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Approximation of exact controls for semi-linear 1D wave

equations using a least-squares approach

ARNAUD MUNCH* EMMANUEL TRELAT!

October 22, 2020

Abstract

The exact distributed controllability of the semilinear wave equation Y+ — Y=z + g(y) = flo,
assuming that g satisfies the growth condition |g(s)|/(]s|log?(|s])) — 0 as |s| — oo and that ¢’ €
L. (R) has been obtained by Zuazua in the nineties. The proof based on a Leray-Schauder fixed
point argument makes use of precise estimates of the observability constant for a linearized wave
equation. It does not provide however an explicit construction of a null control. Assuming that
g € Li5.(R), that sup, ycg oz [9'(a) — g'(b)|/]a — b|" < oo for some r € (0,1] and that g’ satisfies
the growth condition |g’(s)|/log®(|s|) — 0 as |s| — oo, we construct an explicit sequence converging
strongly to a null control for the solution of the semilinear equation. The method, based on a least-
squares approach guarantees the convergence whatever the initial element of the sequence may be.
In particular, after a finite number of iterations, the convergence is super linear with rate 1 + r.
This general method provides a constructive proof of the exact controllability for the semilinear wave
equation.

AMS Classifications: 35Q30, 93E24.
Keywords: Semilinear wave equation, Exact controllability, Least-squares approach.

1 Introduction

Let Q := (0,1) and w be a non empty open set of Q. Let T > 0 and denote Q7 := Q x (0,7),
gr = w x (0,T) and X7 := 90Q x (0,T). Let g : R — R be a continuous function. We consider the
semilinear wave equation

Yer — Yoo + 9(y) = flo, n Qr,

y =0, on X, (1)

(y(’0)7yt(70)) = (u07u’1)7 in Q7

where (ug,u1) € V 1= H}(Q) x L?() is the initial state of y and f € L?(qr) is a control function. We
assume that there exists a positive constant C' such that

l9(s)] < C(L+ s log?(1 + |s]), Vs €R, (2)

so that (1) has a unique global weak solution in C([0,T]; H}(Q)) N C1([0,T]; L(2)) (see [2]).

The exact controllability for is formulated as follows: for any (ug,u1), (20,21) € V, find a control
function f € L?(g7) such that the weak solution of (1) satisfies (y(-,T),y:(+,T)) = (20, 21) at time T' > 0.
Assuming T large enough and a growth condition on the nonlinearity g at infinity, this problem has been
solved in [I7].
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Theorem 1 [T7] Assume that w = (I1,l2) with 0 <13 <ly < 1. Assume T > 2max(l1,1 —lz). There
exists a 3 > 0 such that if the function g € C1(R) satisfies

lim sup 7|g(s)\
js|—o0 |s|log? |s]

< B, (3)

then for all (yo,%1), (20,21) € V, there exists control f € L?(qr) such that the solution of satisfies
(y(ﬂT)vyt(7T)) = (207'21)'

The constant 8 depends on T and 2 but is independent of the data (ug,u1), (20, 21). Moreover, it is
proved in [I7] that if g behaves at infinity like —slogP(|s|) with p > 2, then due to blow up phenomena,
the system is not exactly controllable in any time 7' > 0. Later on, Theorem [I| has been improved in [I]

relaxing the condition by
S
/ g(r)dr
0

where log,, denotes the iterate logarithm function and ey the real number such that log(er) = 1. This

lim sup
|s|—o0

i TTtomen 58] <o

k=1

growth condition is sharp since solution of may blow up whenever g grow faster at infinity and g
has the bad sign. The multidimensional case for which € is a bounded domain of R%, d > 1 with a
CY! boundary has been addressed in [I1]. Assuming that the support w of the control function is a
neighborhood of 99 and that T > diam(Q\w), the exact controllability of is proved assuming the

growth condition limsup Hl\g/% < oo. For control domains w satisfying the classical multiplier
s og|s

method of Lions [12], the exact controllability has been proved in [I5] assuming ¢ globally Lipschitz
continuous. We also mention [5] where a positive boundary controllability result is proved for a specific
class of initial and final data and T large enough.

The proof given in [I7] is based on a fixed point argument introduced in [I6] that reduces the exact
controllability problem to the obtention of suitable a prior: estimates for the linearized wave equation
with a potential. More precisely, it is shown that the operator K : L (Qr) — L (Qr), where y := K (&)
is a controlled solution through the control function f¢ of the linear boundary value problem

Yert — Yeaa + e 9(€) = —g(0) + felo,, in Qr, g(s) —g(0)

_ =IO 5o,
Ye = O7 on ET, g(S) = S ) (4)
(e (-, 0), g o, 0)) = (g, ua), in Q, g(0) s=0

satisfying (ye(-,T),yet(,T)) = (20, 21) possesses a fixed point. The control fe is chosen in [I7] as the
one of minimal L?(gr)-norm. The existence of a fixed point for the compact operator K is obtained by
using the Leray-Schauder’s degree theorem. Precisely, it is shown that if 8 is small enough, then there
exists a constant M = M (||uo, u1||v, |20, #1]v) such that K maps the ball By (0, M) into itself.

The main goal of this work is to determine an approximation of the controllability problem associated
to , that is to construct an explicit sequence (fx)ren converging strongly toward an exact control
for . A natural strategy is to take advantage of the method used in [I7] and consider the Picard
iterates (yx)r>o0 associated with the operator K defined by yr+1 = K(yx), & > 0 initialized with any
element yo € L>(Qr). The sequence of controls is then (fi)ren so that fri1 € L?(qr) is the control of
minimal L?(qr)-norm for y;41 solution of

Yk+1,6t — Ykt lze + Y1 9(Uk) = —9(0) + fr1le, in Qr,
Ye+1 = Oa on ZT? (5)
(Yr+1(+50), Yt 1,6(+ 0)) = (Yo, Y1), in Q.

Such strategy usually fails since the operator K is a priori not strictly contracting including for globally
Lipschitz continuous function g. We refer to [7] exhibiting lack of convergence in parabolic cases when



such method is used. As is also usual for nonlinear problems, we may employ a Newton type method in
order to find a zero of the mapping F' : Y — W defined by

F(yaf) = (ytt — Yz +g(y) - flw,y(ao) - anyt(' 70) - Ul,y(' aT) - ZO7yt(' ’T) - Zl) (6)

for some appropriates Hilbert spaces Y and W (see below). Assuming g € C(R) so that F € CL(Y, W),
the Newton iterative method for F' reads as follows: given (yo, fo) in Y, define the sequence (yx, fi)ren
iteratively as follows (yxt1, fe+1) = (Y, fx) — (Yi, F) where Fy, is a control for Y solution of

Vit — Yieus + 9 (k) Y = Fi Lo + Uktt — Ykwe + 9(Uk) — filo, in Qr,
Y, =0, on Y, (7)
Yk('vo) :uo_yk('70)aYk,t('aO) = u1 _yk,t('vo) in

such that Y3 (-,T) = —yx(,T) and Yy +(-,T) = —yi+(-,T) in . This linearization makes appear an
operator Ky, so that yx11 = Kn(yk), involving the first derivative of g. However, as is well known, such
sequence may not converge if the initial guess (yo, fo) is not close enough to a zero of F' (we refer again
to [7] exhibiting divergence of the sequence for large data).

The controllability of nonlinear partial differential equations has attracted a large number of works in
the last decades. We refer to the monography [4] and the references therein. However, as far as we know,
very few are concerned with the approximation of exact controls for nonlinear partial differential equa-
tions, so that the construction of convergent control approximations for controllable nonlinear equation
remains a challenges.

Assuming that ¢’ € L{S.(R) satisfies an asymptotic property similar to , and in addition that
there exists one 7 in (0,1] such that sup, peg 4z W < o0, we construct, for any initial data

(up,u1) € V, a strongly convergent sequence (fx)ren toward a control for . Moreover, after a finite
number of iterates, the convergence is super linear with a rate equal to 1+7. This is done by introducing a
quadratic functional which measures how a pair (y, f) € Y is close to a controlled solution for and then
by determining a particular minimizing sequence enjoying the announced property. A natural example
of so-called error (or least-squares) functional is given by E(y, f) := %Hﬁ (v, )13 to be minimized over
Y. In view of controllability results for , the non-negative functional E achieves its global minimum
equal to zero for any control pair (y, f) € Y of . Inspired by recent works concerning the Navier-Stokes
system (see [I0]), we determine, through a specific descent direction, a minimizing sequence (yk, fx)k>0
converging to a zero of the quadratic functional.

The paper is organized as follows. Then, in Section[2] we define the least-squares functional E and the
corresponding optimization problem over the Hilbert A. We show that E is Gateaux-differentiable
differentiable over A and that any critical point (y, f) for E for which ¢’(y) belongs to L>®(Qr) is also
a zero of E. This is done by introducing a descent direction (Y!, F') for E at any (y, f) for which
E'(y, f) - (Y1, F!) is proportional to E(y, f). Then, assuming that the nonlinear function g satisfies
W < oo for some r in (0,1], we determine a
minimizing sequence based on (Y1, F'') which converges strongly to a controlled pair for the semilinear

the above conditions, notably that sup, peg o

wave equation . Moreover, we prove that after a finite number of iterates, the convergence enjoys
a rate equal to 1 + s. We also emphasize in Section [3| that this least-squares approach coincides with
the damped Newton method one may use to find a zero of a mapping similar to F mentioned above.
The appendix section {4 states some a priori estimates for the linearized wave equation with potential in
L*(Qr) and source term in L?(Q7) and emphasize that the operator K is contractant under smallness
assumption on [|§'[| e (r)

As far as we know, the method introduced and analyzed in this work is the first one providing an
explicit construction of controls for semilinear wave equation.

Along the text, we shall denote by || - || the usual norm in L*°(R), (,-)x the scalar product of X
(if X is a Hilbert space) and by (-,-) x y the duality product between the spaces X and Y. We shall also



denote by C' = C(Q,T),C, = C1(Q,T), ..., positive constants only dependent on 2 and T'. Last, we shall
use the notation || -

2,7 for || - |2 (gr) and || - ||, for || - [ » (@), mainly for p = 2 and p = oo.

2 The least-squares method and its analysis

For any s € [0, 1], we define the space

/ —d(b
W, = {g e C(R), ¢ € Lis.(R), sup lg'a) = g (b)] < oo}.
apeRatb  |a—DbJ*

The case s = 0 reduces to Wy = {g € C(R), ¢’ € L{5.(R)} while the case s = 1 corresponds to
Wi =1{g€CR), ¢ € Li5.(R), 9" € L=(R)}.

2.1 The least-squares method

We assume that g belongs to Wy and introduce the vector space Ag
AO = {(y7f) ‘Y € LQ(QT)u (y(70)7yt(70)) S V7f € L2(qT)7ytt — Yza S LQ(QT)u

(y('ao)ayt(‘,o)) = (an)v (y('vT)ayt('7T)) = (0’0) in Qa Y= OOHET}~
Endowed with the scalar product

((ya f)v (?7?))./40 :(yvy)2 + ((y('a 0)7 yt('v 0))a (y(a 0)7yt('a 0)))V
+ (ytt - ymxvgtt - yzz)? + (f??)Q,(]T

Ap is an Hilbert space. We shall note ||(y, f)|l4, := vV ((y, f), (¥, f)).a,- We also consider the affine
(convex) space A

A= {(yaf) Yy e Lz(QT)a (y('ao)’yt('ao)) € V’f € L2(QT)’ytt — Yxz € L2(QT)7
(y("o)ayt('ao)) = (Uo,ul), (y('vT)7yt('7T)) = (20721)in 2, y=~00n ET}'

Observe also that we can write A = (7, f) + Ao for any element (7, f) € A.
For any fixed (7, f) € A, we consider the following extremal problem :

inf E@+y f+7f 8
onf G+y, [+ f) (8)
where F : A — R is defined as follows
2
(y f 7Hytt Yoz + g(y) - f 1“"HL2(QT)

justifying the least-squares terminology we have used.
Remark that the functional F is well-defined in A. Precisely, a priori estimate for the linear wave
equation reads as

”(yvyt)HzLoo(O,T;V) < C(”ytt - ym”%z(QT) + ||y0,y1||%/>

for any y such that (y,f) € A and implies in this one dimensional setting that y € L*(Qr). Since

g€ Wo, |g(s) = g(0)] < [|lg'llocls] for all s € R so that [[g(y)]l2 < [9(0)[\/IQ7| + [Ig'llc ioc y]l2-
Within the hypotheses of Theorem [1] the infimum of the functional of E is zero and is reached by

at least one pair (y, f) € A, solution of and satisfying (y(-,T),y:(-,T)) = (z0,%1). Conversely, any



pair (y, f) € A for which E(y, f) vanishes is solution of . In this sense, the functional E is a so-called
error functional which measures the deviation of (y, f) from being a solution of the underlying nonlinear
equation. A practical way of taking a functional to its minimum is through some clever use of descent
directions, i.e the use of its derivative. In doing so, the presence of local minima is always something that
may dramatically spoil the whole scheme. The unique structural property that discards this possibility
is the strict convexity of the functional E. However, for nonlinear equation like , one cannot expect
this property to hold for the functional . Nevertheless, we insist in that one may construct a particular
minimizing sequence which cannot converge except to a global minimizer leading £ down to zero.

In order to construct such minimizing sequence, we look, for any (y, f) € A, for a pair (Y1, F1) € A
solution of the following formulation

Y =Yoo +9'(y) Y = F'ly + (Yo — Yoo +9(y) — f L), inQr,
Y=o, on X, 9)
(Yl('70)7y;51('70)) = (070)7 in Q.

Remark that (Y'!, F!) belongs to Ag if and only if F! is a null control for Y*. Among the controls of
this linear equation, we select the control of minimal L?(g7) norm. We have the following property.

Lemma 1 Assume g € Wy. Assume that T > 2max(l1,1 —la). Let any (y, f) € A. There exists a pair
(Y1, F') € Ay solution of (@ Moreover, the pair (Y1, F1) for which |[F||2,q, is minimal satisfies the
following estimates :

1Y, Y ) | pee 0,75v) + 1 FH 2,00 < Cre@VIT Wl /E(y, f), (10)

and

1YY |y < Cre@=VIs @l /E(y, 7). (11)

PRrROOF- The first estimate is a consequence of Proposition |§| (see the appendix) using the equality
|00y — Ay + g(y) — f 1ull2 = v/2E(y, f). The second one follows from

1YY FYILay < 1Y = Yol + [V 2 + 1 200 + 1Y (50, Y (5 0)lv
< @+ lg' W)Y 2 + 2 FH 207 + VE(y, f)

< Ci(1+ g ()% )e VI W= \/E(y, f)
< C1e2t VI W= /By, f).

using that (1 + s2) < €2 for all s > 0. O
In particular, this implies that

1YY (@my < CreVITW= /By 7),
The interest of the pair (Y1, F'') € Ay lies in the following result.

Lemma 2 Assume that g € Wy and T > 2max(l1,1 —l3). Let (y,f) € A and let (Y, F') € Ag be a

solution of @ Then the derivative of E at the point (y, f) € A along the direction (Y', F') defined by
1 1

By, f) - (Y5, ) = limy o r s Z@DENOFD)PW) opiio

E'(y, f)- (Y, F') = 2E(y, f). (12)

PROOF- We preliminary check that for all (Y, F') € Ap, the functional E is differentiable at the point
(y, f) € A along the direction (Y, F') € Ag. For any A € R, simple computations lead to the equality



E(y+ XY, f+AF) = E(y, ) + AE'(y, ) - (Y, F) + h((y, ), \(Y, F))
with

El<yaf) : (K F) = (ytt — Yz + g(y> - f 1waYVtt - Ya:a: +g/<y)Y - Flw) (13)
2

and
2

A
h((y, f), MY, F)) = <Ytt — Yoo+ 9 ()Y —F 14, Yy — Yo +¢'(y)Y — F 1w>
2

+ )\<Ytt — Yo + 9 (y)Y — F 1o, 1(y, AY))
2

+ (ytt — Yzx + g(y) - f 1wa l(y7 >‘Y)> + %(Ky’ )‘Y)7 l(y7 )‘Y))

where I(y, A\Y) := g(y + A\Y) — g(y) — A\¢’(y)Y. The application (Y, F) — E'(y, f) - (Y, F) is linear and
continuous from Ay to R as it satisfies

B, ) (V)] < e — e+ 9(0) — £ Lo l[¥ie — Vow + g/ )Y — F L]l
< VG D) (10 = Yool 4 19 Ollm@n VT2 + F L) (19
< /3BTy, Fmax (1, g 0)lloo) | (Y F) Lao
Similarly, for all A € R*,
1 A , 9
DAY )| < 3 = Ve + 4 0)Y = PLIE
(MY = Yo 4 g )Y = F Lol 4 VEEG ) + 3100 AVl ) MY e

Since ¢’ € L{2 (R) and y € L>=(Qr), we have

loc
gy + YY) —g(y)
A

1
—_ Y =
’Al(y,A )‘ ’

- g'<y>Y| < g W)l eiom Y], ace. in Qr

and that — 0as A — 0, a.e. in Qp. From the Lebesgue’s Theorem,

}\l(y,)\Y)’: ’g(y-{-/\};)—g(y) _g/(y)y

it follows that |5|[|l(y, AY)|l2 — 0 as A — 0 and then that |h((y, f), A(Y, F))| = o()). We deduce that
the functional F is differentiable at the point (y, f) € A along the direction (Y, F') € Ay.
Eventually, the equality follows from the definition of the pair (Y'!, F!) given in @[) O

Remark that from the equality (L3)), the derivative E'(y, f) is independent of (Y, F). We can then
define the norm || E'(y, f)l(4,) := SUD(y, pyea, W associated to (Ap)’, the set of the linear and
: A,

continuous applications from Ay to R

Combining the equality and the inequality (10), we deduce the following estimate of E(y, f) in
term of the norm of E'(y, f).

Proposition 1 Assume g € Wy and T > 2max(l1,1 —13). For any (y, f) € A, the following inequalities
hold true:

! / , R SPSNC A/ o) e /
\/imax (1’ Hg/(y)”oc) ”E (yvf)”.Ao < \/m < \/5016 gy HE (y,f)HAO (15)

where Cy and Cy are the positive constants from Proposition [1



PROOF- rewrites E(y, f) = 2E'(y, f)- (Y'!, ') where (Y, F') € Ay is solution of @) and therefore,
with

By, ) < 515, Dl 107 FY)ag < 5CeVITO By, )]y VB, ).

On the other hand, for all (Y, F') € Ay, the inequality , ie.

|E'(y, f) - (V. F)| < v2E(y, f) maX<1, 9’(y)||oo) 1Y, F)l 4,

leads to the left inequality. a

In particular, any critical point (y,f) € A for E (i.e. for which E’'(y,f) vanishes) such that
19" (W)l (@r) < o0 is a zero for E, a pair solution of the controllability problem. In other words,
any sequence (yx, fx)k>o satisfying || E'(yk, fi)lla; — 0 as k — oo and for which [|¢’(yk)|oc is uniformly
bounded is such that E(yg, fr) — 0 as k — co. We insist that this property does not imply the convexity
of the functional E (and a fortiori the strict convexity of F, which actually does not hold here in view of
the multiple zeros for E') but show that a minimizing sequence for E can not be stuck in a local minimum.

On the other hand, the left inequality indicates the functional E is flat around its zero set. As a
consequence, gradient based minimizing sequences may achieve a very low rate of convergence (we refer
to [13] and also [I0] devoted to the Navier-Stokes equation where this phenomenon is observed).

2.2 A strongly convergent minimizing sequence for F

We now examine the convergence of an appropriate sequence (yi, fx) € A. In this respect, we observe that
equality shows that —(Y'!, F'!) given by the solution of @I) is a descent direction for the functional F.
Therefore, we can define at least formally, for any m > 1, a minimizing sequence (yg, fx)x>0 as follows:

<y07f0) S A7
(Yrt1, frrr) = (Un, fo) — Me(Vi, FR), k>0, (16)
Ak = argminAE(O,m]E<(yk’a fk) - A(Yk17 Fk}))a

where (Y}, F{l) € Ap is such that F} is the null control of minimal L?(gz)-norm for Y;!, solution of

Ykl,tt - Ykl,mc +0 (yk) - YiE = Bl + (Yt — koo + 9(yk) — frlw), in Qr,
Y, =0, on Y, (17)
(Y, (-,0), Y, (-,0)) = (0,0), in Q.

We prove in this section the strong convergence of the sequence (yi, fi)ren toward a controlled pair
for [1] first in the case ¢’ € L>°(R) in Theorem [2]and then in the case ¢’ € L>(R) and satisfying a growth
condition at infinity in Theorem

We first perform the analysis assuming the non linear function g in Wy, notably that ¢” € L>®(R)
(the derivatives here are in the sense of distribution). We first prove the following lemma.

Lemma 3 Assume that g € Wy and that T > 2max(ly, 1 —13). For any (y, f) € A, let (Y',F') € Ay be
defined by @[) For any A € R and k € N, the following estimate holds, for some C' > 0

E((y. f) — YL, FY) < E(y. f) (|1 A+ X Cw)VE, f)) ,

2
Cw) = 5 5l (C1eV I

_
e



Proor- With g € Wi, we write that

2
Uy, = XY = gy = XY = 6(0) + A W)Y < 51"l (V)? (19)
and obtain that
E((ya f) - )‘(Y17F1))

2
H(yttymw() FL) =AY =YL + g/ ()Y — F L) + 1y, ~AY")

2
2

= H(l — N (Yt = Yaw +9(y) — [ 1lu) + 1y, —AY")

. (20)
2
< <H(1 - )‘)(ytt — Yzz + g(y> - f 1w) H2 + Hl(y7 _)‘Y1>H2>
2
<2([1=AVE YH32) .
<2 (- NVEG D) + 55l Il e
But, in view of , we have
1Yl < IV e @ey) 1Y 22 @r) < CIY Mo (07,12 (2))
2 21
< O<Clecﬂ/|g'<y>um> By, f) 1)
for some constant C'= C (2, T) from which we get (L8). O

The previous result still holds if we assume only that g € W, for some s € (0,1). For any g € W, we
19(@=9"®)l e have the following result.

introduce the notation ||9/||Ws,oc(R) i= SUDy beR b a—p[F

Lemma 4 Assume that g € Wy for some s € (0,1) and that T > 2max(ly,1 —13). For any (y, f) € A
let (Y1, F1) € Ay be defined by @ For any A € R and k € N, the following estimate holds

E((y, /) = AY", FY) < E(y. f) (Il = A+ A Cy)Ey, f)S/Q) ;

_ C /o=
C(y) = 2\/§||g ||WS‘W(R) <Cle 9'(y

PROOF- For any (z,y) € R? and A € R, we write g(z + \y) — g(z) = fo/\ yg' (x + &y)d¢ leading to
A
ol +29) = g(a) =g/ (@l < [ lollg' o+ &) — o)l

/ |y|1+8|£‘s|g x—f—fy) ( )ldf
Syl®

/\1+s
1+s’

<9155 iy 917"

It follows that

)\1+s s
1 =AY = lg(y =2 = 9(0) + g WY < 19 e oy 7551V 1

and

1 / ALt 1145
ey, A )| weem 131

2 <l HWS’“’(R)I T L2(0,T;L2(2))"

But

s s 2(s+1 2 1
[ / (Y)Xe dedr = YT, o) < CIYHITSTG)
T



leading to

IV 11 0 7220

1+s
< C’(chz Ig'(y)lloo> Ey, f)%

and to the result. a

Proceeding as in [9], we are now in position to prove the strong convergence result for the sequences
(E(yr, fr)) x>0y and (yr, fr) x>0y for the norm || - ||4. In order to fix notations and arguments, we first
start by making the stronger assumption that ¢’ € L (R).

2.2.1 Convergence in the case g € W;, s € (0,1] and ¢’ € L*(R)

Proposition 2 Assume g € Wy for some s € (0,1] and that ¢’ € L>°(R). Let (yx, fx)r>0 be the sequence
of A defined in . Then E(yg, fr) — 0 as k — oo. Moreover, there exists a kg € N such that the
sequence (E(yk, fx))k>k, decays with a rate equal to s + 1.

PrOOF- We make the proof in the case s € (0,1). The proof in the case s = 1 is very similar (see
next section). Since ¢’ € L*°(R), the constant C'(yi) in is uniformly bounded w.r.t. k so that, for
all k > 0 C(yx) < ¢ for some ¢ > 0. For any (yg, fx) € A, let us then denote the real function py by

pr(A) =1 = A+ )\1+scE(yk,fk)S/2

for all A € [0,m]. Lemma [3| with (y, f) = (yx, fx) then allows to write that

VEYk+1, frr1) = Ag[lgf?ln] \/E((ykafk) ~AYLED) < min pN)VEW fr) = o) VE (s fro)-

A€[0,m]
— (23)
We then easily check that the optimal A is given by
1
— ;i (L4 9)Voe By, fi) 2 1,
Ae o= { (LA+s)Vsel/s\/E(y, fi)
1, it (14 9)Yc*\/E(yr, fr) < 1
leading to
s 1
— 1- I ,if (L)Y e VB, fr) > 1,
pe(Ak) = (14 s)sT el/o/E(yr, fr) (24)
¢ E(yr, fr)*/?, it (1+8)Yc*\/E(yr, fr) < 1.

If (14 s)Y2cY5\/E(yo, fo) < 1, then ¢'/*\/E(yo, fo) < 1 (and thus ¢*/*\/E(yx, fr) < 1 for all k € N)

then (23]) implies that
1+s
Mo VE(yrsn, foar) < (/*VE e, fr)

It follows that ¢'/*\/E(yx, fr) — 0 as k — oo with a rate equal to 1 + s.

If (145)'/5c/5\/E(yo, fo) > 1 then we check that the set I := {k € N, (1+s)"c"/*\/E(yx, fr) > 1}
is a finite subset of N; indeed, for all k € I, implies that

s S 1 s s S
Mo Bl o) < (1= s g ) VB 7 = VB )~
(25)

and the strict decrease of the sequence (01/5 E(yg, fx))ker.- Thus there exists kg € N such that for all
k> ko, (1+8)/5c'/*\/E(yy, fx) < 1, that is I is a finite subset of N. Arguing as in the first case, it

follows that v/ E(yg, fx) — 0 as k — oo.

It follows in particular, in view of that the sequence (pg (:\;)) ren decreases as well. O




Remark 1 The number of iterates kg necessary to reach a super-linear regime depends on the value of
E(yo, fo), I9' | ®) and ||g’||Ws,oo(R). For instance, with s = 1, writing from that c\/ E(yk, fr) <

e/ E(yo, fo) — % for all k such that c\/E(yg, fr) > 1, we obtain that
ko < {4(K\/E(y07f0) -1+ lJ, with K = O(C||g"||eceCV19'll=)

where || denotes the integer part of v € RT.
We also have the following convergence of the optimal sequence (Ag)r>o-

Lemma 5 Assume that g € Wy for some s € (0,1] and that ¢’ € L°(R). The sequence (Ag)g>o defined
m (@ converges to 1 as k — co.

ProOF- Take s = 1. In view of 7 we have, as long as E(yk, f) > 0, since A € [0,m)]

_ 2 E(yk+1, fk+1) _ . (yk,tt + Yk,xx "‘g(yk) - fk Lml(yka)\kykl))Q
(L=M)"= E(yr, fr) 21 =) E(y; fr)
e AT

2E(yr)
E(yrt1, fe+1) o500 (Yt + Yrax + 9(Wk) = fr Loy Lyr, AYR)),
S TR gy M) B )
E(Yrt1, frt1) VEWk, [i) |1y, A Yy ll2
S B fy T2V By, fr)

1
< E (Y41, fr+1) +2\/§m||l(yk7>\kyk)”2

E(ykafk) V E(ykafk) .
But, from and

/\2
12 AeYi) 2 < Ml ool (V)22 < mPC(yk) By, fr)
2v2
and thus 5
(1 _>\k)2 < (yk+17fk+1) —|—2\/§m30 E(yk,fk)-
E(yk, fr)
Consequently, since E(yg, f) — 0 and %}Ct;l) — 0, we deduce that (1 — \g)? — 0. O

We are now in position to prove the following convergence result.

Theorem 2 Assume that g € Wy for some s € (0,1] and that ¢ € L®(R). Let (yk, fr)ren be the
sequence defined by (@ Then, (yx, fr)ren — (T, f) in A where f is a null control for j solution of .
Moreover, there exists a kg € N such that the sequence (||(F, f) — (Uk, fx)ll 40 )k>k, decays with a rate equal
tos+1.

PROOF- In view of , we write

k k
Z |)‘n|||(YnlvF71)||Ao < sz VEYn, fn)-
n=0 n=0

Using that pn(xn) < po(xo) for all n > 0, we can write for n > 0,

VEYn, fn) Spnfl(}\vnfl)\/ E(yn—1, fn-1) < Po(xo) E(yn-1, fn-1) < (po(xo))n\/ E(yo, fo)-
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Then, using that po(Ag) = minyepo,mPo(A) < 1 (since po(0) = 1 and py(0) < 0), we finally obtain the

uniform estimate
k

S AV ED gy < €Y EG0 Jo)
n=0 1 _pO(Ao)

for which we deduce that the serie >, <o Ak (Ykl7 Fkl) converges in Ag. Writing from that (Ygt1, fr+1) =
(Yo, fo) — Zﬁ:o M (YL L) we con(iude that (yk, fx) strongly converges in A to (7, ?) = (yo, fo) +
Zkzo )‘k(Yk,l’Fkl,)'
Then, using that (Y;!, F}!) goes to zero as k — oo in Ap, we pass to the limit in and get that
(9, f) € A solves
Yt = Jow +9) = flo,  in Qr,
y=0, on X, (26)
(@('70)7@5("0)) = (yanl)> in Q.
Since the limit (7, f) belongs to A, (G(-,T),7,(-,T)) = (20, 21) in Q.
We then may write that for all £ > 0

1@ ) = e fdllao =1 D0 AV Fp)lla<m Y 1Yy Fyllag

p=k+1 p=k+1

<mC i \/ E(yp, fp)

p=k+1

<mC Z po(xo)p_k E(yi, fr)
p=k+1
po(Xo)

SmCilipo(Xo) E(yk, fr)

and conclude from Proposition 4] the decay with a rate equal to 1+ s after a finite number of iterates. O
In particular, along the sequence (yg, fx)r defined by , is a kind of coercivity property for the
functional E. We emphasize, in view of the non uniqueness of the zeros of F, that an estimate (similar to

(7)) of the form ||(y, f) — (y, f)|l4, < C\/E(y, f) does not hold for all (y, f) € A. We also insist in the
fact the sequence (yx, fx)x>0 and its limits (7, f) are uniquely determined from the initial guess (3o, fo)
and from our criterion of selection of the control F!. In other words, the solution (7, f) is unique up to
the element (yo, fo) € A.

Eventually, if we assume only that g € Wy and ¢’ € L (R), then we get the following result.

Proposition 3 Assume that g € Wy, ¢’ € L®(R). If ||¢|lcc s small enough so that
V201 g/ [|lsoe VI = < 1. (28)

then the sequence (Y, fr)(ken) defined by @) converges strongly to a controlled pair for .

PROOF- Writing, for all (y, f) € A and A € R, that
2E((y, /) =AY FN) = (1= N (e = Yow + 9(y) = FLlof) + 9y = AY") = g(y) + Ad' ()Y '[I3

2
< (Il—AI\/2E(y7f)+2A||g’oo|Y1||2> |

we obtain that

2
E((yr, fr) = MY FD) < E(yk, fr) (|1 — Al + V2|9’ (4 [0 Cre“2V Ig/(yk)”m>

11



for all A € R. Taking A = Ay = 1, the strict decrease of v/ E(yg, fx) w.r.t. k follows if holds true. O
In the next section, we get similar results of convergence relaxing the assumption g’ € L.

2.2.2 Convergence in the case g € Wy, s € (0,1] and an asymptotic behavior on ¢’
In this section, we assume only that ¢’ € L (R) and

loc
lim sup |g’(s)|
5|00 10g” [s]

<p, (29)

some constant 8 > 0. Equivalently, we assume that there exists a constant oz > 0 (possibly large) such
that
19'(s)| < a+ Blog*(1+|s|), VseR. (30)

The case 3 = 0 corresponds to the case developed in the previous section, i.e. ¢’ € L(R).

Within this more general framework, the difficulty is to have a uniform control with respect to k of
the observability constant C'e“2V llg’ (wr)lloo appearing in the estimates for (Y;!, F}l), see Prop In other
terms, we need to show that the sequence (yg, fi)ken) defined in is such that ||yx||co is uniformly
bounded.

In the sequel, we define the pair (y*, f*) € A such that f* is the control of minimal L?(gr)-norm for
y* solution of with g = 0.

Lemma 6 Assume that g satisfies . Then, for all By > 0, there exists a constant C(fy) such that
SUPgeo, 5, E(y* f*) < C(Bo)-

PROOF-We get that E(y*, f*) = S|y, — vk + 9(y*) — f* 1]13 = llg(y")[|3. In view of (B0), it follows
that

VE(y*, [*) < T|g(0)| + T(Oé + Blog?(1 + ||y*|oo)> 19" lloo-
Since y* is independent of g and therefore of 3, the result follows. |
Lemma 7 Assume that g satisfies (30). For any (y, f) € A, let (Y*, F') € Ay be the solution of (9).
1YY ) L 0mv) + 1 2,00 < d(y)VE(y, f)

with
d(y) = C3(1+ [[yllee)>V?,  C3:= Cre®Ve.

In particular (up to a constant independent of y and g),
1Yo (@ry < dy)V E(y, f) (31)
PRrOOF- Using that v/a + b < v/a + /b for all a,b > 0, it follows that

eC2VIT Wl < Cova (1 4 |lyllo0) 2V, Wy e A

then leads to the result. O
We also introduce the following notations

c(y) = Cllg" ||l (d(v))*, Vye A (32)

and

12



Definition 2.1 Let v* > 0 be defined as follows

—log(l — 1)
de(y*)\/E(y*.f*) .
. if 20y )VEW ) > 1,
v* =<{ 2C3log(1 + Cg\/E(Taf*))
1 log(2)

2C5 log(1+ Cs\/E(y*, 7))’

Proposition 4 Assume g € Wy for some s € (0,1] and that ¢’ satisfies the asymptotic behavior
with B < B* := min(Cy 2, (v*)?). Let (yr, fu)x>0 be the sequence of A defined in initialized with
(yo, fo) = (v*, f*) € A. Then E(yx, fx) — 0 as k — oco. Moreover, there exists a kg € N such that the
sequence (E(yk, fr))k>k, decays with a rate equal to s + 1.

else.

PROOF- In order to simplify the notations, we make the proof in the case s = 1. implies that
2
B((0.5) = M) < B ) (1= N+ )2 VEGT)) (33)
For any (yk, fx) € A, let us then denote the real function py by
pe(A) = |1 = Al + Ne(ys) vV E(yr, fr)
for all A € [0,1]. Lemma [3| with (y, f) = (yk, fx) then allows to write that

VEWkt1, fre1) = Ag[lgf}n] \/E((yk,fk) - AY,LED) < min pr( M)V E(yk, fr)-

~ \€l0,m]

We check that the optimal Ay is given by

1
, if 2 By, o) > 1,
2¢(yx) v/ E Yk, fr) it 2c(y) VE(yr, fr)

]., if 2C(yk)\/ E(yk,fk) <1

)\k:

leading to

1
1= L it 2e(y)VEW o) > 1,
pr(Ak) == 4e(yr)/E (Y, fr) (W) V' E Wk, frr) -

c(Yr) vV E ks fr)s it 2c(yr) vV E(yr, fr) < 1.

Now, assume that 2¢(yx )/ E(yk, fr) > 1 for some k > 0. Then, yx+1 = yxr — A\ Y, implies that

(1 + lyrsilloo) < (1 [lyelloo) + Akl Ve llsc,

1
2¢(yr) v/ E (Y, fr)

< (1 llyrlloc) + d(yr) vV E(yr, fr)
< (1 [lyrlloo) + C5 (1 + ) >V Eur, fr)
< (14 lyrlloo) (1 + C3v/E(ys, 1))

assuming that Cy+/B < 1. This leads to

< (1 + [lyrlloo) + d(yre)V E(r, fr)

C2vB
(1 + yrsalloe) VP < (1 + ||yk||oo)02ﬁ<1 + C3\V/ E(yr, fk))

Consequently, in the case 2¢(yx) v/ E(yk, fr) > 1, we get in view of

. )\/E(ykafk>-

de(yr) v/ E Yk, fr)

E(Yt1, for1) < (1 -
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and therefore

1
E(yk, fr)

cWrr1)VEWrt1, fre1) < (1_4c(yk) >C(yk+1) E(yk, fr)-

But

c(Wht1) _ (d(yk+1)

2C2/B
c(yw) d(yr) )

2
) §<1+03 E(yk, fr)

It follows that

2C2V/B 1
c(Wrr1)VEWrt1, fre1) < <1+Cs (yk,fk)) (1_4C(yk) (yk,fk)>c(yk) E(yk, fr)-

We start with k£ = 0 assuming that the initialization (yo, fo) = (y*, f*) is such that 2¢(yo) v/ E(yo, fo) >
1. Therefore,

)
4e(yo) v/ E (o, fo)

2C2VB
c(y1) E(y1,f1)§(1+03 E(Z/mfo)) (1— c(yo)v E(yo, fo)

Now, we take 8 € (0, 8*) so that

2C2/B 1
e(Yo, fo) = <1 +Cs E(yo’f0)> (1  4e(yo) E(y(),fo)) <t

In view of Lemma@ such a f strictly positif exists. It follows that c(y1)\/E(y1, f1) < c(yo)r/E (Yo, fo)-
Repeating the process with k& = 1, still assuming that 2¢(y1)/E(y1, f1) > 1, we have

c(y2)V E(yz2, f2) < e(y1, f1) c(y1) vV E(y1, f1) < e(yo, fo)e(yr) v E(y1, f1)

using that e(y1, f1) < e(yo, fo) since both \/E(y1, /1) < \/E(yo, fo) and ¢(y1)/E(y1, f1) < c(¥0)v/E(yo, fo)-
It follows that c(y2)v/E(y2, f2) < c(y1)/E(y1, f1). Repeating the arguments, we get that the two se-
quences (c(yx)vV/ EWk, fr))k>0 and (\/E(yk, fr)) k>0 strictly decrease. In particular, we get

(i) VE(yr, fr) < e(yo, fo) e(yo)vVE(o, fo), Yk >0

as long as 2¢(yr)/E(yk, fr) > 1. Its follows that c(yx)\/E(yk, fr) and \/E(yx, fr) goes to zeros. Con-
sequently, there exists a ko such that 2¢(yr)v/E(yk, fr) < 1 for all k > k.
Let k > ko such that 2¢(yr)v/E(yk, fr) < 1. Then, the optimal descent step Ay is equal to 1 and

Ek+1, fre1) < c(yw)E (ykafk):C(yk)\/E(ykafk)\/E(ykafk)S% E(yk, fr)-

Moreover,
(Wit 1)V EWrr1, frr1) < cWrr1) VE W, fr) c(ye) vV E(yr, fr)
2C2VB
S(1+03 E(?Jkafk)) (C(yk) E(yk,fk)>(6(yk) E(yk7fk))~

But

202\/B 1 202\/3
<1+C3 E(yk,fk)) (C(yk) E(ykvfk:)) < 2<1+03 E(yo,fo))
(- ovrT)
< —=|1- <1
2 4c(yo) v/ E (Yo, fo)
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(since e(yo, fo) < 1) under the assumption that 2¢(yo)+/E (Yo, fo) > 1. This implies that the sequence
(c(yk+1)v/ E(yr+1))r decreases strictly and then that the ratio

(Yrr 1)V EWrka1, fer1)/ W)V E Wk, fr)

decreases as well. It follows that the sequence (c¢(yx)\/E (yk, fx))r converges to zero as k tends to infinity.
But, since e(yi) = Cllg" lao(d(3))? = Cllg” [soC2(1+ [ylo)2%VP > Cllg” o C3 we get that By, fi) —
0 as well.

Eventually, the relation

2C2VB 2
c(Yrr1)VEYra1, fr1) < (1 + C3v/ E(yo, f0)> (C(yk) E(yg, fk))

implies the quadratic decrease of (E(yk, f&))k>ko-
In the more favorable situation for which 2¢(yg)+/E(yo) < 1, we may consider larger values of 5 such
that

2C2VB
<C(yo) E(yo,fo>) (1+C3\/E(yo,fo)> <1,
ie. \/B< 1 log(c(yo)v/E (yo, fo)) - 1 log(2)

20, log(1 + C3+v/E(yo, fo)) Elog(l +C5vE(yo, fo))

d

Theorem 3 Assume g € Wy for some s € (0,1] and that g’ satisfies the asymptotic behavior
with 8 < B* = min(Cy 2, (v*)?). Let (yg, fu)kso be the sequence of A defined in initialized with
(o, fo) = (y*, f*) € A. Then, (yx, fx)ren — (U, f) in A where f is a null control for y solution of ().
Moreover, there exists a ko € N such that the sequence (||(, f) — Yk, fx)ll 40 ) k>ko decays with a rate equal

tos—+ 1.

PRrROOF- The proof is very similar to the proof of Theorem [2 We write that, for any k& > 0,

k
(k> fr) = (yo, fo) + Z (Y, Fy)

n=0

leading to, using that A < m and (@), Ik, fi)lla < 110, fo)lla + m S5 _o d(gn) y/Elgms Fo). Writing
that d(y) < %, we finally get that

k

m
) S ) + = C\Yn E nyJn
lom Sl < U I+ iz 2 clVEG T
2¢(yn)VE(yn,fn) 21
m k
+ = C\Yn E(Yn, fn)-
Cllg"lsC5 nz:; (Yn)V E(Yn, fn)

2¢(yn)V E(yn,fn)<1

The first sum is finite since the set I :={n € N, 2¢(yn)/E(yn, fn) > 1} is a finite subset of N. The
convergence of the second sum is the consequence of the fact that ¢(y,)v/E(yn, frn) decays quadratically
to zero. 0
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3 Additional comments

1. We emphasize that the explicit construction used here allows to recover the null controllability property
of (1)) for nonlinearities g in Wy for one s € (0, 1] satisfying the asymptotic property on g'. Moreover,
we do not use a fixed point argument as in [I7]. On the other hand, this asymptotic condition on ¢
is slightly stronger than the asymptotic condition made in [I7]: this is due to our linearization of
which involves ¢'(s) while the linearization (4) in [I7] involves g(s)/s.

Moreover, the additional condition of ¢’ in W;, i.e. the existence of one s € (0,1) such that
SUDP, beR,ab % < oo allows to get a convergence of the sequence uniformly with respect to
the initial guess (yo, fo) € A and without smallness assumption on the data (see Proposition [3). In prac-
tice, this assumption is not really strong as it suffices to smooth the nonlinear functional g. Remark that
the functional g(s) = o + Bslog(1 + |s]), s € R for some § > 0 small and any « - which is somehow the
limit case in Theorem [1] - satisfies this assumption (in particular ¢” € L°°(R)) as well as the asymptotic
condition assumed in this work.

2. Among the admissible controlled pair (y,v) € Ao, we have selected for (Y1, F}) solution of (9]
the one which minimize the functional J(v) = ||v\|%2(qT).This leads to the estimate which is the key
point in the convergence analysis. The analyze remains true with any other quadratic functional of the
form J(y,v) = ||w1 v||%2(qT) + [Jwa y||%2(qT) involving positive weights w; and ws (see for instance [3]).

3. If we introduce F : A — L?(Q7) by F(y, f) = (Ytt — Yoz + 9(y) — f 1u), we get that E(y, f) =
HIF(y, £)l2 (Qr) 2nd observe that, for Ax = 1, the algorithm coincides with the Newton algorithm
associated to the mapping F' (mentioned in the introduction, see . This explains the super linear
convergence of Theorem notably a quadratic convergence in the case s = 1 for which we have a
control of ¢” in L>®(Qr). The optimization of the parameter \j allows to get a global convergence of the
algorithm and leads to the so-called damped Newton method (for F'). Under general hypothesis, global
convergence for this kind of method is achieved, with a linear rate (for instance; we refer to [6, Theorem
8.7]). As far as we know, the analysis of damped type Newton methods for partial differential equations
has deserved very few attention in the literature. We mention [9] [14] in the context of fluids mechanics.

4. Suppose to simplify that A; equals one (corresponding to the standard Newton method). Then,
for each k, the optimal pair (Y}, F}!) € A is such that the element (yxi1, frx+1) minimizes over A the
functional (z,v) — J(z — yk, v — fi) with J(z,v) := [|v||£2(4,), i-e. the control of minimal L?(gz) norm.
Instead, we may also select the pair (V}}, F}}) such that the element (yjt1, fr+1) minimizes the functional
(z,v) = J(z,v). This leads to the following sequence (y, fi)r defined by

Ykttt — Ykt tee + 9 Wk)Uks1 = fre1lo + 9 We)ue — 9(yk),  in Qr,
Y = 07 on ZT; (35)

(yk+1('70)7yk+1,t('70)) = (U’Oaul)a in Q.

In this case, for each k, (y, fr) is a controlled pair for a linearized wave equation, while, in the case of
the algorithm (I6), the sequence (yg, fi) is a sum of controlled pairs (Y}, F}}), n < k. This formulation
used in [7] is different and the corresponding analysis of convergence (at least in the framework of our
least-squares setting) is less straightforward because the right hand side term ¢'(yx)yx — g(yx) is not easily

bounded in term of v/ E(yg, fx)-

5. It should be noted as well that the upper bound of the parameter 8 in Theorem [I] depends on 2
and T but is independent of the initial data (ug,u;): precisely, B < (1+C2)~2 where Cy = C2(£, T) is the
constant appearing in . On the other hand, the upper bound of the parameter g in depends as
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well on E(yo, fo): premsely7 B < B* :=min(Cy 2, (v*)?). In particular, for c(yo)r/E(vo, fo) small enough,
we get that g* = 2 and we recover a bound depending only on € and T'.

Moreover, as expected, the number of iterates to achieve convergence (notably to enter in a super-
linear regime) depends on the size of the value ¢(yo)v/E(yo, fo). In Theorem , we have shown the
convergence of the sequence (yg, fx)ren when initialized with (y*, f*) controlled solution of the linear
wave equation. This choice is natural and leads to a uniform bound of E(yo, fo) in term of 8 in a range
(0,50) (see LemmalG). We may also consider the controlled pair solution of

Yir — Yow +9(0) +¢'(0)y* = f*1y, in Qr,
y* =0, on X, (36)
(y*(-,0), 97 (-,0)) = (uo, u1), in Q,
: * Lk * * *112(s+1
leading to (", £) = bla(u) — 9(0) — O Bagr) < arrkgelld I, - g 072

VEG 7 < 119l Iy 1S and also to Wy*,mgT(a+mog2<1+|y*||oo>)||y*|oo.

and then to

6. If the real number E(yo, fo) is small enough, then we may remove the asymptotic assumption
ong.

Proposition 5 Assume g € W, for some s € (0,1]. Let (yx, fx)r>o0 be the sequence of A defined in (L6)).
There exists a constant C(”g/HWs,oo(R)) such that if E(yo, fo) < C’(||g’HWSYOO(R)), then (g, fr)ven — (T, f)
in A where f is a null control fory solution of . Moreover, there exists a kg € N such that the sequence
(1@, F) = Wk, fr)ll Ag)k>ky decays with a rate equal to s + 1.

PROOF- Once again, for simplicity, we make the proof for s = 1. From , for all A € R,

VEWk+1, frr1) < minaepo,mpe(MN)V E(yr, fr),

pe(A) = |1 = X[+ N Cyr) vV E(y, fr), (37)

2
Cn) 1= 5 5" (Cre VIO )

2\[”9

We note B := ||¢"||o and D := B. Then,

2f

2 2
Clyess) = D (Cle<1+c2>\/|g'<yk+1>|m) _D <016<1+c2>\/|g'(ykAky,gﬂoo)

2
< D(Cle(1+02)\/|g/(yk)|oce(1+cz)\/)\kB|Yk1|OO) — C(yk)(€(1+Cz)\/m3,/\|yk1|\w)2

so that, multiplying by C(yk+1) and introducing the notation eg := C(yx)v/E (Yk, fx), we obtain the
inequality

2
epr1 < min pg(N) <€(1+C2)VmBV |Yk1|oo) k. (38)

A€[0,m]

Recalling from (T0) that ||V} ||e < Cy eUFVIG Wl | /E(y, | i) = (D71C(yx))Y*/E(yg, fr), we get
(1+ Co)VmB\/[[¥}} oo < (1+ Co)VmB(D ™ C(yi))* E(yr, fi)'/* (39)

and therefore )
<e<1+czwm3\/|v,3|m> < (OO By
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with Cs := 2(1 + Cy)vVmBD~ 4. Assuming that F(yx, fr) < 1 so that E(yx, fx)'/* < E(yk, fr)*/?, we
1/4
finally get (e(HC?) VmBy “YkIH“’f < s and from l)

ery1 < min (|1 — X+ ek/\z) eCae/” €.
A€lo,
M
ek
(Yo, fo) belongs to the set {(yo, fo) € A, E(yo, fo) < 1,e0 < 1/2,606036(1)/4 < 1}, the sequence (ex)r>0
goes to zero as k — oo (with a quadratic rate). Since C(yx) > DC? for all k € N, this implies that the
sequence (E(yg, fx))k>0 goes to zero as well. Moreover, from (1)), we get DI|(Y}}, F})[l4, < 6116/2 and
repeating the arguments of the proof of Theorem [2] we conclude that the sequence (yg, fx)r>0 converges
to a controlled pair for .

Remark that these computations are valid under the assumptions that ¢’ € LY° (R) and ¢g” € L>®(R)
but they did not use the assumption (3)) nor on the nonlinearity g. However, the smallness assumption
on ey requires a smallness assumption on +/E(yo, fo) (since dy > 1). This is equivalent to assume the
controllability of . Alternatively, in the case g(0) = 0, the smallness assumption on +/E(yo, fo is
achieved as soon as the data (ug,u;) is small for the norm V. This result of convergence is therefore

equivalent to the local controllability of (T).

C3 62/4

If 2e;, < 1, the minimum is reached for A = 1 leading < ege . Consequently, if the initial guess

7. Under the strong assumption ¢’ € L°>°(R) Theorem [2 remains true in the multi-dimensional case
(see [15]) assuming that the triplet (Q,w,T') satisfies the classical multiplier condition introduced in [12].

Theorem 4 Let Q is a bounded subset of R, 1 < d < 3 and w a non empty open subset of Q. Assume
that the triplet (Q,w,T) satisfies the multiplier condition. Assume that g € Wy for some s € (0,1] and
that ¢ € L™(R). Let (yk, fx)ren be the sequence defined by (@ Then, (yx, fr)ren — (@, f) in A
where f is a null control for § solution of . Moreover, there exists a kg € N such that the sequence
(1@, F) = (Wi, fr)ll Ag ) k>ke decays with a rate equal to s + 1.

The proof, although more technical, follows the line of proof of Theorem We refer to [§] for the
proof in the case of a semi-linear heat equation. Using [I1], Theorem [3| can be also extended to the
multidimensional case replacing the growth condition by the following one : limsup|_, 1J§1§§)‘|5| <p
for some 8 > 0.

8. Eventually, this approach may be extended, with few modifications, to the boundary case consid-
ered notably in [I6].

4 Appendix : Controllability results for the linearized wave
equation

We recall in this appendix some a priori estimates for the linearized wave equation with potential in
L*°(Qr) and right hand side in L*(Qr).

Proposition 6 Let A € L>®(Qr), B € L*(Qr) and (20,21) € V. Let w = (l1,lz). Assume T >
2max(ly,1 — l3). There exist control functions u € L*(qr) such that the solution of

2t — Zpe + Az =uly, + B, inQr,
z=0, on X, (40)
(Z('7O)7Zt('70)) = (20721)7 n Q:
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satisfies (2(-,T), z:(-,T)) = (0,0) in Q. Moreover, the unique control u which minimizes the L*(qr)-norm
together with the corresponding controlled solution satisfy the estimate

Fllzsgr + 122 20) |20z < O (nte(“CW Ml 1 ||z(>,zl||v)e02v Al (41)

for some constant C1,Cy > 0.

PROOF - The proof is based on estimates obtained [I7]. The control of minimal L?(gr)-norm is given
by u = ¢ 1, where ¢ solves the adjoint equation

Yoz — Pax + A‘P =0, in QT7
v =0, on X, (42)

(90('70)390t('30)) - (@07@1)& in €2,

with (g, ¢1) € H := L*(Q) x H~1(2) the unique minimizer of

J (o, 1) = ;//qT 802+//TBSO—<(30a21)7(¢0a901)>V,H

with ((z0,21), (w0, p1)) v, = (20, 01)m1(),H-1(2) — (21,%0)L2(0),22(0)- In particular, the control v
satisfies the optimality condition

[ oo+ [ Bo-(Gos).@opivan =0, ¥pnm) e H

qaT T

from which we deduce that |lul|3 ... < [|B|2ll¢ll2 + (20, 21) v ]|(20, 1) . From [I7, Lemma 2], we get
1, e)ll7o0 0,750y < Bull(po, o) 17 (1 + [| A% )eP2 VI~

for some constant By, By > 0 from which it follows that ||¢||3 < TBi||(wo,¢1)l|2(1 + || A%, )elB2V 4l
Moreover, from [I7, Theorem 4], there exists Cy,Cy > 0 such that ||(po, 01)||3; < C1e“2V |‘A”°°H4p||%7qT.

Combining these inequalities, we get
C
lullzzian < (1B12VEVEL(L+ A2 5 VI 4 o, 20y ) /Gre S VAT~

Using the inequality (1 + s2)%/2 < eV® for all s > 0, we get the result. Then, from [I7, Lemma 1], we
have

(2, 20) |2 0, 7:v) < D1 (II(ZO»Zl)IIfq(l + [ Alloo) + [lu Lo + BI%) P2Vl

for some constant D, Dy > 0 from which we deduce that

B2+ [ All) + 2||B%<1 +TB(1+ |A?m)eBW'A'“))eD?v Al

I M~ 07y < D1 (0,20
Using that (1 4+ 5)'/2 < eV® and (1 + s%) < e?V* for all s > 0, we get the estimate. O
We then discuss some properties of the operator K : L>®(Qr) — L*™(Qr) defined by K(§) = y¢ a

null controlled solution of the linear boundary value problem through the control of minimal L?(qr)
norm f¢. Proposition [6] with B = —g(0) leads to the estimate

1wes ve) L~ 0.1y < C (nuO, wllv + 9(0)loc+C) 'ﬁ@'w)e@v EE] (43)
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Then, as in [I7], we write that the assumption on g implies that there exists some d > 0 such
that [|[§(¥)]lee < d+ Blog*(1 + ||ylle) for all y € L®(Q7) from which it follows that €2V 19l <
eC2Va(1 4 ||¢]| o0 ) C2 VP, then leads to the estimate

lvellso < O (nuo,mnv n ||g<o>||2)e“+202)“3<1 T ellae) 20V,

Taking 3 small enough so that (1 +2Cs)y/B < 1, we conclude that there exists a constant M > 0 such
that ||£]|cc < M implies ||K(€)]lcoc < M. This is the argument in [I7]. Contrary to /3, we remark that M
depends on ||ug,u; ||y (and increases with ||ug, u1||v ).

The following proposition gives an estimate of the difference of two controlled solutions.

Proposition 7 Let a,A € L*(Qr) and B € L?>(Qr). Let u and v be the null controls of minimal
L?(qr)-norm for y and z solutions of
ytt_yxx+AyZU1w+Ba in Qr,
y=0, on X, (44)
(y('vo)ayt('a O)) = (UO,Ul), in Qv

and
2tt — Zex + (A+ @)z =vl, + B, inQr,
z = 0, on ZT, (45)
(2(+,0), 2¢(+,0)) = (ug, u1), n €,

respectively. Then,

lly — ZHLW(QT) < CilHa”OOeCz\/\|A+a|\ooe(2+302)\/|\AHoo <||B|2e(1+02)\/|A|oo + ||U0,U1||V)-

for some constants Cy,Cs > 0.

PROOF- We write that the control of minimal L?-norm for y and z are given by u = ¢ 1, and v = ¢, 1.,
where ¢ and ¢, solve the adjoint equation

Pit — Paz + Ap =0, in Qr, Pa,it — Paez + (A+a)p, =0, in Qr,
p =0, on X, p =0, on X,
(@(70)7 @t(70)) = (QDO, @l)a in Q7 (@(70% @t(70)) = (SOG,O) @a,l)7 in Q,

for some appropriate (g, ¥1), (Pa,0,Pa,1) € H. Consequently, the difference Z := z — y solves

Zyt — Zoe + (A+a)Z = @1, —ay, in Qr,

Z =0, on r, (46)
(Z(-,0), z(-,0)) = (0,0), in ,
while @ := (p, — @) solves
by — Py + (A + a’)(D = —ay in QT;
® =0, on X,

(q)(70)7(1)t(70)) = (QD(J.,O — $0y Pa,1 — Q01>7 in €.

We decompose & = ¥ + 1) where ¥ and 1) solves respectively

\Iltt - lIjza: + (A + a)\II =0 in QT: wtt - wza: + (A + a)w = —ay in QT7
v =0, on X, P =0, on X,
(\IJ(,O)7\IIt(7O)) = (Qﬁa,o — ¥0y Pa,1 — Sﬁl)y in Q, 77/1(70),%(,0)) = (0,0), in Qa
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and then deduce that W1, is the control of minimal L2-norm for Z solution of

Ztt_Zzz+(A+a)Z:\Illw+ (w]-w _ay>7 in QTv

Z = 07 on ET7
(Z(7O)7Zt(a0)) = (0,0), in Q.

Proposition [6] implies that
1¥ll2.0r + 1(Z, Zo)ll < (0.7 < Cul[oLe, — ayllae 2V I,

Moreover, energy estimates for ¢ leads to |1 r2(4p) < Cillall ||]l26“>V l[A+allee and also to

2
llle < Cullgo, el VAT < (Cle(%) 'A'“’) ]z

using that ||¢g, 01l < Cref2V l[Alloo |]4, 2. SO that
sqT
2
‘WHL?(qT) < CluaneCm/HA-&-an (Cle(1+C2)\/|A|oo) ||u||2,qT

from which we deduce that

1Z]|(@r) < C1 <||¢1w|| + |a||Lm(QT)||y||2> (1+2C2)y/TAllw
< Cullle (VP (44N ol ol
< Chllalloo (602\/m<01e(1+02)m>2 + 1)
= (”BHze(HCQ)m + [[uo, ua |V) €2V 14l

leading to the result. a
This result allows to show the following property on the operator K.

Proposition 8 Assume hypotheses of Theorem [1} Let M = M (|lug,u1|lv,8) a constant such that K
maps Boo (0, M) into itself and assume that §’ € L>°(0, M). For any &' € B (0, M), i = 1,2, there exists
a constant ¢(M) > 0 such that

15(€%) = K(€)lso < e(M)]1F' | L= 0,00 1E7 = &' |oo-

PROOF- For any £’ € B(0, M), i = 1,2, let ygi = K(£') be the null controlled solution of

Yeipt — Yeizx T Yei /g\(gi) =—g(0) + feily,, inQr, g(s) — g(0) s £0
ye =0, on X, g(s) = s ,

_ : '(0) s=0
(yﬁi('70)7y§i,t('70)) - (UO;Ul); mn Qa 9

through the control of minimal L?(gr) norm feily,. We observe that ye- is solution of

Yer it — Ve aw + Ye2 96 + ye2(9(63) — 9(€1)) = —g(0) + fexlw,  in Qr,
Ye2 = 0, on X,
(y§2('7 0)3 yfz,t('ao)) = (u07u1)7 in Q.
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Therefore, from Propositionwith B=—g(0), A=9(&"), a=§(&%) — 9(&"), ye2 — yer satisfies

lyez — yerlloo < A€ €2)I19(E%) — G(EN) lloo (47)

where the positive constant

2
A(fl,fz) ;:Cf(ecz ||Q(52)|x<cle(1+02) |g(51)|m>>
(||9(0)||26(1+02) '-‘?<€1>'°°+||uo7u1|v)602 1960 oo

is bounded in term of M for all £ € B, (0, M). We introduce ¢(M) such that A(¢L, &%) < e(M). (@7)
then leads to the result.

In particular, if ||§'[| oo (0,ar) < % for some d < 1, then the operator K is contracting. Remark
however that the bound depends on the norm |Jug, u; ||y of the initial data to be controlled. ]
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