
HAL Id: hal-02975455
https://hal.science/hal-02975455v2

Submitted on 16 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safety Verification of Neural Network Controlled
Systems

Arthur Clavière, Eric Asselin, Christophe Garion, Claire Pagetti

To cite this version:
Arthur Clavière, Eric Asselin, Christophe Garion, Claire Pagetti. Safety Verification of Neural Network
Controlled Systems. 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), Jun 2021, Taipei, Taiwan. �hal-02975455v2�

https://hal.science/hal-02975455v2
https://hal.archives-ouvertes.fr

Safety Verification of Neural Network Controlled
Systems

Arthur Clavière
Collins Aerospace
Toulouse, France

Eric Asselin
Collins Aerospace
Toulouse, France

Christophe Garion
ISAE-SUPAERO

Toulouse, France

Claire Pagetti
ONERA

Toulouse, France

Abstract—In this paper, we propose a system-level approach
for verifying the safety of systems combining a continuous-
time physical system with a discrete-time neural network based
controller. We define a generic modelling approach and an
associated reachability analysis that soundly approximates the
reachable states of the overall system. We illustrate our approach
through a real-world use case.

Keywords-Neural Networks, Formal Methods, Certification

I. INTRODUCTION

A. Context and contribution

Recently, feedforward deep neural networks have been suc-
cessfully used for controlling physical systems, such as self-
driving cars [BTD+16], [CSKX15], [PCS+17] and unmanned
aerial vehicles [JKO18]. The combination of a physical system
with a neural network based controller is sometimes known
as a neural network controlled system. If such a system is
considered as safety-critical, meaning that a failure of the sys-
tem could have serious consequences, then a particular effort
needs to be made to demonstrate its safety. To do so, usually,
the system has to be developped in accordance with stringent
standards e.g., ED-79A/ARP-4754A [EUR10] in aeronautics.
In particular, the system requirements have to be refined at the
item level, with the aim of achieving a correct, comprehensive
specification for each item composing the system. Then, the
development of each item must be performed in compliance
with dedicated standards, e.g., ED-12C/DO-178C [EUR11] in
aeronautics, which prescribes several verification activities to
prove that a software item behaves exactly as expected.

This classical approach is not applicable to neural network
controlled systems. First, one cannot refine the system require-
ments at the neural network level as, most of the time, one
cannot achieve a correct, comprehensive specification for the
expected behaviour. Generally, the expected behaviour of a
network consists of a set of example data, which is a pointwise,
non-comprehensive specification. Secondly, existing standards
such as ED-12C/DO-178C are not applicable as, even if a
comprehensive specification could be defined, the learning
process does not guarantee the correcteness of the resulting
network. As a consequence, verifying that a network behaves
exactly as expected may be infeasible, precisely because it
does not.

This paper proposes a generic approach for demonstrating
the safety of a particular class of neural network controlled

systems, where the controller is a classifier based on multiple
ReLU networks. To tackle the above mentioned issues, our
approach consists of a system-level approach that provides
evidence that the overall system is safe, without performing
item-level refinements and analyses. To this end, we leverage
an accurate model of the overall system and we perform a
reachability analysis to formally demonstrate that no reachable
state can lead to a failure of the system. We make an evaluation
of the approach applicability on real-world use cases and a
comparative study with other existing tools.

The paper is organized as follows. Section II presents related
works. Section III describes our model of the targetted class
of neural network controlled system. Section IV details our
reachability analysis for solving the verification problem and
section V presents some experimental results. The ACAS
Xu system case will serve as an illustration and the goal
is to show that the controller is effectively safe i.e., it does
prevent near mid-air collision. A longer version of the paper
is available [CAGP20].

B. Example use case

The safe integration of Unmanned Aerial Vehicles (UAVs)
into the air traffic requires them to have collision avoidance
capabilities. For this purpose, the standardization group RTCA
SC 147 [EUR20] has recently developped a dedicated con-
troller, namely the Airborne Collision Avoidance System for
Unmanned Aircraft (ACAS Xu). The role of ACAS Xu is
to avoid any collision between the ownship, equipped with
the controller, and an encountered aircraft called the intruder,
equipped or not with the controller. To this end, the ACAS Xu
periodically provides the ownship with a horizontal maneuver
advisory, being either clear-of-conflict (COC), weak left turn
(WL), weak right turn (WR), strong left turn (SL) or strong
right turn (SR). The optimal advisory is extracted from a
set of lookup tables, depending on the previous advisory
and six variables describing the encounter between the two
aircraft, defined in Fig. 1: (1) the distance ρ from ownship
to intruder, (2) the angle θ to intruder relative to ownship
heading direction, (3) the heading angle ψ of intruder relative
to ownship heading direction, (4) the velocity vown of ownship,
(5) the velocity vint of intruder and (6) the time tsep until loss
of vertical separation. These six variables are computed from
the input signals from the transponder and the sensors of the
ownship e.g., air-to-air radar, electro-optics/infrared sensors.

vown θ

vint

ψ

ρ

Ø
Ø 500 ft

E

R

I′

Ø

Fig. 1. The 2D geometry of the encounter between the two aircraft (left) and
the (illustrative) reachable trajectories of intruder relative to ownship from a
subset I′ of the possible initial states, with E representing a collision cylinder
around the ownship andR delimiting the range of the ownship sensors (right).

The main weakness of the ACAS Xu controller is the large
storage requirements for the tables (over 2GB). Recently, an
alternative design for the ACAS Xu controller has been pro-
posed [JKO18], with dramatically reduced memory footprint
(about 3 MB). It consists of a collection of 45 neural networks
approximating the lookup tables. Each single network approx-
imates a table corresponding to a fixed previous advisory and a
given interval for tsep. Due to the complexity of the controller,
we lack a proof that no collision can happen, whatever the
initial state of the two aircraft (see Fig. 1).

II. RELATED WORK

Neural network level. In the past few years, some progress
has been made towards a more comprehensive specification
for the expected behaviour of a neural network. Indeed, sev-
eral research works have identified local expected behaviours
contributing to the overall expected behaviour of the network.
Typically, a local behaviour consists of a pre-condition about
the input of the network together with a post-condition about
its output. An example of such a property is adversarial
robustness (also called local robustness) which captures the
capability of the network to react correctly to a slight per-
turbation of a given input [KBD+17], [HKR+20]. In recent
years, there has been significant interest in verifying neural
networks against this type of property, which has been shown
to be a NP-complete problem [KBD+17]. Several dedicated
formal methods have been proposed, with the advantage of
providing a sound analysis, meaning that the network is
said correct only if it is actually correct. Some of these
specialized formal methods are based on Satisfiability Modulo
Theory solving [KBD+17], [Ehl17], with the advantage of
providing a complete analysis i.e., the network is said incorrect
only if it is actually incorrect. However, these methods are
often expensive for large, real-world sized networks. In order
to offer a more scalable analysis, other dedicated formal
methods have been proposed, relying on abstract intepreta-
tion to soundly approximate the semantics of the network
[WPW+18], [GMDC+18], [SGM+18], [SGPV19]. Yet, as
they consist of an over-approximation, these methods do not
provide a complete analysis.

As explained in the introduction, our work does not address
the safety objectives at the neural network level but at the

system level, so we do not seek to identify new local properties
or to improve the existing techniques for verifying neural
networks. However, we aim at using abstract interpretation
based techniques to analyze the behaviour of the overall
system. Indeed, such methods scale well to large networks
and they provide not only a yes-or-no answer to a verification
problem but also an approximation of the network semantics,
that is helpful when reasoning about the overall system.

System level. Verifying the safety requirements at the sys-
tem level, which corresponds to our approach, has been the
object of a lot of insightful research. Indeed, there has been
significant interest in verifying the safety of hybrid systems,
exhibiting both continuous-time and discrete-time dynamics.
Among the proposed methods, falsification aims at finding
trajectories that violate a given safety property [BFG+19],
[ALFS11]. Yet, even though falsification can prove that the
system is unsafe, it cannot prove that the system is safe.
Reachability analysis can provide such a proof of safety by
constructing a sound approximation of the reachable states
of the system and demonstrating that no reachable state can
lead to a failure [CÁS13], [Alt15], [AdSC16]. However, these
classical reachability methods are not directly applicable to
neural network controlled systems, due to the hardness of
characterizing the input-output mapping of a neural network.
Very recently, in the same vein as this paper, some research
works have addressed the problem of verifying the safety
of neural network controlled systems [IWA+18], [DCS19],
[HFL+19], [TYL+20]. These works all assume a physical
system combined with a periodically-scheduled controller that
is a single neural network i.e., the input of the network is the
sampled state of the physical system and the output of the
network is the actuation command. To ensure the safety of
such a system, they propose dedicated methods, all relying on
reachability analysis. However, due to the switching mecha-
nism between the networks, these methods are not applicable
to the class of neural network controlled systems that we
consider. Indeed, these methods cannot handle a controller that
is a classifier based on multiple ReLU networks [LMT+19].

To the best of our knowledge, only two methods can handle
the verification of the targetted class of systems: the method
proposed by [ABKL20], relying on MILP programming,
and the method proposed by [JK19], relying on reachability
analysis. However, due to the use of MILP programming,
[ABKL20] may not scale well to large systems. Similarly, as
[JK19] computes the reachable states by exploring the entire
state space, it may not scale to high-dimensional systems.
Moreover, these two methods are not totally sound as they do
not evaluate the reachable states for all instants but only for a
set of discrete instants. We propose here a scalable approach
for soundly verifying the safety of neural network controlled
systems with a classifier based on multiple ReLU networks as
a controller.

N

P

PLANT DYNAMICS
s′(t) = f(t, s(t),u(t))

SAMPLE
HOLD

PRE-
PROCESSING

NEURAL NET.
yj = Fj(xj)

MEMORY

POST-
PROCESSING

ZERO ORDER
HOLD

s(t)

sjxjyjuj+1

u(t)

uj+1

CLKCLK

Fig. 2. Block diagram of a closed-loop system C = (P,N).

III. SYSTEM MODEL

A. Closed-loop system
We assume a closed-loop system C that is the combination

of a plant P and a controller N (see Fig. 2). The plant P
is a continuous-time system, the state of which is the real-
numbered vector s(t) ∈ Rl at instant t ∈ R. The evolution
of s(t) is continuous and depends, inter alia, on the actuation
command from the controller, denoted by u(t) ∈ Rd. The
controller N is a discrete-time system, executed periodically
with period T . The jth execution of the controller (or control
step) occurs in the time interval [jT, (j + 1)T [. It takes as
input the sampled state sj = s(jT) and it yields the command
uj+1 to be applied for next period i.e., u(t) = uj+1 ∀t ∈
[(j + 1)T, (j + 2)T [. It is worth noting that such a model
does not assume the controller to execute instantaneously: its
execution time only has to be less than T , as for real systems.
Moreover, the controller is assumed to be a classifier, meaning
that the command uj+1 produced by the controller is taken
from a finite set U =

{
u(1), . . . ,u(P)

}
⊂ Rd, representing

the possible actuation commands.
The plant and the controller interact by means of a signal

sampler and a zero-order-hold. Overall, the state of the closed-
loop system C is the 2-tuple φ(t) = (s(t),u(t)) and we denote
by φ0 = (s0,u0) ∈ I the initial state of C, wherein I ⊆ Rl×U
is the set of the possible initial states.

Example 1: For the ACAS Xu system, we consider the
plant P composed of both the ownship and the intruder. By as-
suming that the two aircraft are at the same altitude i.e., tsep =
0, we can define the state of P at instant t as the real-numbered
vector s(t) = (x(t) y(t) ψown(t) ψint(t) vown(t) vint(t))

T

where x(t), y(t) are the 2D cartesian coordinates of intruder
relative to ownship, ψown(t) and ψint(t) are the heading an-
gles of ownship and intruder respectively (measured counter
clockwise), vown(t) and vint(t) denote the velocities of own-
ship and intruder respectively (see Fig. 3). The controller
N has a period T = 1s and it outputs the actuation com-
mand u(t) ∈ R that is the turn rate of ownship, measured
counter clockwise. This command is taken from the set U =
{0 deg/s, 1.5 deg/s,−1.5 deg/s, 3 deg/s,−3 deg/s}, of which
values represent COC, WL, WR, SL and SR respectively.
Overall, an initial state φ0 = (s0, u0) of the closed-loop C

corresponds to the intruder being detected by the ownship
for the first time. Therefore, the initial position (x0, y0) of
intruder lies along a circle R centered on ownship and with
a radius r equal to the range of the ownship sensors (see Fig.
1). Furthermore, the initial heading of intruder ψint,0 is such
that the intruder penetrates the circle R i.e. ψint,0 belongs to a
cone delimited by the tangent to R at the point (x0, y0). The
initial heading of ownship ψown,0 can be taken equal to zero,
without loss of generality, and the initial actuation command
u0 is 0.0 deg/s, corresponding to a Clear-of-Conflict.

B. Plant dynamics

The dynamics of the plant P i.e., the temporal evolution of
its state s(t), is modelled by an ordinary differential equation.

Definition 1: An ordinary differential equation (ODE) is a
relation between a function z : R → Rl, t 7→ z(t) and its
derivative z′ = dz

dt of the form z′(t) = f(t, z(t)) wherein
f : R× Rl → Rl.

To take account of the command signal u(t), the dynam-
ics of P is of the form s′(t) = f(t, s(t),u(t)) wherein
f : R× Rl × Rd → Rl is assumed to be continuous in t and
u and uniformly Lipschitz continuous in s i.e., its slope w.r.t.
s is uniformly bounded on R×Rl ×Rd. Indeed, under these
hypotheses and when u(t) is a piecewise constant function (as
in the case of C), then P has a deterministic behaviour. More
precisely, let us consider a time interval [0, qT] with q ∈ N
and a given command signal u(t), constant on [jT, (j + 1)T [
for j < q. There exists a unique function s∗ defined on [0, qT],
continuous on [0, qT], such that it verifies the ODE on each
open interval]jT, (j+1)T [for j < q, and the initial condition
s(0) = s0.

Example 2: For the ACAS Xu, the temporal evolution of
s(t) can be modelled by the ODE s′(t) = f(t, s(t),u(t)) given
in equation (1). This ODE is based on a 2D non-linear kine-
matic model where the intruder is assumed to keep constant
heading and velocity. This corresponds to a degraded mode
where the intruder does not perform any collision avoidance
maneuver and continues its uniform rectilinear displacement.
For simplicity, the velocity of ownship is also considered
constant. It is worth noting that f is continuous in t and u,
as well as uniformly Lipschitz continuous in s. Indeed, its

vown

ψown

vint

ψint

x

y

Ø

Ø



x′(t) = vown(t)·sin(ψown(t))−vint(t)·sin(ψint(t))

y′(t) = vint(t)·cos(ψint(t))−vown(t)·cos(ψown(t))

ψ′own(t) = u(t)

ψ′int(t) = 0

v′own(t) = 0

v′int(t) = 0

(1)

Fig. 3. The 2D kinematic model of the ACAS Xu plant P .

derivative w.r.t. s is bounded on R×Rl×Rd since both vown(t)
and vint(t) are constants.

C. Neural network based controller

The controller N is a classifier based on multiple ReLU
networks. More precisely, it involves a collection of ReLU
neural networks N =

{
N (1), . . . , N (D)

}
of which only one

is executed at each control step. The network Nj ∈ N to
be executed at step j is selected based on the command
uj produced at previous step i.e., Nj = λ(uj) wherein
λ : U → N maps every command in U to a network in
N. The previous command can thus be seen as the internal
state of the controller. Additionally, all the neural networks
in N are assumed to have been trained already, meaning that
they remain unchanged for the run-time of the controller.

Definition 2: A ReLU feedforward deep neural network is
a tuple N = (L, {kl}1≤l≤L,W,B). It consists of a directed
acyclic weighted graph where the nodes are arranged in L
layers, comprising k1, . . . , kL nodes respectively. The first
layer is called the input layer, the last layer is called the output
layer, and the layers in between are called the hidden layers.
Except the input layer, each layer has its nodes connected to
the nodes in the preceding layer. More precisely, let nl,i be the
ith node in the lth layer. If l > 1, there exists an edge from
nl−1,j to nl,i for each i ∈ [[1, kl]] and j ∈ [[1, kl−1]]. Moreover,
the edge from nl−1,j to nl,i is assigned a weight wjl,i ∈ W
and each non-input node nl,i is assigned a bias bl,i ∈ B.

This graph actually corresponds to a function F : Rk1 →
RkL . Indeed, each node nl,i represents a function Fl,i the
definition of which depends on the layer l. For the nodes
in the input layer, this function is the identity function i.e.,
F1,i , idR, ∀i ∈ [[1, k1]]. For the nodes in the hidden layer
l, with 1 < l < L, the associated function maps a vector in
Rkl−1 to an element in R. It is the composition of a non-linear
ReLU unit σ : x 7→ max(0, x) and an affine transformation
i.e., Fl,i : z 7→ σ

(∑kl−1

j=1 w
j
l,i · zj + bl,i

)
, ∀i ∈ [[1, kl]].

Finally, the function represented by the nodes in the output
layer is an affine transformation of a vector in RkL−1 i.e.,
FL,i : z 7→

∑kL−1

j=1 wjL,i · zj + bL,i, ∀i ∈ [[1, kL]]. Overall,
the function computed by the lth layer of the network is
the vector function Fl : z 7→ (Fl,1(z) . . . Fl,kl(z))

T and
the function F computed by the network is the composition
function F , FL ◦ . . . ◦F1. In particular, F is a deterministic
function.

id

id

n1,1

n1,2

1

2

∑

∑

n2,1

b2,1,5

n2,2

b2,2,6

∑
−4

n3,1

b3,1,2

−1

3

4

−8

−0.5

1

Fig. 4. A (tiny) example ReLU network N = (3, {2, 2, 1},W,B).

In the example of Fig. 4, the network
yields F1 ((1 2)) = (1 2) then F2 ((1 2)) =
(σ(−1×1+4×2+5) σ(3×1−8×2+6)) = (12 0) and
finally F3 ((12 0)) = (−0.5×12+1×0+2) = −4.

The jth execution of the controller consists of: (i) a pre-
processing which selects the network Nj = λ(uj) to be
executed and calculates the input xj ∈ Rm of the network Nj
i.e., xj = Pre(sj) wherein Pre : Rl → Rm (e.g., calculation of
a distance from two positions, normalization) (ii) the neural
network execution, which yields the output vector yj ∈ Rp
such that yj = Fj(xj) where Fj : Rm → Rp is the function
computed by the network Nj , and (iii) a post-processing
which determines the command uj+1 given the neural network
output yj i.e., uj+1 = Post(yj) where Post : Rp → U.
Typically, each component (yj)i ∈ R of the output yj could
correspond to a command u(i) ∈ U, and the post-processing
be uj+1 = u(k) s.t. k = argmini

(
(yj)i

)
. Both the pre and

post processing are assumed to be deterministic functions, so
that the whole controller is also a deterministic function.

Example 3: To decide on the maneuver to perform, the
ACAS Xu controller uses a collection of 5 ReLU networks
N =

{
N (1), . . . , N (5)

}
. These networks all have 6 hidden

layers of 50 nodes each. They were each trained with super-
vised learning to approximate a table of the original ACAS
Xu, corresponding to one of the 5 possible previous advisories
and tsep = 0 (the 40 remaining networks are not considered
as they correspond to tsep 6= 0). The pre-processing selects the
network to be executed, transforms the sampled state sj into
the input xj by replacing the cartesian coordinates x, y into
the cylindrical coordinates ρ, θ (see Fig. 1), and normalizes the
resulting vector. The selected neural network outputs 5 scores.
Finally, the post-processing chooses the maneuver with the
minimal score. A model of the ACAS Xu controller is given

P
R

E
P

R
O

C
E

S
S

IN
G

xj

yj

ψown,j

ψint,j

vown,j

vint,j

N
E

U
R

A
L

N
E

T.
N
j

ρj

θj

ψj

vown,j

vint,j P
O

S
T

P
R

O
C

E
S

S
IN

G

COCj

WLj

WRj

SLj

SRj

uj+1

Fig. 5. Model of the neural network based ACAS Xu controller.

in Fig. 5.

D. Safety verification problem

Given a closed-loop system C and its evolution over a finite
time horizon, the safety verification purpose is to prove that
no unsafe state can be reached. For that, we consider a set of
erroneous states E ⊂ Rl×U such that a state φ(t) ∈ E causes
a potentially catastrophic failure of C. It is thus expected that C
does not reach a state in E. We also assume that C terminates
when its state φ(t) belongs to a set T ⊂ Rl×U, with T∩E =
∅ to ensure a safe behaviour. Here, T can be seen as a set of
target states, corresponding to C having successfully achieved
its mission. It is thus expected that C terminates in a finite
amount of time, whatever the initial state. We denote by τ ∈ R
the expected (or estimated) upper bound on this amount of
time, independently of the initial state. Additionally, we set
by definition φ(t) = ⊥ after the termination of the closed-
loop system C i.e., if tend ≤ τ satisfies ∀t < tend, φ(t) /∈ T
and φ(tend) ∈ T then φ(t) = ⊥ ∀t ∈]tend, τ]. In other words,
the bottom element symbolically represents the “terminated”
state of C.

Example 4: Back to the ACAS Xu system, we consider
a set E of erroneous states representing a collision between
the two aircraft. Such a collision happens when the intruder
enters the collision circle around ownship, with a radius of
500 ft [MJ16], hence E = {φ(t) = (s(t), u(t)) ∈ Rl ×
U |

√
x(t)2 + y(t)2 < 500.0 ft}. Finally, the closed-loop

system terminates when the intruder leaves the circleR i.e. the
ownship does not see it anymore: T = {φ(t) = (s(t), u(t)) ∈
Rl×U |

√
x(t)2 + y(t)2 > r}. In particular, C terminates in

a finite amount of time and the value of τ can be estimated
from vown, vint and r.

a) Reachability definition.: As the combination of a
deterministic plant P and a deterministic controller N (see
sections III-B and III-C), the closed-loop system C has a
deterministic behaviour. More precisely, for a given initial
state φ0 ∈ I, there exists a unique function φφ0

: [0, τ] →
Rl × U ∪ {⊥} such that φφ0

(t) is the state of C at instant
t ≤ τ . This hypothesis is important for properly defining the
verification problem, as well as demonstrating the soundness
of our procedure.

Definition 3: The reachable states of the closed-loop system
C at a given instant t ≤ τ is the set Rt = {φ ∈ Rl × U ∪
{⊥} | ∃φ0 ∈ I, φ = φφ0

(t)}.

Definition 4: The reachable states of the closed-loop system
C for the time interval [t1, t2] ⊂ [0, τ] (resp. [t1, t2[⊂ [0, τ])
is the set R[t1,t2] = {φ ∈ Rt | t ∈ [t1, t2]} (resp. R[t1,t2[=
{φ ∈ Rt | t ∈ [t1, t2[}).

b) Problem definition.: We want to decide if, whatever
the initial state φ0 in I, the closed-loop system C remains safe
w.r.t. the set of erroneous states E over the time horizon τ . In
other words, we want to decide if the reachable states of C in
[0, τ] remain outside E.

Definition 5: The safety verification problem V consists in
deciding if:

R[0,τ] ∩E = ∅ (2)

Reasoning about the problem V is a difficult task. Indeed,
whatever the nature of the controller (based on ReLU networks
or not), the problem V is undecidable when the plant P
has a non-linear dynamics [ACH+95], [Hai08] (e.g., ACAS
Xu). Furthermore, the neural networks add to the complexity
of the verification problem. Indeed, due to the non-linear
ReLU units and the many dependencies induced by the affine
transformations, the function computed by a ReLU network
is non-monotonic, non convex and highly non-linear. As a
result, its behaviour is very difficult to analyze for a continuum
of inputs, which is the case in problem V as the initial
set I is infinite. Actually, it has been shown that verifying
pre/post-conditions on a ReLU network is a NP-hard problem
[KBD+17]. Finally, the controller has a non-trivial logic,
switching between the networks and involving pre and post-
processing stages, which increases the dependencies from one
control step to another.

As the problem V is undecidable, we aim at constructing
a sound approximation of the reachable states of C. More
precisely, we aim at computing a bounded set R̃[0,τ] satisfying
R̃[0,τ] ⊃ R[0,τ]. Indeed, provided we are able to compute such
a set and if it verifies R̃[0,τ]∩E = ∅, then (2) is proved to hold.
Consequently, we consider the problem Ṽ defined as follows:

Definition 6: The safety verification problem Ṽ consists in
finding a set R̃[0,τ] satisfying R̃[0,τ] ⊃ R[0,τ] and R̃[0,τ]∩E =
∅.

IV. REACHABILITY-BASED APPROACH

This section describes a tight over-approximation approach
to compute R̃[0,τ] ⊃ R[0,τ] in order to find a solution to
problem Ṽ .

A. Symbolic state and symbolic set

The set R̃[0,τ] that we aim at constructing is infinite. To
allow reasoning about this type of set, we introduce the notions
of symbolic state and symbolic set.

Definition 7: A symbolic state is a 2-tuple ([s],u) wherein
[s] ⊂ Rl is a l-dimensional box i.e., the cartesian product
of l intervals, and u ∈ U. It symbolically represents the set
{φ(t) = (s(t),u(t)) ∈ Rl ×U | s(t) ∈ [s] ∧ u(t) = u}.

Example 5: For the ACAS Xu, the symbolic state ([s], u)
with [s] = [−20ft, 0ft] × [8000ft, 8500ft] × [0, 0] ×
[3.10, 3.14] × [700ft/s, 700ft/s] × [600ft/s, 600ft/s] and

2©

(
[sj+1]k,uj+1,1k

) . . . (
[sj+1]k,uj+1,ik

).

(
[s[j[]k,uj,k

) 1©

([sj]1,uj,1) ([sj]k,uj,k)
(
[sj]Kj

,uj,Kj

)
.

t

(j + 1)T

jT R̃j

R̃j+1

R̃[j[

Fig. 6. The reachability procedure at control step j, where 1© involves validated simulation and 2© involves both validated simulation and abstract
interpretation.

u = 0.0deg/s represents a (infinite) set of states where the
intruder is ahead of ownship, moving towards the ownship,
and the controller advises COC.

Definition 8: A symbolic set is a collection of symbolic
states defined by Φ̃ = {([s]k,uk)}1≤k≤K wherein K ∈ N.
It corresponds to the union of the sets represented by each
([s]k,uk).

As one can note, a symbolic set can be used to symbolically
approximate any set of (non-bottom) states of C (the bottom
element is not considered as it does not impact safety). More-
over, our definition yields a rather accurate approximation as
it captures the dependency between the state s(t) of the plant
P and the actuation command u(t) from the controller. In the
following, we extend the set operations and relations to both
symbolic states and symbolic sets e.g., φ ∈ Φ̃ iff φ belongs
to the set represented by Φ̃.

B. Over-approximation techniques

We rely on existing over-approximation techniques to con-
struct R̃[0,τ]. More precisely, validated simulation soundly
approximates the plant dynamics and abstract interpretation
soundly approximates the controller behaviour.
Validated simulation. Let us consider an ODE s′(t) =
f(t, s(t),u(t)) wherein s : R → Rl, u : R → Rd is a
given function, continous in t, and f : R× Rl × Rd → Rl is
assumed to be continuous in t and u and uniformly Lipschitz
continuous in s. Moreover, let us consider an interval [t1, t2]
and a l-dimensional box [st=t1] ⊂ Rl representing a set of
initial values. The goal of validated simulation is to over-
approximate the reachable solutions of the ODE satisfying
s(t = t1) ∈ [st=t1], over the whole time interval [t1, t2].
More precisely, it aims at computing the l-box [s[t1,t2]] ⊂ Rl
approximating the reachable values of s(t) for t ∈ [t1, t2],
and the tighter l-box [st=t2] ⊂ [s[t1,t2]] approximating the
reachable values of s(t) at t = t2. Consequently, if s satisfies
the ODE and the initial condition s(t = t1) ∈ [st=t1] then(
s(t) ∈ [s[t1,t2]] ∀t ∈ [t1, t2]

)
∧ (s(t = t2) ∈ [st=t2]). Usually,

validated simulation is based on the 2-step Lohner type
algorithm: the enclosure [st1,t2]] is calculated using the Banach
fixed point theorem while the enclosure [st=t2] is computed

based on a numerical integration method (e.g., Euler, Runge-
Kutta) and the associated local truncation error [AdSC16].
Abstract interpretation. Let us consider a function F :
Rm → Rp and let [x] ⊂ Rm be a m-dimensional box
representing a set of inputs. The goal of abstract interpretation
is to soundly approximate the set of the reachable outputs
from [x] i.e., the set F ([x]) = {F (x) | x ∈ [x]}. To this end,
abstract interpretation leverages an abstract transformer F#

that soundly approximates the semantics of F . Intuitively, it
“propagates” [x] through the function F . This yields the p-
box [y] = F#([x]) satisfying [y] ⊃ F (X). The abstract
transformer F# can rely on interval arithmetics or affine
arithmetics for example [SdF03].

C. Procedure

We consider that the finite window τ comprises q executions
of the controller i.e., τ = qT . The overall idea is to iteratively
build the set R̃[0,τ], based on the successive executions of the
controller. The procedure involves two types of sets:
(a) The symbolic set R̃j ⊃ RjT \ {⊥} approximates the

(non-bottom) reachable states at t = jT , with j ≤ q. The
kth symbolic state composing R̃j is denoted ([sj]k,uj,k).
It represents a set of states s(t) that are reachable together
with the command uj,k at t = jT .

(b) The symbolic set R̃[j[⊃ R[jT,(j+1)T [\ {⊥} approxi-
mates the (non-bottom) reachable states for t ∈ [jT, (j+
1)T [, with j < q. The kth symbolic state composing R̃[j[

is denoted ([s[j[]k,uj,k). It represents a set of states s(t)
that are reachable together with the command uj,k for
t ∈ [jT, (j + 1)T [.

The procedure starts with the symbolic set R̃0 ⊃ R0 = I
enclosing the possible initial states. Then, for j ∈ [[0, q − 1]],
it computes the reachable symbolic states from each symbolic
state ([sj]k,uj,k) composing R̃j (see Fig. 6). More precisely,
for each ([sj]k,uj,k) ∈ R̃j , it computes:
(1) The symbolic state ([s[j[]k,uj,k) approximating the

reachable states from ([sj]k,uj,k) over [jT, (j + 1)T [,
where [s[j[]k is calculated using validated simulation and
uj,k is the constant actuation command over [jT, (j +
1)T [. To compute [s[j[]k, we consider the ODE s′(t) =

f(t, s(t),u(t)) and the time interval [jT, (j +1)T], with
s(t = jT) ∈ [sj]k and u(t) = uj,k ∀t ∈ [jT, (j +
1)T]. Validated simulation is used to compute the l-box
[s[jT,(j+1)T]] enclosing the reachable values of s(t) for
t ∈ [jT, (j + 1)T]. Then we take [s[j[]k = [s[jT,(j+1)T]]
which is sound as [jT, (j + 1)T [⊂ [jT, (j + 1)T].

(2) The symbolic states ([sj+1]k,uj+1,1k) , . . . ,
([sj+1]k,uj+1,ik) approximating the reachable states
from ([sj]k,uj,k) at t = (j + 1)T , where [sj+1]k is
calculated using validated simulation and the reachable
commands uj+1,1k , . . . , uj+1,ik are calculated using
abstract interpretation. To compute [sj+1]k, we consider
the same hypotheses as in (1) except that validated
simulation is used to compute the l-box [st=(j+1)T]
enclosing the reachable values of s(t) at t = (j + 1)T .
Then we take [sj+1]k = [st=(j+1)T] which is sound
even though the actuation command may have changed
at t = (j + 1)T (this is due to the continuity of s).
Additionally, the selected controller Nj,k (obtained
from the previous command i.e., Nj,k = λ(uj,k))
is approximated thanks to abstract interpretation: (i)
the m-box [xj]k = Pre#([sj]k) approximates the
reachable inputs, (ii) the p-box [yj]k = F#

j,k([xj]k)
approximates the reachable outputs and (iii) the finite
set {uj+1,1k , . . . ,uj+1,ik} = Post#([yj]) approximates
the reachable commands at t = (j + 1)T .

By definition, the stages (1) and (2) yield the symbolic sets
R̃[j[and R̃j+1, the latter being used in the next iteration.
Finally, the qth iteration yields R̃[0,τ] = ∪0≤j<qR̃[j[∪ R̃q .

Actually, to take account of a potential termination of C,
we consider a slight variant of the above procedure. In-
deed, if a symbolic state ([sj]k,uj,k) composing R̃j satisfies
([sj]k,uj,k) ⊂ T, then this symbolic state is not further prop-
agated i.e., the reachable symbolic states from ([sj]k,uj,k) are
not computed. Consequently, if there exists jend ≤ q such that
there is no more symbolic state to be propagated from R̃jend ,
then we take R̃[0,τ] = ∪0≤j<jendR̃[j[∪ R̃jend . Moreover, if
R̃[0,τ] satisfies R̃[0,τ]∩E = ∅, then the closed-loop C is proved
to be safe until it terminates.

Theorem 1: The procedure yields a sound approximation of
the non-bottom reachable states i.e., R̃[0,τ] ⊃ R[0,τ] \ {⊥}.

D. Implementation details

The procedure has been implemented as a Python program
that interfaces with existing tools. The validated simulation
of the plant dynamics is based on DynIBEX [AdSC16]. The
abstract transformers for the pre- and post-processing are
based on interval arithmetics, which is easy to implement,
computationally efficient and accurate for simple functions.
The abstract transformer for the neural networks relies on
dedicated tools, which have been slightly adapted to fit our
approach: either ReluVal [WPW+18] or DeepPoly [SGPV19].

V. EXPERIMENTS

This section presents our results for the verification of the
ACAS Xu system described in section III. The experiment
was conducted using the DeepPoly abstract transformer and
with r = 8000 ft for the range of the ownship sensors and
vown,0 = 700 ft/s, vint,0 = 600 ft/s for the initial velocities
of the ownship and the intruder respectively. The experiment
was run on CentOS 7 machine with 2 Intel® Xeon® processors
E5-2670 v3 @ 2.30GHz of 12 cores (24 threads) each and 64
GB RAM.

a) Partitioning: For verifying the ACAS Xu, we used
an empirical partitioning of the possible initial states. More
precisely, the circle R was partitioned into 629 arcs of length
80 ft each. Additionally, for each arc, the possible initial
headings ψint,0 of the intruder were partitioned into 316
subsets of size 0.01 rad each. With the initial heading of
ownship ψown,0 and the initial velocities vown,0, vint,0 being
fixed, we obtained a partition of size K0 = 198, 764 of the
possible initial states s0 of the plant P . Then, each element of
this partition was over-approximated by a 5-dimensional box
[s0]k ⊂ R5, with 1 ≤ k ≤ K0. Finally, we took as input for the
procedure the symbolic set R̃0 = {([s0]k, 0.0 deg/s)}1≤k≤K0 .
An initial symbolic state for which the system could not be
proved safe was split into smaller initial symbolic states: [s0]k
was bisected along the dimensions corresponding to x0, y0
and ψint,0, yielding 23 new initial symbolic states. This split
refinement process was repeated iteratively until the system
could be proved safe, with a maximum depth of 1 split.

b) Results: We recorded the coverage c representing the
percentage of the possible initial states for which the ACAS
Xu was proved safe until it terminates i.e., c = 100/K0 ·∑1
d=0 nd/(2

3)d wherein nd is the number of initial symbolic
states resulting from d split refinements for which the ACAS
Xu was proved safe. The experiment took about 28 hours and
yielded a coverage c = 98.8%, meaning that the ACAS Xu
was proved safe for 98.8% of the possible initial states and for
the remaining states, we could not prove it safe. This is still a
valuable information as one can design a real-time monitoring
mechanism that switches to a more robust controller when
the ACAS Xu encounters an initial state for which it was
not proved safe. Having such an architecture would allow to
benefit from the expected performance of the neural networks
while still remaining safe. The large verification time is partly
due to the difficulty of the verification problem since the set
of the initial states is quite large.

VI. CONCLUSION AND FUTURE WORK

This paper presented a technique to verify the safety require-
ments of complex neural network controlled systems such as
the ACAS Xu. We evaluated the applicability of our approach
by providing the first sound guarantees of safety of the overall
neural network based ACAS Xu.

For future work, we aim at reducing the verification time
by using a more efficient partitioning strategy of the initial
states and by optimizing the reachability procedure. Another
direction is to consider a more complex ACAS Xu system,

where both the ownship and the intruder are equipped with
the controller, or with more than 2 UAVs. A third direction
is to provide a thorough comparison with state-of-the-art
tools based on additional use cases such as VCAS (Vertical
Collision Avoidance System).

REFERENCES

[ABKL20] Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros,
and Alessio Lomuscio. Verifying strategic abilities of neural-
symbolic multi-agent systems. In Proceedings of the 17th
International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’20), pages 22–32, 2020.

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs,
Thomas A. Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo
Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science B,
138:3–34, 1995.

[AdSC16] Julien Alexandre dit Sandretto and Alexandre Chapoutot. Val-
idated Explicit and Implicit Runge-Kutta Methods. Reliable
Computing electronic edition, 22, July 2016.

[ALFS11] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and
Sriram Sankaranarayanan. S-taliro: A tool for temporal logic
falsification for hybrid systems. In Parosh Aziz Abdulla and
K. Rustan M. Leino, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’11), pages 254–
257, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[Alt15] Matthias Althoff. An introduction to cora 2015. In Goran
Frehse and Matthias Althoff, editors, ARCH14-15. 1st and 2nd
International Workshop on Applied veRification for Continuous
and Hybrid Systems, volume 34 of EPiC Series in Computing,
pages 120–151, 2015.

[BFG+19] Sergiy Bogomolov, Goran Frehse, Amit Gurung, Dongxu Li,
Georg Martius, and Rajarshi Ray. Falsification of hybrid
systems using symbolic reachability and trajectory splicing.
In Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, HSCC ’19, page
1–10, 2019.

[BTD+16] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D.
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang,
Jake Zhao, and Karol Zieba. End to end learning for self-
driving cars. CoRR, abs/1604.07316, 2016.

[CAGP20] Arthur Clavière, Eric Asselin, Christophe Garion, and Claire
Pagetti. Safety verification of neural network controlled sys-
tems. CoRR, abs/2011.05174, 2020.

[CÁS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan.
Flow*: An analyzer for non-linear hybrid systems. In Natasha
Sharygina and Helmut Veith, editors, Computer Aided Ver-
ification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, volume
8044 of Lecture Notes in Computer Science, pages 258–263.
Springer, 2013.

[CSKX15] Chenyi Chen, Ari Seff, Alain L. Kornhauser, and Jianxiong
Xiao. Deepdriving: Learning affordance for direct perception
in autonomous driving. CoRR, abs/1505.00256, 2015.

[DCS19] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan.
Reachability analysis for neural feedback systems using re-
gressive polynomial rule inference. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computa-
tion and Control, HSCC ’19, page 157–168, New York, NY,
USA, 2019.

[Ehl17] Rüdiger Ehlers. Formal verification of piece-wise linear feed-
forward neural networks. CoRR, abs/1705.01320, 2017.

[EUR10] EUROCAE/SAE. Aerospace Recommended Practices
ARP4754a - development of civil aircraft and systems, 2010.
SAE.

[EUR11] EUROCAE/RTCA, Inc. DO-178 ED-12C - Software Consider-
ations in Airborne Systems and Equipment Certification, 2011.

[EUR20] EUROCAE/RTCA. EUROCAE WG 75.1 / RTCA SC-147
- Minimum Operational Performance Standards For Airborne
Collision Avoidance, 2020.

[GMDC+18] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar
Tsankov, Swarat Chaudhuri, and Martin Vechev. Ai 2: Safety
and robustness certification of neural networks with abstract
interpretation. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 3–18, 2018.

[Hai08] Emmanuel Hainry. Reachability in linear dynamical systems.
In Logic and Theory of Algorithms, pages 241–250, 2008.

[HFL+19] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and
Qi Zhu. ReachNN: Reachability Analysis of Neural-Network
Controlled Systems, 2019.

[HKR+20] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp,
Youcheng Sun, Emese Thamo, Min Wu, and Xinping Yi. A
survey of safety and trustworthiness of deep neural networks:
Verification, testing, adversarial attack and defence, and inter-
pretability, 2020.

[IWA+18] Radoslav Ivanov, James Weimer, Rajeev Alur, George J.
Pappas, and Insup Lee. Verisig: verifying safety properties
of hybrid systems with neural network controllers. CoRR,
abs/1811.01828, 2018.

[JK19] Kyle D. Julian and Mykel J. Kochenderfer. Guaranteeing safety
for neural network-based aircraft collision avoidance systems.
In 2019 IEEE/AIAA 38th Digital Avionics Systems Conference
(DASC), 2019.

[JKO18] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen.
Deep neural network compression for aircraft collision avoid-
ance systems. CoRR, abs/1810.04240, 2018.

[KBD+17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and
Mykel J. Kochenderfer. Reluplex: An efficient SMT solver for
verifying deep neural networks. CoRR, abs/1702.01135, 2017.

[LMT+19] Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran,
Souradeep Dutta, Taylor J. Carpenter, Radoslav Ivanov, and
Taylor T. Johnson. ARCH-COMP19 category report: Artificial
intelligence and neural network control systems (AINNCS)
for continuous and hybrid systems plants. In ARCH19. 6th
International Workshop on Applied Verification of Continuous
and Hybrid Systemsi, part of CPS-IoT Week 2019, Montreal,
QC, Canada, April 15, 2019, pages 103–119, 2019.

[MJ16] Guido Manfredi and Yannick Jestin. An introduction to acas
xu and the challenges ahead. In 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), pages 1–9, 2016.

[PCS+17] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee,
Xinyan Yan, Evangelos A. Theodorou, and Byron Boots. Agile
off-road autonomous driving using end-to-end deep imitation
learning. CoRR, abs/1709.07174, 2017.

[SdF03] J. Stolfi and L.H. de Figueiredo. An introduction to affine
arithmetic. TEMA (São Carlos), 4(3):297–312, 2003.

[SGM+18] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus
Püschel, and Martin Vechev. Fast and effective robustness certi-
fication. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31, pages 10802–
10813. Curran Associates, Inc., 2018.

[SGPV19] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin
Vechev. An abstract domain for certifying neural networks.
Proc. ACM Program. Lang., 3(POPL), 2019.

[TYL+20] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez,
Patrick Musau, Luan Viet Nguyen, Weiming Xiang, Stanley
Bak, and Taylor T. Johnson. NNV: the neural network
verification tool for deep neural networks and learning-enabled
cyber-physical systems. In Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part I, pages 3–17, 2020.

[WPW+18] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and
Suman Jana. Formal security analysis of neural networks
using symbolic intervals. In 27th USENIX Security Symposium,
USENIX Security 2018, pages 1599–1614, 2018.

