Supporting Information:

Interplay between local structure and magnetic properties of graded exchange-coupled Co@FePt nanocomposite films

Charles Paleo,^{*,†} Véronique Dupuis,[†] Fabrice Wilhelm,[‡] Andrei Rogalev,[‡] Olivier Proux,[¶] Olivier Boisron,[†] Isabelle Kieffer,[¶] Thierry Epicier,[§] Matthieu Bugnet,[§] and Damien Le Roy[†]

+Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS, F-69622, Villeurbanne, France

‡The European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France ¶Observatoire des Sciences de l'Univers de Grenoble, Université Grenoble Alpes, CNRS, 38041 Grenoble, France

§INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, F-69621 Villeurbanne, France

E-mail: charles.paleo@univ-lyon1.fr

Supplementary figures

Figure S 1: (a) Schematic views of a NC sample and a (b) NF sample. (c) X-ray diffraction pattern ($\lambda = 1.5406$ Å) of a FePt sample annealed for 20 min at different temperatures. The (001), (200) and (002) peaks, indicators of the L1₀ phase, appear at temperature greater than 650°C. One can see that the 715°C annealing spectrum presents a certain *c*-axis texture as the (001) peak is greater than the (110) one which is just absent (while the calculated intensities ratio (001)/(110) is expected to be 1 for polycrystalline L1₀).

Figure S 2: Schematic views of a Co nano-inclusion in a surrounding FePt matrix as a function of the degree of interdiffusion.

Figure S 3: XANES and XLD signal of 20% Co NC and NF and the L1₀-FePt ref. sample at the Fe K-edge.

Figure S 4: Real part of the FT of the 30% Co NC and NF samples at the Fe K-edge, along with the FePt reference sample. The NC sample is closer to the reference than the NF.

Figure S 5: Weighted EXAFS oscillations, magnitude, and real part of the FT of the 30% Co NC sample at the Co K-edge, along with the X₃Pt fit on the nearest homo and heteroatomic neighbours (NN).

EXAFS detailed results

Table S 1: EXAFS parameters found for the $L1_0$ -FePt reference prepared.

Edge	Bound	N _{exp}	N _{bulk}	R _{exp}	R _{bulk}	σ^2	ΔE
			L10-FePt	(Å)	L1 ₀ -FePt (Å)	(Å ²)	(eV)
Fe	Fe-Pt	7.1	8	2.67	2.67	0.007	4.44
Fe	Fe-Fe	3.6	4	2.72	2.72	0.015	4.44
Pt	Pt-Fe	7.4	8	2.67	2.67	0.006	6.85
Pt	Pt-Pt	3.7	4	2.72	2.72	0.003	6.85

Table S 2: EXAFS parameters found for the 30% Co NC.

Edge	Bound	N _{exp}	N _{bulk}	R _{exp}	R _{bulk}	σ^2	ΔE
			L10-FePt	(Å)	L1 ₀ -FePt (Å)	(Å ²)	(eV)
Fe	Fe-Pt	6.1	8	2.67	2.67	0.004	5.70
Fe	Fe-Fe	3.0	4	2.72	2.72	0.010	5.70
Pt	Pt-Fe	7.3	8	2.67	2.67	0.007	7.05
Pt	Pt-Pt	3.6	4	2.72	2.72	0.004	7.05
Edge	Bound	N _{exp}	N _{bulk}	Rexp	R _{bulk}	σ^2	ΔE
			X ₃ Pt	(Å)	X ₃ Pt (Å)	(Å ²)	(eV)
Со	Co-Co	7.6	8	2.59	2.59	0.012	5.47
Co	Co-Pt	3.8	4	2.59	2.59	0.005	5.47

Edge	Bound	N _{exp}	N _{bulk}	R _{exp}	R _{bulk}	σ^2	ΔE
		-	X ₃ Pt	(Å)	X ₃ Pt (Å)	(Å ²)	(eV)
Fe	Fe-Pt	3.8	4	2.63	2.59	0.004	6.33
Fe	Fe-Co	3.8	4	2.63	2.59	0.017	6.33
Fe	Pt-Fe	3.8	4	2.63	2.59	0.017	6.33
Pt	Pt-Pt	3.6	4	2.59	2.59	0.004	7.05
Pt	Pt-Pt	3.6	4	2.59	2.59	0.004	7.05
Edge	Bound	N _{exp}	N _{bulk}	Rexp	R _{bulk}	σ^2	ΔE
		-	X ₃ Pt	(Å)	X ₃ Pt (Å)	(Å ²)	(eV)
Со	Co-Co	9.0	8	2.59	2.59	0.006	5.31
Co	Co-Pt	4.5	4	2.59	2.59	0.011	5.31

Table S 3: EXAFS parameters found for the 30% Co NF (X = Co, Fe).

Table S 4: EXAFS parameters found for the 30% Co NC for the nearest neighbours (between 1.5 and 3.0 Å) with the coordination number free but still keeping $N_{Co,Fe} + N_{Pt} = 12$ (X = Co, Fe). We obtained $N_{Co-Pt} = 3.9$ so as there is as much Fe as Pt, $N_{Co-matrix} = 2 \times 3.9 = 7.8$. Thus $N_{Co-Pt} = 12 - N_{Co-matrix} = 4.2$.

Edge	Bound	N _{exp}	N _{bulk}	Rexp	R _{bulk}	σ^2	ΔE
			X ₃ Pt	(Å)	X ₃ Pt (Å)	(Å ²)	(eV)
Со	Co-X	8.1	8	2.59	2.59	0.013	3.92
Co	Co-Pt	3.9	4	2.60	2.59	0.005	3.92

Simulation results

Figure S 6: (a) Cut of a diffused cluster after enough iteration to obtain a Co-Co coordination number equal to the one given by the EXAFS fit ($N_{Co-Co} = 4.2$). The Co atoms are in blue, and the matrix atom (Fe+Pt) in orange. (b) Cut of the diffused cluster (slightly rotated) showing only the Co atoms.

Figure S 7: Co+Fe profile from the cluster diffusion model obtained for $N_{Co-Co} = 4.2$.

EXAFS fit

Figure S 8: Real part of the FT for 30% Co NC and NF with their respective best fits at each edge.