to the Aquaculture Experimental Platform (AEP, registration number for animal 146 experimentation C54-547-18) belonging to the URAFPA lab of the University of Lorraine 147 (Nancy, France), acclimated into RAS systems containing 2m³ tanks and killed by 148 overexposure to anesthesia ethyl 3-aminobenzoate methanesulfonate (MS-222; 240 mg/L; 149 Sigma-Aldrich, Lyon, France) and quickly sampled for different tissues. Brains from three 150 females were collected and stored at -80°C for subsequent RNA sequencing. Six major brain 151 structures were dissected out and used for the qPCR analysis (Figure 6): the 4 prominent lobes 152 (telencephalon and the rostral Optic Recess Region (Tel/ORR), optic tectum (OT), cerebellum 153 (Cb), hypothalamus/Inferior Lobe (Hyp/IL)), the olfactory bulbs (OB), the medulla/rostral 154 spinal cord (Med/SC). The rest of the brain (including diencephalon, tegmentum, and the 155 caudal spinal cord) was discarded. Pituitary, ovaries, heart, adipose tissue, muscle, gills, 156 spleen and liver were also collected and also stored at -80°C for further DA receptor gene 157 158 expression analysis.

159

160 **2.2.** Evaluation of oocyte maturation stages

161 Before tissue samplings, oocyte maturation stages were evaluated for each female according to the classification by Żarski et al. (2012). Briefly, oocytes were sampled using a catheter 162 (CH06; 1.2 mm internal and 2 mm external diameter) and placed in Serra's solution 163 (ethanol/formalin/glacial acetic acid, 6:3:1 v/v/v). After slowly mixing oocytes in Serra's 164 solution and waiting (about 5 min) until the cytoplasm of the oocyte has become clarified, the 165 oocyte maturation stage was evaluated under the binocular microscope, magnification $\times 4$ 166 (Motic® SFC-11 Series, Motic Asia, Hong Kong, China). In pikeperch, the final stages of 167 maturation were divided into seven morphological stages, from stage I to stage VII 168 169 (ovulation; Żarski et al., 2012). This allowed the determination of the advancement of the

170 oocyte meiotic maturation at the sampling time. Females were evaluated between the stages II171 and V.

172

173 2.3. RNA-seq & *de novo* transcriptome assembly

174 2.3.1. RNA sequencing

Total RNA from three brain samples was extracted using Isol-RNA reagent (VWR 175 International SAS, Strasbourg, France) according to the manufacturer's protocol. The extracts 176 177 were then sent to the McGill University and Genome Quebec Innovation Centre (Montreal, Québec, Canada) where RNA concentration was measured using a NanoDrop 178 Spectrophotometer ND-1000 (NanoDrop Technologies, Inc.) and RNA integrity was assessed 179 using a 2100 Bioanalyzer (Agilent Technologies). Libraries were generated from 250 ng of 180 total RNA using the TruSeq stranded mRNA Sample Preparation Kit (Illumina), following the 181 182 manufacturer's recommendations. Libraries were quantified using the Quant-iT[™] PicoGreen® dsDNA Assay Kit (Life Technologies) and the Kapa Illumina GA with Revised 183 Primers-SYBR Fast Universal kit (Kapa Biosystems). Average fragment size was determined 184 using a LabChip GX (PerkinElmer) instrument. 185

Whole transcriptome-Seq was then performed using a HiSeq 2500 instrument, generating 186 125-nucleotide-long paired-end reads which were compiled in FASTQ files complying the 187 format standard. Quality control of sequence reads was done using FastQC v0.11.5 software 188 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Illumina universal adapters 189 were removed with cutadapt v1.11 (Martin, 2013) discarding trimmed reads shorter than 30 190 nucleotides, with parameters "-a AGATCGGAAGAGC -A AGATCGGAAGAGC -m 30 --191 no-indels -O 5". Low quality reads were also filtered, discarding bases with a Phred quality 192 193 score < 20.

194

195 **2.3.2.** *De novo* transcriptome assembly

The de novo transcriptome assembly was carried out using Trinity v2.2.0 (Grabherr et al., 196 2011; Haas et al., 2013) without a guiding genome, for stranded librairies (with option -197 ss lib type RF). Assemblies for each pikeperch sample were further evaluated (i) by 198 assessing their read contents - mapping was achieved with bowtie2 v2.2.8 (Langmead and 199 Salzberg, 2012), (ii) by counting full-length transcripts by sequence alignment with high 200 quality annotations for known proteins; blastx (Camacho et al., 2009) was used on the 201 202 SwissProt database obtained from http://www.uniprot.org, and (iii) by describing them statistically with Transrate v1.0.1 (Smith-Unna et al., 2016). Transcripts were then quantified 203 using Kallisto v0.43 (Bray et al., 2016). Identification of likely coding regions within each 204 205 transcript was performed with Transdecoder v3.0.1 (http://github.com/Transdecoder), which 206 makes use of *blastp* on SwissProt. Each putative peptide was aligned with *hmmer3.1* (Eddy, 2011) on the PFAM database (Finn et al., 2016) to match with a protein domain. Signal 207 peptide and transmembrane domain predictions were checked out with signalP v4.1. (Petersen 208 209 et al., 2011) and TMHMM v2.0c (Krogh et al., 2001), respectively. *Rnammer*-1.2 (Lagesen et al., 2007) was used to mark potential rRNA remaining transcripts. All the data produced was 210 finally compiled and submitted to Trinotate v3.0.1 (https://github.com/Trinotate) to populate 211 an SQLite database representing the functionally annotated transcriptome, along with blast 212 homologies, as well as gene ontology (GO), orthology (eggNOG) and pathway (KEGG) 213 214 informations (Ashburner et al., 2000; Huerta-Cepas et al., 2016; Kanehisa et al., 2017; The Gene Ontology Consortium, 2017). Annotations were further enriched with custom blasts 215 on a subset of the trEMBL database (http://www.uniprot.org) containing all known and 216 217 predicted DA receptor sequences.

These populated whole transcriptome databases (one for each sample) were extensively usedas a dedicated tool for searching and identifying the DA receptors in pikeperch brain. Among

the three females, a total of 30 cDNA sequences were obtained. Whenever possible, each 220 identified DA receptor was computationally confirmed using three ways: 1) multiple 221 alignments with orthologous receptors of closely related species, 2) secondary structures 222 223 alignments (RaptorX, Källberg et al., 2012) with well-characterized DA receptors of the same type were performed to validate an localize functional domains, and 3) the receptor should be 224 found in at least two samples. The degree of identity (%), e-values and bit scores of DA 225 receptor protein sequences between pikeperch and other species were given by *blastp* 226 227 (Camacho et al., 2009).

228 2.4. Phylogenetic analysis

Amino acid sequences of 74 osteichthyan receptors from the D1 family (D₁, D₅, D₆, D₇), and 75 osteichthyan receptors from the D2 family (D₂, D₃, D₄, D₈, D₉) were retrieved from NCBI (*https://www.ncbi.nlm.nih.gov*), Ensembl (*http://www.ensembl.org/index.html*) and Uniprot databases (Supplementary Table 3). These osteichthyan species included sarcopterygians (tetrapods and a basal sarcopterygian, the coelacanth, *Latimeria chalumnae*), and actinopterygians (teleosts and a non-teleost actinopterygian, the spotted gar, *Lepisosteus oculatus*). Human, *Homo sapiens*, adrenergic receptor sequences were used as outgroup.

Multiple sequence alignments of D1 and D2 protein families were created using Clustal Omega (Sievers et al., 2011) included in SeaView version 4.6.3 (Gouy et al., 2010) and manually adjusted. Calculation of the best amino acid substitution matrix was determined using the ProtTest software version 3.4.2 (Darriba et al., 2011). The JTT (Jones, Taylor and Thornton) protein substitution matrix was selected for both alignments. Phylogenetic analyses were performed with the resulting protein alignments using the Maximum Likelihood method with 1000 bootstrap replicates (RaxML software (Stamatakis, 2014), <u>http://www.phylo.org</u>).

243

244 2.5. Expression profile analysis of DA receptors

After total RNA extraction using Isol-RNA reagent (VWR International SAS), a Dnase 245 treatment was performed according to the manufacturer's procedure (Fisher Scientific, 246 Illkirch, France). Reverse transcription (RT) was then achieved using 1 μ g/ μ L of total RNA 247 248 following a previously described procedure (Milla et al. 2010). To determine the multi-tissues mRNA profile of some DA representatives (D1a, D1b, D3, D8 and D9), Real-time polymerase 249 chain reaction (q-PCR) was carried out using a StepOne Plus system (Applied Biosystems, 250 Fisher Scientific) as previously described (Milla et al. 2010). To validate the specificity of the 251 252 amplification and the absence of amplified genomic DNA, different controls were performed: 1) sample without Dnase treatment, 2) sample without reverse transcriptase and 3) negative 253 controls with RNase-free water. Gene expression was normalized using the geometric mean 254 of two housekeeping genes: Ribosomal Protein L8 (RPL8) and Adenosine Kinase like (AK), 255 whose expressions were stable under these conditions (data not shown). Primers used for DA 256 257 receptors and housekeeping genes were described in Table 1. To ensure that primers were specific of each DA receptor they were designed in unconservative regions such as intra and 258 259 extracellular domains, specific to each receptor. All primer pairs were further checked for 260 uniqueness and concordance within each transcriptome using *blastn* with 'word size 7' as parameter for small sequence matches. 261

262

263 **2.6.** Statistical analysis

Statistical analyses were performed using R version 3.4.0. For all dependent variables, homogeneity of variances was tested using Levene test (leveneTest, package 'car', Fox and Weisberg, 2011). For relative DA receptors gene expression, data were analysed by a linear mixed model (lmer, package 'lme4', Bates et al., 2015) with tissues as fixed effects, and either the fish (for repeated measures) and/or the maturation stage at the sampling time as random effects: model=lmer(Y~tissues+(1|fish)+(1|maturation_stage) with Y: dependent

variable. For model validation, residuals were tested for homogeneity and normality using 270 residual vs fitted value and sample vs theoretical quantile (Q-Q) plots, respectively (plotresid, 271 package 'RVAideMemoire', Hervé, 2016). If necessary, data were log-transformed or root-272 square-transformed. When the model was validated, an Anova table was performed to 273 calculate F-tests (Anova, package 'car', Fox and Weisberg, 2011) followed by a Least-squares 274 means (predicted marginal means) multiple comparison between tissues as post-hoc test 275 (Ismeans, package 'Ismeans', Lenth, 2016). When data, even transformed, did not meet the 276 277 assumptions for the linear mixed model, we used the Kruskal-Wallis test for non-parametric analysis with n variable (kruskal.test) followed by a pairwise comparison using Dunn test 278 (posthoc.kruskal.dunn.test, package 'PMCMR', Pohlert, 2016) with Benjamini & Hochberg 279 correction (BH; Benjamini and Hochberg, 1995). Data are expressed as mean ± SEM. The 280 level of significance used in all tests was P < 0.05. 281

282

283 **3. RESULTS**

284 **3.1.** Evaluation of the transcriptome assembly

After filtering and trimming low quality reads, sequencing generated an average of 79.9 285 million read pairs per sample. This led to an average of 272,211 contigs per fish after the 286 Trinity (Grabherr et al., 2011; Haas et al., 2013) assembly step. Re-mapping of the respective 287 reads on each transcriptome reached 99.1% match and 97.4% complete, concordant pair re-288 alignment. N50 calculation, based on the longest transcript per "gene", was evaluated at 1000, 289 with an average of 659 nt length (median was at 375 nt). GC content was 44.67%. After 290 291 estimating their relative abundance, transcripts were flagged for sufficient expression with a minimum of 20 reads per contig required. An average of 91,052 transcripts per sample passed 292 293 this filter. For our purposes, all transcripts were retained anyway until the identification step. Putative proteomes were finally computed from each transcriptome with Transdecoder 294

(*http://github.com/Transdecoder*), which produced an average of 76,976 putative proteins per
sample, 40,856 being complete (from the first methionine to the stop codon) and fully
annotated. A comprehensive database compiling transcriptomic results was generated at this
point (see Material and Methods) and was used throughout the rest of the study.

299

300 **3.2.** Identification and sequence analyses of pikeperch DA receptors

Database mining and pairwise comparisons led to the identification of ten distinct cDNAs corresponding to DA receptors. Their deduced amino acid sequences were aligned with human and some teleost and DA receptors from both D1 and D2 families.

Five DA receptors, namely D1_1, D1_2, D1_3, D1_4 and D1_5 (Table 2 and Supplementary 304 Table 1), belonged to the D1 family (only 21-41% of identity with human and teleost D2 305 306 receptors family). Among these five receptors, D1_1 and D1_2 displayed the highest sequence identity with human D_1 receptor (range between 72-73%). Relatively to teleost 307 species, D1_1 displayed about 80% of sequence identity with zebrafish and European eel D₁ 308 receptors while it displayed the highest identity with the Nile tilapia D_{1a} receptor (93%). 309 Pikeperch D1_2 shared high percentage of sequence identity with zebrafish D_{1b} (84%), Nile 310 311 tilapia D_{1b} (93%) and European eel $D_{1,1}$ (84%). D1_3 showed 66% of sequence identity with the human D_5 receptor while D1_4 displayed 60% of sequence identity with the human D_1 312 receptor. Relatively to teleost receptors, D1_3 shared similar sequence identity with zebrafish 313 314 D_{1a} and D_{5a} (71-72%) and a high percentage of sequence identity with the Nile tilapia D_{5a} (93%) and European eel D₅ (85%). D1_4 displayed the highest identity with the zebrafish and 315 Nile tilapia D_{6a} (66 and 79%, respectively) and European eel D_6 receptor (65%). Finally, 316 D1_5 sequence shared similar sequence identities with human D_1 and D_5 receptors (61-62%) 317 while it displayed the highest sequence identities with zebrafish D_{6a} and D_{6b} (76%), Nile 318 319 tilapia $D_{6b}(82\%)$ and European eel $D_6(76\%)$ receptors. No pikeperch sequences identified in this study were related to zebrafish and tilapia D_{5b} or to zebrafish D_7 receptors at these levels of identification.

322

The five remaining DA receptors, namely D2_1, D2_2, D2_3, D2_4 and D2_5 (Table 3 and 323 Supplementary Table 2), belonged to the D2 family (with only 29-46% of identity with 324 human and other teleost D1 receptors family). Among these five receptors, D2 1, D2 2 and 325 326 D2_4 showed the highest degree of sequence identity with human D_2 receptors (from 55% to 66%). Relatively to teleost species, D2_1 and D2_2 displayed the highest sequence identity 327 with teleost D_2 subtype, the Nile tilapia D_2 (95% and 89%, respectively), European eel D_{2A} 328 (78% and 73%, respectively), European eel D_{2B} (75% and 72%, respectively), zebrafish D_{2a} 329 (73% and 69%, respectively) and zebrafish D_{2b} receptors (73% and 71%, respectively). D2_3 330 shared 58% of sequence identity with human D₃ while he displayed the highest sequence 331 332 identities with zebrafish and Nile tilapia D₃ (75-90%). D2_4 shared highest sequence identity with Nile tilapia D₈ (89%) and zebrafish D₈ (75%) receptors. Finally, D2_5 shared 68% of 333 sequence identity with human D₄ while he displayed the highest sequence identities with 334 zebrafish and Nile tilapia D_9 (71-76%) receptors, respectively. 335

Accordingly, we propose the following designation for those ten DA receptor sequences: D_{1a} (D1_1), D_{1b} (D1_2), D_{5a} (D1_3), D_{6a} (D1_4), D_{6b} (D1_5), D_2 for two sequences sharing 100% of identity (D2_1 and D2_2), D_3 (D2_3), D_8 (D2_4) and D_9 (D2_5).

339

Amino acid sequence alignments of the 10 putative pikeperch DA receptors with human and teleost DA receptors showed structure conservation. Two examples from D1 and D2 families: D_{1a} , D_{1b} and both D_2 are shown in Figures 1 and 2, respectively. The other sequence alignments are shown in Supplementary Figures 1, 2, 3, 4 and 5. All sequences are complete except for the predicted pikeperch D_{5a} and D_{6b} for which two and four of the seven putative

transmembrane domains (TMD) are missing, respectively. For both families, the TMD are 345 highly conserved relatively to the TMD of other species. Also, the specific GPCR DRY motif 346 is observed within all sequences, except for the predicted partial D_{6b} polypeptide 347 (Supplementary Material). Regarding the D1 family (Figure 1 and Supplementary Materials), 348 we observed a short third cytoplasmic loop and a long and variable C-terminal tail enclosing a 349 cysteine amino acid at its beginning, except for the partial D_{6b} . In contrast, we noticed a long 350 351 and variable third cytoplasmic loop and a short and relatively well-conserved cytoplasmic tail ending with a cysteine residue for all predicted receptors of the D2 family. Regarding one of 352 both D_2 sequences, a gap in the protein sequence within the third intracellular loop (29) 353 missing amino acids) was observed (Figure 2). The two D₂ sequences were renamed D_{2Long} 354 (D_{2L}) and D_{2Short} (D_{2S}), as in mammals. Highly conserved amino acid residues between 355 pikeperch and other vertebrate species were also observed in TMD and extracellular and 356 357 cytoplasmic loops. For instance, we observed one conserved aspartate in TMD II and III, one asparagine in TMD VII, two serines in TMD V and two cysteines in extracellular loops I and 358 359 II (Figure 2).

360

361 **3.3.** Phylogenetic analysis

362 Phylogenetic analyses of actinopterygian and sarcopterygian DA receptors amino acid363 sequences were performed to confirm the identity of the predicted pikeperch sequences.

Regarding the D1 family (Figure 3), the phylogeny analysis clustered D_6 , D_1 and D_5 sequences in three well-supported clades, with bootstrap values of 91, 98 and 67%, respectively. However, the few D_7 sequences retrieved from the available databases were not encompassed in a single monophyletic clade. The D_1 clade was composed of two distinct subclades: a sarcopterygian and an actinopterygian, with the non-teleost actinopterygian spotted gar branching at the base of the actinopterygian clade, in accordance with its

phylogenetical position. Teleost D₁ sequences were separated into two clades, named D_{1a} and 370 371 D_{1b}. Pikeperch D1_1 and D1_2 sequences branched individually within each one of these 372 clades, confirming their identification as D_{1a} and D_{1b}. D₅ sequences were separated into three clades: a sarcopterygian clade, and two actinopterygian clades. The first actinopterygian clade 373 encompassed the teleost D_{5a} sequences with the spotted gar D₅ branching at its base, and the 374 375 second one encompassed the D_{5b} teleost sequences. The D1_3 pikeperch sequence branched 376 together with the D_{5a} teleost sequences, confirming its place in the nomenclature as D_{5a} . Concerning D_6 , the actinopterygian clade, with the spotted gar D_6 sequence branching at its 377 base, encompassed two well-supported teleost clades, each one including a pikeperch 378 sequence belonging to the D1 family. Pikeperch D1_4 and D1_5 were thus named D_{6a} and 379 D_{6b}, respectively. 380

Concerning the D2 family, phylogenetic analysis clustered all vertebrate sequences in two strongly-supported clades, D_4/D_9 (100%) on one side and $D_3/D_2/D_8$ (91%) on the other side. A clear demarcation was observed between D_4 (80%) and D_9 (89%) sequences within the D_4/D_9 clade. Within the $D_3/D_2/D_8$ clade, D_3 (90%), D_2 (78%) and D_8 (68%) sequences diverged into three subclades. Into each one of the D_4 , D_9 , D_3 , D_2 and D_8 subclades, a well-supported actinopterygian branch was defined.

The spotted gar D_4 sequence branched at the base of the two teleost D_4 clades, D_{4a} and D_{4b} , 387 while the spotted gar D₉ branched with a single teleost D₉ clade, including the pikeperch D2_5 388 sequence. The spotted gar D₃ sequence branched at the base of a single teleost D₃ clade, 389 390 including the D2_3 pikeperch sequence. Accordingly, these pikeperch sequences were respectively named D_9 and D_3 . Similarly, the spotted gar D_8 sequence branched together with 391 392 the coelacanth D_8 one, within a single teleost D_8 clade, including the D2_4 pikeperch sequence, now called D₈. The spotted gar D₂ sequence branched at the base of two well-393 supported clades, named D_{2a} (73%) and D_{2b} (60%). The pikeperch D_{2L} sequence branched 394

together with other teleost D_{2a} sequences. Thus, the two pikeperch D_2 sequences ($D2_1$ and $D2_2$), differing only by a contiguous sequence of 29 amino acids, corresponded to the long and short isoforms of a single D_2 gene, hereby named D_{2a} (D_{2aL} and D_{2aS}). No pikeperch sequences orthologous to vertebrate D_4 were evidenced in this study.

399

3.4. Multi-tissue mRNA abundance of DA receptors from the D1 and D2 families in pikeperch

Over the ten sequences of DA receptors found by RNA-seq, the multi-tissue gene expression
pattern focused on five receptor subtypes as we failed to design good primers for the five
remaining ones.

405 **3.4.1.** Gene expression profile of D_{1a} and D_{1b}

The same profile of expression was observed for both genes with a high expression in the brain (Figures 5A and B), predominantly in the olfactory bulbs, optic tectum, telencephalon and rostral ORR, medulla/rostral spinal cord and hypothalamus/IL (Figure 6). Both gene expressions were lower in the cerebellum and in the pituitary, and undetectable in muscle, adipose tissue, gills and spleen. D_{1b} expression was also undetectable in liver and heart.

411

412 **3.4.2.** Gene expression of D₃, D₈ and D₉

The three genes were mainly expressed in the brain region (Figures 5C, D and E). The D_3 was mostly expressed in the telencephalon and rostral ORR, olfactory bulbs, hypothalamus/IL and pituitary. The D_8 was predominantly expressed in the optic tectum, medulla/rostral spinal cord and hypothalamus/IL while the D_9 was mostly expressed in olfactory bulbs, telencephalon and rostral ORR, and optic tectum. In the ovaries, D_3 and D_8 gene expressions were above the detection limit while the D_9 mRNA was undetectable. In the heart, D_3 had an intermediate expression level. Finally, the gene expressions were above the detection limit in the liver for 420 D_3 and D_8 , in the heart for D_8 and D_9 , in the muscles for D_8 , in the gills for D_3 and 421 undetectable in the remaining tissues.

422

423 **4. Discussion**

In this study, we identified ten DA receptor mRNAs isolated from the brain of pikeperch atthe pre-ovulatory period.

426 Five DA receptor sequences were attributed to the D1 family using amino acid sequence comparisons and phylogenetic analyses. These sequences share between 52% and 93% of 427 sequence identity with other vertebrate D_1 receptors and only 21-41% with vertebrate D_2 428 429 receptors. Besides the seven TMDs found in complete sequences and the DRY sequence specific of GPCR, these receptors share common features with D₁ receptors characterized in 430 other vertebrate species, including mammals and teleosts. Among these characteristics, we 431 432 observed the short third intracellular cytoplasmic loop and a long unvariable C terminal cytoplasmic tail enclosing a conserved cysteine residue allowing to anchor the receptor to the 433 membrane (Civelli et al., 1993; Missale et al., 1998; Ben-Jonathan and Hnasko, 2001). Some 434 conserved amino acid residues allowing the receptor functionality and regulation were also 435 observed. For instance, we found an aspartate in TMD 2 and 3 or two serines in TMD 5 that 436 form the narrow pocket for the ligand binding, two cysteines in the first and second 437 extracellular loop that allow the stabilization of the receptor conformation with a disulfide 438 bond, or also some phosphorylation/glycosylation sites in the different cytoplasmic and 439 extracellular loops (Civelli et al., 1993; Missale et al., 1998). Phylogenetic analysis assigned 440 these five pikeperch sequences to specific DA receptor clades, D₁, D₅ and D₆ (Cardinaud et 441 al., 1997; Yamamoto et al., 2015). Thus, we assume that pikeperch possesses at least five D1 442 family DA receptor genes that are orthologous to D_{1a} , D_{1b} , D_{5a} , D_{6a} and D_{6b} . 443

These different D₁ receptor paralogs have already been identified in literature or have been 444 445 released in the relevant databases. A single D_1 receptor was identified in sarcopterygian species, such as mammals, birds, and amphibians, as well as in the spotted gar, a non-teleost 446 447 actinopterygian. Two D₁ paralogs were found in several teleost species, including European eel, common carp, zebrafish, and Nile tilapia (Sugamori et al., 1994; Demchyshyn et al., 448 1995; Macrae and Brenner, 1995; Cardinaud et al., 1997; Hirano et al., 1998; Missale et al., 449 1998; Yamamoto et al., 2015; NCBI, Ensembl and Uniprot databases), probably as a 450 consequence of the teleost-specific genome duplication (3R). In some species such as in 451 Atlantic herring (Figure 3), one paralog is likely to be secondarily lost. But the pikeperch 452 would have conserved these two D_{1A} paralogs, as most of the teleosts. 453

In the same way, two D₆ receptors were identified in pikeperch, as in other teleosts, such as 454 Atlantic herring, *Clupea harengus*, zebrafish, and Nile tilapia, while a single D_6 is present in 455 456 sarcopterygians and in non-teleost actinopterygian (Yamamoto et al., 2015). In European eel, Japanese medaka, Oryzias latipes, Japanese pufferfish (fugu), Takifugu rubripes, and three-457 458 spined stickleback, Gasterosteus aculeatus, only one D₆ paralog was identified (Sugamori et al., 1994; Macrae and Brenner, 1995; Lamers et al., 1996; Cardinaud et al., 1997; Hirano et 459 al., 1998). These results suggest that the two D_6 identified in the pikeperch are issued from 460 461 3R, and that one copy may have been lost in some species throughout teleost radiation.

Concerning D_5 , a single receptor is present in sarcopterygians, while two D_5 receptors were evidenced in some teleosts species, such as Japanese medaka, three-spined stickleback, Nile tilapia, fugu and Atlantic herring (Sugamori et al., 1994; Demchyshyn et al., 1995; Cardinaud et al., 1997; Hirano et al., 1998; Missale et al., 1998; Yamamoto et al., 2015 NCBI, Ensembl and Uniprot databases). In contrast, only one D_5 receptor, othologous to the pikeperch $D1_3$, was evidenced in European eel, Asian bonytongue, *Scleropages formosus*, zebrafish and European seabass, *Dicentrarchus labrax* (Sugamori et al., 1994; Demchyshyn et al., 1995; Cardinaud et al., 1997; Hirano et al., 1998; Missale et al., 1998; Yamamoto et al., 2015 NCBI, Ensembl and Uniprot databases). From the phylogenetic analysis, the single spotted gar D_5 branched at the base of the teleost D_{5a} clade, and in polytomy with the sarcopterygian and the teleost D_{5b} (named D_{1X} in Hirano et al., 1998) clades. This result does not suggest that the two teleost D_5 paralogs result from 3R. As this study was based on brain transcriptome analysis, and with the absence of a pikeperch genome in the available databases, we cannot ascertain the absence of a D_{5b} paralog in this species.

476

Five receptor sequences, belonging to the D2 receptor family, have herein been identified in 477 pikeperch. These sequences share from 33% to 95% identity with other receptors of D2 478 family in vertebrates and only 29-46% with receptors of D1 family. The molecular structure is 479 also consistent with the one described in other vertebrate species: the seven TMDs, the long 480 481 variable third cytoplasmic loop and a short and conserved C terminal tail ending with a conserved cysteine residue. Similarly to the receptors of D1 family, some conserved amino 482 acid residues were also observed in pikeperch sequences of the D2 family. For instance, the 483 primary structure possesses the aspartate in TMD 2 and 3, the two serines in TMD 5, the two 484 cysteines in the first and second extracellular loops or the phosphorylation/glycosylation sites 485 486 in the different loops (Civelli et al., 1993; Missale et al., 1998; Levavi-Sivan et al., 2005). Phylogenetic analysis revealed that the pikeperch receptors of the family D2 are orthologous 487 to D₂, D₃, D₈, and D₉. From our study based on brain transcriptome analysis, we could not 488 489 evidence in the pikeperch the presence of 3R-paralogs belonging to the D2 receptor family, suggesting the loss of a 3R-duplicated D₂, D₃, D₈, and D₉ during evolution in pikeperch. 490

491 All these D2 family receptors have been previously identified in vertebrates including several 492 teleost species. For instance, a D_8 sequence was cloned in zebrafish (Boehmler et al., 2004), 493 and identified *in silico* in other actinopterygians, such as spotted gar, Nile tilapia, Japanese medaka and a sarcopterygian, the coelacanth (Yamamoto et al., 2015; NCBI, Ensembl and Uniprot databases). Phylogenetic analysis clearly revealed that the actinopterygian and sarcopterygian D_8 sequences clustered in a single clade distinct to the other vertebrate D_2 . Our results are consistent with Boehmler et al. (2004) and Yamamoto et al. (2015), suggesting that this receptor could be the product of an early gene duplication during vertebrate evolution, prior to divergence of the Osteichthyes group.

500 In the D₈ sister clade, encompassing D₂ sequences, two paralogs have been evidenced in European eel, Asian bonytongue, Atlantic herring and zebrafish, likely resulting from 3R 501 (Vacher et al., 2003; Boehmler et al., 2004; Pasqualini et al., 2009; Popesku et al., 2011; 502 503 NCBI database). In contrast, only one D₂ receptor gene could be identified in pikeperch, as in other teleost, such as Japanese medaka, tilapia and fugu, suggesting the loss of the duplicated 504 paralog in these species. This D_2 gene encodes for two identical receptors D_{2aL} and D_{2aS} , 505 506 except for a 29 amino acid sequence missing in the third cytoplasmic loop of the D_{2aS}. This has already been reported in some mammals including human and rat (Dal Toso et al., 1989; 507 508 Monsma et al., 1989; Missale et al., 1998) but also in bullfrog (Nakano et al., 2010). Taking 509 advantage of the phylogenetic results, regarding the mammalian model and the full identity between both sequences, we suggest an alternative splicing of the pre-messenger of the 510 unique D_{2a} gene in pikeperch. This phenomenon has been described before in goldfish 511 (Popesku et al., 2011), but to date this has never been confirmed in another teleost. 512 Nevertheless, no alternative splicing has been highlighted in a wide range of vertebrate 513 514 species including xenopus (Martens et al., 1993), fugu (Macrae and Brenner, 1995), common carp (Hirano et al., 1998), rainbow trout (Vacher et al., 2003), zebrafish (Boehmler et al., 515 2004), Nile tilapia (Levavi-Sivan et al., 2005) and in European eel (Pasqualini et al., 2009). 516 517 Taking into account the involvement of the third cytoplasmic loop in the coupling to the protein G, it has been proposed that this splicing could be involved in the functional diversity 518

of the D_2 receptors (Missale et al., 1998; Ben-Jonathan and Hnasko, 2001; Callier et al., 2003). Indeed, Senogles et al., (2004) suggested that the splice variants could be coupled to a different Gi protein. Other authors showed that, besides their distinct expression in the brain, the D_{2S} receptor could be presynaptically located while the D_{2L} may be found in the postsynaptic region in mammals (Khan et al., 1998). Conversely, Tress et al. (2017) suggested that most annotated splice variants could lead to unfunctional proteins at a cellular level and a debate remains open about the physiological roles of these variants.

526

Relatively to D₃, a single copy has been evidenced in some mammals, sauropsids and some teleosts such as fugu, zebrafish, Japanese medaka, European seabass, and Nile tilapia (Macrae and Brenner, 1995; Missale et al., 1998; Boehmler et al., 2004; Yamamoto et al., 2015; NCBI database). This suggests that one of the 3R duplicated D₃ paralogs may have been lost shortly after the teleost emergence.

In the same way, a single copy of D_9 was cloned in zebrafish (Boehmler et al., 2007) and was identified in databases for some other teleost species such as Nile tilapia, Japanese medaka, in the non-teleost actinopterygian spotted gar and the sarcopterygian coelacanth (Yamamoto et al., 2015; NCBI, Ensembl and Uniprot databases). This again suggests an early loss of one of the D_9 3R-paralogs during teleost radiation.

Concerning the D_4 subtype, 3R duplicated paralogs are present in some teleosts, such as zebrafish, Atlantic herring, Asian bonytongue and European eel, while a single copy has been evidenced in Nile tilapia, platyfish, Japanese medaka, and fugu (Boehmler et al., 2007; NCBI, Ensembl and Uniprot databases). This suggests that different loss events may have occurred during teleost radiation. In the present transcriptome, no DA receptor orthologous to D_4 has been evidenced in the pikeperch. Few studies have investigated D_4 and D_9 subtypes in teleosts besides Boehmler et al. (2007), which reported three distinct genes encoding those receptors, two genes encoding the D_4 subtype (D_{4a} and D_{4b} (or D_{4c})) and a single gene encoding the D_9 subtype. As suggested in previous studies, the existence of D_4 and D_9 subtypes would result from a duplication event that occurred occurred before the split of sarcopterygians and actinopterygians (Boehmler et al., 2007; Yamamoto et al., 2015).

549

Several hypotheses might explain the absence of D_{5b} , D_{2b} , both D_4 paralogs and D_7 in all 550 female pikeperch specimens analysed in the present study. First, some receptors like D_{2b} and 551 D₇ may have been lost during vertebrate evolution in most of the teleost lineages (Dufour et 552 al., 2010; Yamamoto et al., 2015). Other paralogs, like D_{5b}, may have been lost only in some 553 perciform species, including pikeperch. Second, we could also speculate that the genes 554 555 encoding some of these receptors in fact correspond to unfunctional pseudogenes (Prince and Pickett, 2002) whose transcripts remain undetectable in the brain. To address these questions, 556 557 an exhaustive genome sequencing in pikeperch would be useful. Third, the present study analysed the transcripts during the prespawning period, a highly specific physiological 558 situation. This event of final oocyte maturation is synchronous with huge alterations of the 559 brain and gonad transcriptomes. We may preclude low and barely detectable gene expression 560 of these receptors before ovulation in pikeperch (Aegerter et al., 2004). Fourth, we cannot rule 561 out the fact that the lack of identification may stem from methodological limitations (e.g. 562 563 assembly, detection thresholds, incomplete references/databases).

All DA receptors do not have an undetectable gene expression in pikeperch. Indeed, all the multi-tissues gene expression patterns revealed a specific and measurable expression for D_{1a} , D_{1b} , D_3 , D_8 and D_9 .

Despite the rough examination, the gene expression study showed relatively high expression 567 568 of DA receptors in brain regions compared to peripheral organs. This would be in accordance with the importance of DA in neurophysiological functions (Missale et al., 1998; Dufour et 569 570 al., 2010). The brain profile also showed a part-specific gene expression of these receptors. For instance, the two D_{1A} are ubiquitously expressed in the brain except for the cerebellum 571 where the expression is slightly lower. These low levels of D_{1A} mRNA in the cerebellum have 572 573 previously been reported in mammals and European eel (Mansour et al., 1991; Mengod et al., 574 1992; Laurier et al., 1994; Cardinaud et al., 1997; Kapsimali et al., 2000). On the contrary, some receptor mRNA are present in the brain parts related to sensory perception (e.g. 575 olfactory bulb) or reproductive function (e.g. optic recess region). In situ hybridization would 576 be useful to locate the DA receptor genes more precisely. For example, if a DA receptor gene 577 is colabelled with GnRH transcripts, it indicates a possibility that DA directly interacts with 578 579 GnRH neurons.

Pituitary showed intermediate and low transcript abundance for the two D_{1A}, and an increased 580 581 expression level for the D2 family receptors. Using specific DA receptor antagonists, it was demonstrated that the D2 family receptors, rather than the D1 ones, might be involved in 582 gonadotropin secretion (Dufour et al., 2010; Fontaine et al., 2015). Nevertheless, we recently 583 584 showed that in vivo treatment with an antagonist of the family D1 increased the T and E2 plasmatic levels, while no effect was observed with an antagonist of the family D2 (Roche et 585 al., 2018). We thus imagine that this divergence between both DA receptor families 586 localization in the pituitary is not linked to the activation of the gonadotropic axis in 587 pikeperch at this pre-ovulatory period. In the gonad, the gene expression is either just above 588 the quantification limit (D_{1a} and D_9) or simply low (D_{1b} , D_3 , D_8). Given this level of detection, 589 590 we cannot rule out any direct effect of DA through its receptors on ovarian mechanisms (Isobe, 1994; Venegas-Meneses et al., 2015). 591

Finally, depending on the receptor type, the expression level is also just detectable in heart, liver or gills, which might be put in relation with involvements of DA in osmoregulatory mechanisms, heart beats and energetic metabolism in teleost fish (Missale et al., 1998; Rubí and Maechler, 2010). In the spleen, muscle and adipose tissue, no expression was observable, which allows us to conclude on the non-involvement of these receptors in these tissues.

597

598 In summary, five D₁ DA receptors, D_{1a}, D_{1b}, D_{5a}, D_{6a} and D_{6b} and five D₂ DA receptors, D_{2L} 599 and D_{2S}, D₃, D₈ and D₉, sharing features specific to each DA receptor family, were identified in pikeperch during the pre-ovulatory period. Presence of two receptor families (D1 and D2), 600 multiple receptor subtypes (D_1 , D_5 , D_6 , D_2 , D_3 , D_8 and D_9), some teleost-specific paralogs for 601 some subtypes (D1a and D1b, D6a and D6b) and even spliced variants (D_{2aL} and D_{2aS}) 602 highlight the complexity of DA receptors in teleost fish. These receptors are differentially 603 604 expressed in different brain areas and in the pituitary, but also in some peripheral tissues (gonads, heart, liver, gills) indicating roles of DA through one of its receptors in different 605 606 physiological functions.

607

Acknowledgements: We thank the DyNAMIC and LAE laboratories (University of Lorraine,
France) for the access to the NanoDrop Spectrophotometer and the q-PCR thermocycler,
respectively.

611

Funding: This work was supported by the Eurostars project [grant numbers E!9390
TRANSANDER]; the Region Lorraine and project NAZV QK1710310.

614

615 Bibliography

Aegerter, S., Jalabert, B., Bobe, J., 2004. Messenger RNA stockpile of cyclin B, insulin-like

25

- 617 growth factor I, insulin-like growth factor II, insulin-like growth factor receptor Ib, and
- p53 in the rainbow trout oocyte in relation with developmental competence. Mol.
- 619 Reprod. Dev. 67, 127–135.
- 620 Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
- 621 Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L.,
- 622 Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M.,
- Sherlock, G., 2000. Gene Ontology: tool for the unification of biology. Nat. Genet. 25,
 25–29.
- Bates, D., Maechler Martin, Bolker, B., Walker, S., 2015. Fitting Linear Mixed-Effects
 Models using lme4. J. Stat. Softw. 67, 1–48.
- Ben-Jonathan, N., Hnasko, R., 2001. Dopamine as a prolactin (PRL) inhibitor. Endocr. Rev.
 22, 724–763.
- Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and
 powerful approach to multiple testing. J. R. Stat. Soc. Ser. B.
- Boehmler, W., Obrecht-Pflumio, S., Canfield, V., Thisse, C., Thisse, B., Levenson, R., 2004.
- Evolution and expression of D2 and D3 dopamine receptor genes in zebrafish. Dev. Dyn.
 230, 481–493.
- Boehmler, W., Carr, T., Thisse, C., Thisse, B., Canfield, V.A., Levenson, R., 2007. D4
- dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval
 swimming behaviour. Genes, Brain Behav. 6, 155–166.
- Bray, N.L., Pimentel, H., Melsted, P., Pachter, L., 2016. Near-optimal probabilistic RNA-seq
 quantification. Nat. Biotechnol. 34, 525–527.
- Callier, S., Snapyan, M., Crom, S., Prou, D., Vincent, J.-D., Vernier, P., 2003. Evolution and
 cell biology of dopamine receptors in vertebrates. Biol. Cell 95, 489–502.
- 641 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden,

- T.L., 2009. BLAST+: architecture and applications. BMC Bioinformatics 10, 421.
- 643 Cardinaud, B., Sugamori, K.S., Coudouel, S., Vincent, J.-D., Niznik, H.B., Vernier, P., 1997.
- Early emergence of three dopamine D1 receptor subtypes in vertebrates. J. Biol. Chem.
 272, 2778–2787.
- 646 Civelli, O., Bunzow, J.R., Grandy, D.K., 1993. Molecular diversity of the dopamine receptors.
 647 Annu. Rev. Pharmacol. Toxicol. 33, 281–307.
- Dal Toso, R., Sommer, B., Ewert, M., Herb, A., Pritchett, D.B., Bach, A., Shivers, B.D.,
 Seeburg, P.H., 1989. The dopamine D2 receptor: two molecular forms generated by
 alternative splicing. EMBO J. 8, 4025–4034.
- 651 Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2011. ProtTest 3: fast selection of best-fit
- Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2011. ProtTest 3: fast selection of bestmodels of protein evolution. Bioinforma. Appl. NOTE 27, 1164–1165.
- 653 Demchyshyn, L.L., Sugamori, K.S., Lee, F.J., Hamadanizadeh, S.A., Niznik, H.B., 1995. The
- dopamine D1D receptor. Cloning and characterization of three pharmacologically
- distinct D1-like receptors from Gallus domesticus. J. Biol. Chem. 270, 4005–12.
- Dufour, S., Sebert, M.E., Weltzien, F.A., Rousseau, K., Pasqualini, C., 2010. Neuroendocrine
- 657 control by dopamine of teleost reproduction. J. Fish Biol. 76, 129–160.
- Eddy, S.R., 2011. Accelerated Profile HMM Searches. PLoS Comput. Biol. 7, e1002195.
- 659 Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C.,
- 660 Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., Bateman, A., 2016.
- 661 The Pfam protein families database: towards a more sustainable future. Nucleic Acids
- 662 Res. 44, D279–D285.
- 663 Fontaine, R., Affaticati, P., Bureau, C., Colin, I., Demarque, M., Dufour, S., Vernier, P.,
- 664 Yamamoto, K., Pasqualini, C., 2015. The dopaminergic neurons controlling anterior
- 665 pituitary functions: anatomy and ontogenesis in zebrafish. Endocrinology 156, 2934–
- 666 2948.

Fox, J., Weisberg, S., 2011. An R companion to applied Regression, Second. ed. SAGE
Publications, Inc.

669

690

Frail, D.E., Manelli, A.M., Witte, D.G., Lin, C.W., Steffey, M.E., Mackenzie, R.G., 1993.

- 670 Cloning and characterization of a truncated dopamine D1 receptor from goldfish retina: stimulation of cyclic AMP production and calcium mobilization. Mol. Pharmacol. 44. 671 Gouy, M., Guindon, S., Gascuel, O., 2010. SeaView Version 4: A Multiplatform Graphical 672 673 User Interface for Sequence Alignment and Phylogenetic Tree Building. Mol. Biol. Evol 674 27, 221–224. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., 675 Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., 676 Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., 677 Regev, A., 2011. Full-length transcriptome assembly from RNA-Seq data without a 678 679 reference genome. Nature biotechnology 29, 644-652. 680 Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, 681 M.B., Eccles, D., Li, B., Lieber, M., MacManes, M.D., Ott, M., Orvis, J., Pochet, N., 682 Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C.N., Henschel, R., LeDuc, R.D., Friedman, N., Regev, A., 2013. De novo transcript sequence reconstruction from 683 RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 684 685 1494–1512. Hervé, M., 2016. RVAideMemoire: diverse basic statistical and graphical functions. R 686 package version 0.9-61. 687 Hirano, J., Archer, S.N., Djamgoz, M.B., 1998. Dopamine receptor subtypes expressed in 688 vertebrate (carp and eel) retinae: cloning, sequencing and comparison of five D1-like and 689
- Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M.C., Rattei, T.,

three D2-like receptors. Receptors Channels 5, 387–404.

692	Mende, D.R., Sunagawa, S., Kuhn, M., Jensen, L.J., von Mering, C., Bork, P., 2016.
693	eggNOG 4.5: a hierarchical orthology framework with improved functional annotations
694	for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293.
695	Isobe, S., 1994. The role of the dopaminergic system in the rat ovary. Folia Endocrinol. Jpn.
696	70, 457–464.
697	Jackson, D.M., Westlind-Danielsson, A., 1994. Dopamine receptors: molecular biology,
698	biochemistry and behavioural aspects. Pharmacol. Ther 64, 291–369.
699	Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., Xu, J., 2012. Template-based
700	protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522.
701	Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K., 2017. KEGG: new
702	perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353-
703	D361.
704	Kapsimali, M., Vidal, B., Gonzalez, A., Dufour, S., Vernier, P., 2000. Distribution of the
705	mRNA encoding the four dopamine D1 receptor subtypes in the brain of the European
706	eel (Anguilla anguilla): comparative approach to the function of D1 receptors in
707	vertebrates. J. Comp. Neurol. 419, 320–343.
708	Kestemont, P., Dabrowski, K., Summerfelt, R.C., 2015. Biology and culture of percid fishes:
709	Principles and practices, Biology and Culture of Percid Fishes: Principles and Practices.
710	Springer.
711	Khan, Z.U., Mrzljak, L., Gutierrez, A., de la Calle, A., Goldman-Rakic, P.S., 1998.
712	Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc. Natl.
713	Acad. Sci. U. S. A. 95, 7731–7736.
714	Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L., 2001. Predicting transmembrane
715	protein topology with a hidden markov model: application to complete genomes. J. Mol.
716	Biol. 305, 567–580.

29

- Lagesen, K., Hallin, P., Rødland, E.A., Stærfeldt, H.-H., Rognes, T., Ussery, D.W., 2007.
- RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids
 Res. 35, 3100–3108.
- Lamers, A.E., Groneveld, D., De, D.P. V, Felix, K., Geeraedts, C.G., Leunissen B', J.A.M.,
- Flik, G., Sjoerd, \, Wendelaar Bonga, E., Martens, G.J.M., 1996. Cloning and sequence
- analysis of a hypothalamic cDNA encoding a D1C dopamine receptor in tilapia.
- Biochim. cl Biophys. Acta 1308, 17–22.
- Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods
 9, 357–359.
- Laurier, L.G., O'dowd, B.F., George, S.R., 1994. Heterogeneous tissue-specific transcription
- of dopamine receptor subtype messenger RNA in rat brain. Mol. Brain Res. 25, 344–351.
- Lenth, R., 2016. Least-Squares Means: The R package lsmeans. J. Stat. Softw. 69, 1–33.
- Levavi-Sivan, B., Aizen, J., Avitan, A., 2005. Cloning, characterization and expression of the
- 730 D2 dopamine receptor from the tilapia pituitary. Mol. Cell. Endocrinol. 236, 17–30.
- Macrae, A.D., Brenner, S., 1995. Analysis of the dopamine receptor family in the compact
 genome of the puffer fish *Fugu rubripes*. Genomics 25, 436–446.
- 733 Mansour, A., Meador-Woodruff J.H., Zhou, Q.-Y., Civelli, O., Akil, H., Watson, S.J., 1991.
- A comparison of D1 receptor binding and mRNA in rat brain using receptor
- autoradiogaphy and in situ hybridization techniques. Neuroscience 45, 359–371.
- 736 Martens, G.J.M., Groenen, P.M.A., Van Riel, M.C.H.M., Martens, G., 1993. Expression of
- the Xenopus D2, dopamine receptor. Tissue-specific regulation and two transcriptionally
- active genes but no evidence for alternative splicing. Eur. J. Biochem 213, 1349–1354.
- 739 Martin, M., 2013. Cutadapt removes adapter sequences from high-throughput sequencing
- reads. EMBnet.journal 17, 10–12.
- 741 Mengod, G., Villaro, M.T., Landwehrmeyer, G.B., Martinez-Mir, M.I., Niznik, H.B.,

742	Sunahara, R.K., Seeman, P., O'dowd, B.F., Probst, A., Palacios, J.M., Research, P.,
743	1992. Visualization of dopamine D1, D2 and D3 receptor mRNA's in human and rat
744	brain. Neurochem. Int 20, 33–43.
745	Milla, S., Mathieu, C., Wang, N., Lambert, S., Nadzialek, S., Massart, S., Henrotte, E.,

- 746 Douxfils, J., Mélard, C., Mandiki, S.N.M., Kestemont, P., 2010. Spleen immune status is
- affected after acute handling stress but not regulated by cortisol in Eurasian perch, Perca
- fluviatilis. Fish Shellfish Immunol. 28, 931–941.
- Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., Caron, M.G., 1998. Dopamine receptors:
 from structure to function. Physiol. Rev. 78, 189–225.
- 751 Monsma, F.J., McVittie, L.D., Gerfen, C.R., Mahan, L.C., Sibley, D.R., 1989. Multiple D2
- dopamine receptors produced by alternative RNA splicing. Nature 342, 926–929.
- 753 Nakano, M., Hasunuma, I., Okada, R., Yamamoto, K., Kikuyama, S., Machida, T.,
- Kobayashi, T., 2010. Molecular cloning of bullfrog D2 dopamine receptor cDNA: tissue
- distribution of three isoforms of D2 dopamine receptor mRNA. Gen. Comp. Endocrinol.
 168, 143–148.
- 757 Pasqualini, C., Weltzien, F.-A., Vidal, B., Baloche, S., Rouget, C., Gilles, N., Servent, D.,
- Vernier, P., Dufour, S., 2009. Two distinct dopamine D2 receptor genes in the European
- eel: molecular characterization, tissue-specific transcription, and regulation by sex
- steroids. Endocrinology 150, 1377–1392.
- 761 Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., 2011. SignalP 4.0: discriminating
- signal peptides from transmembrane regions. Nat. Methods 8, 785–786.
- Pohlert, T., 2016. The Pairwise Multiple Comparisons of Mean Ranks package (PMCMR), R
 Package.
- Popesku, J.T., Navarro-Martín, L., Trudeau, V.L., 2011. Evidence for alternative splicing of a
 dopamine D2 receptor in a teleost. Physiol. Biochem. Zool. 84, 135–46.

- Prince, V.E., Pickett, F.B., 2002. Splitting pairs: the diverging fates of duplicated genes. Nat.
 Rev. 3, 827–837.
- 769 Roche, J., Żarski, D., Khendek, A., Ben Ammar, I., Broquard, C., Depp, A., Ledoré, Y.,
- Policar, T., Fontaine, P., Milla, S., 2018. D1, but not D2, dopamine receptor regulates
 steroid levels during the final stages of pikeperch gametogenesis. Animal 1–11.
- 772 Rubí, B., Maechler, P., 2010. Minireview: New roles for peripheral dopamine on metabolic
- control and tumor growth: let's seek the balance. Endocrinology 151, 5570–5581.
- Senogles, S.E., Heimert, T.L., Odife, E.R., Quasney, M.W., 2004. A region of the third
- intracellular loop of the short form of the D2 dopamine receptor dictates Gi coupling
 specificity. J. Biol. Chem. 279, 1601–6.
- Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam,
- H., Remmert, M., Söding, J., Thompson, J.D., Higgins, D.G., 2011. Fast, scalable
- generation of high-quality protein multiple sequence alignments using Clustal Omega.
- 780 Mol. Syst. Biol. 7, 539.
- 781 Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J.M., Kelly, S., 2016. TransRate:
- reference-free quality assessment of *de novo* transcriptome assemblies. Genome Res. 26,
 1134–44.
- Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
 large phylogenies. Bioinforma. Appl. 30, 1312–1313.
- Sugamori, K.S., Demchyshyn, L.L., Chung, M., Niznik, H.B., 1994. D1A, D1B, and D1C
- dopamine receptors from *Xenopus laevis*. Proc. Natl. Acad. Sci. USA 91, 10536–10540.
- The Gene Ontology Consortium, 2017. Expansion of the Gene Ontology knowledgebase and
 resources. Nucleic Acids Res. 45, D331–D338.
- 790 Tress, M.L., Abascal, F., Valencia, A., 2017. Alternative splicing may not be the key to
- 791 proteome complexity. Trends Biochem. Sci. 42, 98–110.

792	Vacher, C., Pellegrini, E., Anglade, I., Ferriére, F., Saligaut, C., Kah, O., 2003. Distribution of
793	dopamine D 2 receptor mRNAs in the brain and the pituitary of female rainbow trout: an
794	in situ hybridization study. J. Comp. Neurol. 458, 32–45.

- 795 Venegas-Meneses, B., Padilla, J.F., Juarez, C.E., Moran, J.L., Moran, C., Rosas-Murrieta,
- N.H., Handal, A., Dominguez, R., 2015. Effects of ovarian dopaminergic receptors on
 ovulation. Endocrine 50, 783–796.
- Yamamoto, K., Fontaine, R., Pasqualini, C., Vernier, P., 2015. Classification of dopamine
 receptor genes in vertebrates: nine subtypes in Osteichthyes. Brain Behav Evol 86, 164–
 175.
- 201 Żarski, D., Kucharczyk, D., Targonska, K., Palińska, K., Kupren, K., Fontaine, P., Kestemont,
- P., 2012. A new classification of pre-ovulatory oocyte maturation stages in pikeperch,
- *Sander lucioperca* (L.), and its application during artificial reproduction. Aquac. Res. 43,

804 713–721.

805

806 Table 1: Primers used for real-time PCR

	Sequences (5' – 3')								
		Forward	Reverse	Size (bp)					
	D _{1a}	CTTCATCCTCAACTGCATGGT	CCTCCTGGATACAGTCTGTGG	204					
	D_{1b}	CCAGAGAGAGAGACTCGTCCAAA	TTGCAGAAAGCACCAAACGG	196					
	D ₃	TGGTGTGCTCCATCTCCAAC	GCCACAGGCAAACTGACAAC	306					
	D_8	TGCCATCTCCTGCCCTTTAC	CCATCGCCTCCTTTACCAGG	255					
	D ₉	CGTCGTAGGGGGTTTTTCTAGC	GCAGAGCAGCTTGTGAAAGAC	199					
	RPL8	GTTATCGCCTCTGCCAC	ACCGAAGGGATGCTCAAC	163					
	AK	CTTCCTGACCGTCTCTTTGG	CCTTAGTCTCGAAGTCTTGC	209					
807	,								
808	8								
809)								
810)								
811									
812	2								
813	6								

Pikeperch		D1_1	D1_2	D1_3	D1_4	D1_5
H D ₁	Id % (Sc)	72.75 (513)	72.15 (621)	57.30 (397)	59.53 (439)	61.94 (188)
	e-value	0.0	0.0	1.88e-140	1.28e-154	4.58e-62
H D ₅	Id % (Sc)	67.45 (455)	56.76 (477)	66.13 (492)	51.84 (461)	61.24 (197)
	e-value	2.72e-162	1.54e-169	2.75e-177	1.79e-162	3.74e-65
ZF D _{1a}	Id % (Sc)	81.03 (570)	82.37 (575)	71.43 (382)	65.63 (435)	62.81 (189)
	e-value	0.0	0.0	1.14e-135	4.06e-154	2.95e-63
ZF D _{1b}	Id % (Sc)	79.95 (565)	84.13 (756)	59.07 (404)	62.97 (437)	66.46 (208)
	e-value	0.0	0.0	2.91e-143	1.88e-153	1.26e-69
ZF D _{5a}	Id % (Sc)	64.71 (272)	64.35 (286)	72.19 (421)	58.58 (290)	66.88 (199)
	e-value	2.40e-93	1.20e-97	1.80e-152	8.15e-99	3.73e-68
ZF D _{5b}	Id % (Sc)	61.45 (419)	62.08 (417)	59.13 (370)	57.65 (405)	59.24 (171)
	e-value	2.70e-149	1.75e-147	2.21e-130	7.51e-142	6.25e-56
ZF D _{6a}	Id % (Sc)	68.31 (476)	57.52 (495)	61.30 (420)	65.77 (597)	76.19 (224)
	e-value	4.59e-171	3.74e-177	2.24e-149	0.0	9.17e-76
ZF D _{6b}	Id % (Sc)	70.54 (475)	68.75 (480)	60.28 (409)	59.84 (533)	75.97 (228)
	e-value	4.77e-171	1.05e-171	2.08e-145	0.0	8.43e-78
ZF D ₇	Id % (Sc)	62.82 (431)	55.71 (455)	56.43 (377)	59.84 (446)	62.18 (185)
	e-value	2.50e-153	1.22e-161	1.49e-132	4.07e-157	8.21e-61

Table 2: Pairwise comparisons within the D1 receptor family between pikeperch, zebrafish(ZF) and human (H) receptor protein sequences

Id = Identity; Sc = bit Score

Pikeperch		D2_1	D2_2	D2_3	D2_4	D2_5
$H D_{2L}$	Id % (Sc)	66.10 (602)	63.23 (557)	53.76 (438)	56.47 (456)	38.48 (262)
	e-value	0.0	0.0	8.44e-155	2.94e-161	7.23e-87
H D ₂₈	Id % (Sc)	62.50 (559)	66.37 (571)	53.68 (440)	54.98 (436)	41.18 (274)
	e-value	0.0	0.0	4.47e-156	8.36e-154	1.13e-91
HD ₃	Id % (Sc)	48.89 (388)	53.15 (403)	57.72 (449)	49.22 (368)	40.96 (276)
	e-value	1.32e-135	4.63e-142	9.23e-160	1.63e-127	1.47e-92
H D ₄	Id % (Sc)	46.88 (152)	36.49 (228)	38.22 (232)	53.49 (150)	68.04 (228)
	e-value	2.33e-44	6.86e-73	2.22e-74	1.76e-43	2.33e-73
ZF D _{2a}	Id % (Sc)	73.35 (684)	69.44 (632)	51.45 (418)	54.96 (471)	33.63 (265)
	e-value	0.0	0.0	6.88e-147	1.92e-167	6.38e-88
ZF D _{2b}	Id % (Sc)	73.25 (677)	71.15 (617)	53.60 (438)	58.02 (500)	37.09 (276)
	e-value	0.0	0.0	6.56e-155	1.15e-178	4.04e-92
ZF D ₃	Id % (Sc)	50.10 (447)	53.06 (456)	74.57 (666)	49.31 (386)	38.02 (270)
	e-value	3.87e-158	8.14e-162	0.0	5.62e-134	1.55e-89
ZF D _{4a}	Id % (Sc)	47.62 (155)	36.62 (228)	48.54 (139)	36.59 (222)	51.39 (343)
	e-value	6.50e-46	5.54e-74	2.30e-40	3.04e-71	2.33e-119
ZF D _{4b}	Id % (Sc)	35.28 (253)	37.53 (258)	36.96 (244)	35.85 (251)	54.10 (394)
	e-value	3.46e-83	2.12e-85	5.65e-80	1.90e-82	5.79e-139
ZF D ₈	Id % (Sc)	59.23 (490)	58.47 (457)	51.64 (385)	74.61 (610)	41.06 (271)
	e-value	2.56e-175	7.06e-163	5.39e-134	0.0	1.71e-90
ZF D ₉	Id % (Sc)	37.05 (249)	37.12 (253)	39.59 (262)	42.48 (274)	70.76 (535)
	e-value	3.94e-81	2.15e-83	1.35e-86	1.12e-90	0
D _{2S}	= D _{2Short} ;	D_{2L} =	D _{2Long} ; Id	= Identi	ty; Sc =	bit Scor

Table 3: Pairwise comparisons within the D2 receptor family between pikeperch, zebrafish(ZF) and human (H) protein sequences

Pikeperch		D1_1	D1_2	D1_3	D1_4	D1_5
Tilapia D _{1a}	Id % (Sc)	92.74 (674)	79.30 (562)	66.91 (368)	62.19 (434)	61.05 (203)
	e-value	0.0	0.0	5.42e-130	1.46e-153	1.50e-68
Tilapia D _{1b}	Id % (Sc)	79.36 (583)	92.66 (883)	57.14 (405)	62.40 (463)	64.29 (206)
	e-value	0.0	0.0	2.01e-143	1.53e-163	1.60e-68
Tilapia D _{5a}	Id % (Sc)	67.89 (468)	59.02 (500)	93.47 (685)	55.39 (478)	61.21 (194)
	e-value	7.05e-168	6.48e-179	0.0	1.63e-169	2.48e-64
Tilapia D _{5b}	Id % (Sc)	60.21 (437)	61.11 (443)	62.14 (368)	58.07 (426)	54.75 (174)
	e-value	1.94e-155	1.22e-156	6.11e-129	2.81e-149	1.82e-56
Tilapia D _{6a}	Id % (Sc)	63.01 (461)	55.82 (481)	56.17 (395)	78.91 (758)	61.70 (207)
	e-value	1.21e-164	4.80e-171	8.39e-139	0.0	1.08e-68
Tilapia D _{6b}	Id % (Sc)	68.27 (468)	66.30 (481)	58.97 (391)	59.25 (531)	82.47 (254)
	e-value	5.17e-168	1.27e-171	5.26e-138	0.0	1.02e-87
Eel D _{1,1}	Id % (Sc)	80.00 (565)	83.62 (735)	62.60 (427)	58.50 (452)	66.06 (207)
	e-value	0.0	0.0	2.95e-152	1.08e-159	2.56e-69
Eel D _{1,2}	Id % (Sc)	80.05 (598)	80.13 (731)	59.33 (408)	62.40 (467)	63.47 (201)
	e-value	0.0	0.0	7.38e-145	2.28e-165	5.22e-67
Eel D ₅	Id % (Sc)	68.73 (464)	59.91 (496)	85.27 (620)	55.18 (478)	63.19 (197)
	e-value	2.03e-166	1.94e-177	0.0	2.17e-169	2.02e-65
Eel D ₆	Id % (Sc)	70.21 (484)	69.60 (492)	63.23 (429)	65.37 (594)	75.80 (246)
	e-value	3.19e-174	4.87e-176	7.73e-153	0.0	2.22e-84
Id	=	Identity;	Sc	=	bit	Score

Supplementary Table 1: Pairwise comparisons within the D1 receptor family between pikeperch, Nile tilapia and European eel receptor protein sequences

Pikeperch		D2_1	D2_2	D2_3	D2_4	D2_5
Tilapia D ₂	Id % (Sc)	94.88 (918)	89.13 (844)	52.16 (429)	57.02 (496)	35.98 (271)
	e-value	0.0	0.0	5.51e-151	7.78e-177	7.16e-90
TilapiaD ₃	Id % (Sc)	51.16 (435)	52.69 (441)	89.50 (832)	51.13 (388)	37.34 (275)
	e-value	2.78e-153	4.53e-156	0.0	1.42 e-134	8.97e-92
TilapiaD _{4a}	Id % (Sc)	34.73 (238)	37.62 (259)	43.72 (173)	36.13 (256)	53.39 (407)
	e-value	4.31e-77	1.39e-85	1.09e-52	5.51e-84	8.35e-144
Tilapia D _{4b}	Id % (Sc)	33.04 (223)	34.66 (225)	36.22 (231)	45.55 (164)	51.68 (363)
	e-value	1.01e-71	9.68e-73	4.72e-75	3.74e-49	7.81e-127
Tilapia D ₈	Id % (Sc)	57.27 (489)	57.64 (460)	49.77 (387)	88.77 (842)	41.76 (283)
	e-value	3.30e-174	4.22e-163	4.96e-134	0.0	1.76e-94
Tilapia D9	Id % (Sc)	36.74 (250)	38.12 (253)	39.17 (255)	41.95 (263)	75.71 (599)
	e-value	9.26e-82	4.82 e-83	8.90e-84	1.52e-86	0.0
Eel D _{2A}	Id % (Sc)	77.83 (729)	73.13 (666)	50.52 (427)	58.96 (497)	37.01 (273)
	e-value	0.0	0.0	2.45e-150	1.88 e-177	4.40e-91
Eel D _{2B}	Id % (Sc)	75.48 (686)	71.73 (635)	51.50 (441)	59.04 (492)	36.77 (268)
	e-value	0.0	0.0	3.74e-156	1.63e-175	9.44e-89

Supplementary Table 2: Pairwise comparisons within the D2 receptor family between pikeperch, Nile tilapia and European eel receptor protein sequences

Id = Identity; Sc = bit Score

Supplementary Table 3: ID correspondence and nomenclature for DA receptor sequences¹ used in the phylogenetic analysis and the manuscript

			D1 family	D2 family	
Vertebrate species	Latin names	Receptor	Protein ID	Receptor names	Protein ID
		D _{1a}	XP_018611872.1	D _{2a}	XP_018598250.1
Asian bonytongue	Scleropages	D_{1b}	XP_018607352.1	D_{2b}	XP_018610682.1
(Arowana)	formosus	D _{5a}	XP_018590910.1		
		D _{6a} D _{6b}	KPP64030.1		
		D _{1b}	XP_012693211.1	D_{2b}	XP_012677409.1
		D _{5a}	XP_012696109.1	D ₃	XP_012671515.1
Atlantic herring	Clupea harengus	D_{5b}	XP_012686723.1	D_9	XP_012687376.1
		D _{6a}	XP_012685303.1		
		D_{6b}	XP_012672788.1		
Cattle	Bos taurus	D ₁	Q95136	D ₂	P20288
		D ₅	G3X8D2	D ₃	NP_001179824.1
				D_4	XP_024843396.1
Chicken	Gallus gallus	D ₁	B8YLW8	D ₂	A9YZQ5
		D ₅	XP_015141299.1	D ₃	C5HV40
		D_7	XP_004947622.1	D_4	B6UVA0
Clown fish (Sebae	Amphiprion			D _{2a}	A0A0C5LBQ6
anemonefish)	sebae				
Coelacanth	Latimeria	D ₁	XP_005992583.1	D ₂	H3BGA1
	chalunae	D ₅	H2ZWY6	D_8	XP_006010333.1
		D_6	H3BEK6	D ₃	XP_014350627.1
		D_7	XP_005995307.1	D_4	H3B3R1

				D_9	H3A1X7
European eel	Anguilla	D _{1,1}	Q98841	$D_{2a}(D_{2A})$	A1XYV7
	anguilla	D _{1,2}	Q98842	$D_{2b}\left(D_{2B}\right)$	A1XYV8
		$D_{5a}(D_{1Ba})$	Q98843		
		$D_{6b}(D_6)$	Q98844		
European seabass	Dicentrarchus			D ₃	E6ZIT8
	labrax				
Flathead grey mullet	Mugil cephalus			D _{2a}	Q5Y5R5
Fugu (Japanese pufferfish)	Takifugu	D _{1a}	XP_003970582.1	D _{2a}	P53453
	rubripes	D _{1b} (D1 ₄)	P53452	D ₃	XP_003967971.1
		D_{5a}	XP_003973600.1	\mathbf{D}_{4a}	XP_003967634.1
		D_{5b}	XP_011610919.1	D_{4b}	XP_003969784.1
		$D_{6b}\left(DL\right)$	P53454		
Golden-line (Golden-line	Sinocyclocheilus	D ₇	XP_016140732.1		
barbel)	grahami				
Goldfish	Carassius	D ₇	XP_026112506.1	D _{2a1}	XP_026138158.1
	auratus			D_{2a2}	XP_026082110.1
				D_{2b}	XP_026109573.1
				D _{3_1}	XP_026057526.1
				D _{3_2}	XP_026093276.1
				D_{4a1}	XP_026057689.1
				D_{4a2}	XP_026111096.1
				D_{4b}	XP_026122146.1
				D _{9,1}	XP_026088236.1
				D _{9,2}	XP_026066271.1
Human	Homo sapiens	D ₁	P21728	D ₂	P14416
		D ₅	P21918	D ₃	P35462

D4 P21917

		ADRA1A	NP_000671.2		
	OUTGROUPS	ADRA2B	NP_000673.2		
Lizard	Anolis	D ₁	XP_008102998.1	D_2	H9GEE4
	carolinensis	D ₅	H9GGW7	D ₃	G1KJF9
		\mathbf{D}_7	XP_003228657.1		
Medaka	Oryzias latipes	D _{1a}	XP_011478663.1	D _{2a}	XP_004075461.1
(Japanese medaka)		D_{1b}	XP_004076181.1	D_8	NP_001292346.1
		D_{5a}	XP_004068909.1	D ₃	XP_004081111.1
		D_{5b}	XP_011473350.1	D_{4a}	XP_023811246.1
		D _{6a}	XP_020555836.1	D_{4b}	XP_023807515.1
				D_9	XP_004085072.1
Mozambique tilapia	Oreochromis	D _{6b}	P47800		
	mossambicus				
Nile tilapia	Oreochromis	D _{1a}	XP_013127197	D _{2a}	Q5Y5R4
	niloticus	D_{1b}	I3KZ49	D_8	XP_005455936.1
		D_{5a}	ІЗКҮВ9	D ₃	I3K990
		D_{5b}	XP_013131143.1	D_{4a}	I3J7W8
		D _{6a}	XP_005473811.1	D_{4b}	I3KEQ9
		D_{6b}	XP_003449479.1	D_9	I3JL32
<u>Paramormyrops</u>	<u>kingsleyae</u>			D _{2b}	XP_023672044.1
Platyfish	Xiphophorus			D_{2a}	M4A3B9
	maculatus			D ₃	M4A6N4
				D_{4b}	M4AVC2
				D_8	M3ZW15
				D ₉	M4AF30

Rainbow trout	Oncorhynchus			D _{2a1}	Q90WQ7
	mykiss			D_{2a2}	Q90WQ6
Rat	Rattus	D ₁	P18901	D ₂	P61169
	norvegicus	D_5	P25115	D ₃	P19020
				D_4	P30729
Spotted gar	Lepisosteus	D ₁	W5MY24	D ₂	XP_006642348.1
	oculatus	D ₅	W5NNC6	D_8	XP_015224221.1
		D_6	XP_006630355.1	D ₃	W5M5T7
		\mathbf{D}_7	XP_006625630.1	D_4	XP_006642527.1
				D ₉	XP_006633286.1
Stickleback (Three-spined	Gasterosteus	D _{1a}	G3Q397		
stickleback)	aculeatus	D_{1b}	G3QBX5		
		D_{5a}	G3P395		
		D_{5b}	G3PUT1		
		D_{6a}	G3PAM4		
Tetraodon (Spotted green	Tetraodon			D _{2a}	H3CQR4
pufferfish)	nigroviridis			D ₃	H3D5B2
Turkey	Meleagris			D ₂	O73810
	gallopavo			D ₃	G1NND1
Turtle	Chelonia mydas	D ₇	XP_007068400.1		
Zebrafish	Danio rerio	D_{1a}	E7F359	D _{2a}	Q8AWE0
		D_{1b}	B6E506	$D_{2b}\left(D_{2c}\right)$	Q7T1A1
		D_{5b}	XP_005159907.1	D ₃	Q8AWE1
		D_{6a}	XP_005158584.1	D_{4a}	NP_001012634.2
		D_{6b}	F1QPK9	$D_{4b}\left(D_{4c} ight)$	Q5DJ14
		D ₇	A3KPR9	D_8	Q7T1A2
		$D_{9}\left(D_{4b} ight)$	Q5DJ15		

Xenopus	Xenopus laevis	D_1	P42289	D ₂	P24628
		D_5	P42290	D_4	XP_002937535.2
		D_6	P42291		

*correspond to incomplete sequences not included in the phylogenetic analyses.

Figure captions

Figure 1: Alignment of the two deduced pikeperch D_1 receptors with those of other vertebrates. The dark amino acids shared residues across all compared sequences. TMDs (Transmembrane Domains) are indicated with a horizontal line and numbered. Cytoplasmic loops are numbered. The DRY sequence and the conserved cysteine residue in the C-terminal tail are boxed. Sequences were extracted from NCBI, Ensembl and UniProt with following sequence IDs: Human (*Homo sapiens*) D_1 , P21728; Zebrafish (*Danio rerio*) D_{1a} , E7F359; Zebrafish D_{1b} , B6E506; Nile tilapia (*Oreochromis niloticus*) D_{1a} , XP_013127197; Nile tilapia D_{1b} , I3KZ49; European eel (*Anguilla Anguilla*) $D_{1,1}$, Q98841; European eel $D_{1,2}$, Q98842.

Figure 2: Alignment of the two deduced pikeperch D_2 receptors with those of other vertebrates. The dark amino acids shared residues across all compared sequences. TMDs (Transmembrane Domains) are indicated with a horizontal line and numbered. Cytoplasmic loops are numbered. The DRY sequence and the conserved cysteine residue in the C-terminal tail are boxed. * indicates the 29 missing amino acids in the pikeperch D_{2S} sequences. Sequences were extracted from Ensembl and UniProt with following sequence IDs: Human (*Homo sapiens*) D_{2L} , P14416-1; Human D_{2S} , P14416-2; Zebrafish (*Danio rerio*) D2a, Q8AWE0; Zebrafish D_{2b} , Q7T1A1; Nile tilapia (*Oreochromis niloticus*) D_2 , Q5Y5R4; European eel (*Anguilla Anguilla*) D_{2A} , A1XYV7; European eel D_{2B} , A1XYV8

Figure 3: Consensus phylogenetic tree of vertebrate D1 receptor family. This phylogenetic tree was constructed using the Maximum Likelihood method using 1000 bootstrap replicates. The number above the branch represents the bootstrap value (%). Only values and branching above 50% are shown. The consensus tree was rooted on the human,

Homo sapiens, adrenergic receptors. Red arrows indicate pikeperch sequences. Sequences used for this analyse are in Supplementary Table 3.

Figure 4: Consensus phylogenetic tree of vertebrate D2 receptor family. This phylogenetic tree was constructed using the Maximum Likelihood method using 1000 bootstrap replicates. The number above the branch represents the bootstrap value (%). Only values and branching above 50% are shown. The consensus tree was rooted on the human, *Homo sapiens*, adrenergic receptors. Red arrows indicate pikeperch sequences. Sequences used for this analyse are in Supplementary Table 3

Figure 5: Relative gene expression of (A) D_{1a} , (B) D_{1b} , (C) D_3 , (D) D_8 and (E) D_9 in different pikeperch tissues. Data are normalized on the geometric mean of housekeeping genes AK and RPL8. OB, olfactory bulbs; Tel/ORR, Telencephalon and the rostral Optic Recess Region (ORR); OT, Optic Tectum; Cb, Cerebellum; Hyp/IL, Hypothalamus/Inferior Lobe; Med/SC, Medulla/Spinal Cord; Pit, Pituitary; Gon, Gonads; L, Liver; H, Heart; Mu, Muscle; AT, Adipose Tissue; G, Gills; Spl, Spleen. Values are means \pm SEM. Different lowercase letters indicate significant differences between tissues.

Figure 6: Dissection of the pikeperch brain showing the 6 parts where the gene expression pattern of the DA receptors was measured. OB, olfactory bulb; Tel/ORR, Telencephalon and the rostral Optic Recess Region (ORR); OT, Optic Tectum; Cb, Cerebellum; Hyp/IL, Hypothalamus/Inferior Lobe; Med/SC, Medulla/Spinal Cord. The rostral part of the brain is on the bottom of the figure. The left picture shows the dorsal view, while the right picture shows the ventral view of the brain. Supplementary Figure 1: Alignment of the deduced pikeperch D₅ receptors with those of other vertebrates. The dark amino acids shared residues across all compared sequences. TMDs (Transmembrane Domains) are indicated with a horizontal line and numbered. Cytoplasmic loops are numbered. The DRY sequence and the conserved cysteine residue in the C-terminal tail are boxed. Sequences were extracted from NCBI, Ensembl and UniProt with following sequence IDs: Human (*Homo sapiens*) D₅, P21918; Zebrafish (*Danio rerio*) D_{5b}, XP_005159907.1; Nile tilapia (*Oreochromis niloticus*) D_{5a}, I3KYB9; Nile tilapia D_{5b}, XP_013131143; European eel (*Anguilla anguilla*) D₅, Q98843.

Supplementary Figure 2: Alignment of the deduced pikeperch D_6 receptors with those of zebrafish, *Danio rerio*, Nile tilapia, *Oreochromis niloticus*, and European eel, *Anguilla anguilla*. The dark amino acids shared residues across all compared sequences. TMDs (Transmembrane Domains) are indicated with a horizontal line and numbered. Cytoplasmic loops are numbered. The DRY sequence and the conserved cysteine residue in the C-terminal tail are boxed. Sequences were extracted from NCBI, Ensembl and UniProt with following sequence IDs: Zebrafish D_{6a} , XP_005158584.1; Zebrafish D_{6b} , F1QPK9; Nile tilapia D_{6a} , XP_005473811; Nile tilapia D_{6b} , XP_003449479; European eel D_6 , Q98844.

Supplementary Figure 3: Alignment of the deduced pikeperch D_3 receptor with those of other vertebrates. The dark amino acids shared residues across all compared sequences. TMDs (Transmembrane Domains) are indicated with a horizontal line and numbered. Cytoplasmic loops are numbered. The DRY sequence and the conserved cysteine residue in the C-terminal tail are boxed. Sequences were extracted from NCBI, Ensembl and UniProt

with following sequence IDs: Human (*Homo sapiens*) D₃, P35462; Zebrafish D₃, Q8AWE1; Nile tilapia D₃, I3K990.

Supplementary Figure 4: Alignment of the deduced pikeperch D_8 receptor with those of zebrafish, *Danio rerio*, and Nile tilapia, *Oreochromis niloticus*. The dark amino acids shared residues across all compared sequences. TMDs (Transmembrane Domains) are indicated with a horizontal line and numbered. Cytoplasmic loops are numbered. The DRY sequence and the conserved cysteine residue in the C-terminal tail are boxed. Sequences were extracted from NCBI, Ensembl and UniProt with following sequence IDs: Zebrafish D_8 , Q7T1A2; Nile tilapia D_8 , XP_005455936.1.

Supplementary Figure 5: Alignment of the deduced pikeperch D₉ receptor with those of zebrafish, *Danio rerio*, and Nile tilapia, *Oreochromis niloticus*. The dark amino acids shared residues across all compared sequences. TMDs (Transmembrane Domains) are indicated with a horizontal line and numbered. Cytoplasmic loops are numbered. The DRY sequence and the conserved cysteine residue in the C-terminal tail are boxed. Sequences were extracted from NCBI, Ensembl and UniProt with following sequence IDs: Zebrafish D₉, Q5DJ15; Nile tilapia D₉, I3JL32.