

Near real-time PM1 chemical composition measurements at a French urban background and coastal site under industrial influence over more than a year: Temporal variability and assessment of sulfur-containing emissions

Shouwen Zhang, Emmanuel Tison, Sébastien Dusanter, Charles Beaugard,

Cyril Gengembre, Patrick Augustin, Marc Fourmentin, Hervé Delbarre, Véronique Riffault

To cite this version:

Shouwen Zhang, Emmanuel Tison, Sébastien Dusanter, Charles Beaugard, Cyril Gengembre, et al.. Near real-time PM1 chemical composition measurements at a French urban background and coastal site under industrial influence over more than a year: Temporal variability and assessment of sulfur-containing emissions. Atmospheric Environment, 2021, 244, pp.117960. $10.1016/j.atmosenv.2020.117960$. hal-02975490

HAL Id: hal-02975490 <https://hal.science/hal-02975490>

Submitted on 17 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License](http://creativecommons.org/licenses/by-nc/4.0/)

Near real-time PM1 chemical composition measurements at a French urban background and coastal site under industrial influence over more than a year: Temporal variability and assessment of sulfur-containing emissions

Shouwen Zhang 1,2 *, Emmanuel Tison ¹ , Sébastien Dusanter ¹ , Charles Beaugard ³ , Cyril Gengembre ² , Patrick Augustin ² , Marc Fourmentin ² , Hervé Delbarre ² , Véronique Riffault ¹‡

¹ IMT Lille Douai, Univ. Lille, SAGE - Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France ² Université du Littoral Côte d'Opale, Laboratoire de Physico-Chimie de l'Atmosphère, F-59140, Dunkerque, France 3 Atmo Hauts de France, F-59000, Lille, France

* now at Atmo Hauts-de-France, F-59000, Lille, France

‡ Correspondence to: Véronique Riffault (veronique.riffault@imt-lille-douai.fr)

1 **Abstract**

2 Near real-time measurements of submicron particulate matter (PM₁) were carried out at an 3 industrial and coastal site in Dunkirk (Northern France) over a 14-month period (July 2013- 4 September 2014). This site is surrounded by various industrial plants (metallurgy, 5 petrochemistry, food processing, power plant, etc.) and is characterized by intense ship traffic 6 (~700-800 per day along the English Channel) in harbour surroundings. The non-refractory 7 (NR) submicron particles (organics, sulfate, nitrate, ammonium and chloride) and black 8 carbon were measured by an Aerosol Chemical Speciation Monitor (ACSM) and an 9 Aethalometer, respectively. Concomitant monitoring of CO₂, SO₂, and meteorological 10 parameters was also performed. Both the seasonal (five seasons including two summers) and 11 spatial (four identified sectors of emissions: marine, urban, industrial-urban and industrial) 12 variabilities were investigated.

13 We present a descriptive analysis of the PM1 composition, whose ambient concentrations 14 ranged from less than 1 μ g m⁻³ up to approximately 100 μ g m⁻³ during a few pollution events. 15 Gaseous SO_2 and particulate SO_4 were systematically observed at high concentrations (up to 16 310 and 48.2 μ g m⁻³, respectively) when industrial plumes reached the monitoring site. The 17 conversion ratio of particulate (S_p) to total (S_{tot}) sulfur is relatively constant at 0.1 when RH 18 ranges from 30-70% but reaches an average value of 0.3 at high RH (90-100%). This reflects 19 an enhancement of SO_2 -to- SO_4 gas-particle conversion processes resulting in an increase of 20 aerosol acidity as shown by a comparison between measured and predicted NH⁴ 21 concentrations. An impact of the vertical mixing on the SO₂-to-SO₄ conversion was also 22 observed using vertical turbulence (σ_w) as a descriptive parameter. Indeed, the conversion 23 ratio (S_p/S_{tot}) was found to be reduced under high turbulence conditions due to dilution 24 effects.

25

26 **Keywords:** ACSM, Aethalometer, Submicron particulate matter, Industrial area

27 **1 Introduction**

28 Atmospheric aerosols from both natural and anthropogenic sources have been widely studied 29 during the last decades to assess their influence on climate. Indeed, their optical properties 30 (light scattering and absorption) and their ability to act as cloud condensation nuclei 31 (Flossmann et al. 1985, Ghan and Schwartz 2007) can significantly impact the Earth's 32 radiative balance. In addition, aerosols can strongly impair human health (Pope et al. 2002, 33 Kelly and Fussell 2012, Leclercq et al. 2017) and the wellbeing of ecosystems (Bouwman et 34 al. 2002, Niyogi et al. 2004). Based on their ability to deposit in the respiratory tract, aerosols 35 are classified as PM10, PM2.5, and PM1, characterized by aerodynamic diameters lower than 36 10, 2.5 and 1 micrometers, respectively. The World Health Organization (WHO) estimates 37 that PM_{2.5} contributes to approximately 0.8 million deaths per year and ranked it as the 13th 38 cause of global mortality (WHO 2002, Cohen et al. 2005, Elder et al. 2009). In the urban 39 environment, PM₁ exhibits a stronger impact on human health than PM_{2.5} since (i) they can 40 penetrate further into the alveolar region, (ii) their chemical composition is dominated by 41 anthropogenic sources and (iii) they lead to a more intense pro-inflammatory response (Pérez 42 et al. 2008, Ramgolam et al. 2009, Kelly and Fussell 2012, Mazzarella et al. 2012).

43 Submicron non-refractory particulate matter (NR-PM1) can be characterized at a high time 44 resolution using Aerosol Mass Spectrometers (AMS) during short field campaigns over a few 45 weeks. Details about both the chemical composition (organics, nitrate, sulfate, ammonium and 46 chloride) and the size distribution at temporal resolutions of a few minutes have been obtained 47 worldwide (Jayne et al. 2000, DeCarlo et al. 2006, Canagaratna et al. 2007, Zhang et al. 2007, 48 Jimenez et al. 2009). However, despite the unique qualities of an AMS to provide chemical 49 information on PM1, this type of instruments exhibits several drawbacks for long-term 50 monitoring, such as the need for frequent calibrations and highly skilled operators.

51 More recently, the Aerosol Chemical Speciation Monitor (ACSM) (Aerodyne Research, Inc.) 52 was designed and proposed for long-term monitoring (Ng et al. 2011). In contrast to an AMS, 53 ACSMs do not provide the particle size distribution and exhibit a lower mass resolution, 54 which in turn leads to fewer details about the organic composition. However, ACSM 55 instruments do not require frequent calibrations, are less expensive, and are easier to use 56 during field measurements. It is interesting to note that AMS and ACSM instruments have 57 been already compared several times. A 3-week campaign performed at Queens College (New 58 York, USA) in 2010 showed good correlations $(R^2 \text{ of } 0.81-0.91, \text{ slopes of } 0.76-1.01)$ 59 between the two techniques for all measured species (organics, nitrate, sulfate, ammonium 60 and chloride) (Ng et al. 2011). A larger scale intercomparison exercise involving 13 Q-ACSM

- 61 and one HR-ToF-AMS in Paris (Crenn et al. 2015) showed good agreements between the 62 different instruments with R^2 values higher than 0.9, except for chloride, and slopes ranging 63 from 0.62 to 1.43 depending on the species considered.
- 64 Industrial activities are important sources of anthropogenic Particulate Matter (PM) (Taiwo et 65 al. 2014, Riffault et al. 2015). However, previous sampling sites where AMS and ACSM 66 instruments have been deployed were usually located in urban, suburban or rural background 67 regions and only a few were impacted by industrial emissions (El Haddad et al. 2013, 68 Budisulistiorini et al. 2015). In Europe, industrial processes represent the third (9.1%) and 69 second (28.6%) primary sources of PM2.5 and PM10 (EEA 2015), respectively. In France itself, 70 industrial sources accounted for 22% and 29% of $PM_{2.5}$ and PM_{10} in 2012, respectively 71 (CGDD 2014). Of interest for the present study, the Hauts-de-France (HdF) region in France 72 is still heavily industrialized, with industries contributing to 68 and 61% of PM_{2.5} and PM₁ 73 emissions, respectively, in the Dunkirk conurbation (AtmoHdF 2012).
- 74 Dunkirk, located in northern France, is impacted by industrial activities such as metallurgy, 75 petrochemistry, food processing, power plant, etc., and is also the first energy platform in 76 HdF. This industrial activity results in massive emissions of gaseous and particulate 77 pollutants, including for the year 2011 Volatile Organic Compounds (VOCs; 1,556 tons), 78 oxides of nitrogen (NO_x, 8,195 tons), sulfur dioxide (SO₂, 11,752 tons), and particulate matter 79 (10 nm-100 µm; 3,246 tons) (DREAL 2012).
- 80 Previous studies focusing on particulate matter in Dunkirk have investigated concentrations in 81 heavy metals (Alleman et al. 2010, Mbengue et al. 2014) and inorganic species (Rimetz-82 Planchon et al. 2008) in PM₁₀. The organic fraction has also been studied in PM_{2.5} using 83 offline filter methods (Cazier et al. 2011, Crenn et al. 2017, Crenn et al. 2018) and in PM¹ 84 using an Aerosol Mass Spectrometer (AMS) (Crenn et al. 2017, Crenn et al. 2018, Setyan et 85 al. 2019). PAHs (Polycyclic Aromatic Hydrocarbons) and sulfate in NR-PM1 have been found 86 almost exclusively in winter for air masses coming from the industrial zone. However, the 87 filter methods required long sampling times (typically 24-72 hours), precluding any 88 investigation of fast changes in aerosol composition and levels. The two campaigns 89 employing an AMS were only performed for short periods (summer and winter, 90 approximately 1 month each), with only a few wind occurrences from the industrial sector.
- 91 Volatile Organic Compounds (VOCs), considered as potential precursors of organic aerosols, 92 have also been investigated in Dunkirk (Badol et al. 2008, Badol et al. 2008, Roukos et al. 93 2009). Badol et al. (2008) carried out a measurement campaign of about one year and 94 identified 53 VOCs (Badol et al. 2008). Daily profiles, seasonal variations and pollution roses

95 observed for these compounds indicated strong impacts of traffic, solvent evaporation and 96 industrial emissions on the measured concentrations. In addition, a Chemical Mass Balance 97 (CMB) source-receptor model was applied to estimate the contributions of various emission 98 sources, including 6 urban profiles and 7 industrial profiles (Badol et al. 2008). Roukos et al. 99 (2009) carried out two measurement campaigns in summer and winter 2007 using passive 100 sampling on adsorbent cartridges (Roukos et al. 2009). This study showed that pollution 101 transported over long distances has a significant impact on VOC concentrations in the 102 Dunkirk area during specific weather conditions. Xiang et al. (Xiang et al. 2012) reported a 103 source apportionment study coupling a Positive Matrix Factorization (PMF) analysis and 104 micro-meteorology observations. This study highlighted that an increase of the turbulence 105 could lead to a lower contribution of ground level sources and an enhanced contribution of 106 elevated sources (such as plumes from chimneys).

107 The present study provides the first near real-time and long-term (> 1 year) monitoring of 108 submicron aerosols at an urban background and coastal site strongly impacted by industrial 109 activities (within a few km). This work aims at better understanding PM_1 temporal variability 110 in terms of mass concentration and chemical composition, and their transformation in this 111 complex environment. Organic PM1 sources will be further investigated using PMF in a 112 forthcoming paper. The database of PM1 measurements is analyzed by seasons and wind 113 sectors to investigate the origin of local emissions. Particular attention was paid to the impact 114 of industrial sulfur emissions on the formation of sulfate particles.

115

116 **2 Experimental section**

117 **2.1 Campaign description**

118 The measurement site was located on the eastern side of the Dunkirk harbour (Port-Est, PE: 119 51°3.12' N; 2°21.24' E; 1 m). This site is surrounded, within a few kilometers, by an 120 intensive industrial zone at W-SW and by a residential zone at S-SE as shown in Figure 1. 121 This geographical location allows classifying the origin of local air masses according to four 122 wind sectors: marine $(M; 271^{\circ} - 70^{\circ})$, urban $(U; 71^{\circ} - 140^{\circ})$, industrial-urban $(U; 141^{\circ} - 140^{\circ})$ 123 225°), and industrial (I; 226° - 270°). This site can sometimes be under the influence of 124 remote sources from France, Belgium, England, and Germany within a few tens to hundreds 125 of kilometers.

126 The field campaign was conducted over 14 months from July 15, 2013 to September 10, 127 2014. An ACSM and an Aethalometer (described below) were installed at the PE site, 128 alongside an SO_2 analyzer (AF21M, Environnement SA) managed by the Atmo HdF regional

129 air quality monitoring network and a $CO₂$ analyzer (VS-3000, HORIBA). The $SO₂$ analyzer 130 was operated continuously at a time resolution of 15 min and was calibrated once a month 131 using a SO_2 gas standard at 200 ppb (Air Liquide). The CO_2 analyzer was calibrated 3 times 132 during the campaign, using a CO₂ gas standard at 997 ppm (purity > 99.9%, Praxair). An 133 ultrasonic anemometer (uSonic-3 Scientific, METEK) was deployed at a nearby site 134 approximately 1 km away (Figure 1) for measuring horizontal and vertical wind speeds and 135 direction, as well as temperature and turbulence parameters. Standard meteorological 136 parameters such as temperature, relative humidity, precipitation, pressure, and solar radiation 137 were also recorded on the rooftop of a research building of the Université du Littoral Côte 138 d'Opale (51°2.14'N; 2°22.05'E), located at 2 km. From June 23, 2014 to September 10, 2014, 139 an ambient particulate monitor (TEOM-FDMS 1405-F, Thermo Fischer Scientific) was 140 additionally deployed to measure the total PM1 mass concentration. Section A of the 141 Supplementary Information reports the number of valid data (Table S1) as well as the 142 temporal data coverage (Figure S1) for each instrument. Measurements were averaged over 143 the ACSM time stamp using Coordinated Universal Time (UTC).

144

145 **2.2 PM1 chemical composition**

146 **2.2.1 Aerosol Chemical Speciation Monitor (ACSM)**

147 The ACSM (Aerodyne Research Inc.) provides measurements of particulate organics, nitrate, 148 sulfate, ammonium and chloride in the non-refractory submicron particles (Ng et al. 2011). 149 The aerodynamic lens inside the ACSM inlet sampled PM_1 at a flow rate of approximately 80 150 cm³ min⁻¹, controlled by a 100 µm diameter critical aperture. Non-refractory components 151 were vaporized at 600°C after impaction on an inverted-cone surface and then ionized by 152 electron impact at 70 eV. A RGA (residual gas analyzer) quadrupole mass spectrometer was 153 used to acquire mass spectra at a mass resolution of one unit and up to 148 amu. During 154 acquisition, the ACSM was operated with a three-way automatic valve to switch between the 155 filter mode (particle-free air) and the sample mode (ambient air). The difference between 156 these two modes is considered as the signal generated by ambient aerosols. The scan speed 157 was set to 200 ms amu⁻¹. 28 scans were acquired for both the filter and the sample modes, 158 resulting in a time resolution of approximately 30 min. The instrument was installed in an air-159 conditioned room (20°C) for continuous monitoring.

160 Ambient aerosols were sampled through a PM2.5 cyclone (URG-2000-30EQ) at a flow rate of $161 \quad 3 \text{ L min}^{-1}$ and a stainless-steel tube whose length and inner diameter were 2.1 m and 1.27 cm,

162 respectively (residence time in the sampling tube was approximately 5 seconds). The particle

163 size-dependent loss due to the sampling setup was calculated using the Particle Loss 164 Calculator (PLC) (von der Weiden et al. 2009), and was found to be negligible (< 1%). 165 Sampled aerosols were dried using a Nafion dryer (PD-200T-12 MPS, Perma Pure) reaching a 166 relative humidity (RH) always lower than 30%, which is important to minimize the effect of 167 RH on the collection efficiency (CE) as discussed later in this section.

168 The mass spectra acquired by ACSM were analyzed using a fragmentation table (Allan et al. 169 2004, Canagaratna et al. 2007) to extract distinct chemical species or group of species. The 170 mass concentration of a species s (C_s) is derived from the measured ion current $IC_{s,i}$ (amperes) 171 using Equation (1):

172
$$
C_s = \frac{CE_s}{T_{m/z}} \times \frac{10^{12}}{RIE_s} \times \frac{Q_{cal} \times G_{cal}}{RF_{NO_3}} \times \frac{1}{Q \times G} \sum_{alli} IC_{s,i}
$$
 (1)

173 where Σ IC_{s,i} is the sum of the ensemble mass spectrum fragment i contributing to species s; 174 CE_s is the collection efficiency of a species s ; $T_{m/z}$ the ion transmission efficiency; RF_{NQ3} 175 (ions/molecule) the response factor for $NO₃$; and RIE_s the relative ionization efficiency of a 176 species s compared to NO₃; Q_{cal} and G_{cal} are the volumetric sample flow rate (cm³ s⁻¹) and 177 multiplier gain (∼ 20,000) measured during calibrations of RF_{NO3}, respectively. In general, 178 values of Q and G observed during ambient measurements are similar to the values measured 179 during calibration experiments $(Q_{cal}$ and G_{cal}) and these parameters cancel out in Eq. (1).

180 The instrument calibration protocols and signal optimization are based on existing procedures 181 (Ng et al. 2011) and are presented in more details in the Supplementary Information (section 182 B). The $NO₃$ response factor (RF_{NO3}) and the relative ionization efficiency (RIE_s) were 183 calibrated at the beginning and periodically during the campaign (once per month). Average 184 values of RF_{NO3} (3.81×10^{-11}) and RIE_s (NH₄: 5.67; SO₄: 0.55; Cl: 2.26) were used for the 185 whole campaign. For organics, the default value of RIE(1.4) was used (Jimenez et al. 2003). 186 The RF_{NO3} and RIE_{NH4} values observed in the present study are close to the average value of 187 13 Q-ACSM used during the intercomparison exercise described by Crenn et al. (Crenn et al. 188 2015), i.e. 3.55×10^{-11} and 6.31, respectively. Most previous studies used the default values 189 of 1.2 for SO4 (Ng et al. 2011) and 1.3 for Cl (Alfarra et al. 2004) but RIE(SO4) has been 190 found to vary from one instrument to another (Ng et al. 2011).

191 The CE of a species *s* is mainly influenced by particle humidity (for RH > 80%), acidity, and 192 the mass fraction of ammonium nitrate (Matthew et al. 2008). Humidity effects are ignored in 193 the present study because particles were dried at RH below 30%. However, both particle 194 acidity and the fraction of ammonium nitrate were taken into consideration for the calculation 195 of CE, using the method described by Middlebrook et al. (Middlebrook et al. 2011) and 196 described in the Supplementary Information (section C) where the CE time series can be 197 found (Figure S1). More than 57% of the CE values were at 0.45 and the rest ranged from 198 0.45-0.9 during the campaign.

199 As the ACSM is equipped with a quadrupole mass spectrometer, the m/z-dependent ion 200 transmission efficiency $(T_{m/z})$ is assessed using an internal naphthalene standard whose parent 201 ion is detected at m/z 128 and several fragments are detected at lower m/z. Finally, a 202 reference period was chosen when the signal of air beam (m/z = 28, corresponding to N_2^+) is 203 stable and as close as possible to 10^{-7} A. This normalization takes into account the variation of 204 air beam over time, as well as the changes in the detector sensitivity and flow rate.

205 ACSM data were acquired using ACSM_DAQ_v1438 at a time resolution of 30 min and 206 processed using ACSM_Local_v1535 (ARI) with Igor Pro 6.36 (WaveMetrics, Inc., Oregon 207 USA). A total of 15,231 valid observations was recorded, split as follows between the four 208 wind sectors: $M - 5{,}527 (36\%)$, $U - 1{,}257 (8\%)$, $IU - 6{,}590 (43\%)$ and $I - 1{,}857 (12\%)$.

209

210 **2.2.2 Aethalometer**

211 Black carbon was measured with a two-wavelength aethalometer (AE42, Magee Scientific 212 Inc.) at 880 nm. The aethalometer sampled ambient air at a flow rate of 5 liters per minute 213 through a PM1 sampling head (SCC-1.197, BGI). Samples were collected at a time resolution 214 of 5 min on a moving tape made of quartz fibers. The tape does not move forward until the 215 spot reaches a certain density (set at 60% in this study). The principle of the aethalometer is to 216 measure the optical attenuation of the collected aerosols and the BC concentration is 217 calculated from the attenuation variation at a wavelength of 880 nm:

218
$$
BC_{raw} = \frac{A \times \Delta ATN}{\sigma_{ATN} \times Q \times \Delta t}
$$
 (2)

219 where *A* is the surface of the sampling area on the filter (1.67 cm^2) , *Q* the volumetric flow rate 220 and *ΔATN* the variation of the attenuation during the time interval *Δt*. σ_{ATN} (m² g⁻¹) is the 221 specific attenuation coefficient for BC.

222 However, according to the literature (Virkkula et al. 2007, Park et al. 2010), the relationship 223 between the change in attenuation and BC concentration is not always linear. BC 224 concentrations have been corrected using a procedure proposed by Weingartner et al. 225 (Weingartner et al. 2003) as shown in Eq. (3):

226
$$
BC_{corr} = BC_{raw} \times \frac{1}{C_{ref} \times \left(\frac{1}{m(1-\omega_0)+1} - 1\right) \times \frac{\ln(ATN) - \ln(10\%)}{\ln(50\%) - \ln(10\%)} + 1}
$$
(3)

227 where BC_{raw} is the concentration measured by the aethalometer from Eq. (6). C_{ref} and m 228 values of 2.14 and 0.87, respectively, were used in the present study (Petzold et al. 1997, 229 Weingartner et al. 2003). ω_0 , the single scattering albedo (SSA) of the sampled aerosols, was 230 taken from AERONET (AErosol RObotic NETwork, http://aeronet.gsfc.nasa.gov) 231 measurements in Dunkirk (N 51°2.1', E 02°22.07') and an average value of 0.9 was used.

232

233 **2.2.3 Wind and trajectory analyses**

234 The wind and trajectory analyses combine the observed concentrations with wind and air 235 mass conditions, in order to understand the origin of some pollutants, as described in more 236 details in (Boichu et al. 2019) and (Roig Rodelas et al. 2019). Briefly, these analyses were 237 performed using the Zefir tool v.3.70 (Petit et al. 2017). We used (i) the non-parametric wind 238 regression (NWR) model to study the regional vs. local origin of a given pollutant based on 239 local wind speed and direction provided by the ultrasonic anemometer; and (ii) the 240 Concentration-Weighted Trajectory (CWT) method to determine the regions of emissions for 241 transported ammonium and nitrate and/or their precursors, using backtrajectories calculated 242 with HYSPLIT 4 and meteorological data from the Global Data Assimilation System (GDAS) 243 at $1^{\circ} \times 1^{\circ}$ spatial resolution (Stein et al. 2016). 3-day backward trajectories arriving at 500 m 244 above ground level were calculated every 6 hours over the whole campaign.

245

246 **3 Results and discussion**

247 **3.1 Meteorology**

248 Time series of meteorological parameters are displayed in Figure 2 and their seasonal 249 variability is reported in Table 1. The maximum solar radiation varied roughly from 250 300 (winter) to 800 W m⁻² (summer). The seasonal ratio of maximum to mean radiation 251 indicates the impact of cloud coverage. Cloud coverage is on average similar in spring-252 summer and autumn-winter periods, but the ratio increases by about 50% in autumn and 253 wintertime. Over the whole campaign, pressure and temperature time series are also 254 displayed, with average values of 1013 hPa and 14°C, varying from 978 to 1037 hPa and from 255 1.4 to 32.2 °C, respectively. The average wind speed was 4.9 m s⁻¹, with higher values during 256 fall (5.3 m s⁻¹) and winter (5.9 m s⁻¹), and lower values during spring (4.7 m s⁻¹) and summer (4.2 m s^{-1}) . Seasonal mean and maximum pressures indicate clearly an increase of the 258 frequency of low pressure systems in autumn and winter, corresponding to south-259 southwesterly winds from the North Atlantic Ocean.

260 The winter season was mild in 2013-2014, with no frost, but high wind speed events 261 (>14 m s⁻¹) were observed during 12 days from October to February, including 5 remarkable 262 storms (Christian, Godehard, Xaver, Dirk and Qumara). The summer was also mild with 263 moderate temperatures (20-25°C) due to the proximity of the North Sea, and the development 264 of 18 sea-breeze events. During low wind speed periods, 14 fog events occurred. Rain (> 1 265 mm/hour) was observed on 51 days, enhancing wet deposition mechanisms of particles.

266 Figure S3 (section D of the SI) shows the seasonal variation of the distribution (normalized to 267 100%) of sectorial winds according to previously defined ranges of wind directions. The 268 marine sector exhibited the strongest seasonal variation, with a contribution to the wind 269 distribution during summers 2013 and 2014 higher than 50% but reduced to ~20% during 270 winter. The urban sector exhibited a small contribution of ~10% during the whole campaign. 271 However, even with such a small contribution, air masses originating from this sector can 272 bring high PM concentrations to the measurement site (see next section). The industrial sector 273 also exhibited a constant contribution of approximately 10%, independent of the season. The 274 industrial-urban sector exhibited a larger contribution ranging from 30 to 70% all along the 275 campaign, especially in winter when southern winds were observed. It is important to note 276 that the seasonal variability of the wind distribution will be one of the main parameters 277 driving $PM₁$ mass and composition variations.

278

280 for each season during the entire campaign

281 * Radiation represents daytime values computed using only data after sunrise and before sunset.

282 ** BC values are not available in autumn.

283

284 **3.2 PM1 mass concentration and chemical speciation**

285 To check the aerosol measurements quality, the total mass concentration of PM₁ measured by 286 the ACSM (NR-PM1) and the aethalometer (BC) was compared to TEOM-FDMS 287 measurements from June 23 to September 10, 2014 (Figure 3). Figure 3 displays time series 288 of PM₁ from both (i) the ACSM and aethalometer and (ii) the TEOM-FDMS. This figure 289 shows that PM₁ concentrations ranged from less than 1 μ g m⁻³ to approximately 50 μ g m⁻³ 290 during the 2.5 months of the comparison period, with both traces showing similar temporal 291 variations. A scatter plot of the ACSM + aethalomether and TEOM-FDMS measurements is 292 shown in Figure 3b. This figure also displays 24-hour averaged values for both measurements, 293 which indicate an excellent agreement (slope: 0.94 ; $r^2 = 0.94$), suggesting that (i) most of the 294 PM₁ mass (7.9 \pm 7.1 µg m⁻³ measured by the TEOM-FDMS) is captured by the combination 295 of ACSM and aethalometer (8.1 \pm 6.3 µg m⁻³); (ii) the RF/RIE calibrations and the CE 296 correction applied for the ACSM data analysis are correct within measurement uncertainties.

297 Time series of Cl, NH4, NO3, Organics and SO4 measured by ACSM, and black carbon 298 measured with the aethalometer, are displayed in Figure 4. Each species exhibits different 299 temporal variations and concentration levels. Chloride is a minor fraction of PM_1 and its 300 concentration is lower than 3 μ g m⁻³ over the entire observation period. NH₄ is relatively 301 constant throughout the whole year at levels lower than 5 μ g m⁻³, with the exception of spring 2014 (March-May) where levels up to 15 μ g m⁻³ were observed. NO₃, Organics, SO₄ and BC 303 are much more time-dependent, with concentrations rising to 30-50 μ g m⁻³.

304 Some PM1 species seem to exhibit significant seasonal variations (Figure S4, section D of the 305 SI; and Table 1). Average seasonal chloride concentrations were very low $(< 0.1 \text{ µg m}^{-3})$.

306 Sulfates did not exhibit seasonal variations due to its industrial origin and showed similar 307 contributions from this sector (wind occurrences) for all seasons. Nevertheless, the NWR plot 308 (section E of the SI, Figure S5a) for sulfate shows a strong contribution from local sources, 309 highlighting the industrial sector, and a minor one from the marine sector, which could be the 310 result of ship emissions. This pattern is even more pronounced for its precursor $SO₂$ (Figure 311 S5b) whose high concentrations are clearly pointing at the industrial area. For the other 312 species, PM1 measured during both summers 2013 and 2014 exhibit similar chemical 313 compositions due to similar wind patterns, which in turn likely imply the impact of similar 314 sources on the measurement site. However, the relative contribution of NO₃ is higher during 315 cold seasons (autumn, winter and spring) compared to the two warmer summers (Table 1). 316 Especially in spring 2014, NO₃ exhibits the highest average concentration (4 μ g m⁻³) and 317 contribution (33%) when NH₃ emissions – required for the formation of ammonium nitrate – 318 start to peak in North-Western Europe due to fertilizer spreading. Besides, whereas 96% of 319 NH3 emissions is attributed to the agricultural sector when considering the entire Hauts-de-320 France region, it decreases down to 50% in the Dunkirk area, where local emissions from the 321 "manufacturing industries, waste treatment and construction" account for half according to 322 the latest available inventory (AtmoHdF 2012). The levels of ammonium and nitrate could 323 indeed be related to both a local and regional origin through their NWR plots (section E of the 324 SI, Figure S5c and d). The regional influence was further investigated through Concentration-325 Weighted Trajectory (CWT) maps (section E of the SI, Figure S6), and pointed out a 326 significant contribution from medium- to long-range transport of aged ammonium nitrate 327 aerosols or their precursors from Central Europe (Germany, Poland, and Austria) (Figure S5). 328 Organics concentrations and contributions are also higher during cold seasons (autumn and 329 winter), which seems due to both local and regional sources (Figure S5e) coming from the 330 industrial-urban sector (55-63% of wind occurrences), such as emissions from urban sources 331 such as residential heating and traffic, while an additional contribution from industrial 332 emissions in this direction (storage facility of petrochemical products and food processing 333 industries) cannot be excluded. BC represents 5 to 9% of PM_1 mass but no clear observation 334 is found for its seasonal variation.

335 For the sake of comparison with other studies, Figure 5 displays 17 field campaigns 336 performed worldwide to investigate the composition of ambient aerosols. These studies 337 employed ACSM instruments in different environments classified as urban (5 sites), suburban 338 (2 sites), industrial-urban (2 sites) and rural (8 sites). For similar types of sites the studies are 339 sorted by decreasing NR-PM1 mass concentrations. The durations of these campaigns are

340 highly variable and range from 3 weeks to 7 years. Campaigns performed on a timescale of 341 years can provide seasonal and even annual variations of submicron aerosols. The averaged 342 mass concentration varies from approximately 2-6 μ g m⁻³ for background sites (Hyytiälä, 343 Montsec, Look Rock) (Budisulistiorini et al. 2015, Minguillón et al. 2015, Heikkinen et al. 2020) up to $30-50$ ug m⁻³ for polluted cities (Santiago, Beijing) (Sun et al. 2012, Carbone et 345 al. 2013). Our study indicates an annual concentration of 9.0 μ g m⁻³, which is similar to that 346 observed for another industrial-urban site in Atlanta $(9.5 \mu g m^{-3})$ (Budisulistiorini et al. 347 2015), whose duration was one year.

348 The contribution of each species to NR-PM1 is shown in the bottom panel of Figure 5. 349 Organics dominate (> 50%) for most of the sites and the contribution can reach up to 70% as 350 seen in Atlanta. In our study, organics account for 32% on average, which is within the lowest 351 contributions observed worldwide and similar to that found at the SIRTA suburban site near 352 Paris (39%) (Petit et al. 2015). Ammonium exhibits a relatively constant fraction at all 353 locations, with an average value of approximately 12%. The sulfate component contributes 354 from 8 to 35% of NR-PM1, with higher contributions found for rural sites without (Tibetan 355 Plateau: 30%; South Africa: 32%) (Tiitta et al. 2014, Du et al. 2015) or with urban influence 356 (Senegal: 35%) (Rivellini et al. 2017). Interestingly, industrial sites do not exhibit the highest 357 levels of sulfate, whose contribution to the chemical composition does not seem to depend on 358 the nature of the site. Nitrate varies from 6% to 28%, with the highest values observed for 359 Paris (28%) (Petit et al. 2015), Dunkirk (26%) (this work) and Beijing (25%) (Sun et al. 360 2012). Higher levels of NO_x (NO and $NO₂$) in urban areas are likely the cause for higher 361 nitrate levels in PM₁ since NO_x are oxidized to nitric acid in the atmosphere, which in turn 362 forms secondary nitrate particles (Matsumoto and Tanaka 1996). Chloride is always a minor 363 fraction and represents less than 3% at all sites.

364 Figure 6 shows PM1 mass concentrations and chemical compositions averaged over the entire 365 campaign for the four wind sectors defined above (marine, urban, industrial and industrial-366 urban). The average concentration for all sectors is 9.4 ± 9.1 µg m⁻³ with significantly higher 367 concentrations for the industrial (11.7 \pm 8.8 µg m⁻³) and urban (15.6 \pm 9.5 µg m⁻³) sectors, and 368 a lower concentration for the marine sector $(8.0 \pm 8.5 \text{ µg m}^{-3})$. The organic fraction 369 contributes from 28% up to 38% of the PM1, with the exception of the industrial sector for 370 which the aerosol composition is enriched in sulfate (only 14% organics). As mentioned 371 before, a higher organic fraction for the industrial-urban sector could be due to a storage 372 facility of petrochemical products or food processing industries in this area. For inorganic 373 species, the ammonium contribution is similar between all sectors $(\approx 14\%)$ and non-refractory 374 chloride (therefore non-marine) represents less than 1% of the mass concentration. For 375 chloride, the small but significantly higher contribution from the industrial sector reflects the 376 presence of sources already identified in other campaigns in this area or similar ones (Hleis et 377 al. 2013, Taiwo et al. 2014, Crenn et al. 2017, Setyan et al. 2019), e.g. the formation of KCl in 378 the steelwork sintering process. Nitrate and sulfate contributions are more variable between 379 the different sectors, with contributions ranging from $8-35\%$ for NO₃ and 13-58% for SO₄. 380 The urban and industrial sectors stand out by exhibiting the highest contributions for nitrate 381 (about 35%) and sulfates (about 58%), respectively. As mentioned previously, these higher 382 contributions may be due to higher NO_x and $SO₂$ emissions in the urban and industrial sectors, 383 respectively. BC contributes about 5% for the marine and industrial sectors, while it reaches 8 384 to 9% for the urban and industrial-urban sectors where traffic and wood burning may be 385 significant sources.

386

387 **3.3 Aerosol ion balance**

388 To investigate the ion balance of the sampled aerosols, a predicted concentration of NH4 was 389 calculated from the sum of chloride, nitrate and sulfate ion concentrations using Eq. (2). 390 These ions are assumed to be bound to ammonium in a neutral aerosol to form NH4Cl, 391 NH4NO3 and (NH4)2SO4, respectively. The calculated value (NH4,predicted) is then compared to 392 the measured NH4 concentration. If the two values are similar, the particles are fully 393 neutralized. Although an ion balance cannot be used as a direct measurement of pH in 394 aerosols, it can still be used to distinguish qualitatively between an "acidic" (negative balance; 395 below the 1:1 line) and an "alkaline" (positive balance; above the 1:1 line) aerosol (Zhang et 396 al. 2007, Guo et al. 2015).

- 397 Particles are considered "more acidic" if the measured concentration is lower than the 398 predicted value, since the imbalance indicates that acidic compounds such as $H₂SO₄$, HNO₃ or 399 HCl are likely present in the aerosol. Note that as Cl being a minor fraction (<1%) of NR- 400 PM₁, the contribution of HCl to the aerosol ion balance – if present – is negligible.
- 401 Figure 7 displays the correlation between measured and predicted NH4 with a color coding 402 based on SO₄ concentrations. All SO₄ concentrations higher than 25 μ g m⁻³ are included in the 403 red color. When the symbols are scattered around the 1:1 line, the measured and predicted 404 concentrations are in good agreement, indicating that particulate ammonium is fully 405 neutralized. When the symbols are significantly below the 1:1 line, there is an overestimation 406 of the predicted concentrations. As mentioned above, this overestimation may be due to either

407 a lack of ammonium (thus of NH3) or the presence of acidic species in the particles, which 408 may be characteristic of "fresh" emissions.

409 Aerosols appear not neutralized or "acidic" (below the 1:1 line) with high sulfate 410 concentrations (Figure 7a) but not with high nitrate concentrations (Figure S7, section F of the 411 SI). This observation suggests that aerosol ion balance is driven by acidic sulfate compounds. 412 The same analysis is displayed for the four wind sectors in Figure 7b-e. For the marine and 413 urban sectors, the aerosols are well neutralized and SO_4 concentrations are low (4-5 μ g m⁻³ on 414 average). NH4 is therefore mainly bound to NO3. The industrial sector shows strong 415 deviations from the 1:1 line, with higher acidity levels correlated to elevated SO⁴ 416 concentrations (Figure 7e), which suggests that acidic aerosols are due to "fresh" industrial 417 emissions of sulfur compounds. It is interesting to note that the industrial-urban sector shows 418 a mixed behavior between industrial and urban sectors.

419 In order to investigate the influence of acidity on the NR-PM1 composition, the measured-to-420 predicted NH4 ratio was plotted as box plots for the entire campaign and the four sectors in 421 Figure 8a. The aerosol composition for acidic and non-acidic particles is displayed in Figure 422 8b. Figure 8a clearly shows that the industrial sector exhibits the lowest NH4,measured-to-423 NH4,predicted ratio (0.64 on average), corresponding to the most acidic particles (ratio threshold 424 of 0.75). This ratio can be seen as a rough indicator of an equal number of moles of 425 (NH4)2SO4 and NH4HSO4 (Zhang et al. 2005). The neutralized particles were defined for a 426 ratio ranging from the mean value of 0.85 to the $90th$ percentile (1.07). The "most acidic" and 427 "neutralized" periods account for 22% and 41% of the total sampling time, respectively. The 428 rest of the observations falls into a mildly acidic regime and are not analyzed separately. 429 Figure 8b displays the average composition of "neutralized" and "most acidic" particles, 430 respectively. Compared to those considered as neutralized, the "most acidic" particles 431 represent only half the mass. However, they contain more SO₄ (58% compared to 17%), 432 which is consistent with the above discussion. The acidic particles contain less nitrate (7% 433 compared to 34%), probably due to the displacement of $HNO₃$ by $H₂SO₄$ in the competition 434 for NH3 (West et al. 1999).

435

436 **3.4 SO2-to-SO4 conversion**

437 In the absence of direct measurements of industrial emissions, it is likely that some of the 438 particulate sulfate is directly produced during industrial processes, in particular as by-products 439 of the coke oven used to feed the three blast furnaces of the main steelworks in the area. 440 Furthermore, NH4HSO4 could be formed at the exit of the chimneys through the direct 441 reaction of SO_3 with H₂O and NH₃ in the presence of additional molecules (Chen et al. 2018). 442 Then NH4HSO4 can quickly react with NH3 and form ammonium sulfate. However, a rapid 443 conversion of gaseous SO_2 into particulate sulfate could also contribute to the large sulfate 444 concentrations observed at the measurement site when the wind originates from the industrial 445 sector. The conversion can take place both in the gas phase (Stockwell and Calvert 1983, 446 Atkinson and Lloyd 1984) through an oxidation of $SO₂$ initiated by OH radicals, and in the 447 aqueous phase through reactions involving H_2O_2 and O_3 (Jacob and Hoffmann 1983, 448 Schwartz 1987). The sulfuric acid thus generated has a strong ability to nucleate in the 449 presence of water molecules and to form new particles by condensation of other low volatility 450 species (Kulmala et al. 2000, Weber et al. 2001). However, the oxidation of SO_2 in aqueous 451 phase is faster than in the gas-phase (Khoder 2002). Eatough et al. (1994) found that the gas-452 phase oxidation rate can vary from 1% to 10% of ambient SO₂ per hour at high temperature 453 and relative humidity. Meanwhile, in the aqueous-phase the rate can reach 100% of SO² 454 converted in less than an hour under optimum conditions (Eatough et al. 1994). Other 455 pathways such as the heterogeneous oxidation of S(IV) catalyzed by Fe(III) or Mn(II) (Jacob 456 and Hoffmann 1983) can occur, especially in this area where heavy metals have been 457 evidenced as important tracers of industrial emissions (Alleman et al. 2010, Setyan et al. 458 2019): When sulfuric acid is formed within or transferred to the aerosol, it reacts easily with 459 gaseous ammonia to form ammonium sulfate at the particle surface (Matsumoto and Tanaka 460 1996).

461 The observation of industrial plumes arriving at our ground sampling site requires that two 462 simultaneous conditions are met: (i) wind blowing from the southwest (industrial direction); 463 (ii) unstable atmospheric conditions favoring the dispersion of the plume. The Non-parametric 464 Wind Regression (NWR) plots of gaseous SO_2 and particulate SO_4 (Figure S6, a and b) 465 confirm that high concentrations observed at the receptor site are mainly originating from the 466 industrial sector (226°- 270°). Similar results were observed by a recent study near steel 467 plants in China, which showed important increases in sulfate, ammonium, CO and SO₂ when 468 industrial plumes reached the sampling site (Lei et al. 2020).

469 To assess whether the conversion of SO_2 into SO_4 was of importance during this study, the 470 influence of several microphysical and meteorological parameters on SO_2 , SO_4 and the 471 particulate sulfur fraction has been investigated. These parameters included atmospheric 472 vertical turbulences via the standard deviation σ_w of vertical wind speed w, horizontal wind 473 speed, relative humidity and temperature.

474 We defined the particulate sulfur fraction as the ratio of particulate sulfur to total sulfur 475 (S_p/S_{tot}), which is calculated as:

476
$$
\frac{S_p}{S_{tot}} = \frac{[SO_4] \times \frac{32}{96}}{[SO_2] \times \frac{32}{64} + [SO_4] \times \frac{32}{96}}
$$
(4)

 477 S_p/S_{tot} only takes into account the sulfur content and is not influenced by the oxygen content.

478 Two key parameters (RH and vertical turbulence) were found to significantly influence the 479 gas-particle partitioning of sulfur as shown in Figure 9 (left and right, respectively). SO_2 and 480 SO₄ concentrations, as well as S_p/S_{tot} ratios, shown in this figure are only considered within 481 the industrial sector to focus on the SO_2 -to- SO_4 conversion that occurs on a short timescale 482 (4-30 min) during the transport of fresh industrial emissions of sulfur compounds to the 483 sampling site. This data was binned accordingly to the descriptive parameter (RH, σ_w) with 484 the number of observations for each bin shown at the top of the first panel.

485 Figure 9a shows that SO2 increases linearly with relative humidity until 70-80%. This 486 concomitant increase in RH and $SO₂$ could be due to industrial plumes passing over the 487 measurement site since these plumes are likely emitted with large concentrations of both 488 water and SO_2 . Interestingly, the SO_2 concentration starts decreasing when RH is higher than 489 80%, but an opposite trend is observed for SO4 (Figure 9b). Indeed, SO4 also increases with 490 RH until 80% but does not decrease for higher humidity levels. This behavior could be related 491 to a higher rate of SO_2 conversion at high humidity. In Figure 9c, the S_p/S_{tot} ratio clearly 492 shows that the particulate sulfur fraction is almost constant (approximately 0.1 with a low 493 level of dispersion in the values) for low RH conditions (RH \leq 70%). However, the sulfur 494 content is shifted from the gaseous to the particulate phase when RH is higher than 70-80% 495 (S_n/S_{tot} increases to 0.3 at 90-100% RH). This is likely due to the gas-particle conversion that 496 is favored under high RH conditions when the fast aqueous phase oxidation dominates. Sun et 497 al. reported a similar impact of RH on sulfate aerosols in Beijing for the winter season (Sun et 498 al. 2013). The authors showed that the average SO_4 -to-total sulfur ratio is less than 0.05 at low 499 RH (< 40%), indicating a very low sulfur oxidation ratio. This ratio quickly increases and 500 reaches 0.23 at high RH (80-90%). Recently, Zhao et al. studied the conversion of SO_2 into 501 sulfates on soot surfaces and found that water promotes sulfate formation for RH ranging 502 from 6%–70%, while RH > 80% inhibits it (Zhao et al. 2017). This trend was not observed 503 here because BC is only a minor contributor $(\sim 7\%)$ of PM₁.

504 The atmospheric vertical turbulence can be characterized by the standard deviation σ_w of the 505 vertical wind speed w. This metric represents the fluctuation of vertical wind speed in units of 506 m s⁻¹ and quantifies the vertical mixing of air masses within the surface layer. Trends in SO_2 ,

- 507 SO₄ and S_p/S_{tot} on this parameter are shown in Figure 9 (right). For both SO_2 and SO_4 , higher 508 σ_w values lead to higher concentrations (Figure 9a-b). As previously discussed, this can be 509 explained by elevated emission sources such as plumes from industrial chimneys, which can 510 reach the ground surface after dispersion only with strong enough vertical mixing. This 511 behavior had already been observed for some VOCs at the same site (Xiang et al. 2012). In 512 contrast, S_n/S_{tot} decreases with σ_w (Figure 9c), which suggests that the SO₂-to-SO₄ conversion 513 is less favored under highly turbulent conditions.
- 514 To better understand the multi-influence of humidity and vertical turbulence (σ_w) on the 515 conversion process, the examination of the RH dependence of the S_p/S_{tot} ratio was carried out 516 using four bins of σ_w (0-0.5, 0.5-1, 1-1.5 and \geq 1.5 m s⁻¹) (Figure S7). This shows that the 517 S_p/S_{tot} ratio increases significantly with RH for each σ_w bin, except for the last one ($\sigma_w \ge 1.5$) 518 m s^{-1}) where the change is unclear. Interestingly, higher conversion ratios seem to be observed 519 for low values of σ_w , which may be due to lower wind speed values, and as a consequence, 520 longer conversion times between the emission source and the measurement site. These results 521 indicate that high RH (> 70%) and relatively low σ_w values (< 1 m s⁻¹) are the best conditions 522 for an efficient SO_2 -to- SO_4 conversion at this site.
- 523

524 **4 Conclusions**

525 The first long-term and near real-time measurements of the chemical composition of 526 submicron aerosols at an urban background and coastal site impacted by industrial emissions 527 showed a unique chemical signature compared to previous datasets existing in the literature. 528 The aerosol evolution and processing are tightly linked with meteorology and even 529 micrometeorology due to the complex dynamics of coastal areas, and the industrial emissions 530 at various stack heights. The complete dataset has been analyzed according to the season and 531 four different wind sectors. The aerosol ion balance based on measured and predicted NH⁴ 532 suggests that the majority of the particles are neutralized in the marine and urban sectors, 533 whereas in the industrial sector, "more acidic" particles generally contain significantly higher 534 concentrations of sulfate (-60%) . Gas-phase SO₂ is strongly emitted in the nearby industrial 535 area and quickly processed to form secondary SO₄ particles on a timescale shorter than 30 536 min. Both SO_2 and SO_4 were mostly emitted by chimneys and therefore influenced by 537 atmospheric vertical mixing. High RH (>70%) and relatively low σ_w values (< 1 m s⁻¹) 538 provided the best conditions for an efficient SO_2 -to- SO_4 conversion rate.

539

540 **Acknowledgements**

- 541 IMT Lille Douai and LPCA acknowledge financial support from the CaPPA (Chemical and
- 542 Physical Properties of the Atmosphere) project funded by the French National Research
- 543 Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under contract ANR-
- 544 11-LABX-0005-01, and two CPER projects funded by the French Ministry of Higher
- 545 Education and Research, the CNRS, the Regional Council "Hauts-de-France" and the
- 546 European Regional Development Fund (ERDF): Climibio, and IRENI (additionally financed
- 547 by the Communauté Urbaine de Dunkerque). We thank P. Goloub (LOA, Univ. Lille) for his
- 548 efforts in establishing and maintaining the PHOTONS/AERONET network, and L. Paringaux
- 549 (Atmo HdF) for technical support throughout the campaign. S. Zhang thanks IMT Lille Douai
- 550 and the Regional Council "Hauts-de-France" for her PhD grant. A. Chakraborty (IMT Lille
- 551 Douai) is acknowledged for helpful discussions.
- 552

553 **References**

- 554 Alfarra, M. R., H. Coe, J. D. Allan, K. N. Bower, H. Boudries, M. R. Canagaratna, J. L. 555 Jimenez, J. T. Jayne, A. A. Garforth, S.-M. Li and D. R. Worsnop (2004). "Characterization 556 of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol 557 Mass Spectrometers." Atmospheric Environment **38**(34): 5745-5758.
- 558 Allan, J. D., A. E. Delia, H. Coe, K. N. Bower, M. R. Alfarra, J. L. Jimenez, A. M. 559 Middlebrook, F. Drewnick, T. B. Onasch, M. R. Canagaratna, J. T. Jayne and D. R. Worsnop 560 (2004). "A generalised method for the extraction of chemically resolved mass spectra from 561 Aerodyne aerosol mass spectrometer data." Journal of Aerosol Science **35**(7): 909-922.
- 562 Alleman, L. Y., L. Lamaison, E. Perdrix, A. Robache and J.-C. Galloo (2010). "PM10 metal 563 concentrations and source identification using positive matrix factorization and wind 564 sectoring in a French industrial zone." Atmospheric Research **96**(4): 612-625.
- 565 Atkinson, R. and A. C. Lloyd (1984). "Evaluation of Kinetic and Mechanistic Data for 566 Modeling of Photochemical Smog." Journal of Physical and Chemical Reference Data **13**(2): 567 315-444.
- 568 AtmoHdF (2012). Inventaire régional des émissions de polluants atmosphériques, Atmo 569 Hauts-de-France.
- 570 Badol, C., N. Locoge and J.-C. Galloo (2008). "Using a source-receptor approach to 571 characterise VOC behaviour in a French urban area influenced by industrial emissions: Part
- 572 II: Source contribution assessment using the Chemical Mass Balance (CMB) model." Science
- 573 of The Total Environment **389**(2–3): 429-440.
- 574 Badol, C., N. Locoge, T. Léonardis and J.-C. Galloo (2008). "Using a source–receptor 575 approach to characterise VOC behaviour in a French urban area influenced by industrial
- 576 emissions Part I: Study area description, data set acquisition and qualitative data analysis of 577 the data set." Science of The Total Environment **389**(2–3): 441-452.
- 578 Boichu, M., O. Favez, V. Riffault, J. E. Petit, Y. Zhang, C. Brogniez, J. Sciare, I. Chiapello,
- 579 L. Clarisse, S. Zhang, N. Pujol-Söhne, E. Tison, H. Delbarre and P. Goloub (2019). "Large-
- 580 scale particulate air pollution and chemical fingerprint of volcanic sulfate aerosols from the
- 581 2014–2015 Holuhraun flood lava eruption of Bárðarbunga volcano (Iceland)." Atmos. Chem. 582 Phys. **19**(22): 14253-14287.
- 583 Bouwman, A. F., D. P. Van Vuuren, R. G. Derwent and M. Posch (2002). "A Global Analysis 584 of Acidification and Eutrophication of Terrestrial Ecosystems." Water, Air, and Soil Pollution 585 **141**(1): 349-382.
- 586 Budisulistiorini, S. H., K. Baumann, E. S. Edgerton, S. T. Bairai, S. Mueller, S. L. Shaw, E. 587 M. Knipping, A. Gold and J. D. Surratt (2015). "Seasonal characterization of submicron 588 aerosol chemical composition and organic aerosol sources in the southeastern United States: 589 Atlanta, Georgia and Look Rock, Tennessee." Atmos. Chem. Phys. Discuss. **15**(16): 22379- 590 22417.
- 591 Canagaratna, M. R., J. T. Jayne, J. L. Jimenez, J. D. Allan, M. R. Alfarra, Q. Zhang, T. B. 592 Onasch, F. Drewnick, H. Coe, A. Middlebrook, A. Delia, L. R. Williams, A. M. Trimborn, M. 593 J. Northway, P. F. DeCarlo, C. E. Kolb, P. Davidovits and D. R. Worsnop (2007). "Chemical 594 and microphysical characterization of ambient aerosols with the aerodyne aerosol mass 595 spectrometer." Mass Spectrometry Reviews **26**(2): 185-222.
- 596 Carbone, S., S. Saarikoski, A. Frey, F. Reyes, P. Reyes, M. Castillo, E. Gramsch, P. Oyola, J. 597 Jayne, D. R. Worsnop and R. Hillamo (2013). "Chemical Characterization of Submicron
- 598 Aerosol Particles in Santiago de Chile." Aerosol and Air Quality Research **13**.
- 599 Cazier, F., D. Dewaele, A. Delbende, H. Nouali, G. Garçon, A. Verdin, D. Courcot, S. 600 Bouhsina and P. Shirali (2011). "Sampling analysis and characterization of particles in the 601 atmosphere of rural, urban and industrial areas." Procedia Environmental Sciences **4**(0): 218- 602 227.
- 603 CGDD (2014). Bilan de la qualité de l'air en France en 2013, Commissariat général au 604 développement durable.
- 605 Chen, S., Y. Zhao and R. Zhang (2018). "Formation Mechanism of Atmospheric Ammonium 606 Bisulfate: Hydrogen-Bond-Promoted Nearly Barrierless Reactions of SO3 with NH3 and 607 H2O." **19**(8): 967-972.
- 608 Cohen, A. J., H. Ross Anderson, B. Ostro, K. D. Pandey, M. Krzyzanowski, N. Kunzli, K. 609 Gutschmidt, A. Pope, I. Romieu, J. M. Samet and K. Smith (2005). "The global burden of 610 disease due to outdoor air pollution." J Toxicol Environ Health A **68**(13-14): 1301-1307.
- 611 Crenn, V., A. Chakraborty, I. Fronval, D. Petitprez and V. Riffault (2018). "Fine particles 612 sampled at an urban background site and an industrialized coastal site in Northern France— 613 Part 2: Comparison of offline and online analyses for carbonaceous aerosols." Aerosol
- 614 Science and Technology **52**(3): 287-299.
- 615 Crenn, V., I. Fronval, D. Petitprez and V. Riffault (2017). "Fine particles sampled at an urban 616 background site and an industrialized coastal site in Northern France - Part 1: Seasonal 617 variations and chemical characterization." Sci Total Environ **578**: 203-218.
- 618 Crenn, V., J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich, C. A. Belis, W. Aas, M. Äijälä, A.
- 619 Alastuey, B. Artiñano, D. Baisnée, N. Bonnaire, M. Bressi, M. Canagaratna, F. Canonaco, C.
- 620 Carbone, F. Cavalli, E. Coz, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. 621 Heikkinen, H. Herrmann, C. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J.
- 622 Ovadnevaite, J. E. Petit, E. Petralia, L. Poulain, M. Priestman, V. Riffault, A. Ripoll, R.
- 623 Sarda-Estève, J. G. Slowik, A. Setyan, A. Wiedensohler, U. Baltensperger, A. S. H. Prévôt, J.
- 624 T. Jayne and O. Favez (2015). "ACTRIS ACSM intercomparison Part 1: Reproducibility of
- 625 concentration and fragment results from 13 individual Quadrupole Aerosol Chemical
- 626 Speciation Monitors (Q-ACSM) and consistency with co-located instruments." Atmos. Meas. 627 Tech. **8**(12): 5063-5087.
- 628 DeCarlo, P. F., J. R. Kimmel, A. Trimborn, M. J. Northway, J. T. Jayne, A. C. Aiken, M.
- 629 Gonin, K. Fuhrer, T. Horvath, K. S. Docherty, D. R. Worsnop and J. L. Jimenez (2006). 630 "Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer." Analytical
- 631 Chemistry **78**(24): 8281-8289.
- 632 DREAL (2012). Industrie au regard de l'environnement, Direction régionale de 633 l'environnement de l'aménagement et du logement Nord-Pas-de-Calais**:** 11-25.
- 634 Du, W., Y. L. Sun, Y. S. Xu, Q. Jiang, Q. Q. Wang, W. Yang, F. Wang, Z. P. Bai, X. D. Zhao
- 635 and Y. C. Yang (2015). "Chemical characterization of submicron aerosol and particle growth
- 636 events at a national background site (3295 m a.s.l.) on the Tibetan Plateau." Atmos. Chem.
- 637 Phys. **15**(18): 10811-10824.
- 638 Eatough, D. J., F. M. Caka and R. J. Farber (1994). "The Conversion of SO2 to Sulfate in the 639 Atmosphere." Israel Journal of Chemistry **34**(3-4): 301-314.
- 640 EEA (2015). Sector share for emissions of primary PM2.5 and PM10 particulate matter, 641 European Environment Agency**:** http://www.eea.europa.eu/data-and-maps/daviz/sector-split-642 of-emissions-of-4#tab-chart_1.
- 643 El Haddad, I., B. D'Anna, B. Temime-Roussel, M. Nicolas, A. Boreave, O. Favez, D. Voisin,
- 644 J. Sciare, C. George, J. L. Jaffrezo, H. Wortham and N. Marchand (2013). "Towards a better
- 645 understanding of the origins, chemical composition and aging of oxygenated organic aerosols: 646 case study of a Mediterranean industrialized environment, Marseille." Atmos. Chem. Phys.
- 647 **13**(15): 7875-7894.
- 648 Elder, A., S. Vidyasagar and L. DeLouise (2009). "Physicochemical factors that affect metal 649 and metal oxide nanoparticle passage across epithelial barriers." Wiley Interdisciplinary 650 Reviews: Nanomedicine and Nanobiotechnology **1**(4): 434-450.
- 651 Flossmann, A. I., W. D. Hall and H. R. Pruppacher (1985). "A Theoretical Study of the Wet
- 652 Removal of Atmospheric Pollutants. Part I: The Redistribution of Aerosol Particles Captured 653 through Nucleation and Impaction Scavenging by Growing Cloud Drops." Journal of the 654 Atmospheric Sciences **42**(6): 583-606.
- 655 Ghan, S. J. and S. E. Schwartz (2007). "Aerosol Properties and Processes: A Path from Field 656 and Laboratory Measurements to Global Climate Models." Bulletin of the American 657 Meteorological Society **88**(7): 1059-1083.
- 658 Guo, H., L. Xu, A. Bougiatioti, K. M. Cerully, S. L. Capps, J. R. Hite Jr, A. G. Carlton, S. H. 659 Lee, M. H. Bergin, N. L. Ng, A. Nenes and R. J. Weber (2015). "Fine-particle water and pH 660 in the southeastern United States." Atmos. Chem. Phys. **15**(9): 5211-5228.
-
- 661 Heikkinen, L., M. Äijälä, M. Riva, K. Luoma, K. Dällenbach, J. Aalto, P. Aalto, D. Aliaga,
- 662 M. Aurela, H. Keskinen, U. Makkonen, P. Rantala, M. Kulmala, T. Petäjä, D. Worsnop and
- 663 M. Ehn (2020). "Long-term sub-micrometer aerosol chemical composition in the boreal 664 forest: inter- and intra-annual variability." Atmos. Chem. Phys. **20**(5): 3151-3180.
- 665 Hleis, D., I. Fernández-Olmo, F. Ledoux, A. Kfoury, L. Courcot, T. Desmonts and D. Courcot 666 (2013). "Chemical profile identification of fugitive and confined particle emissions from an 667 integrated iron and steelmaking plant." Journal of Hazardous Materials **250–251**: 246-255.
- 668 Jacob, D. J. and M. R. Hoffmann (1983). "A dynamic model for the production of H+ NO3−, 669 and SO42− in urban fog." Journal of Geophysical Research: Oceans **88**(C11): 6611-6621.
- 670 Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb and D. R. 671 Worsnop (2000). "Development of an Aerosol Mass Spectrometer for Size and Composition
- 672 Analysis of Submicron Particles." Aerosol Science and Technology **33**(1-2): 49-70.
- 673 Jimenez, J. L., M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P.
- 674 F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. S. Docherty, I. M. Ulbrich, A. P.
- 675 Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y.
- 676 L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M.
- 677 Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, E., J. Dunlea, J. A. Huffman, T. B. 678 Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S.
- 679 Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T.
- 680 Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D.
- 681 Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, A. M.
- 682 Middlebrook, C. E. Kolb, U. Baltensperger and D. R. Worsnop (2009). "Evolution of Organic
- 683 Aerosols in the Atmosphere." Science **326**(5959): 1525-1529.
- 684 Jimenez, J. L., J. T. Jayne, Q. Shi, C. E. Kolb, D. R. Worsnop, I. Yourshaw, J. H. Seinfeld, R.
- 685 C. Flagan, X. Zhang, K. A. Smith, J. W. Morris and P. Davidovits (2003). "Ambient aerosol
- 686 sampling using the Aerodyne Aerosol Mass Spectrometer." Journal of Geophysical Research: 687 Atmospheres **108**(D7).
- 688 Kelly, F. J. and J. C. Fussell (2012). "Size, source and chemical composition as determinants 689 of toxicity attributable to ambient particulate matter." Atmospheric Environment **60**: 504-526.
- 690 Khoder, M. I. (2002). "Atmospheric conversion of sulfur dioxide to particulate sulfate and 691 nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area." Chemosphere 692 **49**(6): 675-684.
- 693 Kulmala, M., L. Pirjola and J. M. Makela (2000). "Stable sulphate clusters as a source of new 694 atmospheric particles." Nature **404**(6773): 66-69.
- 695 Leclercq, B., A. Platel, S. Antherieu, L. Y. Alleman, E. M. Hardy, E. Perdrix, N. Grova, V.
- 696 Riffault, B. M. Appenzeller, M. Happillon, F. Nesslany, P. Coddeville, J. M. Lo-Guidice and
- 697 G. Garcon (2017). "Genetic and epigenetic alterations in normal and sensitive COPD-diseased 698 human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5." Environ
- 699 Pollut **230**: 163-177.
- 700 Lei, L., C. Xie, D. Wang, Y. He, Q. Wang, W. Zhou, W. Hu, P. Fu, Y. Chen, X. Pan, Z.
- 701 Wang, D. R. Worsnop and Y. Sun (2020). "Fine particle characterization in a coastal city in 702 China: composition, sources, and impacts of industrial emissions." Atmos. Chem. Phys.
- 703 **20**(5): 2877-2890.
- 704 Matsumoto, K. and H. Tanaka (1996). "Formation and dissociation of atmospheric particulate
- 705 nitrate and chloride: An approach based on phase equilibrium." Atmospheric Environment 706 **30**(4): 639-648.
- 707 Matthew, B. M., A. M. Middlebrook and T. B. Onasch (2008). "Collection Efficiencies in an 708 Aerodyne Aerosol Mass Spectrometer as a Function of Particle Phase for Laboratory 709 Generated Aerosols." Aerosol Science and Technology **42**(11): 884-898.
- 710 Mazzarella, G., V. Esposito, A. Bianco, F. Ferraraccio, M. V. Prati, A. Lucariello, L.
- 711 Manente, A. Mezzogiorno and A. De Luca (2012). "Inflammatory effects on human lung
- 712 epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen
- 713 allergens." Environmental Pollution **161**: 64-69.
- 714 Mbengue, S., L. Y. Alleman and P. Flament (2014). "Size-distributed metallic elements in 715 submicronic and ultrafine atmospheric particles from urban and industrial areas in northern
- 716 France." Atmospheric Research **135–136**(0): 35-47.
- 717 Middlebrook, A. M., R. Bahreini, J. L. Jimenez and M. R. Canagaratna (2011). "Evaluation of
- 718 Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer
- 719 using Field Data." Aerosol Science and Technology **46**(3): 258-271.
- 720 Minguillón, M. C., A. Ripoll, N. Pérez, A. S. H. Prévôt, F. Canonaco, X. Querol and A.
- 721 Alastuey (2015). "Chemical characterization of submicron regional background aerosols in
- 722 the western Mediterranean using an Aerosol Chemical Speciation Monitor." Atmos. Chem.
- 723 Phys. **15**(11): 6379-6391.
- 724 Ng, N. L., S. C. Herndon, A. Trimborn, M. R. Canagaratna, P. L. Croteau, T. B. Onasch, D. 725 Sueper, D. R. Worsnop, Q. Zhang, Y. L. Sun and J. T. Jayne (2011). "An Aerosol Chemical 726 Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass 727 Concentrations of Ambient Aerosol." Aerosol Science and Technology **45**(7): 780-794.
- 728 Niyogi, D., H.-I. Chang, V. K. Saxena, T. Holt, K. Alapaty, F. Booker, F. Chen, K. J. Davis,
- 729 B. Holben, T. Matsui, T. Meyers, W. C. Oechel, R. A. Pielke, R. Wells, K. Wilson and Y.
- 730 Xue (2004). "Direct observations of the effects of aerosol loading on net ecosystem CO2
- 731 exchanges over different landscapes." Geophysical Research Letters **31**(20): L20506.
- 732 Park, S. S., A. D. A. Hansen and S. Y. Cho (2010). "Measurement of real time black carbon 733 for investigating spot loading effects of Aethalometer data." Atmospheric Environment 734 **44**(11): 1449-1455.
- 735 Parworth, C., J. Fast, F. Mei, T. Shippert, C. Sivaraman, A. Tilp, T. Watson and Q. Zhang 736 (2015). "Long-term measurements of submicrometer aerosol chemistry at the Southern Great 737 Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)." Atmospheric 738 Environment **106**: 43-55.
- 739 Pérez, N., J. Pey, X. Querol, A. Alastuey, J. M. López and M. Viana (2008). "Partitioning of 740 major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe." 741 Atmospheric Environment **42**(8): 1677-1691.
- 742 Petit, J. E., O. Favez, A. Albinet and F. Canonaco (2017). "A user-friendly tool for 743 comprehensive evaluation of the geographical origins of atmospheric pollution: Wind and 744 trajectory analyses." Environmental Modelling & Software **88**: 183-187.
- 745 Petit, J. E., O. Favez, J. Sciare, V. Crenn, R. Sarda-Estève, N. Bonnaire, G. Močnik, J. C. 746 Dupont, M. Haeffelin and E. Leoz-Garziandia (2015). "Two years of near real-time chemical 747 composition of submicron aerosols in the region of Paris using an Aerosol Chemical 748 Speciation Monitor (ACSM) and a multi-wavelength Aethalometer." Atmos. Chem. Phys. 749 **15**(6): 2985-3005.
- 750 Petzold, A., C. Kopp and R. Niessner (1997). "The dependence of the specific attenuation 751 cross-section on black carbon mass fraction and particle size." Atmospheric Environment 752 **31**(5): 661-672.
- 753 Pope, C. A., R. T. Burnett, M. J. Thun and et al. (2002). "Lung cancer, cardiopulmonary 754 mortality, and long-term exposure to fine particulate air pollution." JAMA **287**(9): 1132-1141.
- 755 Ramgolam, K., O. Favez, H. Cachier, A. Gaudichet, F. Marano, L. Martinon and A. Baeza-
- 756 Squiban (2009). "Size-partitioning of an urban aerosol to identify particle determinants
- 757 involved in the proinflammatory response induced in airway epithelial cells." Part Fibre
- 758 Toxicol **6**: 10.
- 759 Riffault, V., J. Arndt, H. Marris, S. Mbengue, A. Setyan, L. Y. Alleman, K. Deboudt, P.
- 760 Flament, P. Augustin, H. Delbarre and J. Wenger (2015). "Fine and Ultrafine Particles in the 761 Vicinity of Industrial Activities: A Review." Critical Reviews in Environmental Science and
- 762 Technology: 1-52.
- 763 Rimetz-Planchon, J., E. Perdrix, S. Sobanska and C. Brémard (2008). "PM10 air quality
- 764 variations in an urbanized and industrialized harbor." Atmospheric Environment **42**(31): 765 7274-7283.
- 766 Ripoll, A., M. C. Minguillón, J. Pey, J. L. Jimenez, D. A. Day, Y. Sosedova, F. Canonaco, A. 767 S. H. Prévôt, X. Querol and A. Alastuey (2015). "Long-term real-time chemical 768 characterization of submicron aerosols at Montsec (southern Pyrenees, 1570 m a.s.l.)." 769 Atmos. Chem. Phys. **15**(6): 2935-2951.
- 770 Rivellini, L. H., I. Chiapello, E. Tison, M. Fourmentin, A. Féron, A. Diallo, T. N'Diaye, P.
- 771 Goloub, F. Canonaco, A. S. H. Prévôt and V. Riffault (2017). "Chemical characterization and
- 772 source apportionment of submicron aerosols measured in Senegal during the 2015 SHADOW 773 campaign." Atmos. Chem. Phys. **17**(17): 10291-10314.
- 774 Roig Rodelas, R., E. Perdrix, B. Herbin and V. Riffault (2019). "Characterization and
- 775 variability of inorganic aerosols and their gaseous precursors at a suburban site in northern
- 776 France over one year (2015–2016)." Atmospheric Environment **200**: 142-157.
- 777 Roukos, J., V. Riffault, N. Locoge and H. Plaisance (2009). "VOC in an urban and industrial 778 harbor on the French North Sea coast during two contrasted meteorological situations." 779 Environmental Pollution **157**(11): 3001-3009.
- 780 Schlag, P., A. Kiendler-Scharr, M. J. Blom, F. Canonaco, J. S. Henzing, M. M. Moerman, A.
- 781 S. H. Prévôt and R. Holzinger (2015). "Aerosol source apportionment from 1 year
- 782 measurements at the CESAR tower at Cabauw, NL." Atmos. Chem. Phys. Discuss. **2015**: 783 35117-35155.
- 784 Schwartz, S. E. (1987). Aqueous-Phase Reactions in Clouds. The Chemistry of Acid Rain, 785 American Chemical Society. **349:** 93-108.
- 786 Setyan, A., P. Flament, N. Locoge, K. Deboudt, V. Riffault, L. Y. Alleman, C. Schoemaecker, 787 J. Arndt, P. Augustin, R. M. Healy, J. C. Wenger, F. Cazier, H. Delbarre, D. Dewaele, P. 788 Dewalle, M. Fourmentin, P. Genevray, C. Gengembre, T. Leonardis, H. Marris and S. 789 Mbengue (2019). "Investigation on the near-field evolution of industrial plumes from 790 metalworking activities." Science of The Total Environment **668**: 443-456.
- 791 Stavroulas, I., A. Bougiatioti, G. Grivas, D. Paraskevopoulou, M. Tsagkaraki, P. Zarmpas, E. 792 Liakakou, E. Gerasopoulos and N. Mihalopoulos (2019). "Sources and processes that control 793 the submicron organic aerosol composition in an urban Mediterranean environment (Athens): 794 a high temporal-resolution chemical composition measurement study." Atmos. Chem. Phys.
- 795 **19**(2): 901-919.
- 796 Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen and F. Ngan (2016). 797 "NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System." Bulletin of
- 798 the American Meteorological Society **96**(12): 2059-2077.
- 799 Stockwell, W. R. and J. G. Calvert (1983). "The mechanism of the HO-SO2 reaction." 800 Atmospheric Environment (1967) **17**(11): 2231-2235.
- 801 Sun, Y., Z. Wang, H. Dong, T. Yang, J. Li, X. Pan, P. Chen and J. T. Jayne (2012).
- 802 "Characterization of summer organic and inorganic aerosols in Beijing, China with an
- 803 Aerosol Chemical Speciation Monitor." Atmospheric Environment **51**: 250-259.
- 804 Sun, Y., Z. Wang, P. Fu, Q. Jiang, T. Yang, J. Li and X. Ge (2013). "The impact of relative 805 humidity on aerosol composition and evolution processes during wintertime in Beijing, 806 China." Atmospheric Environment **77**: 927-934.
- 807 Taiwo, A. M., R. M. Harrison, D. C. S. Beddows and Z. Shi (2014). "Source apportionment of 808 single particles sampled at the industrially polluted town of Port Talbot, United Kingdom by
- 809 ATOFMS." Atmospheric Environment **97**: 155-165.
- 810 Taiwo, A. M., R. M. Harrison and Z. Shi (2014). "A review of receptor modelling of 811 industrially emitted particulate matter." Atmospheric Environment **97**: 109-120.
- 812 Takahama, S., A. Johnson, J. Guzman Morales, L. M. Russell, R. Duran, G. Rodriguez, J.
- 813 Zheng, R. Zhang, D. Toom-Sauntry and W. R. Leaitch (2013). "Submicron organic aerosol in
- 814 Tijuana, Mexico, from local and Southern California sources during the CalMex campaign."
- 815 Atmospheric Environment **70**: 500-512.
- 816 Tiitta, P., V. Vakkari, P. Croteau, J. P. Beukes, P. G. van Zyl, M. Josipovic, A. D. Venter, K.
- 817 Jaars, J. J. Pienaar, N. L. Ng, M. R. Canagaratna, J. T. Jayne, V. M. Kerminen, H. Kokkola,
- 818 M. Kulmala, A. Laaksonen, D. R. Worsnop and L. Laakso (2014). "Chemical composition,
- 819 main sources and temporal variability of PM1 aerosols in southern African grassland." Atmos.
- 820 Chem. Phys. **14**(4): 1909-1927.
- 821 Virkkula, A., T. Mäkelä, R. Hillamo, T. Yli-tuomi, A. Hirsikko, K. Hameri and I. k. Koponen 822 (2007). "A simple procedure for correcting loading effects of aethalometer data." Journal of 823 the Air & Waste Management Association **57**(10).
- 824 von der Weiden, S. L., F. Drewnick and S. Borrmann (2009). "Particle Loss Calculator a 825 new software tool for the assessment of the performance of aerosol inlet systems." Atmos. 826 Meas. Tech. **2**(2): 479-494.
- 827 Weber, R. J., G. Chen, D. D. Davis, R. L. Mauldin, D. J. Tanner, F. L. Eisele, A. D. Clarke, 828 D. C. Thornton and A. R. Bandy (2001). "Measurements of enhanced H2SO4 and 3–4 nm 829 particles near a frontal cloud during the First Aerosol Characterization Experiment (ACE 1)." 830 Journal of Geophysical Research: Atmospheres **106**(D20): 24107-24117.
- 831 Weingartner, E., H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar and U. Baltensperger (2003). 832 "Absorption of light by soot particles: determination of the absorption coefficient by means of 833 aethalometers." Journal of Aerosol Science **34**(10): 1445-1463.
- 834 West, J. J., A. S. Ansari and S. N. Pandis (1999). "Marginal PM25: Nonlinear Aerosol Mass 835 Response to Sulfate Reductions in the Eastern United States." Journal of the Air & Waste 836 Management Association **49**(12): 1415-1424.
- 837 WHO (2002). The world health report 2002 Reducing Risks, Promoting Healthy Life. 838 Geneva**:** http://www.who.int/whr/2002/en/whr2002_en.pdf?ua=2001.
- 839 Xiang, Y., H. Delbarre, S. Sauvage, T. Léonardis, M. Fourmentin, P. Augustin and N. Locoge 840 (2012). "Development of a methodology examining the behaviours of VOCs source 841 apportionment with micro-meteorology analysis in an urban and industrial area." 842 Environmental Pollution **162**: 15-28.
- 843 Zhang, Q., M. R. Canagaratna, J. T. Jayne, D. R. Worsnop and J.-L. Jimenez (2005). "Time-844 and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for 845 aerosol sources and processes." Journal of Geophysical Research: Atmospheres **110**(D7): 846 D07S09.
- 847 Zhang, Q., J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. Ulbrich, M. R. Alfarra, 848 A. Takami, A. M. Middlebrook, Y. L. Sun, K. Dzepina, E. Dunlea, K. Docherty, P. F.
- 849 DeCarlo, D. Salcedo, T. Onasch, J. T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N. 850 Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, P. 851 Williams, K. Bower, R. Bahreini, L. Cottrell, R. J. Griffin, J. Rautiainen, J. Y. Sun, Y. M. 852 Zhang and D. R. Worsnop (2007). "Ubiquity and dominance of oxygenated species in organic 853 aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes." Geophysical 854 Research Letters **34**(13): L13801.
- 855 Zhang, Q., J. L. Jimenez, D. R. Worsnop and M. Canagaratna (2007). "A Case Study of
- 856 Urban Particle Acidity and Its Influence on Secondary Organic Aerosol." Environmental
- 857 Science & Technology **41**(9): 3213-3219.
- 858 Zhao, Y., Y. Liu, J. Ma, Q. Ma and H. He (2017). "Heterogeneous reaction of SO2 with soot:
- 859 The roles of relative humidity and surface composition of soot in surface sulfate formation."
- 860 Atmospheric Environment **152**: 465-476.

861

862 Figure 1. (Bottom) Maps of the urban-industrial area of Dunkirk (M: marine, U: urban, IU: 863 industrial-urban, I: industrial wind sectors); Top Locations of the measurements: (A) Port-Est: 864 ACSM and other chemical measurements; (B) Ultrasonic anemometer; (C) Meteorology 865 station. Locks indicated in red (DG: De Gaulle; Wa: Watier; Tr: Trystram) (adapted from 866 Google Maps)

868 Figure 2. From top to bottom: wind direction colored by wind speed, solar radiation, pressure, temperature and precipitation, and identified 869 meteorological events (fog, storm and sea breeze).

867

872 Figure 3. (a) Time series of NR-PM₁+BC measured by ACSM+aethalometer vs. Total PM₁ 873 measured by TEOM-FDMS; (b) Scatter plot of PM_1 concentrations (NR-PM₁+BC vs. Total 874 PM₁): averaged to ACSM time (grey) and 24-h averaged concentration (red). Linear fit 875 performed on 24-h averaged values.

876

877 Figure 4. Time series of the chemical composition of NR-PM₁ measured by ACSM (Cl, SO₄, NH₄, NO₃, and Org), and Black carbon measured

878 by aethalometer.

881 this study and other ACSM field campaigns. Details on the location and duration of each 882 campaign are given on the horizontal axis (M: months; W: weeks; Y: year). SGP: Southern 883 Great Plains, MSY: Montseny.

-
- 1. Beijing (China) (Sun et al. 2012); 2. Santiago (Chile) (Carbone et al. 2013); 3. Athens (Greece) (Stavroulas et

al. 2019); 4. New York (USA) (Ng et al. 2011); 5.Tijuana (Mexico) (Takahama et al. 2013); 6. SIRTA, Paris (France) (Petit et al. 2015); 7. M'Bour (Senegal) (Rivellini et al. 2017); 8.&15. Atlanta (USA) and Look Rock

- (USA) (Budisulistiorini et al. 2015); 9. This study; 10. Tibetan Plateau (China) (Du et al. 2015); 11. Cabauw
- (Netherlands)(Schlag et al. 2015); 12. Welgegund (South Africa) (Tiitta et al. 2014); 13. SGP (USA)(Parworth et
- al. 2015); 14.SMY (Spain) (Minguillón et al. 2015); 16. Montsec (Spain) (Ripoll et al. 2015). 17. Hyytiälä
- (Finland) (Heikkinen et al. 2020)

891 Figure 6. Chemical speciation of PM₁ for the four wind sectors (M: marine, U: urban, IU: 892 industrial-urban, I: industrial).

896 Figure 7. Correlation between measured and predicted NH4 color coded by the sulfate 897 concentration (μ g m⁻³) (a) for the entire study and (b) – (e) for marine (M), urban (U), 898 industrial-urban (IU) and industrial (I) wind sectors, respectively. The black line represents 899 the 1:1 line.

901 (b)

902 Figure 8. (a) Box plots of the measured-to-predicted NH4 ratio for the entire study and the 903 four wind sectors. The data correspond to the mean (diamond), median (horizontal line), $25th$ 904 and $75th$ percentiles (lower and upper boxes), and $10th$ and $90th$ percentiles (lower and upper 905 whiskers). (b) Chemical speciation of NR-PM1 species for (left) acidic particles (measured-to-906 predicted ratio less than 0.75) and (right) neutralized particles (ratio between 0.85 – mean 907 value – and $1.07 - 90th$ percentile).

911 Figure 9. Dependences on relative humidity (left) and σ_w (right) of (a) SO₂, (b) SO₄ and (c) 912 the particulate-to-total sulfur ratio within the industrial (I) wind sector. The data correspond to 913 the mean (diamond), median (horizontal line), $25th$ and $75th$ percentiles (lower and upper 914 boxes), and $10th$ and $90th$ percentiles (lower and upper whiskers).

