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Approximation of exact controls for semi-linear 1D wave

equations using a least-squares approach

Arnaud Münch∗ Emmanuel Trélat†

October 22, 2020

Abstract

The exact distributed controllability of the semilinear wave equation ytt − yxx + g(y) = f 1ω,

assuming that g satisfies the growth condition |g(s)|/(|s| log2(|s|)) → 0 as |s| → ∞ and that g′ ∈
L∞loc(R) has been obtained by Zuazua in the nineties. The proof based on a Leray-Schauder fixed

point argument makes use of precise estimates of the observability constant for a linearized wave

equation. It does not provide however an explicit construction of a null control. Assuming that

g′ ∈ L∞loc(R), that supa,b∈R,a6=b |g′(a) − g′(b)|/|a − b|r < ∞ for some r ∈ (0, 1] and that g′ satisfies

the growth condition |g′(s)|/ log2(|s|)→ 0 as |s| → ∞, we construct an explicit sequence converging

strongly to a null control for the solution of the semilinear equation. The method, based on a least-

squares approach guarantees the convergence whatever the initial element of the sequence may be.

In particular, after a finite number of iterations, the convergence is super linear with rate 1 + r.

This general method provides a constructive proof of the exact controllability for the semilinear wave

equation.

AMS Classifications: 35Q30, 93E24.

Keywords: Semilinear wave equation, Exact controllability, Least-squares approach.

1 Introduction

Let Ω := (0, 1) and ω be a non empty open set of Ω. Let T > 0 and denote QT := Ω × (0, T ),

qT := ω × (0, T ) and ΣT := ∂Ω × (0, T ). Let g : R → R be a continuous function. We consider the

semilinear wave equation 
ytt − yxx + g(y) = f1ω, in QT ,

y = 0, on ΣT ,

(y(·, 0), yt(·, 0)) = (u0, u1), in Ω,

(1)

where (u0, u1) ∈ V := H1
0 (Ω) × L2(Ω) is the initial state of y and f ∈ L2(qT ) is a control function. We

assume that there exists a positive constant C such that

|g(s)| ≤ C(1 + |s|) log2(1 + |s|), ∀s ∈ R, (2)

so that (1) has a unique global weak solution in C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) (see [2]).

The exact controllability for (1) is formulated as follows: for any (u0, u1), (z0, z1) ∈ V , find a control

function f ∈ L2(qT ) such that the weak solution of (1) satisfies (y(·, T ), yt(·, T )) = (z0, z1) at time T > 0.

Assuming T large enough and a growth condition on the nonlinearity g at infinity, this problem has been

solved in [17].
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Theorem 1 [17] Assume that ω = (l1, l2) with 0 ≤ l1 < l2 ≤ 1. Assume T > 2 max(l1, 1 − l2). There

exists a β > 0 such that if the function g ∈ C1(R) satisfies

lim sup
|s|→∞

|g(s)|
|s| log2 |s|

< β, (3)

then for all (y0, y1), (z0, z1) ∈ V , there exists control f ∈ L2(qT ) such that the solution of (1) satisfies

(y(·, T ), yt(·, T )) = (z0, z1).

The constant β depends on T and Ω but is independent of the data (u0, u1), (z0, z1). Moreover, it is

proved in [17] that if g behaves at infinity like −s logp(|s|) with p > 2, then due to blow up phenomena,

the system is not exactly controllable in any time T > 0. Later on, Theorem 1 has been improved in [1]

relaxing the condition (3) by

lim sup
|s|→∞

∣∣∣∣∫ s

0

g(r)dr

∣∣∣∣[|s| ∞∏
k=1

logk(ek + s2)

]−2

<∞

where logk denotes the iterate logarithm function and ek the real number such that logk(ek) = 1. This

growth condition is sharp since solution of (1) may blow up whenever g grow faster at infinity and g

has the bad sign. The multidimensional case for which Ω is a bounded domain of Rd, d > 1 with a

C1,1 boundary has been addressed in [11]. Assuming that the support ω of the control function is a

neighborhood of ∂Ω and that T > diam(Ω\ω), the exact controllability of (1) is proved assuming the

growth condition lim sup|s|→∞
|g(s)|

|s|
√

log |s|
< ∞. For control domains ω satisfying the classical multiplier

method of Lions [12], the exact controllability has been proved in [15] assuming g globally Lipschitz

continuous. We also mention [5] where a positive boundary controllability result is proved for a specific

class of initial and final data and T large enough.

The proof given in [17] is based on a fixed point argument introduced in [16] that reduces the exact

controllability problem to the obtention of suitable a priori estimates for the linearized wave equation

with a potential. More precisely, it is shown that the operator K : L∞(QT )→ L∞(QT ), where yξ := K(ξ)

is a controlled solution through the control function fξ of the linear boundary value problem
yξ,tt − yξ,xx + yξ ĝ(ξ) = −g(0) + fξ1ω, in QT ,

yξ = 0, on ΣT ,

(yξ(·, 0), yξ,t(·, 0)) = (u0, u1), in Ω,

ĝ(s) :=


g(s)− g(0)

s
s 6= 0,

g′(0) s = 0

, (4)

satisfying (yξ(·, T ), yξ,t(·, T )) = (z0, z1) possesses a fixed point. The control fξ is chosen in [17] as the

one of minimal L2(qT )-norm. The existence of a fixed point for the compact operator K is obtained by

using the Leray-Schauder’s degree theorem. Precisely, it is shown that if β is small enough, then there

exists a constant M = M(‖u0, u1‖V , ‖z0, z1‖V ) such that K maps the ball B∞(0,M) into itself.

The main goal of this work is to determine an approximation of the controllability problem associated

to (1), that is to construct an explicit sequence (fk)k∈N converging strongly toward an exact control

for (1). A natural strategy is to take advantage of the method used in [17] and consider the Picard

iterates (yk)k>0 associated with the operator K defined by yk+1 = K(yk), k ≥ 0 initialized with any

element y0 ∈ L∞(QT ). The sequence of controls is then (fk)k∈N so that fk+1 ∈ L2(qT ) is the control of

minimal L2(qT )-norm for yk+1 solution of
yk+1,tt − yk+1,xx + yk+1 ĝ(yk) = −g(0) + fk+11ω, in QT ,

yk+1 = 0, on ΣT ,

(yk+1(·, 0), yk+1,t(·, 0)) = (y0, y1), in Ω.

(5)

Such strategy usually fails since the operator K is a priori not strictly contracting including for globally

Lipschitz continuous function g. We refer to [7] exhibiting lack of convergence in parabolic cases when
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such method is used. As is also usual for nonlinear problems, we may employ a Newton type method in

order to find a zero of the mapping F̃ : Y 7→W defined by

F̃ (y, f) :=

(
ytt − yxx + g(y)− f1ω, y(· , 0)− u0, yt(· , 0)− u1, y(· , T )− z0, yt(· , T )− z1

)
(6)

for some appropriates Hilbert spaces Y and W (see below). Assuming g ∈ C1(R) so that F̃ ∈ C1(Y,W ),

the Newton iterative method for F̃ reads as follows: given (y0, f0) in Y , define the sequence (yk, fk)k∈N
iteratively as follows (yk+1, fk+1) = (yk, fk)− (Yk, Fk) where Fk is a control for Yk solution of

Yk,tt − Yk,xx + g′(yk)Yk = Fk 1ω + yk,tt − yk,xx + g(yk)− fk1ω, in QT ,

Yk = 0, on ΣT ,

Yk(·, 0) = u0 − yk(·, 0), Yk,t(·, 0) = u1 − yk,t(·, 0) in Ω

(7)

such that Yk(·, T ) = −yk(·, T ) and Yk,t(·, T ) = −yk,t(·, T ) in Ω. This linearization makes appear an

operator KN , so that yk+1 = KN (yk), involving the first derivative of g. However, as is well known, such

sequence may not converge if the initial guess (y0, f0) is not close enough to a zero of F (we refer again

to [7] exhibiting divergence of the sequence for large data).

The controllability of nonlinear partial differential equations has attracted a large number of works in

the last decades. We refer to the monography [4] and the references therein. However, as far as we know,

very few are concerned with the approximation of exact controls for nonlinear partial differential equa-

tions, so that the construction of convergent control approximations for controllable nonlinear equation

remains a challenges.

Assuming that g′ ∈ L∞loc(R) satisfies an asymptotic property similar to (3), and in addition that

there exists one r in (0, 1] such that supa,b∈R,a6=b
|g′(a)−g′(b)|
|a−b|r < ∞, we construct, for any initial data

(u0, u1) ∈ V , a strongly convergent sequence (fk)k∈N toward a control for (1). Moreover, after a finite

number of iterates, the convergence is super linear with a rate equal to 1+r. This is done by introducing a

quadratic functional which measures how a pair (y, f) ∈ Y is close to a controlled solution for (1) and then

by determining a particular minimizing sequence enjoying the announced property. A natural example

of so-called error (or least-squares) functional is given by Ẽ(y, f) := 1
2‖F̃ (y, f)‖2W to be minimized over

Y . In view of controllability results for (1), the non-negative functional Ẽ achieves its global minimum

equal to zero for any control pair (y, f) ∈ Y of (1). Inspired by recent works concerning the Navier-Stokes

system (see [10]), we determine, through a specific descent direction, a minimizing sequence (yk, fk)k≥0

converging to a zero of the quadratic functional.

The paper is organized as follows. Then, in Section 2, we define the least-squares functional E and the

corresponding optimization problem (8) over the Hilbert A. We show that E is Gateaux-differentiable

differentiable over A and that any critical point (y, f) for E for which g′(y) belongs to L∞(QT ) is also

a zero of E. This is done by introducing a descent direction (Y 1, F 1) for E at any (y, f) for which

E′(y, f) · (Y 1, F 1) is proportional to E(y, f). Then, assuming that the nonlinear function g satisfies

the above conditions, notably that supa,b∈R,a6=b
|g′(a)−g′(b)|
|a−b|r < ∞ for some r in (0, 1], we determine a

minimizing sequence based on (Y 1, F 1) which converges strongly to a controlled pair for the semilinear

wave equation (1). Moreover, we prove that after a finite number of iterates, the convergence enjoys

a rate equal to 1 + s. We also emphasize in Section 3 that this least-squares approach coincides with

the damped Newton method one may use to find a zero of a mapping similar to F̃ mentioned above.

The appendix section 4 states some a priori estimates for the linearized wave equation with potential in

L∞(QT ) and source term in L2(QT ) and emphasize that the operator K is contractant under smallness

assumption on ‖ĝ′‖L∞loc(R)

As far as we know, the method introduced and analyzed in this work is the first one providing an

explicit construction of controls for semilinear wave equation.

Along the text, we shall denote by ‖ · ‖∞ the usual norm in L∞(R), (·, ·)X the scalar product of X

(if X is a Hilbert space) and by 〈·, ·〉X,Y the duality product between the spaces X and Y . We shall also
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denote by C = C(Ω, T ), C1 = C1(Ω, T ), ..., positive constants only dependent on Ω and T . Last, we shall

use the notation ‖ · ‖2,qT for ‖ · ‖L2(qT ) and ‖ · ‖p for ‖ · ‖Lp(QT ), mainly for p = 2 and p =∞.

2 The least-squares method and its analysis

For any s ∈ [0, 1], we define the space

Ws =

{
g ∈ C(R), g′ ∈ L∞loc(R), sup

a,b∈R,a6=b

|g′(a)− g′(b)|
|a− b|s

<∞
}
.

The case s = 0 reduces to W0 = {g ∈ C(R), g′ ∈ L∞loc(R)} while the case s = 1 corresponds to

W1 = {g ∈ C(R), g′ ∈ L∞loc(R), g′′ ∈ L∞(R)}.

2.1 The least-squares method

We assume that g belongs to W0 and introduce the vector space A0

A0 =

{
(y, f) : y ∈ L2(QT ), (y(·, 0), yt(·, 0)) ∈ V , f ∈ L2(qT ), ytt − yxx ∈ L2(QT ),

(y(·, 0), yt(·, 0)) = (0, 0), (y(·, T ), yt(·, T )) = (0, 0) in Ω, y = 0 on ΣT

}
.

Endowed with the scalar product

((y, f), (y, f))A0
=(y, y)2 + ((y(·, 0), yt(·, 0)), (y(·, 0), yt(·, 0)))V

+ (ytt − yxx, ytt − yxx)2 + (f, f)2,qT

A0 is an Hilbert space. We shall note ‖(y, f)‖A0 :=
√

((y, f), (y, f))A0 . We also consider the affine

(convex) space A

A =

{
(y, f) : y ∈ L2(QT ), (y(·, 0), yt(·, 0)) ∈ V , f ∈ L2(qT ), ytt − yxx ∈ L2(QT ),

(y(·, 0), yt(·, 0)) = (u0, u1), (y(·, T ), yt(·, T )) = (z0, z1) in Ω, y = 0 on ΣT

}
.

Observe also that we can write A = (y, f) +A0 for any element (y, f) ∈ A.

For any fixed (y, f) ∈ A, we consider the following extremal problem :

inf
(y,f)∈A0

E(y + y, f + f) (8)

where E : A → R is defined as follows

E(y, f) :=
1

2

∥∥ytt − yxx + g(y)− f 1ω
∥∥2

L2(QT )

justifying the least-squares terminology we have used.

Remark that the functional E is well-defined in A. Precisely, a priori estimate for the linear wave

equation reads as

‖(y, yt)‖2L∞(0,T ;V ) ≤ C
(
‖ytt − yxx‖2L2(QT ) + ‖y0, y1‖2V

)
for any y such that (y, f) ∈ A and implies in this one dimensional setting that y ∈ L∞(QT ). Since

g ∈W0, |g(s)− g(0)| ≤ ‖g′‖∞|s| for all s ∈ R so that ‖g(y)‖2 ≤ |g(0)|
√
|QT |+ ‖g′‖∞,loc‖y‖2.

Within the hypotheses of Theorem 1, the infimum of the functional of E is zero and is reached by

at least one pair (y, f) ∈ A, solution of (1) and satisfying (y(·, T ), yt(·, T )) = (z0, z1). Conversely, any
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pair (y, f) ∈ A for which E(y, f) vanishes is solution of (1). In this sense, the functional E is a so-called

error functional which measures the deviation of (y, f) from being a solution of the underlying nonlinear

equation. A practical way of taking a functional to its minimum is through some clever use of descent

directions, i.e the use of its derivative. In doing so, the presence of local minima is always something that

may dramatically spoil the whole scheme. The unique structural property that discards this possibility

is the strict convexity of the functional E. However, for nonlinear equation like (1), one cannot expect

this property to hold for the functional E. Nevertheless, we insist in that one may construct a particular

minimizing sequence which cannot converge except to a global minimizer leading E down to zero.

In order to construct such minimizing sequence, we look, for any (y, f) ∈ A, for a pair (Y 1, F 1) ∈ A0

solution of the following formulation
Y 1
tt − Y 1

xx + g′(y) · Y 1 = F 11ω +
(
ytt − yxx + g(y)− f 1ω

)
, in QT ,

Y 1 = 0, on ΣT ,

(Y 1(·, 0), Y 1
t (·, 0)) = (0, 0), in Ω.

(9)

Remark that (Y 1, F 1) belongs to A0 if and only if F 1 is a null control for Y 1. Among the controls of

this linear equation, we select the control of minimal L2(qT ) norm. We have the following property.

Lemma 1 Assume g ∈ W0. Assume that T > 2 max(l1, 1− l2). Let any (y, f) ∈ A. There exists a pair

(Y 1, F 1) ∈ A0 solution of (9). Moreover, the pair (Y 1, F 1) for which ‖F 1‖2,qT is minimal satisfies the

following estimates :

‖(Y 1, Y 1
t )‖L∞(0,T ;V ) + ‖F 1‖2,qT ≤ C1e

C2

√
‖g′(y)‖∞

√
E(y, f), (10)

and

‖(Y 1, F 1)‖A0
≤ C1e

C2

√
‖g′(y)‖∞

√
E(y, f). (11)

Proof- The first estimate is a consequence of Proposition 6 (see the appendix) using the equality

‖∂tty −∆y + g(y)− f 1ω‖2 =
√

2E(y, f). The second one follows from

‖(Y 1, F 1)‖A0
≤ ‖Y 1

tt − Y 1
xx‖2 + ‖Y 1‖2 + ‖F 1‖2,qT + ‖Y 1(·, 0), Y 1

t (·, 0)‖V
≤ (1 + ‖g′(y)‖∞)‖Y 1‖2 + 2‖F 1‖2,qT +

√
E(y, f)

≤ C1(1 + ‖g′(y)‖2∞)eC2

√
‖g′(y)‖∞

√
E(y, f)

≤ C1e
(2+C2)

√
‖g′(y)‖∞

√
E(y, f).

using that (1 + s2) ≤ e2s for all s ≥ 0. 2

In particular, this implies that

‖Y 1‖L∞(QT ) ≤ C1e
C2

√
‖g′(y)‖∞

√
E(y, f),

The interest of the pair (Y 1, F 1) ∈ A0 lies in the following result.

Lemma 2 Assume that g ∈ W0 and T > 2 max(l1, 1 − l2). Let (y, f) ∈ A and let (Y 1, F 1) ∈ A0 be a

solution of (9). Then the derivative of E at the point (y, f) ∈ A along the direction (Y 1, F 1) defined by

E′(y, f) · (Y 1, F 1) := limλ→0,λ6=0
E((y,f)+λ(Y 1,F 1))−E(y,f)

λ satisfies

E′(y, f) · (Y 1, F 1) = 2E(y, f). (12)

Proof- We preliminary check that for all (Y, F ) ∈ A0, the functional E is differentiable at the point

(y, f) ∈ A along the direction (Y, F ) ∈ A0. For any λ ∈ R, simple computations lead to the equality

5



E(y + λY, f + λF ) = E(y, f) + λE′(y, f) · (Y, F ) + h((y, f), λ(Y, F ))

with

E′(y, f) · (Y, F ) :=

(
ytt − yxx + g(y)− f 1ω, Ytt − Yxx + g′(y)Y − F 1ω

)
2

(13)

and

h((y, f), λ(Y, F )) :=
λ2

2

(
Ytt − Yxx + g′(y)Y − F 1ω, Ytt − Yxx + g′(y)Y − F 1ω

)
2

+ λ

(
Ytt − Yxx + g′(y)Y − F 1ω, l(y, λY )

)
2

+

(
ytt − yxx + g(y)− f 1ω, l(y, λY )

)
+

1

2
(l(y, λY ), l(y, λY ))

where l(y, λY ) := g(y + λY ) − g(y) − λg′(y)Y . The application (Y, F ) → E′(y, f) · (Y, F ) is linear and

continuous from A0 to R as it satisfies

|E′(y, f) · (Y, F )| ≤ ‖ytt − yxx + g(y)− f 1ω‖2‖Ytt − Yxx + g′(y)Y − F 1ω‖2

≤
√

2E(y, f)

(
‖(Ytt − Yxx)‖2 + ‖g′(y)‖L∞(QT )‖Y ‖2 + ‖F 1ω‖2

)
≤
√

2E(y, f) max
(
1, ‖g′(y)‖∞

)
‖(Y, F )‖A0 .

(14)

Similarly, for all λ ∈ R?,∣∣∣∣ 1λh((y, f), λ(Y, F ))

∣∣∣∣ ≤ λ

2
‖Ytt − Yxx + g′(y)Y − F 1ω‖22

+

(
λ‖Ytt − Yxx + g′(y)Y − F 1ω‖2 +

√
2E(y, f) +

1

2
‖l(y, λY )‖2

)
1

λ
‖l(y, λY )‖2.

Since g′ ∈ L∞loc(R) and y ∈ L∞(QT ), we have∣∣∣∣ 1λl(y, λY )

∣∣∣∣= ∣∣∣∣g(y + λY )− g(y)

λ
− g′(y)Y

∣∣∣∣ ≤ 2‖g′(y)‖L∞(QT )|Y |, a.e. in QT

and that

∣∣∣∣ 1
λ l(y, λY )

∣∣∣∣= ∣∣∣∣ g(y+λY )−g(y)
λ − g′(y)Y

∣∣∣∣→ 0 as λ→ 0, a.e. in QT . From the Lebesgue’s Theorem,

it follows that | 1λ |‖l(y, λY )‖2 → 0 as λ → 0 and then that |h((y, f), λ(Y, F ))| = o(λ). We deduce that

the functional E is differentiable at the point (y, f) ∈ A along the direction (Y, F ) ∈ A0.

Eventually, the equality (12) follows from the definition of the pair (Y 1, F 1) given in (9). 2

Remark that from the equality (13), the derivative E′(y, f) is independent of (Y, F ). We can then

define the norm ‖E′(y, f)‖(A0)′ := sup(Y,F )∈A0

E′(y,f)·(Y,F )
‖(Y,F )‖A0

associated to (A0)′, the set of the linear and

continuous applications from A0 to R

Combining the equality (12) and the inequality (10), we deduce the following estimate of E(y, f) in

term of the norm of E′(y, f).

Proposition 1 Assume g ∈W0 and T > 2 max(l1, 1− l2). For any (y, f) ∈ A, the following inequalities

hold true:

1√
2 max

(
1, ‖g′(y)‖∞

)‖E′(y, f)‖A′0 ≤
√
E(y, f) ≤ 1√

2
C1e

C2

√
‖g′(y)‖∞‖E′(y, f)‖A′0 (15)

where C1 and C2 are the positive constants from Proposition 1.
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Proof- (12) rewrites E(y, f) = 1
2E
′(y, f) · (Y 1, F 1) where (Y 1, F 1) ∈ A0 is solution of (9) and therefore,

with (11)

E(y, f) ≤ 1

2
‖E′(y, f)‖A′0‖(Y

1, F 1)‖A0
≤ 1

2
C1e

C2

√
‖g′(y)‖∞‖E′(y, f)‖A′0

√
E(y, f).

On the other hand, for all (Y, F ) ∈ A0, the inequality (14), i.e.

|E′(y, f) · (Y, F )| ≤
√

2E(y, f) max

(
1, ‖g′(y)‖∞

)
‖(Y, F )‖A0

leads to the left inequality. 2

In particular, any critical point (y, f) ∈ A for E (i.e. for which E′(y, f) vanishes) such that

‖g′(y)‖L∞(QT ) < ∞ is a zero for E, a pair solution of the controllability problem. In other words,

any sequence (yk, fk)k>0 satisfying ‖E′(yk, fk)‖A′0 → 0 as k → ∞ and for which ‖g′(yk)‖∞ is uniformly

bounded is such that E(yk, fk)→ 0 as k →∞. We insist that this property does not imply the convexity

of the functional E (and a fortiori the strict convexity of E, which actually does not hold here in view of

the multiple zeros for E) but show that a minimizing sequence for E can not be stuck in a local minimum.

On the other hand, the left inequality indicates the functional E is flat around its zero set. As a

consequence, gradient based minimizing sequences may achieve a very low rate of convergence (we refer

to [13] and also [10] devoted to the Navier-Stokes equation where this phenomenon is observed).

2.2 A strongly convergent minimizing sequence for E

We now examine the convergence of an appropriate sequence (yk, fk) ∈ A. In this respect, we observe that

equality (12) shows that −(Y 1, F 1) given by the solution of (9) is a descent direction for the functional E.

Therefore, we can define at least formally, for any m ≥ 1, a minimizing sequence (yk, fk)k>0 as follows:
(y0, f0) ∈ A,
(yk+1, fk+1) = (yk, fk)− λk(Y 1

k , F
1
k ), k > 0,

λk = argminλ∈(0,m]E
(
(yk, fk)− λ(Y 1

k , F
1
k )
)
,

(16)

where (Y 1
k , F

1
k ) ∈ A0 is such that F 1

k is the null control of minimal L2(qT )-norm for Y 1
k , solution of

Y 1
k,tt − Y 1

k,xx + g′(yk) · Y 1
k = F 1

k 1ω + (yk,tt − yk,xx + g(yk)− fk1ω), in QT ,

Y 1
k = 0, on ΣT ,

(Y 1
k (·, 0), Y 1

k,t(·, 0)) = (0, 0), in Ω.

(17)

We prove in this section the strong convergence of the sequence (yk, fk)k∈N toward a controlled pair

for 1, first in the case g′ ∈ L∞(R) in Theorem 2 and then in the case g′ ∈ L∞(R) and satisfying a growth

condition at infinity in Theorem 3

We first perform the analysis assuming the non linear function g in W1, notably that g′′ ∈ L∞(R)

(the derivatives here are in the sense of distribution). We first prove the following lemma.

Lemma 3 Assume that g ∈W1 and that T > 2 max(l1, 1− l2). For any (y, f) ∈ A, let (Y 1, F 1) ∈ A0 be

defined by (9). For any λ ∈ R and k ∈ N, the following estimate holds, for some C > 0
E
(
(y, f)− λ(Y 1, F 1)

)
≤ E(y, f)

(
|1− λ|+ λ2 C(y)

√
E(y, f)

)2

,

C(y) :=
C

2
√

2
‖g′′‖∞

(
C1e

C2

√
‖g′(y)‖∞

)2

.

(18)

7



Proof- With g ∈W1, we write that

|l(y, − λY 1)| = |g(y − λY 1)− g(y) + λg′(y)Y 1| ≤ λ2

2
‖g′′‖∞(Y 1)2 (19)

and obtain that

2E
(
(y, f)− λ(Y 1, F 1)

)
=

∥∥∥∥(ytt − yxx + g(y)− f 1ω
)
− λ

(
Y 1
tt − Y 1

xx + g′(y)Y 1 − F 1ω
)

+ l(y,−λY 1)

∥∥∥∥2

2

=

∥∥∥∥(1− λ)
(
ytt − yxx + g(y)− f 1ω

)
+ l(y,−λY 1)

∥∥∥∥2

2

≤
(∥∥(1− λ)

(
ytt − yxx + g(y)− f 1ω

)∥∥
2

+
∥∥l(y,−λY 1)

∥∥
2

)2

≤ 2

(
|1− λ|

√
E(y, f) +

λ2

2
√

2
‖g′′‖∞‖(Y 1)2‖2

)2

.

(20)

But, in view of (10), we have

‖(Y 1)2‖2 ≤ ‖Y 1‖L∞(QT )‖Y 1‖L2(QT ) ≤ C‖Y 1‖2L∞(0,T ;H1
0 (Ω))

≤ C
(
C1e

C2

√
‖g′(y)‖∞

)2

E(y, f)
(21)

for some constant C = C(Ω, T ) from which we get (18). 2

The previous result still holds if we assume only that g ∈Ws for some s ∈ (0, 1). For any g ∈Ws, we

introduce the notation ‖g′‖
W̃ s,∞(R)

:= supa,b∈R,a 6=b
|g′(a)−g′(b)|
|a−b|s . We have the following result.

Lemma 4 Assume that g ∈ Ws for some s ∈ (0, 1) and that T > 2 max(l1, 1 − l2). For any (y, f) ∈ A,

let (Y 1, F 1) ∈ A0 be defined by (9). For any λ ∈ R and k ∈ N, the following estimate holds
E
(
(y, f)− λ(Y 1, F 1)

)
≤ E(y, f)

(
|1− λ|+ λ1+s C(y)E(y, f)s/2

)2

,

C(y) :=
C

2
√

2
‖g′‖

W̃ s,∞(R)

(
C1e

C2

√
‖g′(y)‖∞

)1+s

.

(22)

Proof- For any (x, y) ∈ R2 and λ ∈ R, we write g(x+ λy)− g(x) =
∫ λ

0
yg′(x+ ξy)dξ leading to

|g(x+ λy)− g(x)− λg′(x)y| ≤
∫ λ

0

|y||g′(x+ ξy)− g′(x)|dξ

≤
∫ λ

0

|y|1+s|ξ|s |g
′(x+ ξy)− g′(x)|

|ξy|s
dξ

≤ ‖g′‖
W̃ s,∞(R)

|y|1+s λ
1+s

1 + s
.

It follows that

|l(y,−λY 1)| = |g(y − λY 1)− g(y) + λg′(y)Y 1| ≤ ‖g′‖
W̃ s,∞(R)

λ1+s

1 + s
|Y 1|1+s

and ∥∥l(y, λY 1)
∥∥

2
≤ ‖g′‖

W̃ s,∞(R)

λ1+s

1 + s

∥∥|Y 1|1+s
∥∥
L2(0,T ;L2(Ω))

.

But ∥∥|Y 1|1+s
∥∥2

L2(0,T ;L2(Ω))
=

∫
QT

(Y 1)2(s+1) dx dt = ‖Y 1‖2(s+1)

L2(s+1)(QT )
≤ C‖Y 1‖2(s+1)

L∞(QT )
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leading to ∥∥|Y 1|1+s
∥∥
L2(0,T ;L2(Ω))

≤ C
(
C1e

C2

√
‖g′(y)‖∞

)1+s

E(y, f)
1+s
2

and to the result. 2

Proceeding as in [9], we are now in position to prove the strong convergence result for the sequences

(E(yk, fk))(k≥0) and (yk, fk)(k≥0) for the norm ‖ · ‖A. In order to fix notations and arguments, we first

start by making the stronger assumption that g′ ∈ L∞(R).

2.2.1 Convergence in the case g ∈Ws, s ∈ (0, 1] and g′ ∈ L∞(R)

Proposition 2 Assume g ∈Ws for some s ∈ (0, 1] and that g′ ∈ L∞(R). Let (yk, fk)k>0 be the sequence

of A defined in (16). Then E(yk, fk) → 0 as k → ∞. Moreover, there exists a k0 ∈ N such that the

sequence (E(yk, fk))k>k0 decays with a rate equal to s+ 1.

Proof- We make the proof in the case s ∈ (0, 1). The proof in the case s = 1 is very similar (see

next section). Since g′ ∈ L∞(R), the constant C(yk) in (22) is uniformly bounded w.r.t. k so that, for

all k > 0 C(yk) ≤ c for some c > 0. For any (yk, fk) ∈ A, let us then denote the real function pk by

pk(λ) := |1− λ|+ λ1+scE(yk, fk)s/2

for all λ ∈ [0,m]. Lemma 3 with (y, f) = (yk, fk) then allows to write that√
E(yk+1, fk+1) = min

λ∈[0,m]

√
E((yk, fk)− λ(Y 1

k , F
1
k )) ≤ min

λ∈[0,m]
pk(λ)

√
E(yk, fk) = pk(λ̃k)

√
E(yk, fk).

(23)

We then easily check that the optimal λ̃k is given by

λ̃k :=


1

(1 + s)1/sc1/s
√
E(yk, fk)

, if (1 + s)1/sc1/s
√
E(yk, fk) ≥ 1,

1, if (1 + s)1/sc1/s
√
E(yk, fk) < 1

leading to

pk(λ̃k) :=


1− s

(1 + s)
1
s +1

1

c1/s
√
E(yk, fk)

, if (1 + s)1/sc1/s
√
E(yk, fk) ≥ 1,

c E(yk, fk)s/2, if (1 + s)1/sc1/s
√
E(yk, fk) < 1.

(24)

If (1 + s)1/sc1/s
√
E(y0, f0) < 1, then c1/s

√
E(y0, f0) < 1 (and thus c1/s

√
E(yk, fk) < 1 for all k ∈ N)

then (23) implies that

c1/s
√
E(yk+1, fk+1) ≤

(
c1/s

√
E(yk, fk)

)1+s
.

It follows that c1/s
√
E(yk, fk)→ 0 as k →∞ with a rate equal to 1 + s.

If (1+s)1/sc1/s
√
E(y0, f0) ≥ 1 then we check that the set I := {k ∈ N, (1+s)1/sc1/s

√
E(yk, fk) ≥ 1}

is a finite subset of N; indeed, for all k ∈ I, (23) implies that

c1/s
√
E(yk+1, fk+1) ≤

(
1− s

(1 + s)
1
s +1

1

c1/s
√
E(yk, fk)

)
c1/s

√
E(yk, fk) = c1/s

√
E(yk, fk)− s

(1 + s)
1
s +1

(25)

and the strict decrease of the sequence (c1/s
√
E(yk, fk))k∈I . Thus there exists k0 ∈ N such that for all

k ≥ k0, (1 + s)1/sc1/s
√
E(yk, fk) < 1, that is I is a finite subset of N. Arguing as in the first case, it

follows that
√
E(yk, fk)→ 0 as k →∞.

It follows in particular, in view of (24) that the sequence (pk(λ̃k))k∈N decreases as well. 2

9



Remark 1 The number of iterates k0 necessary to reach a super-linear regime depends on the value of

E(y0, f0), ‖g′‖L∞(R) and ‖g′‖
W̃ s,∞(R)

. For instance, with s = 1, writing from (25) that c
√
E(yk, fk) ≤

c
√
E(y0, f0)− k

4 for all k such that c
√
E(yk, fk) ≥ 1, we obtain that

k0 ≤
⌊

4(K
√
E(y0, f0)− 1) + 1

⌋
, with K = O(C‖g′′‖∞eC

√
‖g′‖∞)

where bxc denotes the integer part of x ∈ R+.

We also have the following convergence of the optimal sequence (λk)k>0.

Lemma 5 Assume that g ∈ Ws for some s ∈ (0, 1] and that g′ ∈ L∞(R). The sequence (λk)k>0 defined

in (16) converges to 1 as k →∞.

Proof- Take s = 1. In view of (20), we have, as long as E(yk, fk) > 0, since λk ∈ [0,m]

(1− λk)2 =
E(yk+1, fk+1)

E(yk, fk)
− 2(1− λk)

(
yk,tt + yk,xx + g(yk)− fk 1ω, l(yk, λkY

1
k )
)

2

E(yk, fk)

−
∥∥l(yk, λkY 1

k )
∥∥2

2

2E(yk)

≤ E(yk+1, fk+1)

E(yk, fk)
− 2(1− λk)

(
yk,tt + yk,xx + g(yk)− fk 1ω, l(yk, λkY

1
k )
)

2

E(yk, fk)

≤ E(yk+1, fk+1)

E(yk, fk)
+ 2
√

2m

√
E(yk, fk)‖l(yk, λkY 1

k )‖2
E(yk, fk)

≤ E(yk+1, fk+1)

E(yk, fk)
+ 2
√

2m
‖l(yk, λkY 1

k )‖2√
E(yk, fk)

.

But, from (19) and (21)

‖l(yk, λkY 1
k )‖2 ≤

λ2
k

2
√

2
‖g′′‖∞‖(Y 1

k )2‖2 ≤ m2C(yk)E(yk, fk)

and thus

(1− λk)2 ≤ E(yk+1, fk+1)

E(yk, fk)
+ 2
√

2m3c
√
E(yk, fk).

Consequently, since E(yk, fk)→ 0 and E(yk+1,fk+1)
E(yk,fk) → 0, we deduce that (1− λk)2 → 0. 2

We are now in position to prove the following convergence result.

Theorem 2 Assume that g ∈ Ws for some s ∈ (0, 1] and that g′ ∈ L∞(R). Let (yk, fk)k∈N be the

sequence defined by (16). Then, (yk, fk)k∈N → (y, f) in A where f is a null control for y solution of (1).

Moreover, there exists a k0 ∈ N such that the sequence (‖(y, f)− (yk, fk)‖A0
)k≥k0 decays with a rate equal

to s+ 1.

Proof- In view of (11), we write

k∑
n=0

|λn|‖(Y 1
n , F

1
n)‖A0 ≤ Cm

k∑
n=0

√
E(yn, fn).

Using that pn(λ̃n) ≤ p0(λ̃0) for all n ≥ 0, we can write for n > 0,√
E(yn, fn) ≤ pn−1(λ̃n−1)

√
E(yn−1, fn−1) ≤ p0(λ̃0)

√
E(yn−1, fn−1) ≤ (p0(λ̃0))n

√
E(y0, f0).
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Then, using that p0(λ̃0) = minλ∈[0,m]p0(λ) < 1 (since p0(0) = 1 and p′0(0) < 0), we finally obtain the

uniform estimate
k∑

n=0

|λn|‖(Y 1
n , F

1
n)‖A0 ≤ Cm

√
E(y0, f0)

1− p0(λ̃0)

for which we deduce that the serie
∑
k≥0 λk(Y 1

k , F
1
k ) converges inA0. Writing from (16) that (yk+1, fk+1) =

(y0, f0) −
∑k
n=0 λn(Y 1

n , F
1
n), we conclude that (yk, fk) strongly converges in A to (y, f) := (y0, f0) +∑

k≥0 λk(Y 1
k , F

1
k ).

Then, using that (Y 1
k , F

1
k ) goes to zero as k → ∞ in A0, we pass to the limit in (17) and get that

(y, f) ∈ A solves 
ytt − yxx + g(y) = f1ω, in QT ,

y = 0, on ΣT ,

(y(·, 0), yt(·, 0)) = (y0, y1), in Ω.

(26)

Since the limit (y, f) belongs to A, (y(·, T ), yt(·, T )) = (z0, z1) in Ω.

We then may write that for all k > 0

‖(y, f)− (yk, fk)‖A0 = ‖
∞∑

p=k+1

λp(Y
1
p , F

1
p )‖A ≤ m

∞∑
p=k+1

‖(Y 1
p , F

1
p ‖A0

≤ mC

∞∑
p=k+1

√
E(yp, fp)

≤ mC

∞∑
p=k+1

p0(λ̃0)p−k
√
E(yk, fk)

≤ mC
p0(λ̃0)

1− p0(λ̃0)

√
E(yk, fk)

(27)

and conclude from Proposition 4 the decay with a rate equal to 1 + s after a finite number of iterates. 2

In particular, along the sequence (yk, fk)k defined by (16), (27) is a kind of coercivity property for the

functional E. We emphasize, in view of the non uniqueness of the zeros of E, that an estimate (similar to

(27)) of the form ‖(y, f)− (y, f)‖A0
≤ C

√
E(y, f) does not hold for all (y, f) ∈ A. We also insist in the

fact the sequence (yk, fk)k>0 and its limits (y, f) are uniquely determined from the initial guess (y0, f0)

and from our criterion of selection of the control F 1. In other words, the solution (y, f) is unique up to

the element (y0, f0) ∈ A.

Eventually, if we assume only that g ∈W0 and g′ ∈ L∞(R), then we get the following result.

Proposition 3 Assume that g ∈W0, g′ ∈ L∞(R). If ‖g′‖∞ is small enough so that

√
2C1‖g′‖∞eC2

√
‖g′‖∞ < 1. (28)

then the sequence (yk, fk)(k∈N) defined by (16) converges strongly to a controlled pair for (1).

Proof- Writing, for all (y, f) ∈ A and λ ∈ R, that

2E((y, f)− λ(Y 1, F 1)) = ‖(1− λ)(ytt − yxx + g(y)− f 1ωf) + g(y − λY 1)− g(y) + λg′(y)Y 1‖22

≤
(
|1− λ|

√
2E(y, f) + 2λ‖g′‖∞‖Y 1‖2

)2

.

we obtain that

E
(
(yk, fk)− λ(Y 1

k , F
1
k )
)
≤ E(yk, fk)

(
|1− λ|+

√
2λ‖g′(yk)‖∞C1e

C2

√
‖g′(yk)‖∞

)2
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for all λ ∈ R. Taking λ = λk = 1, the strict decrease of
√
E(yk, fk) w.r.t. k follows if (28) holds true. 2

In the next section, we get similar results of convergence relaxing the assumption g′ ∈ L∞.

2.2.2 Convergence in the case g ∈Ws, s ∈ (0, 1] and an asymptotic behavior on g′

In this section, we assume only that g′ ∈ L∞loc(R) and

lim sup
|s|→∞

|g′(s)|
log2 |s|

< β, (29)

some constant β > 0. Equivalently, we assume that there exists a constant α > 0 (possibly large) such

that

|g′(s)| ≤ α+ β log2(1 + |s|), ∀s ∈ R. (30)

The case β = 0 corresponds to the case developed in the previous section, i.e. g′ ∈ L∞(R).

Within this more general framework, the difficulty is to have a uniform control with respect to k of

the observability constant C1e
C2

√
‖g′(yk)‖∞ appearing in the estimates for (Y 1

k , F
1
k ), see Prop 1. In other

terms, we need to show that the sequence (yk, fk)(k∈N) defined in (16) is such that ‖yk‖∞ is uniformly

bounded.

In the sequel, we define the pair (y?, f?) ∈ A such that f? is the control of minimal L2(qT )-norm for

y? solution of (1) with g ≡ 0.

Lemma 6 Assume that g satisfies (30). Then, for all β0 > 0, there exists a constant C(β0) such that

supβ∈[0,β0]E(y?, f?) < C(β0).

Proof-We get that E(y?, f?) = 1
2‖y

?
tt − y?xx + g(y?) − f? 1ω‖22 = 1

2‖g(y?)‖22. In view of (30), it follows

that √
E(y?, f?) ≤ T |g(0)|+ T

(
α+ β log2(1 + ‖y?‖∞)

)
‖y?‖∞.

Since y? is independent of g and therefore of β, the result follows. 2

Lemma 7 Assume that g satisfies (30). For any (y, f) ∈ A, let (Y 1, F 1) ∈ A0 be the solution of (9).

‖(Y 1, Y 1
t )‖L∞(0,T ;V ) + ‖F 1‖2,qT ≤ d(y)

√
E(y, f)

with

d(y) := C3(1 + ‖y‖∞)C2

√
β , C3 := C1e

C2
√
α.

In particular (up to a constant independent of y and g),

‖Y ‖L∞(QT ) ≤ d(y)
√
E(y, f). (31)

Proof- Using that
√
a+ b ≤

√
a+
√
b for all a, b ≥ 0, it follows that

eC2

√
‖g′(y)‖∞ ≤ eC2

√
α(1 + ‖y‖∞)C2

√
β , ∀y ∈ A.

(10) then leads to the result. 2

We also introduce the following notations

c(y) := C‖g′′‖∞
(
d(y)

)2
, ∀y ∈ A (32)

and

12



Definition 2.1 Let γ? > 0 be defined as follows

γ? =


− log

(
1− 1

4c(y?)
√
E(y?,f?)

)
2C2 log(1 + C3

√
E(y?, f?))

, if 2c(y?)
√
E(y?, f?) ≥ 1,

1

2C2

log(2)

log(1 + C3

√
E(y?, f?))

, else.

Proposition 4 Assume g ∈ Ws for some s ∈ (0, 1] and that g′ satisfies the asymptotic behavior (29)

with β < β? := min(C−2
2 , (γ?)2). Let (yk, fk)k>0 be the sequence of A defined in (16) initialized with

(y0, f0) = (y?, f?) ∈ A. Then E(yk, fk) → 0 as k → ∞. Moreover, there exists a k0 ∈ N such that the

sequence (E(yk, fk))k>k0 decays with a rate equal to s+ 1.

Proof- In order to simplify the notations, we make the proof in the case s = 1. (18) implies that

E
(
(y, f)− λ(Y 1, F 1)

)
≤ E(y, f)

(
|1− λ|+ c(y)λ2

√
E(y, f)

)2

. (33)

For any (yk, fk) ∈ A, let us then denote the real function pk by

pk(λ) := |1− λ|+ λ2c(yk)
√
E(yk, fk)

for all λ ∈ [0, 1]. Lemma 3 with (y, f) = (yk, fk) then allows to write that√
E(yk+1, fk+1) = min

λ∈[0,m]

√
E((yk, fk)− λ(Y 1

k , F
1
k )) ≤ min

λ∈[0,m]
pk(λ)

√
E(yk, fk).

We check that the optimal λk is given by

λk :=


1

2c(yk)
√
E(yk, fk)

, if 2c(yk)
√
E(yk, fk) ≥ 1,

1, if 2c(yk)
√
E(yk, fk) < 1

leading to

pk(λk) :=


1− 1

4c(yk)
√
E(yk, fk)

, if 2c(yk)
√
E(yk, fk) ≥ 1,

c(yk)
√
E(yk, fk), if 2c(yk)

√
E(yk, fk) < 1.

(34)

Now, assume that 2c(yk)
√
E(yk, fk) ≥ 1 for some k ≥ 0. Then, yk+1 = yk − λkY 1

k implies that

(1 + ‖yk+1‖∞) ≤ (1 + ‖yk‖∞) + λk‖Y 1
k ‖∞,

≤ (1 + ‖yk‖∞) +
1

2c(yk)
√
E(yk, fk)

d(yk)
√
E(yk, fk)

≤ (1 + ‖yk‖∞) + d(yk)
√
E(yk, fk)

≤ (1 + ‖yk‖∞) + C3(1 + ‖yk‖)C2

√
β
√
E(yk, fk)

≤ (1 + ‖yk‖∞)(1 + C3

√
E(yk, fk))

assuming that C2

√
β ≤ 1. This leads to

(1 + ‖yk+1‖∞)C2

√
β ≤ (1 + ‖yk‖∞)C2

√
β

(
1 + C3

√
E(yk, fk)

)C2

√
β

.

Consequently, in the case 2c(yk)
√
E(yk, fk) ≥ 1, we get in view of (34)√

E(yk+1, fk+1) ≤
(

1− 1

4c(yk)
√
E(yk, fk)

)√
E(yk, fk).
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and therefore

c(yk+1)
√
E(yk+1, fk+1) ≤

(
1− 1

4c(yk)
√
E(yk, fk)

)
c(yk+1)

√
E(yk, fk).

But
c(yk+1)

c(yk)
=

(
d(yk+1)

d(yk)

)2

≤
(

1 + C3

√
E(yk, fk)

)2C2

√
β

.

It follows that

c(yk+1)
√
E(yk+1, fk+1) ≤

(
1 + C3

√
E(yk, fk)

)2C2

√
β(

1− 1

4c(yk)
√
E(yk, fk)

)
c(yk)

√
E(yk, fk).

We start with k = 0 assuming that the initialization (y0, f0) = (y?, f?) is such that 2c(y0)
√
E(y0, f0) ≥

1. Therefore,

c(y1)
√
E(y1, f1) ≤

(
1 + C3

√
E(y0, f0)

)2C2

√
β(

1− 1

4c(y0)
√
E(y0, f0)

)
c(y0)

√
E(y0, f0)

Now, we take β ∈ (0, β?) so that

e(y0, f0) :=

(
1 + C3

√
E(y0, f0)

)2C2

√
β(

1− 1

4c(y0)
√
E(y0, f0)

)
< 1.

In view of Lemma 6, such a β strictly positif exists. It follows that c(y1)
√
E(y1, f1) < c(y0)

√
E(y0, f0).

Repeating the process with k = 1, still assuming that 2c(y1)
√
E(y1, f1) ≥ 1, we have

c(y2)
√
E(y2, f2) ≤ e(y1, f1) c(y1)

√
E(y1, f1) ≤ e(y0, f0)c(y1)

√
E(y1, f1)

using that e(y1, f1) ≤ e(y0, f0) since both
√
E(y1, f1) <

√
E(y0, f0) and c(y1)

√
E(y1, f1) < c(y0)

√
E(y0, f0).

It follows that c(y2)
√
E(y2, f2) < c(y1)

√
E(y1, f1). Repeating the arguments, we get that the two se-

quences (c(yk)
√
E(yk, fk))k>0 and (

√
E(yk, fk))k>0 strictly decrease. In particular, we get

c(yk)
√
E(yk, fk) ≤ e(y0, f0)kc(y0)

√
E(y0, f0), ∀k ≥ 0

as long as 2c(yk)
√
E(yk, fk) ≥ 1. Its follows that c(yk)

√
E(yk, fk) and

√
E(yk, fk) goes to zeros. Con-

sequently, there exists a k0 such that 2c(yk)
√
E(yk, fk) < 1 for all k ≥ k0.

Let k ≥ k0 such that 2c(yk)
√
E(yk, fk) < 1. Then, the optimal descent step λk is equal to 1 and√

E(yk+1, fk+1) ≤ c(yk)E(yk, fk) = c(yk)
√
E(yk, fk)

√
E(yk, fk) ≤ 1

2

√
E(yk, fk).

Moreover,

c(yk+1)
√
E(yk+1, fk+1) ≤ c(yk+1)

√
E(yk, fk) c(yk)

√
E(yk, fk)

≤
(

1 + C3

√
E(yk, fk)

)2C2

√
β(
c(yk)

√
E(yk, fk)

)(
c(yk)

√
E(yk, fk)

)
.

But (
1 + C3

√
E(yk, fk)

)2C2

√
β(
c(yk)

√
E(yk, fk)

)
<

1

2

(
1 + C3

√
E(y0, f0)

)2C2

√
β

<
1

2

(
1− 1

4c(y0)
√
E(y0, f0)

)−1

< 1

14



(since e(y0, f0) < 1) under the assumption that 2c(y0)
√
E(y0, f0) ≥ 1. This implies that the sequence

(c(yk+1)
√
E(yk+1))k decreases strictly and then that the ratio

c(yk+1)
√
E(yk+1, fk+1)/c(yk)

√
E(yk, fk)

decreases as well. It follows that the sequence (c(yk)
√
E(yk, fk))k converges to zero as k tends to infinity.

But, since c(yk) = C‖g′′‖∞(d(yk))2 = C‖g′′‖∞C2
3 (1+‖y‖∞)2C2

√
β ≥ C‖g′′‖∞C2

3 we get that E(yk, fk)→
0 as well.

Eventually, the relation

c(yk+1)
√
E(yk+1, fk+1) ≤

(
1 + C3

√
E(y0, f0)

)2C2

√
β(
c(yk)

√
E(yk, fk)

)2

implies the quadratic decrease of (E(yk, fk))k≥k0 .

In the more favorable situation for which 2c(y0)
√
E(y0) < 1, we may consider larger values of β such

that (
c(y0)

√
E(y0, f0)

)(
1 + C3

√
E(y0, f0)

)2C2

√
β

< 1,

i.e. √
β < − 1

2C2

log(c(y0)
√
E(y0, f0))

log(1 + C3

√
E(y0, f0))

<
1

2C2

log(2)

log(1 + C3

√
E(y0, f0))

.

2

Theorem 3 Assume g ∈ Ws for some s ∈ (0, 1] and that g′ satisfies the asymptotic behavior (29)

with β < β? := min(C−2
2 , (γ?)2). Let (yk, fk)k>0 be the sequence of A defined in (16) initialized with

(y0, f0) = (y?, f?) ∈ A. Then, (yk, fk)k∈N → (y, f) in A where f is a null control for y solution of (1).

Moreover, there exists a k0 ∈ N such that the sequence (‖(y, f)− (yk, fk)‖A0
)k≥k0 decays with a rate equal

to s+ 1.

Proof- The proof is very similar to the proof of Theorem 2. We write that, for any k > 0,

(yk, fk) = (y0, f0) +

k∑
n=0

λk(Y 1
n , F

1
n)

leading to, using that λk ≤ m and (11), ‖(yk, fk)‖A ≤ ‖(y0, f0)‖A + m
∑k
n=0 d(yn)

√
E(yn, fn). Writing

that d(y) ≤ c(y)
C‖g′′‖∞C3

, we finally get that

‖(yk, fk)‖A ≤ ‖(y0, f0)‖A +
m

C‖g′′‖∞C3

k∑
n=0,

2c(yn)
√

E(yn,fn)≥1

c(yn)
√
E(yn, fn)

+
m

C‖g′′‖∞C3

k∑
n=0,

2c(yn)
√

E(yn,fn)<1

c(yn)
√
E(yn, fn).

The first sum is finite since the set I := {n ∈ N, 2c(yn)
√
E(yn, fn) ≥ 1} is a finite subset of N. The

convergence of the second sum is the consequence of the fact that c(yn)
√
E(yn, fn) decays quadratically

to zero. 2
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3 Additional comments

1. We emphasize that the explicit construction used here allows to recover the null controllability property

of (1) for nonlinearities g in Ws for one s ∈ (0, 1] satisfying the asymptotic property (29) on g′. Moreover,

we do not use a fixed point argument as in [17]. On the other hand, this asymptotic condition (29) on g′

is slightly stronger than the asymptotic condition (3) made in [17]: this is due to our linearization of (1)

which involves g′(s) while the linearization (4) in [17] involves g(s)/s.

Moreover, the additional condition of g′ in Ws, i.e. the existence of one s ∈ (0, 1) such that

supa,b∈R,a 6=b
|g′(a)−g′(b)|
|a−b|s < ∞ allows to get a convergence of the sequence uniformly with respect to

the initial guess (y0, f0) ∈ A and without smallness assumption on the data (see Proposition 3). In prac-

tice, this assumption is not really strong as it suffices to smooth the nonlinear functional g. Remark that

the functional g(s) = α+ βs log2(1 + |s|), s ∈ R for some β > 0 small and any α - which is somehow the

limit case in Theorem 1 - satisfies this assumption (in particular g′′ ∈ L∞(R)) as well as the asymptotic

condition (29) assumed in this work.

2. Among the admissible controlled pair (y, v) ∈ A0, we have selected for (Y1, F1) solution of (9)

the one which minimize the functional J(v) = ‖v‖2L2(qT ).This leads to the estimate (10) which is the key

point in the convergence analysis. The analyze remains true with any other quadratic functional of the

form J(y, v) = ‖w1 v‖2L2(qT ) + ‖w2 y‖2L2(qT ) involving positive weights w1 and w2 (see for instance [3]).

3. If we introduce F : A → L2(QT ) by F (y, f) := (ytt − yxx + g(y) − f 1ω), we get that E(y, f) =
1
2‖F (y, f)‖2L2(QT ) and observe that, for λk = 1, the algorithm (16) coincides with the Newton algorithm

associated to the mapping F (mentioned in the introduction, see 7). This explains the super linear

convergence of Theorem 3, notably a quadratic convergence in the case s = 1 for which we have a

control of g′′ in L∞(QT ). The optimization of the parameter λk allows to get a global convergence of the

algorithm and leads to the so-called damped Newton method (for F ). Under general hypothesis, global

convergence for this kind of method is achieved, with a linear rate (for instance; we refer to [6, Theorem

8.7]). As far as we know, the analysis of damped type Newton methods for partial differential equations

has deserved very few attention in the literature. We mention [9, 14] in the context of fluids mechanics.

4. Suppose to simplify that λk equals one (corresponding to the standard Newton method). Then,

for each k, the optimal pair (Y 1
k , F

1
k ) ∈ A0 is such that the element (yk+1, fk+1) minimizes over A the

functional (z, v)→ J(z − yk, v − fk) with J(z, v) := ‖v‖L2(qT ), i.e. the control of minimal L2(qT ) norm.

Instead, we may also select the pair (Y 1
k , F

1
k ) such that the element (yk+1, fk+1) minimizes the functional

(z, v)→ J(z, v). This leads to the following sequence (yk, fk)k defined by
yk+1,tt − yk+1,xx + g′(yk)yk+1 = fk+11ω + g′(yk)yk − g(yk), in QT ,

yk = 0, on ΣT ,

(yk+1(·, 0), yk+1,t(·, 0)) = (u0, u1), in Ω.

(35)

In this case, for each k, (yk, fk) is a controlled pair for a linearized wave equation, while, in the case of

the algorithm (16), the sequence (yk, fk) is a sum of controlled pairs (Y 1
n , F

1
n), n ≤ k. This formulation

used in [7] is different and the corresponding analysis of convergence (at least in the framework of our

least-squares setting) is less straightforward because the right hand side term g′(yk)yk−g(yk) is not easily

bounded in term of
√
E(yk, fk).

5. It should be noted as well that the upper bound of the parameter β in Theorem 1 depends on Ω

and T but is independent of the initial data (u0, u1): precisely, β < (1+C2)−2 where C2 = C2(Ω, T ) is the

constant appearing in (41). On the other hand, the upper bound of the parameter β in (29) depends as
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well on E(y0, f0): precisely, β < β? := min(C−2
2 , (γ?)2). In particular, for c(y0)

√
E(y0, f0) small enough,

we get that β? = C−2
2 and we recover a bound depending only on Ω and T .

Moreover, as expected, the number of iterates to achieve convergence (notably to enter in a super-

linear regime) depends on the size of the value c(y0)
√
E(y0, f0). In Theorem (3), we have shown the

convergence of the sequence (yk, fk)k∈N when initialized with (y?, f?) controlled solution of the linear

wave equation. This choice is natural and leads to a uniform bound of E(y0, f0) in term of β in a range

(0, β0) (see Lemma 6). We may also consider the controlled pair solution of
y?tt − y?xx + g(0) + g′(0)y? = f?1ω, in QT ,

y? = 0, on ΣT ,

(y?(·, 0), y?t (·, 0)) = (u0, u1), in Ω,

(36)

leading to E(y?, f?) = 1
2‖g(y?) − g(0) − g′(0)y?‖2L2(QT ) ≤

1
2(1+s)2 ‖g

′‖2
W̃ s,∞(R)

‖y?‖2(s+1)
∞ and then to√

E(y?, f?) ≤ ‖g′‖
W̃ s,∞(R)

‖y?‖(s+1)
∞ and also to

√
E(y?, f?) ≤ T

(
α+ β log2(1 + ‖y?‖∞)

)
‖y?‖∞.

6. If the real number E(y0, f0) is small enough, then we may remove the asymptotic assumption (29)

on g′.

Proposition 5 Assume g ∈Ws for some s ∈ (0, 1]. Let (yk, fk)k>0 be the sequence of A defined in (16).

There exists a constant C(‖g′‖
W̃ s,∞(R)

) such that if E(y0, f0) ≤ C(‖g′‖
W̃ s,∞(R)

), then (yk, fk)k∈N → (y, f)

in A where f is a null control for y solution of (1). Moreover, there exists a k0 ∈ N such that the sequence

(‖(y, f)− (yk, fk)‖A0
)k≥k0 decays with a rate equal to s+ 1.

Proof- Once again, for simplicity, we make the proof for s = 1. From (18), for all λ ∈ R,

√
E(yk+1, fk+1) ≤ minλ∈[0,m]pk(λ)

√
E(yk, fk),

pk(λ) := |1− λ|+ λ2C(yk)
√
E(yk, fk),

C(yk) :=
C

2
√

2
‖g′′‖∞

(
C1e

(1+C2)
√
‖g′(y)‖∞

)2

.

(37)

We note B := ‖g′′‖∞ and D := C
2
√

2
B. Then,

C(yk+1) = D

(
C1e

(1+C2)
√
‖g′(yk+1)‖∞

)2

= D

(
C1e

(1+C2)
√
‖g′(yk−λkY 1

k )‖∞
)2

≤ D
(
C1e

(1+C2)
√
‖g′(yk)‖∞e(1+C2)

√
λkB‖Y 1

k ‖∞
)2

= C(yk)
(
e(1+C2)

√
mB
√
‖Y 1

k ‖∞
)2

so that, multiplying (37) by C(yk+1) and introducing the notation ek := C(yk)
√
E(yk, fk), we obtain the

inequality

ek+1 ≤ min
λ∈[0,m]

pk(λ)

(
e(1+C2)

√
mB
√
‖Y 1

k ‖∞
)2

ek. (38)

Recalling from (10) that ‖Y 1
k ‖∞ ≤ C1 e

(1+C2)
√
‖g′(yk)‖∞

√
E(yk, fk) = (D−1C(yk))1/2

√
E(yk, fk), we get

(1 + C2)
√
mB

√
‖Y 1

k ‖∞ ≤ (1 + C2)
√
mB(D−1C(yk))1/4E(yk, fk)1/4 (39)

and therefore (
e(1+C2)

√
mB
√
‖Y 1

k ‖∞
)2

≤ eC3C(yk)1/4E(yk,fk)1/4
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with C3 := 2(1 + C2)
√
mBD−1/4. Assuming that E(yk, fk) ≤ 1 so that E(yk, fk)1/4 ≤ E(yk, fk)1/8, we

finally get
(
e(1+C2)

√
mB
√
‖Y 1

k ‖∞
)2 ≤ eC3e

1/4
k and from (38),

ek+1 ≤ min
λ∈[0,m]

(
|1− λ|+ ekλ

2
)

eC3e
1/4
k ek.

If 2ek < 1, the minimum is reached for λ = 1 leading ek+1

ek
≤ ekeC3e

1/4
k . Consequently, if the initial guess

(y0, f0) belongs to the set {(y0, f0) ∈ A, E(y0, f0) ≤ 1, e0 < 1/2, e0e
C3e

1/4
0 < 1}, the sequence (ek)k>0

goes to zero as k → ∞ (with a quadratic rate). Since C(yk) ≥ DC2
1 for all k ∈ N, this implies that the

sequence (E(yk, fk))k>0 goes to zero as well. Moreover, from (11), we get D‖(Y 1
k , F

1
k )‖A0 ≤ e

1/2
k and

repeating the arguments of the proof of Theorem 2, we conclude that the sequence (yk, fk)k>0 converges

to a controlled pair for (1).

Remark that these computations are valid under the assumptions that g′ ∈ L∞loc(R) and g′′ ∈ L∞(R)

but they did not use the assumption (3) nor (29) on the nonlinearity g. However, the smallness assumption

on e0 requires a smallness assumption on
√
E(y0, f0) (since d0 > 1). This is equivalent to assume the

controllability of (1). Alternatively, in the case g(0) = 0, the smallness assumption on
√
E(y0, f0 is

achieved as soon as the data (u0, u1) is small for the norm V . This result of convergence is therefore

equivalent to the local controllability of (1).

7. Under the strong assumption g′ ∈ L∞(R) Theorem 2 remains true in the multi-dimensional case

(see [15]) assuming that the triplet (Ω, ω, T ) satisfies the classical multiplier condition introduced in [12].

Theorem 4 Let Ω is a bounded subset of Rd, 1 ≤ d ≤ 3 and ω a non empty open subset of Ω. Assume

that the triplet (Ω, ω, T ) satisfies the multiplier condition. Assume that g ∈ Ws for some s ∈ (0, 1] and

that g′ ∈ L∞(R). Let (yk, fk)k∈N be the sequence defined by (16). Then, (yk, fk)k∈N → (y, f) in A
where f is a null control for y solution of (1). Moreover, there exists a k0 ∈ N such that the sequence

(‖(y, f)− (yk, fk)‖A0
)k≥k0 decays with a rate equal to s+ 1.

The proof, although more technical, follows the line of proof of Theorem 2. We refer to [8] for the

proof in the case of a semi-linear heat equation. Using [11], Theorem 3 can be also extended to the

multidimensional case replacing the growth condition (29) by the following one : lim sup|s|→∞
|g′(s)|

log1/2 |s| < β

for some β > 0.

8. Eventually, this approach may be extended, with few modifications, to the boundary case consid-

ered notably in [16].

4 Appendix : Controllability results for the linearized wave

equation

We recall in this appendix some a priori estimates for the linearized wave equation with potential in

L∞(QT ) and right hand side in L2(QT ).

Proposition 6 Let A ∈ L∞(QT ), B ∈ L2(QT ) and (z0, z1) ∈ V . Let ω = (l1, l2). Assume T >

2 max(l1, 1− l2). There exist control functions u ∈ L2(qT ) such that the solution of
ztt − zxx +Az = u1ω +B, in QT ,

z = 0, on ΣT ,

(z(·, 0), zt(·, 0)) = (z0, z1), in Ω,

(40)
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satisfies (z(·, T ), zt(·, T )) = (0, 0) in Ω. Moreover, the unique control u which minimizes the L2(qT )-norm

together with the corresponding controlled solution satisfy the estimate

‖u‖2,qT + ‖(z, zt)‖L∞(0,T ;V ) ≤ C1

(
‖B‖2e(1+C2)

√
‖A‖∞ + ‖z0, z1‖V

)
eC2

√
‖A‖∞ (41)

for some constant C1, C2 > 0.

Proof - The proof is based on estimates obtained [17]. The control of minimal L2(qT )-norm is given

by u = ϕ 1ω where ϕ solves the adjoint equation
ϕxx − ϕxx +Aϕ = 0, in QT ,

ϕ = 0, on ΣT ,

(ϕ(·, 0), ϕt(·, 0)) = (ϕ0, ϕ1), in Ω,

(42)

with (ϕ0, ϕ1) ∈H := L2(Ω)×H−1(Ω) the unique minimizer of

J(ϕ0, ϕ1) :=
1

2

∫∫
qT

ϕ2 +

∫∫
QT

Bϕ− 〈(z0, z1), (ϕ0, ϕ1)〉V ,H

with 〈(z0, z1), (ϕ0, ϕ1)〉V ,H := 〈z0, ϕ1〉H1
0 (Ω),H−1(Ω) − (z1, ϕ0)L2(Ω),L2(Ω). In particular, the control v

satisfies the optimality condition∫∫
qT

ϕϕ+

∫∫
QT

Bϕ− 〈(z0, z1), (ϕ0, ϕ1)〉V ,H = 0, ∀(ϕ0, ϕ1) ∈H

from which we deduce that ‖u‖22,qT ≤ ‖B‖2‖ϕ‖2 + ‖(z0, z1)‖V ‖(ϕ0, ϕ1)‖H . From [17, Lemma 2], we get

‖(ϕ,ϕt)‖2L∞(0,T ;H) ≤ B1‖(ϕ0, ϕ1)‖2H(1 + ‖A‖2∞)eB2

√
‖A‖∞

for some constant B1, B2 > 0 from which it follows that ‖ϕ‖22 ≤ TB1‖(ϕ0, ϕ1)‖2H(1 + ‖A‖2∞)eB2

√
‖A‖∞ .

Moreover, from [17, Theorem 4], there exists C1, C2 > 0 such that ‖(ϕ0, ϕ1)‖2H ≤ C1e
C2

√
‖A‖∞‖ϕ‖22,qT .

Combining these inequalities, we get

‖u‖L2(qT ) ≤
(
‖B‖2

√
T
√
B1(1 + ‖A‖2∞)1/2e

B2
2

√
‖A‖∞ + ‖(z0, z1)‖V

)√
C1e

C2
2

√
‖A‖∞ .

Using the inequality (1 + s2)1/2 ≤ e
√
s for all s ≥ 0, we get the result. Then, from [17, Lemma 1], we

have

‖(z, zt)‖2L∞(0,T ;V ) ≤ D1

(
‖(z0, z1)‖2H(1 + ‖A‖∞) + ‖u 1ω +B‖22

)
eD2

√
‖A‖∞ .

for some constant D1, D2 > 0 from which we deduce that

‖(z, zt)‖2L∞(0,T ;V ) ≤ D1

(
‖(z0, z1)‖2H(2 + ‖A‖∞) + 2‖B‖22

(
1 + TB1

(
1 + ‖A‖2∞

)
eB2

√
‖A‖∞

))
eD2

√
‖A‖∞ .

Using that (1 + s)1/2 ≤ e
√
s and (1 + s2) ≤ e2

√
s for all s ≥ 0, we get the estimate. 2

We then discuss some properties of the operator K : L∞(QT ) → L∞(QT ) defined by K(ξ) = yξ a

null controlled solution of the linear boundary value problem (4) through the control of minimal L2(qT )

norm fξ. Proposition 6 with B = −g(0) leads to the estimate

‖(yξ, yξ,t)‖L∞(0,T ;V ) ≤ C1

(
‖u0, u1‖V + ‖g(0)‖2e(1+C2)

√
‖ĝ(ξ)‖∞

)
eC2

√
‖ĝ(ξ)‖∞ . (43)
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Then, as in [17], we write that the assumption (2) on g implies that there exists some d > 0 such

that ‖ĝ(y)‖∞ ≤ d + β log2(1 + ‖y‖∞) for all y ∈ L∞(QT ) from which it follows that eC2

√
‖ĝ(ξ)‖∞ ≤

eC2

√
d(1 + ‖ξ‖∞)C2

√
β . (43) then leads to the estimate

‖yξ‖∞ ≤ C1

(
‖u0, u1‖V + ‖g(0)‖2

)
e(1+2C2)

√
d(1 + ‖ξ‖∞)(1+2C2)

√
β .

Taking β small enough so that (1 + 2C2)
√
β < 1, we conclude that there exists a constant M > 0 such

that ‖ξ‖∞ ≤M implies ‖K(ξ)‖∞ ≤M . This is the argument in [17]. Contrary to β, we remark that M

depends on ‖u0, u1‖V (and increases with ‖u0, u1‖V ).

The following proposition gives an estimate of the difference of two controlled solutions.

Proposition 7 Let a,A ∈ L∞(QT ) and B ∈ L2(QT ). Let u and v be the null controls of minimal

L2(qT )-norm for y and z solutions of
ytt − yxx +Ay = u1ω +B, in QT ,

y = 0, on ΣT ,

(y(·, 0), yt(·, 0)) = (u0, u1), in Ω,

(44)

and 
ztt − zxx + (A+ a)z = v1ω +B, in QT ,

z = 0, on ΣT ,

(z(·, 0), zt(·, 0)) = (u0, u1), in Ω,

(45)

respectively. Then,

‖y − z‖L∞(QT ) ≤ C4
1‖a‖∞eC2

√
‖A+a‖∞e(2+3C2)

√
‖A‖∞

(
‖B‖2e(1+C2)

√
‖A‖∞ + ‖u0, u1‖V

)
.

for some constants C1, C2 > 0.

Proof- We write that the control of minimal L2-norm for y and z are given by u = ϕ 1ω and v = ϕa 1ω
where ϕ and ϕa solve the adjoint equation

ϕtt − ϕxx +Aϕ = 0, in QT ,

ϕ = 0, on ΣT ,

(ϕ(·, 0), ϕt(·, 0)) = (ϕ0, ϕ1), in Ω,


ϕa,tt − ϕa,xx + (A+ a)ϕa = 0, in QT ,

ϕ = 0, on ΣT ,

(ϕ(·, 0), ϕt(·, 0)) = (ϕa,0, ϕa,1), in Ω,

for some appropriate (ϕ0, ϕ1), (ϕa,0, ϕa,1) ∈H. Consequently, the difference Z := z − y solves
Ztt − Zxx + (A+ a)Z = Φ1ω − ay, in QT ,

Z = 0, on ΣT ,

(Z(·, 0), zt(·, 0)) = (0, 0), in Ω,

(46)

while Φ := (ϕa − ϕ) solves
Φtt − Φxx + (A+ a)Φ = −aϕ in QT ,

Φ = 0, on ΣT ,

(Φ(·, 0),Φt(·, 0)) = (ϕa,0 − ϕ0, ϕa,1 − ϕ1), in Ω.

We decompose Φ = Ψ + ψ where Ψ and ψ solves respectively
Ψtt −Ψxx + (A+ a)Ψ = 0 in QT ,

Ψ = 0, on ΣT ,

(Ψ(·, 0),Ψt(·, 0)) = (ϕa,0 − ϕ0, ϕa,1 − ϕ1), in Ω,


ψtt − ψxx + (A+ a)ψ = −aϕ in QT ,

ψ = 0, on ΣT ,

ψ(·, 0), ψt(·, 0)) = (0, 0), in Ω,
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and then deduce that Ψ 1ω is the control of minimal L2-norm for Z solution of
Ztt − Zxx + (A+ a)Z = Ψ1ω +

(
ψ1ω − ay

)
, in QT ,

Z = 0, on ΣT ,

(Z(·, 0), Zt(·, 0)) = (0, 0), in Ω.

Proposition 6 implies that

‖Ψ‖2,qT + ‖(Z,Zt)‖L∞(0,T ;V ) ≤ C1‖ψ1ω − ay‖2e(1+2C2)
√
‖A‖∞ .

Moreover, energy estimates for ψ leads to ‖ψ‖L2(qT ) ≤ C1‖a‖∞‖ϕ‖2eC2

√
‖A+a‖∞ and also to

‖ϕ‖2 ≤ C1‖ϕ0, ϕ1‖He(1+C2)
√
‖A‖∞ ≤

(
C1e

(1+C2)
√
‖A‖∞

)2

‖u‖2,qT

using that ‖ϕ0, ϕ1‖H ≤ C1e
C2

√
‖A‖∞‖u‖2,qT so that

‖ψ‖L2(qT ) ≤ C1‖a‖∞eC2

√
‖A+a‖∞

(
C1e

(1+C2)
√
‖A‖∞

)2

‖u‖2,qT

from which we deduce that

‖Z‖L∞(QT ) ≤ C1

(
‖ψ1ω‖+ ‖a‖L∞(QT )‖y‖2

)
e(1+2C2)

√
‖A‖∞

≤ C1‖a‖∞
(
eC2

√
‖A+a‖∞

(
C1e

(1+C2)
√
‖A‖∞

)2

‖u‖L2(qT ) + ‖y‖L2(QT )

)
≤ C1‖a‖∞

(
eC2

√
‖A+a‖∞

(
C1e

(1+C2)
√
‖A‖∞

)2

+ 1

)
C1

(
‖B‖2e(1+C2)

√
‖A‖∞ + ‖u0, u1‖V

)
eC2

√
‖A‖∞

leading to the result. 2

This result allows to show the following property on the operator K.

Proposition 8 Assume hypotheses of Theorem 1. Let M = M(‖u0, u1‖V , β) a constant such that K

maps B∞(0,M) into itself and assume that ĝ′ ∈ L∞(0,M). For any ξi ∈ B∞(0,M), i = 1, 2, there exists

a constant c(M) > 0 such that

‖K(ξ2)−K(ξ1)‖∞ ≤ c(M)‖ĝ′‖L∞(0,M)‖ξ2 − ξ1‖∞.

Proof- For any ξi ∈ B∞(0,M), i = 1, 2, let yξi = K(ξi) be the null controlled solution of
yξi,tt − yξi,xx + yξi ĝ(ξi) = −g(0) + fξi1ω, in QT ,

yiξ = 0, on ΣT ,

(yξi(·, 0), yξi,t(·, 0)) = (u0, u1), in Ω,

ĝ(s) :=


g(s)− g(0)

s
s 6= 0,

g′(0) s = 0

,

through the control of minimal L2(qT ) norm fξi1ω. We observe that yξ2 is solution of
yξ2,tt − yξ2,xx + yξ2 ĝ(ξ1) + yξ2(ĝ(ξ2)− ĝ(ξ1)) = −g(0) + fξ21ω, in QT ,

yξ2 = 0, on ΣT ,

(yξ2(·, 0), yξ2,t(·, 0)) = (u0, u1), in Ω.
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Therefore, from Proposition 7 with B = −g(0), A = ĝ(ξ1), a = ĝ(ξ2)− ĝ(ξ1), yξ2 − yξ1 satisfies

‖yξ2 − yξ1‖∞ ≤ A(ξ1, ξ2)‖ĝ(ξ2)− ĝ(ξ1)‖∞ (47)

where the positive constant

A(ξ1, ξ2) :=C2
1

(
eC2

√
‖ĝ(ξ2)‖∞

(
C1e

(1+C2)
√
‖ĝ(ξ1)‖∞

)2)
(
‖g(0)‖2e(1+C2)

√
‖ĝ(ξ1)‖∞ + ‖u0, u1‖V

)
eC2

√
‖ĝ(ξ1)‖∞

is bounded in term of M for all ξi ∈ B∞(0,M). We introduce c(M) such that A(ξ1, ξ2) ≤ c(M). (47)

then leads to the result.

In particular, if ‖ĝ′‖L∞(0,M) ≤ d
C(M) for some d < 1, then the operator K is contracting. Remark

however that the bound depends on the norm ‖u0, u1‖V of the initial data to be controlled. 2
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