
HAL Id: hal-02975455
https://hal.science/hal-02975455v1

Submitted on 5 Nov 2020 (v1), last revised 16 Nov 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safety Verification of Neural Network Controlled
Systems

Arthur Clavière, Eric Asselin, Christophe Garion, Claire Pagetti

To cite this version:
Arthur Clavière, Eric Asselin, Christophe Garion, Claire Pagetti. Safety Verification of Neural Network
Controlled Systems. xx, 2020, Taipei, Taiwan. �hal-02975455v1�

https://hal.science/hal-02975455v1
https://hal.archives-ouvertes.fr

Safety Verification of Neural Network Controlled Systems

Arthur Clavière1, Eric Asselin1, Christophe Garion2 and Claire Pagetti3

1Collins Aerospace, France 2 ISAE-SUPAERO, France 3ONERA, France

Abstract

In this paper, we propose a system-level approach for verifying the safety of neural network
controlled systems, combining a continuous-time physical system with a discrete-time neural
network based controller. We assume a generic model for the controller that can capture
both simple and complex behaviours involving neural networks. Based on this model, we
perform a reachability analysis that soundly approximates the reachable states of the overall
system, allowing to achieve a formal proof of safety. To this end, we leverage both validated
simulation to approximate the behaviour of the physical system and abstract interpretation
to approximate the behaviour of the controller. We evaluate the applicability of our approach
using a real-world use case. Moreover, we show that our approach can provide valuable
information when the system cannot be proved totally safe.

1 Introduction

Recently, feedforward deep neural networks have been successfully used for controlling physical
systems, such as self-driving cars [17, 5, 28] and unmanned aerial vehicles [16]. The combination of
a physical system with a neural network based controller is sometimes known as a neural network
controlled system. If such a system is considered as safety-critical, meaning that a failure of the
system could have serious consequences, then a particular effort needs to be made to demonstrate its
safety. More precisely, one has to show evidence that the system fulfills a set of safety requirements,
such as, in aeronautics, “A catastrophic failure shall occur with a probability less than 10−9 per
hour of flight”.

Usually, to achieve this objective, the system has to be developped in accordance with stringent
standards e.g., ED-79A/ARP-4754A [1] in aeronautics. Such standards require several analyses to
be performed, including safety assessment with fault trees. Moreover, together with these analyses,
the system requirements have to be refined at the item level, with the aim of achieving a correct,
comprehensive specification for each item composing the system. Then, the development of each
item must be performed in compliance with dedicated standards. For example, in aeronautics, the
ED-12C/DO-178C [8] standard prescribes several verification activities to prove that a software
item behaves exactly as expected.

However, this classical approach is not applicable to neural network controlled systems. The
reason for this is two fold. First, one cannot refine the system requirements at the neural network
level. Indeed, most of the time, one cannot achieve a correct, comprehensive specification for the
expected behaviour of a neural network. Generally, the expected behaviour of a network consists
of a set of example data, which is a pointwise, non-comprehensive specification. Secondly, existing
standards such as ED-12C/DO-178C are not applicable to the development of neural network
items. In particular, provided a comprehensive specification for the expected behaviour of a neural
network can be defined, the learning process does not guarantee the correcteness of the resulting
network. As a consequence, verifying that a network behaves exactly as expected may be infeasible,
precisely because it does not.

To tackle these issues, we propose an alternative approach for demonstrating the safety of a
neural network controlled system. This alternative approach aims at providing evidence that the
overall system is safe, without performing item-level refinements and analyses. To this end, we
leverage a model of the overall system, which accurately represents the items and their interactions.
Then, a reachability analysis is performed on this model, with the aim of demonstrating that no
reachable state can lead to a failure of the system.

1

The contributions of this paper are: (1) the definition of a realistic model that can capture com-
plex, real-world neural network controlled systems, involving one or more ReLU networks trained
with supervised learning together with a pre-processing and a post-processing, (2) a reachability-
based approach that allows to formally verify the absence of errors leading to a failure of the
system, and (3) an evaluation of the applicability of our approach using a real-world use case.

The paper is organized as follows. Section 3 introduces the ACAS Xu use case, a real-world neu-
ral network controlled system that illustrates the applicability of our approach. Section 4 describes
our model of a neural network controlled system and section 5 defines the safety verification prob-
lem that we address. Section 6 details our reachability analysis for solving the verification problem
and section 7 presents the experimental results on the ACAS Xu use case.

2 Related work

Neural network level In the past few years, some progress has been made towards a more com-
prehensive specification for the expected behaviour of a neural network. Indeed, several research
works have identified local expected behaviours contributing to the overall expected behaviour
of the network. Typically, a local behaviour consists of a pre-condition about the input of the
network together with a post-condition about its output. An example of such a property is ad-
versarial robustness (also called local robustness) which captures the capability of the network to
react correctly to a slight perturbation of a given input [12, 26]. In recent years, there has been
significant interest in verifying neural networks against this type of property, which has been shown
to be a NP-complete problem [12]. Several dedicated formal methods have been proposed, with
the advantage of providing a sound analysis, meaning that the network is said correct only if it
is actually correct. Some of these specialized formal methods are based on Satisfiability Modulo
Theory solving [12, 19], with the advantage of providing a complete analysis i.e., the network is
said incorrect only if it is actually incorrect. However, these methods are often expensive for large,
real-world sized networks. In order to offer a more scalable analysis, other dedicated formal meth-
ods have been proposed, relying on abstract intepretation to soundly approximate the semantics
of the network [25, 13, 23, 24]. Yet, as they consist of an over-approximation, these methods do
not provide a complete analysis.

Our work does not address the safety objectives at the neural network level, so we do not seek
to identify new local properties or to improve the existing verification techniques. However, we aim
at using abstract interpretation based techniques to analyze the behaviour of the overall system.
Indeed, such methods scale well to large networks and they provide not only a yes-or-no answer to
a verification problem but also an approximation of the network semantics, that is helpful when
reasoning about the overall system.

System level Verifying the safety requirements at the system level, which corresponds to our
approach, has been the object of a lot of insightful research. Indeed, there has been significant
interest in verifying the safety of hybrid systems, exhibiting both continuous-time and discrete-time
dynamics e.g., a physical system combined with a discrete-time controller. Among the proposed
methods, falsification aims at finding trajectories that violate a given safety property [4, 27]. Yet,
even though falsification can prove that the system is unsafe, it cannot prove that the system is safe.
Reachability analysis can provide such a proof of safety by constructing a sound approximation of
the reachable states of the system and demonstrating that no reachable state can lead to a failure
[6, 2, 21]. However, the classical reachability methods are not directly applicable to neural network
controlled systems, due to the hardness of characterizing the input-output mapping of a neural
network. Very recently, in the same vein as this paper, some research works have addressed the
problem of verifying the safety of neural network controlled systems [20, 9, 14, 11]. These works all
assume a physical system combined with a periodically-scheduled controller that is a single neural
network i.e., the input of the network is the sampled state of the physical system and the output
of the network is the actuation command. To ensure the safety of such a system, they propose
dedicated methods, all relying on reachability analysis.

However, these methods are not applicable to complex neural network controlled systems such
as the ACAS Xu. Indeed, the controller used in the ACAS Xu is more sophisticated than a single
neural network and the methods cited above cannot handle such a controller. [7] has proposed an
ad hoc reachability approach for verifying the safety of the ACAS Xu at the system level, but the
proposed method is not totally sound as it does not evaluate the reachable states for all instants

2

but only for a set of discrete instants. Moreover, it computes the reachable states by exploring the
entire state space even though not all states are reachable. We propose here a generic approach for
soundly verifying the safety of complex systems like the ACAS Xu, by exploring only the reachable
states.

3 Use case

The safe integration of Unmanned Aerial Vehicles (UAVs) into the air traffic requires them to have
collision avoidance capabilities. For this purpose, the standardization group RTCA SC 147 [22]
has recently developped a dedicated controller, namely the Airborne Collision Avoidance System
for Unmanned Aircraft (ACAS Xu). The role of ACAS Xu is to avoid any collision between the
ownship, equipped with the controller, and an encountered aircraft called the intruder, equipped
or not with the controller. To this end, the ACAS Xu periodically provides the ownship with
a horizontal maneuver advisory, being either clear-of-conflict (COC), weak left turn (WL), weak
right turn (WR), strong left turn (SL) or strong right turn (SR). The optimal advisory is extracted
from a set of lookup tables, depending on the previous advisory and six variables describing the
encounter between the two aircraft, defined in Fig. 1: (1) the distance ρ from ownship to intruder,
(2) the angle θ to intruder relative to ownship heading direction, (3) the heading angle ψ of
intruder relative to ownship heading direction, (4) the velocity vown of ownship, (5) the velocity
vint of intruder and (6) the time tsep until loss of vertical separation. These six variables are
computed from the input signals from the transponder and the sensors of the ownship e.g., air-to-
air radar, electro-optics/infrared sensors, cameras. The main weakness of the ACAS Xu controller
is the associated storage requirements, over 2GB, which is too large for legacy avionics [16].

vown θ

vint

ψ

ρ

Ø

Ø 500 ft

E

R

I′

Ø

Figure 1: The 2D geometry of the encounter between the two aircraft (left) and the (illustrative)
reachable trajectories of intruder relative to ownship from a subset I′ of the possible initial states,
with E representing a collision cylinder around the ownship and R delimiting the range of the
ownship sensors (right).

Recently, an alternative design for the ACAS Xu controller has been proposed, with dramat-
ically reduced memory footprint (about 3 MB). It consists of a collection of 45 neural networks
approximating the lookup tables. Each single network approximates a table corresponding to a
fixed previous advisory and a given interval for tsep. As the possible values for tsep have been
divided into 9 intervals and 5 possible advisories exist, the resulting controller uses 45 networks.
In addition to improving storage efficiency, this novel design also offers reduced runtime together
with better performances, alerting the ownship earlier [16]. However, due to the complexity of the
neural networks composing the controller, we lack a proof that no collision can happen, whatever
the initial state of the two aircraft (see Fig. 1).

This use case will serve as an illustration of our approach in the rest of this paper. Our goal is
to show evidence that the controller is effectively safe i.e., it does prevent near mid-air collision.

3

4 System model

4.1 Closed-loop system

We assume a closed-loop system C that is the combination of a plant P and a neural network based
controller N . The plant P is a continuous-time system while the controller N is a discrete-time
system, executed periodically with period T . They interact by means of a signal sampler and a
zero-order-hold. More precisely:

- The state of the plant P at instant t ∈ R is the real-numbered vector s(t) ∈ Rl. The evolution
of s(t) is continuous with t and it depends, inter alia, on the actuation command from the
controller, denoted by u(t) ∈ Rd.

- The jth execution of the controller (or control step) occurs in the time interval [jT, (j+1)T [.
It takes as input the sampled state sj = s(jT) and it yields the command uj+1 to be applied
for next period i.e., u(t) = uj+1 ∀t ∈ [(j + 1)T, (j + 2)T [. This command uj+1 is taken from
a finite set U =

{
u(1), . . . ,u(P)

}
⊂ Rd, representing the possible actuation commands. It

is worth noting that the controller is not assumed to execute instantaneously. Its execution
time only has to be less than T , as for real systems.

N

P

Plant Dynamics
s′(t) = f(t, s(t),u(t))

Sample
Hold

Pre-
Processing

Neural Net.
yj = Fj(xj)

Post-
Processing

Zero Order
Hold

s(t)

sjxjyj
uj+1

u(t)

ClkClk

Figure 2: Block diagram of a neural network closed-loop system C = (P,N).

Overall, the state of the closed-loop system C is the 2-tuple φ(t) = (s(t),u(t)) and we denote by
φ0 = (s0,u0) ∈ I the initial state of C, wherein I ⊆ Rl ×U is the set of the possible initial states.
Moreover, we consider a set of erroneous states E ⊂ Rl ×U such that a state φ(t) ∈ E causes a
potentially catastrophic failure of C. It is thus expected that C does not reach a state in E. We
also assume that C terminates when its state φ(t) belongs to a set T ⊂ Rl ×U, with T∩E = ∅ to
ensure a safe behaviour. Here, T can be seen as a set of target states, corresponding to C having
successfully achieved its mission. It is thus expected that C terminates in a finite amount of time,
whatever the initial state. We denote by τ ∈ R the expected (or estimated) upper bound on this
amount of time, independently of the initial state. Additionally, we set by definition φ(t) = ⊥
after the termination of the closed-loop system C i.e., if tend ≤ τ satisfies ∀t < tend, φ(t) /∈ T
and φ(tend) ∈ T then φ(t) = ⊥ ∀t ∈]tend, τ]. In other words, the bottom element symbolically
represents the “terminated” state of C.

Finally, as the combination of a deterministic plant P and a deterministic controller N (see
sections 4.2 and 4.3), the closed-loop system C has a deterministic behaviour. More precisely, for
a given initial state φ0 ∈ I, there exists a unique function φφ0

: [0, τ] → Rl ×U ∪ {⊥} such that
φφ0(t) is the state of C at instant t ≤ τ . This hypothesis is important for properly defining the
verification problem that we address, as well as demonstrating the soundness of our procedure.

Example 1 In the case of the ACAS Xu controller, we consider the plant P that is composed of
both the ownship and the intruder. For simplicity, we assume that the two aircraft are at the same
altitude, meaning that tsep equals 0. Consequently, we define the state of P at instant t as the

real-numbered vector s(t) = (x(t) y(t) ψ(t) vown(t) vint(t))
T

where x(t), y(t) are the 2D cartesian
coordinates of intruder relative to ownship, ψ(t) is the heading angle of intruder relative to ownship
heading direction (measured counter clockwise), vown(t) and vint(t) denote the velocities of ownship
and intruder respectively (see Fig. 3). The neural network based controller N has a period T = 1s.
It outputs the actuation command u(t) ∈ R that is the turn rate of ownship, measured counter clock-
wise. This command is taken from the set U = {0 deg/s, 1.5 deg/s,−1.5 deg/s, 3 deg/s,−3 deg/s},

4

of which values represent COC, WL, WR, SL and SR respectively. Overall, an initial state
φ0 = (s0, u0) of the closed-loop C corresponds to the intruder being detected by ownship for the
first time. Therefore, the initial position (x0, y0) of intruder lies along a circle R centered on own-
ship and with a radius r equal to the range of the ownship sensors (see Fig. 1). Here we consider
that r = 8000 ft, which is a reasonable hypothesis. Furthermore, the initial angle ψ0 is such that
the intruder penetrates the circle R i.e. ψ0 belongs to a cone delimited by the tangent to R at
the point (x0, y0). The initial actuation command u0 is 0.0 deg/s, corresponding to a Clear-of-
Conflict, and we assume for simplicity that vown,0 = 700.0 ft/s and vint,0 = 600.0 ft/s. The set of
the possible initial states I is thus defined by the set of the possible tuples (x0, y0, ψ0). Additionally,
we consider a set E of erroneous states representing a collision between the two aircraft. Such a
collision happens when the intruder enters the collision circle around ownship, with a radius of
500 ft [18], hence E = {φ(t) = (s(t), u(t)) ∈ Rl ×U |

√
x(t)2 + y(t)2 < 500.0 ft}. Finally, the

closed-loop system terminates when the intruder leaves the circle R i.e. the ownship does not see
it anymore: T = {φ(t) = (s(t), u(t)) ∈ Rl ×U |

√
x(t)2 + y(t)2 > r}. As the two aircraft have

different velocities, it is expected that C terminates in a finite amount of time. We take τ = 20s as
the upper bound on this amount of time, which is relevant given the values of vown, vint and r.

4.2 Plant dynamics

The dynamics of the plant P i.e., the temporal evolution of its state s(t), is modelled by an ordinary
differential equation.

Definition 1 An ordinary differential equation (ODE) is a relation between a function z : R →
Rl, t 7→ z(t) and its derivative z′ = dz

dt of the form z′(t) = f(t, z(t)) wherein f : R× Rl → Rl.

To take account of the command signal u(t), the dynamics of P is of the form s′(t) =
f(t, s(t),u(t)) wherein f : R × Rl × Rd → R is assumed to be continuous in t and u and uni-
formly Lipschitz continuous in s i.e., its slope w.r.t. s is uniformly bounded on R × Rl × Rd.
Indeed, under these hypotheses and when u(t) is a piecewise constant function (as in the case of
C), then P has a deterministic behaviour. More precisely, let us consider a time interval [0, qT]
with q ∈ N and a given command signal u(t), constant on [jT, (j + 1)T [for j < q. There exists a
unique function s∗ defined on [0, qT], continuous on [0, qT], such that it verifies the ODE on each
open interval]jT, (j + 1)T [for j < q, and the initial condition s(0) = s0.

Proof 1 The function s∗ can be constructed iteratively. The initial condition imposes s∗(0) = s0.
Then, for j ∈ [[0, q − 1]], the Picard-Lindelöf theorem ensures the existence and uniqueness of a
function s∗j satisfying s′(t) = f(t, s(t),u(jT)) and s(jT) = s∗(jT). In order for s∗ to be continuous
at instants t = jT and t = (j + 1)T and to satisfy the ODE on]jT, (j + 1)T [, it must be such that
s∗(t) = s∗j (t) ∀ t ∈]jT, (j + 1)T]. Hence the existence and uniqueness of s∗. �

Remark 1 The function s∗ is not derivable at instants t = T, 2T, . . . , (q − 1)T . This is not quite
realistic from a physical point of view as it means that the plant P reacts instantaneously to a new
actuation command. However, this is a common hypothesis when modelling such a system.

vown

vint

ψ

x

y

Ø

Ø

x′(t) = −vint(t) · sin(ψ(t))

y′(t) = vint(t) · cos(ψ(t))− vown(t)

ψ′(t) = −u(t)

v′own(t) = 0

v′int(t) = 0

(1)

Figure 3: The 2D kinematic model of the plant P of the ACAS Xu use case, composed of both the
ownship and the intruder.

5

Example 2 For the ACAS Xu, the temporal evolution of s(t) is modelled by the ODE s′(t) =
f(t, s(t),u(t)) given in equation (1). This ODE is based on a 2D non-linear kinematic model
where the intruder is assumed to keep constant heading and velocity: the evolution of ψ(t) depends
only on the evolution of the ownship heading. This corresponds to a degraded mode where the
intruder does not perform any collision avoidance maneuver and continues its uniform rectilinear
displacement. For simplicity, the velocity of ownship is also considered constant. It is worth noting
that f is continuous in t and u, as well as uniformly Lipschitz continuous in s. Indeed, its derivative
w.r.t. s is bounded on R× Rl × Rd since both vown(t) and vint(t) are constants.

4.3 Neural network based controller

The neural network based controller N involves a collection of ReLU neural networks N ={
N (1), . . . , N (D)

}
, of which only one is executed at each control step. The network Nj ∈ N

to be executed at step j is selected based on the command uj produced at previous step i.e.,
Nj = λ(uj) wherein λ : U→ N maps every command in U to a network in N. It is worth noting
that all the neural networks in N are assumed to have been trained already, meaning that they
remain unchanged for the run-time of the controller.

Definition 2 A ReLU feedforward deep neural network is a tuple N = (L, {kl}1≤l≤L,W,B). It
consists of a directed acyclic weighted graph where the nodes are arranged in L layers, comprising
k1, . . . , kL nodes respectively. The first layer is called the input layer, the last layer is called the
output layer, and the layers in between are called the hidden layers. Except the input layer, each
layer has its nodes connected to the nodes in the preceding layer. More precisely, let nl,i be the
ith node in the lth layer. If l > 1, there exists an edge from nl−1,j to nl,i for each i ∈ [[1, kl]]

and j ∈ [[1, kl−1]]. Moreover, the edge from nl−1,j to nl,i is assigned a weight wjl,i ∈W and each
non-input node nl,i is assigned a bias bl,i ∈ B.

This graph actually corresponds to a function F : Rk1 → RkL . Indeed, each node nl,i represents
a function Fl,i of which definition depends on the layer l. For the nodes in the input layer, this

function is the identity function i.e., F1,i , idR, ∀i ∈ [[1, k1]]. For the nodes in the hidden layer
l, with 1 < l < L, the associated function maps a vector in Rkl−1 to an element in R. It is
the composition of a non-linear ReLU unit σ : x 7→ max(0, x) and an affine transformation i.e.,

Fl,i : z 7→ σ
(∑kl−1

j=1 w
j
l,i · zj + bl,i

)
, ∀i ∈ [[1, kl]]. Finally, the function represented by the nodes

in the output layer is an affine transformation of a vector in RkL−1 i.e., FL,i : z 7→
∑kL−1

j=1 wjL,i ·
zj + bL,i, ∀i ∈ [[1, kL]]. Overall, the function computed by the lth layer of the network is the

vector function Fl : z 7→ (Fl,1(z) . . . Fl,kl(z))
T

and the function F computed by the network is the

composition function F , FL ◦ . . . ◦ F1. In particular, F is a deterministic function.

id

id

n1,1

n1,2

1

2

∑

∑

n2,1

b2,1,5

n2,2

b2,2,6

∑
−4

n3,1

b3,1,2

−1

3

4

−8

−0.5

1

Figure 4: A (tiny) example ReLU network N = (3, {2, 2, 1},W,B).

In the example of Fig. 4, the input layer yields F1 ((1 2)) = (1 2), then the hidden layer
yields F2 ((1 2)) = (σ(−1×1+4×2+5) σ(3×1−8×2+6)) = (12 0), and the output layer yields
F3 ((12 0)) = (−0.5×12+1×0+2) = −4.

In addition to the neural networks, the controller N involves both a pre-processing and a post-
processing stage. More precisely, the jth execution of the controller consists of: (i) a pre-processing
which calculates the input xj ∈ Rm of the network Nj i.e., xj = Pre(sj) wherein Pre : Rl → Rm
(e.g., calculation of a distance from two positions, normalization) (ii) the neural network execution,
which yields the output vector yj ∈ Rp such that yj = Fj(xj) where Fj : Rm → Rp is the function

6

computed by the network Nj , and (iii) a post-processing which determines the command uj+1

given the neural network output yj i.e., uj+1 = Post(yj) where Post : Rp → U. Typically, each
component (yj)i ∈ R of the output yj of the network could correspond to a command u(i) ∈ U,

and the post-processing be uj+1 = u(k) s.t. k = argmin
i

(
(yj)i

)
.

Both the pre and post processing are assumed to be deterministic functions, so that the whole
controller is also a deterministic function. The overall architecture of N is illustrated in Fig. 2.

Example 3 To decide on the maneuver to perform, the ACAS Xu controller uses a collection of
5 ReLU networks N =

{
N (1), . . . , N (5)

}
. These networks all have 6 hidden layers of 50 nodes

each. They were each trained with supervised learning to approximate a table of the original ACAS
Xu, corresponding to one of the 5 possible previous advisories and tsep = 0 (the 40 remaining
networks are not considered as they correspond to tsep 6= 0). Therefore, the function λ selecting the
network to be executed maps the 5 possible advisories to the 5 networks in N. The pre-processing
stage transforms the sampled state sj into the input xj of the network by replacing the cartesian
coordinates x, y into the cylindrical coordinates ρ, θ (defined in Fig. 1), and normalizes the resulting
vector. The function Fj : R5 → R5 computed by the neural network then outputs 5 scores, each one
corresponding to a possible maneuver. Finally, the post-processing consists of a argmin function:
it chooses the maneuver with the minimal score. A model of the ACAS Xu controller is given in
Fig. 5.

P
r
e
P
r
o
c
e
ss
in
g

xj

yj

ψj

vown,j

vint,j N
e
u
r
a
l
N
e
t
.
N
j

ρj

θj

ψj

vown,j

vint,j

P
o
st

P
r
o
c
e
ss
in
g

COCj

WLj

WRj

SLj

SRj

uj+1

Figure 5: Model of the neural network based ACAS Xu controller.

5 Safety verification problem

In this section, we consider the closed-loop system C and its evolution over the time horizon τ , the
purpose being to prove that no unsafe state can be reached over [0, τ].

5.1 Reachability definition

Given the deterministic behaviour of the closed-loop system C (see section 4.1), we define the
reachable states of C as follows:

Definition 3 The reachable states of the closed-loop system C at a given instant t ≤ τ is the set
Rt = {φ ∈ Rl ×U ∪ {⊥} | ∃φ0 ∈ I, φ = φφ0

(t)} (see section 4.1 for the definition of φφ0
).

Definition 4 The reachable states of the closed-loop system C for the time interval [t1, t2] ⊂ [0, τ]
(resp. [t1, t2[⊂ [0, τ]) is the set R[t1,t2] = {φ ∈ Rt | t ∈ [t1, t2]} (resp. R[t1,t2[= {φ ∈ Rt | t ∈
[t1, t2[}).

5.2 Problem definition

We want to decide if, whatever the initial state φ0 in I, the closed-loop system C remains safe w.r.t
the set of erroneous states E over the time horizon τ . In other words, we want to decide if the
reachable states of C in [0, τ] remain outside E.

Definition 5 The safety verification problem V consists in deciding if:

R[0,τ] ∩E = ∅ (2)

7

Reasoning about the problem V is a difficult task. Indeed, whatever the nature of the controller
(based on ReLU networks or not), the problem V is undecidable when the plant P has a non-linear
dynamics [3, 10] (e.g., ACAS Xu). Furthermore, the neural networks add to the complexity of the
verification problem. Indeed, due to the non-linear ReLU units and the many dependencies induced
by the affine transformations, the function computed by a ReLU network is non-monotonic, non
convex and highly non-linear. As a result, its behaviour is very difficult to analyze for a continuum
of inputs, which is the case in problem V as the initial set I is infinite. Actually, it has been shown
that verifying pre/post-conditions on a ReLU network is a NP-hard problem [12]. Finally, the
controller we consider has a non-trivial logic, switching between the networks and involving pre
and post-processing stages, which increases the dependencies from one control step to another.

As the problem V is undecidable, we aim at constructing a sound approximation of the reachable
states of C. More precisely, we aim at computing a bounded set R̃[0,τ] satisfying R̃[0,τ] ⊃ R[0,τ].

Indeed, provided we are able to compute such a set and if it verifies R̃[0,τ] ∩ E = ∅, then (2) is

proved to hold. Consequently, we consider the problem Ṽ defined as follows:

Definition 6 The safety verification problem Ṽ consists in finding a set R̃[0,τ] satisfying R̃[0,τ] ⊃
R[0,τ] and R̃[0,τ] ∩E = ∅.

To have a chance to find a solution to problem Ṽ, the set R̃[0,τ] must be as tight as possible.

The next section presents our method for computing a tight over-approximation R̃[0,τ] ⊃ R[0,τ].

6 Reachability-based approach

6.1 Symbolic state and symbolic set

The set R̃[0,τ] that we aim at constructing is infinite. To allow reasoning about this type of set,
we introduce the notions of symbolic state and symbolic set.

Definition 7 A symbolic state is a 2-tuple ([s],u) wherein [s] ⊂ Rl is a l-dimensional box i.e., the
cartesian product of l intervals, and u ∈ U. It symbolically represents the set {φ(t) = (s(t),u(t)) ∈
Rl ×U | s(t) ∈ [s] ∧ u(t) = u}.

Example 4 For the ACAS Xu, the symbolic state ([s], u) with [s] = [−20ft, 0ft] ×[8000ft, 8500ft]×
[3.10, 3.14] × [700ft/s, 700ft/s] × [600ft/s, 600ft/s] and u = 0.0deg/s represents a (infinite) set
of states where the intruder is ahead of ownship, moving towards the ownship, and the ACAS Xu
controller advises COC.

Definition 8 A symbolic set is a collection of symbolic states defined by Φ̃ = {([s]k,uk)}1≤k≤K
wherein K ∈ N. It corresponds to the union of the sets represented by each ([s]k,uk).

As one can note, a symbolic set can be used to symbolically approximate any set of (non-
bottom) states of C (the bottom element is not considered as it does not impact safety). Moreover,
our definition yields a rather accurate approximation as it captures the dependency between the
state s(t) of the plant P and the actuation command u(t) from the controller. This is made possible
as u(t) can only take a finite number of values.

In the following, we extend the set operations and relations to both symbolic states and symbolic
sets e.g., φ ∈ Φ̃ iff φ belongs to the set represented by Φ̃.

6.2 Over-approximation techniques

Our approach for constructing R̃[0,τ] is to leverage existing over-approximation techniques. More
precisely, we aim at using validated simulation to soundly approximate the dynamics of the plant
P and abstract interpretation to soundly approximate the behaviour of the controller N . These
two techniques are presented below and section 6.3 details how they are combined together to
compute R̃[0,τ].

8

Validated simulation Let us consider an ODE s′(t) = f(t, s(t),u(t)) wherein s : R → Rl,
u : R→ Rd is a given function, continous in t, and f : R×Rl×Rd → Rl is assumed to be continuous
in t and u and uniformly Lipschitz continuous in s. Moreover, let us consider an interval [t1, t2]
and a l-dimensional box [st=t1] ⊂ Rl representing a set of initial values. The goal of validated
simulation is to over-approximate the reachable solutions of the ODE satisfying s(t = t1) ∈ [st=t1],
over the whole time interval [t1, t2]. More precisely, it aims at computing the l-box [s[t1,t2]] ⊂ Rl
approximating the reachable values of s(t) for t ∈ [t1, t2], and the tighter l-box [st=t2] ⊂ [s[t1,t2]]
approximating the reachable values of s(t) at t = t2. Consequently, if s satisfies the ODE and
the initial condition s(t = t1) ∈ [st=t1] then

(
s(t) ∈ [s[t1,t2]] ∀t ∈ [t1, t2]

)
∧ (s(t = t2) ∈ [st=t2]).

Usually, validated simulation is based on the 2-step Löhner type algorithm: the enclosure [st1,t2]]
is calculated using the Banach fixed point theorem while the enclosure [st=t2] is computed based
on a numerical integration method (e.g., Euler, Runge-Kutta) and the associated local truncation
error [21].

Abstract interpretation Let us consider a function F : Rm → Rp and let [x] ⊂ Rm be a
m-dimensional box representing a set of inputs. The goal of abstract interpretation is to soundly
approximate the set of the reachable outputs from [x] i.e., the set F ([x]) = {F (x) | x ∈ [x]}. To
this end, abstract interpretation leverages an abstract transformer F# that soundly approximates
the semantics of F . Intuitively, it “propagates” [x] through the function F . This yields the p-box
[y] = F#([x]) satisfying [y] ⊃ F (X). The abstract transformer F# can rely on interval arithmetics
or affine arithmetics for example [15].

6.3 Procedure

In the following, we consider that τ comprises q executions of the controller i.e., τ = qT . The
overall idea of our approach is to iteratively build the set R̃[0,τ], based on the successive executions
of the controller. To this end, we define a procedure that involves two types of sets:

(a) The symbolic set R̃j ⊃ RjT \ {⊥} approximates the (non-bottom) reachable states at t = jT ,

with j ≤ q. The kth symbolic state composing R̃j is denoted ([sj]k,uj,k). It represents a set
of states s(t) that are reachable together with the command uj,k at t = jT .

(b) The symbolic set R̃[j[⊃ R[jT,(j+1)T [\ {⊥} approximates the (non-bottom) reachable states

for t ∈ [jT, (j + 1)T [, with j < q. The kth symbolic state composing R̃[j[is denoted
([s[j[]k,uj,k). It represents a set of states s(t) that are reachable together with the command
uj,k for t ∈ [jT, (j + 1)T [.

2○

([sj+1]k,uj+1,1k) . . . ([sj+1]k,uj+1,ik).

(
[s[j[]k,uj,k

) 1○

([sj]1,uj,1) ([sj]k,uj,k)
(
[sj]Kj ,uj,Kj

)
.

t

(j + 1)T

jT R̃j

R̃j+1

R̃[j[

Figure 6: The reachability procedure at control step j, where 1○ involves validated simulation and
2○ involves both validated simulation and abstract interpretation.

The procedure starts with the symbolic set R̃0 ⊃ R0 = I enclosing the possible initial states. Then,
for j ∈ [[0, q − 1]], it computes the reachable symbolic states from each symbolic state ([sj]k,uj,k)

composing R̃j (see Fig. 6). More precisely, for each ([sj]k,uj,k) ∈ R̃j , it computes:

(1) The symbolic state ([s[j[]k,uj,k) approximating the reachable states from ([sj]k,uj,k) over
[jT, (j + 1)T [, where [s[j[]k is calculated using validated simulation and uj,k is the constant

9

actuation command over [jT, (j + 1)T [. More specifically, to compute [s[j[]k, we consider
the ODE s′(t) = f(t, s(t),u(t)) and the time interval [jT, (j + 1)T], with s(t = jT) ∈ [sj]k
and u(t) = uj,k ∀t ∈ [jT, (j + 1)T]. Validated simulation is used to compute the l-box
[s[jT,(j+1)T]] enclosing the reachable values of s(t) for t ∈ [jT, (j + 1)T]. Then we take [s[j[]k
= [s[jT,(j+1)T]] which is sound as [jT, (j + 1)T [⊂ [jT, (j + 1)T].

(2) The symbolic states ([sj+1]k,uj+1,1k) , . . . , ([sj+1]k,uj+1,ik) approximating the reachable states
from ([sj]k,uj,k) at t = (j + 1)T , where [sj+1]k is calculated using validated simulation and
the reachable commands uj+1,1k , . . . , uj+1,ik are caluclated using abstract interpretation.
More specifically, to compute [sj+1]k, we consider the same hypotheses as in (1) except
that validated simulation is used to compute the l-box [st=(j+1)T] enclosing the reachable
values of s(t) at t = (j + 1)T . Then we take [sj+1]k = [st=(j+1)T] which is sound even
though the actuation command may have changed at t = (j + 1)T (this is due to the
continuity of s). Additionally, to compute the reachable commands, we approximate the
behaviour of the controller as follows. First, the network to be executed Nj,k is selected
based on the previous command i.e., Nj,k = λ(uj,k). Then, abstract interpretation is used

to compute: (i) the m-box [xj]k = Pre#([sj]k) approximating the reachable inputs of the

network, (ii) the p-box [yj]k = F#
j,k([xj]k) approximating the reachable outputs of the net-

work, where Fj,k denotes the function computed by the network Nj,k and (iii) the finite set

{uj+1,1k , . . . ,uj+1,ik} = Post#([yj]) approximating the reachable commands at t = (j+1)T .

By definition, the stages (1) and (2) yield the symbolic sets R̃[j[and R̃j+1, the latter being

used in the next iteration. Finally, the qth iteration yields R̃[0,τ] = ∪0≤j<qR̃[j[∪ R̃q (to be totally
rigorous, the bottom element shall be added but this is useless since it does not impact safety).

Actually, to take account of a potential termination of C, we consider a slight variant of the above
procedure. Indeed, if a symbolic state ([sj]k,uj,k) composing R̃j satisfies ([sj]k,uj,k) ⊂ T, then
this symbolic state is not further propagated i.e., the reachable symbolic states from ([sj]k,uj,k)
are not computed. Consequently, if there exists jend ≤ q such that there is no more symbolic state
to be propagated from R̃jend

, then we take R̃[0,τ] = ∪0≤j<jendR̃[j[∪ R̃jend . Moreover, if R̃[0,τ]

satisfies R̃[0,τ] ∩E = ∅, then the closed-loop C is proved to be safe until it terminates.

Remark 2 This mechanism can detect the termination of C only at the instants t = T, 2T, 3T, . . .,
meaning that the true instants when C terminates are very likely to be missed. However, this
remains a good mechanism when T behaves like an attractor i.e., when C reaches a state in T
without terminating, then its state tends to stay in T.

Theorem 1 The procedure yields a sound approximation of the non-bottom reachable states i.e.,
R̃[0,τ] ⊃ R[0,τ] \ {⊥}.

Proof 2 The proof is two fold.

(i) First, let us show by induction that R̃j soundly approximates the non-bottom reachable states

at t = jT i.e., R̃j ⊃ RjT \ {⊥} for 0 ≤ j ≤ q. By definition, R̃0 ⊃ R0 = I is a sound
approximation of the non-bottom reachable states at t = 0. Let φ∗ 6= ⊥ be a reachable state
at t∗ = (j + 1)T . Given the definition of a reachable state (see definition 3), there exists
a unique function φ∗φ0

: [0, τ] → Rl × U ∪ {⊥} such that φ∗ = φ∗φ0
((j + 1)T). Moreover,

since φ∗ 6= ⊥, neither the target set T nor the bottom state have been reached already i.e.,
φ∗φ0

(t) /∈ T ∪ {⊥} ∀t < (j + 1)T . By induction, there is a symbolic state ([sj]k,uj,k) ∈
R̃j such that φ∗φ0

(jT) ∈ ([sj]k,uj,k). Additionally, as φ∗φ0
(jT) /∈ T, ([sj]k,uj,k) satisfies

([sj]k,uj,k) 6⊂ T. Consequently, the procedure computes the reachable states from ([sj]k,uj,k)
at t = (j + 1)T , yielding the symbolic states ([sj+1]k,uj+1,1k) , . . . , ([sj+1]k,uj+1,ik). As
validated simulation and abstract interpretation are sound, these symbolic states constitute a
sound approximation. Therefore, φ∗φ0

((j + 1)T) ∈ ([sj+1]k,uj+1,1k) , . . . , ([sj+1]k,uj+1,ik) ⊂
R̃j+1. Hence φ∗ ∈ R̃j+1.

(ii) Secondly, let us show that R̃[j[soundly approximates the non-bottom reachable states over

the time interval [jT, (j + 1)T [i.e., R̃[j[⊃ R[jT,(j+1)T [\ {⊥} for 0 ≤ j < q. Let φ∗ 6= ⊥
be a reachable state at t∗ ∈ [jT, (j + 1)T [. There exists a unique function φ∗φ0

such that

10

φ∗ = φ∗φ0
(t∗) and φ∗φ0

(t) /∈ T ∪ {⊥} ∀t < t∗. As shown before, φ∗φ0
(jT) ∈ R̃j, so there

is a symbolic state ([sj]k,uj,k) ∈ R̃j such that φ∗φ0
(jT) ∈ ([sj]k,uj,k). Additionally, since

φ∗φ0
(jT) /∈ T, ([sj]k,uj,k) satisfies ([sj]k,uj,k) 6⊂ T. Consequently, the procedure computes

the reachable states from ([sj]k,uj,k) over the interval [jT, (j+1)T [, yielding the symbolic state
([s[j[]k,uj,k). As validated simulation is sound and the command signal remains constant over
the interval [jT, (j + 1)T [, this symbolic state constitutes a sound approximation. Therefore,

φ∗φ0
(t∗) ∈ ([s[j[]k,uj,k) ⊂ R̃[j[. Hence φ∗ ∈ R̃[j[.

�

6.4 Optimizations

Improving precision In the above procedure, a single l-box [s[j[]k encloses the reachable states
s(t) from the symbolic state ([sj]k,uj,k) over [jT, (j+ 1)T [. Due to its shape, the l-box [s[j[]k may
contain a lot of unreachable states, resulting in a loose approximation (see Fig. 7). In order to
yield a tighter approximation, the procedure is slightly modified. Instead of using a single l-box to
approximate the reachable states s(t), a collection of M > 1 l-boxes is used. This collection of l-
boxes is obtained by performing M integration steps i.e., M successive validated simulations. More
precisely, we start with the l-box [sj,0]k , [sj]k. Then, for i ∈ [[0,M − 1]], we consider the ODE
s′(t) = f(t, s(t),u(t)) and the time interval

[(
j + i

M

)
T,
(
j + i+1

M

)
T
]
, with s

(
t =

(
j + i

M

)
T
)
∈

[sj,i]k and u(t) = uj,k ∀t ∈
[(
j + i

M

)
T,
(
j + i+1

M

)
T
]
. Validated simulation is used to compute (1)

the l-box [s[j[,i]k approximating the reachable states s(t) over
[(
j + i

M

)
T,
(
j + i+1

M

)
T
[

and (2) the

l-box [sj,i+1]k enclosing the reachable states s(t) at t =
(
j + i+1

M

)
T . The latter l-box is used to

perform next integration step. Finally, we take [s[j[]k =
{

[s[j[,i]k
}
0≤i<M and also [sj+1]k = [sj,M]k.

s1

s2

[sj]k

[sj+1]k

[s[j[]k

s1

s2

[sj]k

[sj+1]k
[s[j[,i]k

Figure 7: Over-approximation of the plant dynamics using validated simulation with a single
integration step (left) and M = 4 integration steps (right).

Algorithm 1 Over-approximation of the plant dynamics.

Input: The function f describing the plant dynamics, the execution period T of the controller,
the number of integration steps M and the symbolic state ([sj]k,uj,k).

Output: The l-boxes [s[j[]k and [sj+1]k.
1: function Simulate(f , T , M , ([sj]k,uj,k))
2: [sj,0]k ← [sj]k
3: for i ∈ [[0,M − 1]] do
4:

(
[s[j[,i]k, [sj,i+1]k

)
← validatedSimulation

(
f,
[(
j + i

M

)
T,
(
j + i+1

M

)
T
]
, [sj,i]k,uj,k

)
5: end for
6: [s[j[]k ←

{
[s[j[,0]k, . . . , [s[j[,M−1]k

}
7: [sj+1]k ← [sj,M]k
8: return

(
[s[j[]k, [sj+1]k

)
9: end function

Improving time complexity In the worst case, the number of symbolic states in R̃j grows

exponentially with j. Indeed, each symbolic state ([sj]k,uj,k) composing R̃j can lead up to P

symbolic states ([sj+1]k,uj+1,1k) , . . . , ([sj+1]k,uj+1,ik) in R̃j+1 (recall that P is the number of

11

elements in U i.e., the number of possible actuation commands). In order to avoid an exponential

blow up, the procedure is slightly modified by keeping the number of symbolic states in R̃j below
a given threshold Γ, for all j ∈ [[0, q]]. As a result, provided we can bound the execution time of
validated simulation and abstract interpretation, the time complexity of the procedure remains
linear with q. For keeping the size of R̃j below Γ, some symbolic states are joined based on a
dedicated heuristics. This heuristics uses the notion of distance between two symbolic states as
well as a join operation.

Definition 9 The distance between two symbolic states ([s]1,u) and ([s]2,u) with same actuation
command u is defined as the euclidean distance between the centers of the l-boxes [s]1 and [s]2:

d (([s]1,u) , ([s]2,u)) = ||C1 − C2||22 (3)

wherein C1 (resp C2) is a l-dimensional vector of which the ith component is the center of the ith

interval composing [s]1 (resp [s]2).

Definition 10 The join operation takes as inputs two symbolic states ([s]1,u) and ([s]2,u) with
same actuation command u and outputs a symbolic state ([s]3,u) such that [s]3 is the smaller l-box
containing both [s]1 and [s]2.

The heuristics works as follows. At the jth control step, if the number of symbolic states
Kj in R̃j is greater than Γ, then the symbolic states composing R̃j are clustered into P groups,
each one corresponding to a given actuation command. More specifically, the ith group is Gi ={

([sj]k,uj,k) ∈ R̃j | uj,k = u(i)
}

where u(i) is the ith element of the set U of the possible actuation

commands (see section 4.1). For each group Gi, a distance matrix Di is calculated based on
definition 9. Then, the distance matrices D1, . . . ,DP are used to identify the two closest symbolic
states in R̃j (note that these two closest symbolic states necessarily have the same actuation
command). Finally, using the join operation introduced in definition 10, the two closest symbolic

states are joined. The set R̃j is updated accordingly and the process is repeated until Kj ≤ Γ (see
Algorithm 2).

The choice of the threshold Γ allows a trade-off between accuracy (large Γ) and computational
efficiency (small Γ).

Algorithm 2 Heuristics for keeping the number of symbolic states in R̃j below the threshold Γ.

Input: The symbolic set R̃j and the threshold Γ.

Ensure: length(R̃j) ≤ Γ and R̃j ⊃ old(R̃j).

1: procedure Resize(R̃j , Γ)

2: Kj ← length(R̃j)
3: while Kj > Γ do
4: for i ∈ [[1, P]] do

5: Gi ←
{

([sj]k,uj,k) ∈ R̃j | uj,k = u(i)
}

6: Di ← calculateDistanceMatrix(Gi)
7: end for
8: (([sj]k1 ,uj,k1) , ([sj]k2 ,uj,k2)) ← findClosestStates(D1, . . . ,DP) . uj,k1 = uj,k2
9: ([sj]k3 ,uj,k3) ← join(([sj]k1 ,uj,k1) , ([sj]k2 ,uj,k2)) . uj,k3 = uj,k1

10: R̃j ←
(
R̃j \ {([sj]k1 ,uj,k1) , ([sj]k2 ,uj,k2)}

)
∪ {([sj]k3 ,uj,k3)}

11: Kj ← Kj − 1
12: end while
13: end procedure

Remark 3 As one may note, Γ must be chosen greater than P . Indeed, two symbolic states with
two different actuation commands cannot be joined so the heuristics would fail to keep the number
of symbolic states in R̃j strictly below P .

12

6.5 Overall algorithm

Algorithm 3 Reachability analysis of the closed-loop system C.
Input: The closed-loop system C = (P,N), the approximated set of the initial states R̃0 ⊇ R0 = I,

the set of the erroneous states E, the target set T, the number of control steps q, the number
of integration steps M and the threshold Γ.

Output: A Boolean indicating whether the closed-loop C is proved safe until it terminates.
1: jend ← q
2: hasTerminated ← False
3: for j ∈ [[0, q − 1]] do

4: . keep the size of R̃j below Γ (see Algorithm 2)

5: Resize(R̃j ,Γ)

6: . compute the symbolic sets R̃[j[and R̃j+1

7: R̃[j[← ∅
8: R̃j+1 ← ∅
9: for

(
([sj]k,uj,k) ∈ R̃j ∧ ([sj]k,uj,k) 6⊂ T

)
do

10: . approximate the dynamics of the plant (see Algorithm 1)
11:

(
[s[j[]k, [sj+1]k

)
← Simulate(f, T,M, ([sj]k,uj,k))

12: . approximate the behaviour of the controller
13: Nj,k ← λ (uj,k)

14: [xj]k ← Pre# ([sj]k)

15: [yj]k ← F#
j,k ([xj]k)

16: {uj+1,1k , . . . ,uj+1,ik} ← Post# ([yj]k)

17: . update the symbolic set R̃[j[approximating the reachable states over [jT, (j + 1)T [

18: R̃[j[← R̃[j[∪ {([s[j[]k,uj,k)}
19: . update the symbolic set R̃j+1 approximating the reachable states at t = (j + 1)T

20: R̃j+1 ← R̃j+1 ∪ {([sj+1]k,uj+1,1k) , . . . , ([sj+1]k,uj+1,ik)}
21: end for
22: . check for termination
23: if R̃j+1 ⊂ T then
24: jend ← j + 1
25: hasTerminated ← True
26: break
27: end if
28: end for
29: . construct the symbolic set R̃[0,τ]

30: R̃[0,τ] ← R̃[0[∪ . . . ∪ R̃[jend−1[∪ R̃jend

31: return
(
R̃[0,τ] ∩E = ∅ ∧ hasTerminated

)

6.6 Implementation details

We implemented our procedure as a Python program that interfaces with existing tools. The
validated simulation of the plant dynamics is based on DynIBEX [21]. The abstract transformers
Pre# and Post# approximating the semantics of the pre- and post-processing functions are based
on interval arithmetics, which has the advantage to be easy to implement and to offer a computa-
tionally efficient analysis while still being accurate for simple functions. The abstract transformer
of the neural network function F#

j,k relies on a dedicated tool named ReluVal [25], which uses
interval arithmetics together with symbolic interval propagation.

13

7 Experiments

7.1 Experimental setup

Partitioning For verifying the ACAS Xu, we used an empirical partitioning of the possible
initial states. More precisely, the circle R representing the possible initial positions (x0, y0) of
the intruder was partitioned into 629 arcs of length 80 ft each. Additionally, for each arc, the
possible initial headings ψ0 of the intruder were partitioned into 316 subsets of size 0.01 rad each
(see Fig 8). With the initial velocities vown,0 and vint,0 being fixed, we obtained a partition of size
K0 = 198, 764 of the possible initial states s0 of the plant P. Then, each element of this partition
was over-approximated by a 5-dimensional box [s0]k ⊂ R5, with 1 ≤ k ≤ K0. Finally, we took as

input for the procedure the symbolic set R̃0 = {([s0]k, 0.0 deg/s)}1≤k≤K0
.

−r
0

r −r

0

r

−3π/2

0

3π/2

R

x0

y0

ψ
0

Figure 8: The ribbon-like set of the possible initial states (x0, y0, ψ0) with an example of partition
represented as a mesh grid.

The reason for partitioning was three fold. First, a single initial symbolic state ([s0], 0.0 deg/s)
approximating I necessarily contains the unsafe set E, due to the shape of [s0] (a box containing
the circle R also contains the center of R corresponding to a collision between the two aircraft).

Secondly, the K0 initial symbolic states composing R̃0 can be seen as K0 independent verification
problems, of which resolution can be parallelized. Finally, the smaller the box [s0]k, the more
precise the reachability analysis since the function f representing the dynamics of P is uniformly
Lipschitz continuous in s and the functions computed by the neural networks are also uniformly
Lipschitz continuous [25].

Split refinement For the same reason as mentioned above, when the system could not be proved
safe for a given initial symbolic state ([s0]k, 0.0 deg/s), then this initial symbolic state was splitted
into smaller initial symbolic states, leading to a new reachability analysis. More precisely, [s0]k
was bisected along the dimensions corresponding to x0, y0 and ψ0, yielding 23 new initial symbolic
states. This split refinement process was repeated iteratively until the system could be proved safe,
with a maximum depth of 2.

The experiment was conducted using M = 10 for the number of integration steps and Γ = P = 5
for the threshold on the number of symbolic states in R̃j . Moreover, it was run on CentOS 7 with
2 Intel® Xeon® processors E5-2670 v3 @ 2.30GHz of 12 cores (24 threads) each and 64 GB RAM.

7.2 Results

In our experiment, we recorded (1) the time elapsed i.e., the time necessary for performing the
reachability analysis and (2) the coverage c representing the percentage of the possible initial
states for which the ACAS Xu was proved safe until it terminates. More precisely, the coverage
c was calculated as follows: c = 100/K0 ·

∑2
d=0 nd/(2

3)d wherein nd is the number of initial
symbolic states resulting from d split refinements and for which the ACAS Xu was proved safe.
The reachability analysis took about 12 days and yielded a coverage c = 90.3%, meaning that the
ACAS Xu was proved safe for 90.3% of the possible initial states.

Although we did not obtain a complete proof of safety, we could leverage the partition of the
set I to identify the initial states for which the ACAS Xu was proved safe and the initial states

14

(a)

x0

r
0

r

y 0

r

0

r

tim
e

el
ap

se
d

(s
)

101

103

105

70

75

80

85

90

95

100

co
ve

ra
ge

 (%
)

(b)

Figure 9: (a) The initial states for which the system was proved safe (in green) and the initial
states for which the system could not be proved safe (in red), (b) The coverage and time elapsed
w.r.t. the initial position of the intruder (each bar corresponds to a subset of the initial states
where the position (x0, y0) of the intruder lies along an arc of length 500ft).

for which it could not be proved safe (see Fig 9.a). It is worth noting that such a result represents
a valuable information from a practical point of view. For instance, it could be used to design a
real-time monitoring mechanism that switches to a more robust controller if the system encounters
an initial state for which it was not proved safe.

The results that we obtained by partitioning the set I also constitute a valuable information in
terms of “explainability”, in the sense that they help understanding the behaviour of the overall
system. For instance, as one can see in Fig 9.b, the initial states that yielded the hardest verification
tasks correspond to the cases where the intruder is approaching from the left (x0 < 0 ∧ y0 > 0) or
approaching from the right (x0 > 0 ∧ y0 > 0). Indeed, the coverage obtained in these regions is
around 75% while it ranges from 85% to 100% elsewhere. Additionally, in these regions, the time
necessary for performing the reachability analysis is about 5 · 104s while it is around or below 103s
elsewhere. Such a result provides an interesting information about the potential weaknesses of the
controller, which can be interpreted at the system level. It suggests that the most critical situations
are encountered not when the intruder is directly ahead of the ownship but when it approaches from
the left or from the right. In addition to representing a valuable knowledge about the behaviour
of the system, this information could be used to generate new data with the aim of retraining the
networks for example. Furthermore, as one can see in Fig. 9.b, the results are roughly symmetrical
w.r.t. the x0 = 0 axis, both in terms of coverage and time elapsed, which suggests that the system
has a similar behaviour for two initial states that are symmetrical w.r.t. the x0 = 0 axis. It is
worth noting that such a behaviour is quite consistent since the collision avoidance problem is
totally symmetrical w.r.t. the x0 = 0 axis. We believe that such an information can help building
“trust” in the overall system.

8 Conclusion and future work

This paper presented a technique to verify the safety requirements of complex neural network
controlled systems such as the ACAS Xu. The proposed technique leverages a generic model
of a neural network controlled system together with a reachability analysis, combining validated
simulation and abstract interpretation. We evaluated the applicability of our approach by providing
the first sound guarantees of safety of the overall neural network based ACAS Xu. Although we
could not obtain a complete proof of safety, we showed that our approach can provide valuable
information from a practical point of view.

For future work, instead of using a uniform, empirically-generated partition of the initial states,
we aim at finding a more efficient partitioning strategy. For example, we could explore the tech-
niques employed in similar problems such as meshing generation in computational fluid dynamics.
Another direction is to propose an efficient heuristics for splitting the initial symbolic states when
the system cannot be proved safe. Instead of using a simple bisection along each dimension, we
could identify the variable having the most influence on the overall system behaviour, and split

15

along the corresponding dimension only. A third direction is to combine our approach with an effi-
cient falsification strategy that can search for unsafe trajectories when the system cannot be proved
safe. Lastly, for the ACAS Xu, we could consider multiple UAVs, each one being equipped with a
collision avoidance controller. Indeed, our model and procedure only have to be slightly adapted
to represent multiple agents interacting together, all equipped with a controller. The plant could
capture the dynamics of the multiple agents (the same way we captured the dynamics of both the
ownship and the intruder) and be combined with several controllers. Then, instead of evaluating
one controller, our procedure would evaluate several controllers, which is straightforward if all the
controllers execute in the same time interval.

References

[1] EUROCAE ED-79A/SAE ARP 4754A. Guidelines for development of civil aircraft and sys-
tems. 2010.

[2] Matthias Althoff. An introduction to CORA 2015. In Proceedings of the 1st and 2nd Inter-
national Workshop on Applied veRification for Continuous and Hybrid Systems, ARCH’15,
pages 120–151, 2015.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, A. Olivero X. Nicollin,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. In Theor. Comput. Sci.
138, 1, page 3–34, 1995.

[4] Sergiy Bogomolov, Goran Frehse, Amit Gurung, Dongxu Li, Georg Martius, and Rajarshi
Ray. Falsification of hybrid systems using symbolic reachability and trajectory splicing. In
Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, HSCC ’19, page 1–10, 2019.

[5] Chen C., Seff A., Kornhauser A., and Xiao J. DeepDriving: Learning affordance for direct
perception in autonomous driving. In Proceedings of the 2015 IEEE International Conference
on Computer Vision, ICCV, pages 2722–2730, 2015.

[6] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In Proceedings of the 25th International Conference on Computer Aided
Verification, CAV 2013, page 258–263, 2013.

[7] Julian Kyle D. and Kochenderfer Mykel J. Guaranteeing safety for neural network-based
aircraft collision avoidance systems. In Proceedings of the 2019 IEEE/AIAA 38th Digital
Avionics Systems Conference, DASC, 2019.

[8] EUROCAE ED-12C/RTCA DO-178C. Software considerations in airborne systems and equip-
ment certification. 2012.

[9] S. Dutta, X. Chen, and S. Sankaranarayanan. Reachability analysis for neural feedback sys-
tems using regressive polynomial rule inference. In Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, HSCC ’19, page 157–168, 2019.

[10] Hainry E. Reachability in linear dynamical systems. In Proceedings of the 4th Conference on
Computability in Europe, CiE 2008, pages 241–250, 2008.

[11] Tran HD. et al. NNV: The neural network verification tool for deep neural networks and
learning-enabled cyber-physical systems. In Proceedings of the 32nd International Conference
on Computer Aided Verification, CAV 2020, pages 3–17, 2020.

[12] Katz G., Barrett C., Dill D.L., Julian K., and Kochenderfer M.J. Reluplex: An efficient SMT
solver for verifying deep neural networks. In Proceedings of the 29th International Conference
on Computer Aided Verification, CAV 2017, pages 97–117, 2017.

[13] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev. AI2:
Safety and robustness certification of neural networks with abstract interpretation. In Pro-
ceedings of the 2018 IEEE Symposium on Security and Privacy, SP, pages 3–18, 2018.

16

[14] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. ReachNN: Reachability
analysis of neural-network controlled systems. In ACM Transactions on Embedded Computing
Systems 18, 5s, Article 106, 2019.

[15] Stolfi J. and Figueiredo L. An introduction to affine arithmetic. In Trends in Applied and
Computational Mathematics, 4, 297-312, 2003.

[16] Julian K.D., Kochenderfer M.J., and Owen M.P. Deep neural network compression for aircraft
collision avoidance systems. ArXiv, abs/1810.04240, 2018.

[17] Bojarski M., Testa D., Dworakowski D., Firner B., Flepp B., Goyal P., Jackel L., Monfort M.,
Muller U., Zhang J., Zhang X., and Zhao J.and Zieba K. End to end learning for self-driving
cars. ArXiv, abs/1604.07316, 2016.

[18] G. Manfredi and Y. Jestin. An introduction to ACAS Xu and the challenges ahead. In
Proceedings of the IEEE/AIAA 35th Digital Avionics Systems Conference, DASC, pages 1–9,
2016.

[19] Ehlers R. Formal verification of piece-wise linear feed-forward neural networks. In Proceedings
of the 15th International Symposium on Automated Technology for Verification and Analysis,
ATVA 2017, pages 269–286, 2017.

[20] Ivanov R., Weimer J., Alur R., Pappas G.J., and Lee I. Verisig: verifying safety properties of
hybrid systems with neural network controllers. In Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, HSCC’19, 2019.

[21] Julien Alexandre Dit Sandretto and Alexandre Chapoutot. Validated explicit and implicit
runge-kutta methods. In Reliable Computing electronic edition, 2016, Special issue devoted to
material presented at SWIM 2015, 22, 2015.

[22] EUROCAE WG 75.1 / RTCA SC-147. Minimum operational performance standards for
airborne collision avoidance. 2020.

[23] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast
and effective robustness certification. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, page 10825–10836, 2018.

[24] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for
certifying neural networks. In Proceedings of the ACM on Programming Languages 3, POPL,
Article 41, 2019.

[25] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. In Formal
security analysis of neural networks using symbolic intervals, Proceedings of the 27th USENIX
Conference on Security Symposium, page 1599–1614, SEC’18.

[26] Huang X., Kroening D., Ruan W., Ruan W., Sun Y., Thamo E., Wu M., and Yi X. A survey
of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack
and defence, and interpretability. In Comput. Sci. Rev., 37, 100270, 2020.

[27] Annpureddy Y., Liu C., Fainekos G., and Sankaranarayanan S. S-TaLiRo: A tool for temporal
logic falsification for hybrid systems. In Proceedings of the 17th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2011, pages
254–257, 2011.

[28] Pan Y., Cheng C., Saigol K., Lee K., Yan X., Theodorou E., and Boots B. Agile autonomous
driving using end-to-end deep imitation learning. In Robotics: Science and Systems, 2018.

17

