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Localization of light in a three-dimensional disordered crystal of atoms
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Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
(Dated: October 1, 2021)

We demonstrate that a weak disorder in atomic positions introduces spatially localized optical
modes in a dense three-dimensional ensemble of immobile two-level atoms arranged in a diamond
lattice and coupled by the electromagnetic field. The frequencies of the localized modes concentrate
near band edges of the unperturbed lattice. Finite-size scaling analysis of the percentiles of Thouless
conductance reveals two mobility edges and yields an estimation ν = 0.8–1.1 for the critical exponent
of the localization length. The localized modes disappear when the disorder becomes too strong and
the system starts to resemble a fully disordered one where all modes are extended.

I. INTRODUCTION

Photonic crystals are periodic arrangements of scat-
tering units (typically, dielectric spheres or rods) that
exhibit frequency ranges (band gaps) for which no opti-
cal modes exist in the infinite structure and light prop-
agation is forbidden [1, 2]. Thus, photonic crystals play
the same role for light as semiconductor crystals do for
electrons. They have numerous promising prospects for
applications in optical technologies and, in particular, for
guiding of light [3, 4], lasing [5, 6] and quantum optics
[7, 8].

Photonic crystals exist in nature [9] (e.g., natural opals
[10] or wings of some butterflies [11, 12]) or can be fabri-
cated using modern nanofabrication techniques [13–16].
However, neither nature nor humans do a perfect job
and real-life photonic crystals always have some degree
of imperfection: fluctuating sizes or positions of elemen-
tary building units, vacancies, interstitial or substitution
impurities, cracks [17, 18]. Whereas these imperfections
do not destroy the band gap provided that they are not
too strong, they introduce an interesting new feature in
the spectrum: spatially localized optical modes appear
in the band gap, especially near its edges [19]. Localiza-
tion of eigenmodes of wave equations or of eigenstates of
the Schrödinger equation by disorder is a ubiquitous phe-
nomenon discovered by Philip Anderson [20] and bearing
his name [21, 22]. Anderson localization of electromag-
netic waves in general and of light in particular has been
predicted by Anderson himself [23] and by Sajeev John
[24]. Later on, it has been observed in fully disordered
one- [25, 26], quasi-one- [27, 28] and two-dimensional
[29, 30] disordered media whereas observing it in three
dimensions (3D) turned out to be difficult [31, 32]. Even
though Sajeev John proposed a way to facilitate localiza-
tion of light in 3D by using disordered photonic crystals
instead of fully disordered suspensions or powders a long
time ago [19, 33], no clear experimental realization of this
idea has been reported up to date. Some signatures of
Anderson localization have been observed in reflection of
short optical pulses from a disordered photonic crystal
[34] although the authors did not claim the observation
of Anderson localization.

The idea of facilitating localization of light in 3D by us-

ing a photonic structure with a band gap arises from the
localization criterion following from the scaling [35] and
the self-consistent [36, 37] theories of localization [38]:

NEM(ω)D0(ω)`∗0(ω) . const ∼ 1, (1)

where NEM(ω) is the density of electromagnetic modes
(states), D0(ω) = vE`

∗
0(ω)/3 is the “bare” diffusion coef-

ficient of light (i.e., the value that the diffusion coefficient
would have in the absence of localization effects), vE is
the energy transport velocity [39, 40], and `∗0(ω) is the
transport mean free path in the absence of localization
effects. In a fully disordered isotropic medium without
any short- or long-range order, NEM(ω) ∼ k(ω)2/vE and
we obtain the standard Ioffe-Regel criterion of localiza-
tion: k`∗0 ∼ k` . const ∼ 1, where k(ω) is the effective
wave number, ` is the scattering mean free path, and
we made use of the fact that `∗0 and ` are of the same
order. This criterion corresponds to a very strong scat-
tering with ` shorter than the wavelength of light. If,
however, the density of states NEM(ω) is suppressed with
respect to its value in the fully disordered medium, the
criterion (1) becomes easier to obey. In a photonic crys-
tal, NEM(ω) → 0 near a band edge and hence localized
states are expected to appear for arbitrary weak disorder
[33].

Large and dense ensembles of cold atoms constitute a
new experimental platform for the investigation of mul-
tiple light scattering [41–43]. The very good knowledge
of the properties of individual, isolated atoms and the
constantly increasing degree of control of large atomic
ensembles make atomic systems ideal candidates for ver-
ifying the existing theoretical predictions as well as for
going beyond them by playing the role of “quantum simu-
lators” [44, 45]. However, whereas Anderson localization
of matter waves in 3D random optical potentials has been
successfully realized [46, 47], the somewhat reciprocal sit-
uation of light localization by scattering on cold atoms
turns out to be difficult to implement [48]. In addition to
experimental difficulties of producing cold atomic clouds
that are large and dense at the same time, theoretical
calculations have pointed out that the vectorial nature of
electromagnetic waves and the dipole-dipole interaction
between nearby atoms may be a fundamental obstacle for
Anderson localization of light [49, 50]. Applying a static
magnetic field to suppress the dipole-dipole interactions
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is a possible way to circumvent this obstacle [51, 52] but
strong fields are required [53]. An easier way towards
light localization by cold atoms may be to arrange atoms
in a periodic 3D lattice and enjoy the relaxation of the
localization criterion (1) near an edge of a photonic band
gap.

In this paper, we investigate spatially localized quasi-
modes that are introduced in an open 3D diamond atomic
lattice of finite size by a randomness in atomic positions.
Randomly displacing the atoms from their positions in
the lattice is different from introducing disorder by ran-
domly removing the atoms—a situation studied in Ref.
54—and allows for varying the strength of disorder while
keeping the atom number constant. Thus, we can follow
a transition from the perfect photonic crystal for vanish-
ing disorder to a fully disordered system for strong dis-
order. After discussing the impact of boundary states,
we establish that for a moderate amount of disorder W ,
two localization transitions exist near edges of a photonic
band gap that the diamond lattice exhibits. A finite-size
scaling analysis of one of these transitions yields the pre-
cise position of the mobility edge and an estimation of the
critical exponent ν of the localization length. Increasing
W eventually leads to the closing of the band gap and the
disappearance of localized states. A relation between the
band gap formation, Anderson localization, and the near-
field dipole-dipole coupling between the atoms is conjec-
tured. Finally, implications of our results to experiments
with cold atoms are discussed.

II. THE MODEL

We consider N identical two-level atoms arranged in
a diamond lattice. The lattice is a superposition of
two face-centered cubic lattices (lattice constant a) with
basis vectors e1 = (0, a/2, a/2), e2 = (a/2, 0, a/2),
e3 = (a/2, a/2, 0) and e1 + e, e2 + e, e3 + e, where
e = (a/4, a/4, a/4). A sample of finite size is obtained
from the unbounded lattice by keeping only the atoms
inside a sphere of diameter L and volume V = (π/6)L3

centered at the origin (see the inset of Fig. 1 for a 3D ren-
dering of the resulting sample). Disorder is introduced by
displacing each atom by a random distance ∈ [0,Wa] in a
random direction, with W being a dimensionless param-
eter characterizing the strength of disorder. The atoms
have resonance frequencies ω0 and resonance widths Γ0;
their ground states have the total angular momentum
Jg = 0 while their excited states have Je = 1 and are thus
three-fold degenerate, with the three excited states hav-
ing the same energies but different projections Jz = m
(m = 0, ±1) of Je on the quantization axis z. We have
already used such a model of resonant two-level atoms
coupled via the electromagnetic field to study random
ensembles of atoms in our previous work [49] where the
Hamiltonian of the system was given. The model was
generalized to include external dc magnetic [51, 52] or
electric [55] fields. It has been also used to study pho-

tonic crystals that we consider here [54, 56]. Following
these previous works, we will study localization proper-
ties of quasimodes ψm of the atomic system found as
eigenvectors of a 3N × 3N Green’s matrix Ĝ:

Ĝψm = Λmψm, m = 1, . . . , 3N. (2)

The matrix Ĝ describes the coupling between the atoms
via the electromagnetic waves (light) and is composed

of N × N blocks of size 3 × 3. A block Ĝjn gives the
electric field created at a position rn of the atom n by an
oscillating point dipole at a position rj of the atom j (j,
n = 1, . . . , N). It has elements

Gµνjn = iδjnδµν + (1− δjn)
3

2

eik0rjn

k0rjn

×

[
P (ik0rjn)δµν +Q(ik0rjn)

rµjnr
ν
jn

(rjn)2

]
, (3)

where P (x) = 1− 1/x+ 1/x2, Q(x) = −1 + 3/x− 3/x2,
rjn = rn − rj , and the indices µ, ν = x, y, z denote the
projections of rjn on the axes x, y, z of the Cartesian
coordinate system: rxjn = xjn, ryjn = yjn, rzjn = zjn. The
inverse of the resonant wave number of an isolated atom
k0 = ω0/c provides a convenient length scale by which
we will normalize all other length scales. Here c is the
speed of light in the free space.

An eigenvector ψm = (ψ1
m, . . . , ψ

3N
m )T of the matrix

Ĝ describes the spatial structure of the m-th quasi-

mode: ψ
3(j−1)+µ
m gives the µ-th component of the elec-

tric field on the atom j. The corresponding eigenvalue
Λm yields the eigenfrequency ωm and the decay rate
Γm/2 of the quasimode: ωm = ω0 − (Γ0/2)ReΛm and
Γm/2 = (Γ0/2)ImΛm. Spatial localization of quasimodes
can be quantified by the so-called inverse participation
ratio (IPR):

IPRm =

N∑
j=1

{
3∑

µ=1

∣∣∣ψ3(j−1)+µ
m

∣∣∣2}2

, (4)

where we assume that the eigenvectors ψm are normal-
ized:

N∑
j=1

3∑
µ=1

∣∣∣ψ3(j−1)+µ
m

∣∣∣2 = 1. (5)

It is easy to see that IPRm = 1 for a state localized on a
single atom and IPRm = 1/N for a state that is uniformly
delocalized over all N atoms of the system. Generally,
IPRm ∼ 1/M for a state localized on M atoms.

The spectral distribution of quasimodes can be char-
acterized by the density of states (DOS) N (ω) defined in
an open system as [56, 57]

N (ω) =
1

3Nπ

3N∑
m=1

(Γm/2)

(ω − ωm)2 + (Γm/2)2
. (6)

N (ω) is normalized such that the number of states in-
side an infinitely narrow frequency interval dω is dN =
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FIG. 1. (a) Density of states of perfect (W = 0, black) and
disordered (red, green, blue) photonic crystals for different
disorder strengths: W = 0.1 (red), 0.2 (green). The blue line
corresponds to a fully random ensemble of atoms. Averaging
is performed over 461, 175 and 82 random configurations for
W = 0.1, 0.2, and the fully random case, respectively. Verti-
cal dashed lines show band edges. Inset: A 3D rendering of
a perfect diamond lattice of atoms. (b) Zoom on the band
gap. Yellow shading shows frequency ranges in which we find
localized quasimodes for W = 0.1.

3NN (ω)dω. Thanks to such a normalization, N (ω)
converges to a limiting shape corresponding to the infi-
nite crystal as the size of the crystal increases [56]. Note
that in our formalism, the number of quasimodes is equal
to the size 3N of the matrix Ĝ and hence increases with
N for all frequencies, including those inside the band
gap. However, as discussed elsewhere [56], the quasi-
modes corresponding to the frequencies inside the band
gap are confined near the crystal boundary and hence
their number grows proportionally to the crystal surface
πL2 ∝ N2/3. This growth is slower than the growth of
the total number of modes and hence the relative weight
of these quasimodes tends to zero in the thermodynamic
limit N →∞ and N (ω) ∝ 1/L [56, 58].

In this paper, we will present results for crystals of
four different sizes k0L = 30, 40, 50 and 60 composed of
N = 2869, 6851, 13331 and 22929 atoms, respectively.
These numbers of atoms have been adjusted to maintain
the same lattice constant k0a = 3.4 and the same average

atomic number density ρ/k30 = 0.2. The lattice constant
is chosen small enough for a band gap to open in the
spectrum of the ideal lattice [59] as we illustrate by DOS
calculations shown in Fig. 1 for the perfect (W = 0)
and disordered crystals of size k0L = 50. For disor-
dered lattices, DOS has been averaged over many inde-
pendent random atomic configurations using the Monte
Carlo method [60]. DOS inside the band gap is different
from zero due to the finite size of the considered sample
[56, 58]. We observe that the band gap narrows when
disorder in atomic positions is introduced (W = 0.1) and
closes for strong enough disorder (W = 0.2). No signa-
ture of a band gap is found for a fully random system in
which the atomic positions rj are chosen randomly inside
a sphere without any reference to the periodic diamond
structure. Therefore, it turns out that our disordered
photonic crystal preserves a band gap only for relatively
weak disorder W < 0.2.

It is worthwhile to note that DOS N (ω) reflects only
the atomic component of elementary excitations of the
system comprising the atoms and the electromagnetic
field. Thus, low N (ω) does not necessarily correspond
to a small number of excitations at a given frequency
ω but can simply mean that the atomic subsystem is
weakly involved and the excitations look very much like
freely propagating photons. This typically happens far
from the atomic resonance, for |ω− ω0| � Γ0, where the
coupling of light with atoms is inefficient. The absence
of free-field solutions that have no atomic component for
frequencies inside the band gap has been demonstrated
previously [59, 61]. A gap in N (ω) thus corresponds to a
gap in the total density of states and a gap in the density
of electromagnetic modes NEM(ω) entering the localiza-
tion criterion (1), even though N (ω) 6= NEM(ω).

In addition to DOS N (ω), another interesting quan-
tity is the local density of states (LDOS) N (ω, r). In a
photonic crystal of finite size, LDOS exhibits rapid spa-
tial variations within each unit cell of the crystal and
slow overall evolution with the distance to the boundaries
[62, 63]. Disorder introduces fluctuations of LDOS and
the statistics of the latter may serve as a criterion for An-
derson localization [64]. However, calculation of LDOS
for our model would require finding eigenvectors ψm of
the matrix Ĝ which is a much more time-consuming com-
putational task than finding the eigenvalues Λm that are
needed to calculate N (ω) [see Eq. (6)]. Even though we
present some results for ψm in Figs. 2–4 below, their sta-
tistical analysis including the calculation of the average
LDOS 〈N (ω, r)〉 is beyond the scope of this work.

III. LOCALIZED STATES INSIDE THE BAND
GAP

It follows from Fig. 1(b) that some quasimodes cross
over the edges of the band gap when disorder is intro-
duced in the photonic crystal (compare DOS correspond-
ing to W = 0 and W = 0.1). In order to study the spatial
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FIG. 2. Eigenvalues of a single realization of the Green’s matrix for perfect [left column, panels (a) and (c)] and disordered
[right column, panels (b) and (d)] diamond crystals of two different sizes k0L = 40 (upper row) and 60 (lower row). Each point
in the graph corresponds to an eigenvalue and its grey scale represents the IPR of the corresponding eigenvector, from light
grey for IPR = 0 (extended eigenvectors) to black for the maximum IPR (different for each panel, most localized eigenvectors).
Vertical dashed lines show band edges. Only a part of the eigenvalue spectrum (ω − ω0)/Γ0 ∈ [−2, 2] is shown.

localization properties of these modes, we show quasi-
mode eigenfrequencies ω and decay rates Γ together with
their IPR for the perfect diamond crystal and a single re-
alization of the disordered crystal in Fig. 2. For the per-
fect crystal [left column of Fig. 2, panels (a) and (c)], the
vast majority of the modes both inside and outside the
band gap are extended and have IPR ∼ 1/N . The distri-
bution of quasimodes on the frequency-decay rate plane
changes only slightly upon increasing the size of the sys-
tem from k0L = 40 to k0L = 60 [compare panels (a) and
(c) of Fig. 2]. In contrast, the disordered photonic crys-
tal exhibits some localized modes with appreciable IPR
near band edges and in particular near the upper band
edge, see Fig. 2(b) and (d). These modes have decay
rates (life times) that are significantly smaller (longer)
than the decay rates (life times) of any modes of the per-
fect crystal. In addition, the number of such localized
modes increases and their decay rates decrease signifi-
cantly when the disordered crystal gets bigger [compare
panels (b) and (d) of Fig. 2]. Such a combination of
spatial localization with small decay rates and the scal-
ing with the sample size is typical for disorder-induced
quasimode localization [49, 65].

In addition to extended modes everywhere in the spec-

trum, isolated localized modes appear in the middle of
the band gap of the perfect crystal [see Fig. 2(a) and
(c)]. Their IPR ∼ 5×10−2 is small but still considerably
larger than 1/N ∼ 10−4 expected for extended modes.
Such modes do not disappear and become even more nu-
merous in the disordered crystal [see Fig. 2(b) and (d)].
They differ from the modes near band edges by their
much larger decay rates that are virtually independent
of the crystal size. Our previous work suggests that all
modes in the middle of the band gap of a photonic crys-
tal are confined near the crystal boundary, which may
explain their IPR ∝ 1/N2/3 � 1/N [56]. In the presence
of disorder, some of these modes may, in addition, be re-
stricted to a small part of sample surface [66], which may
explain their larger IPR. To confirm this explanation, we
compute the center of mass of a mode ψm as

r
(m)
CM =

N∑
j=1

rj

[
3∑

µ=1

|ψ3(j−1)+µ
m |2

]
. (7)

Figure 3 shows that the modes in the middle of the band
gap, including those having large IPR, tend to have the
absolute value of their center of mass rCM to be of order
of the radius L/2 of the atomic sample. These modes are
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FIG. 3. Eigenvalues of a single realization of the Green’s
matrix for a disordered diamond crystal of size k0L = 30.
Each point in the graph corresponds to an eigenvalue and its
grey scale represents the IPR (a) or the center of mass rCM

(b) of the corresponding eigenvector. The spatial structure of
the eigenvectors corresponding to the two eigevalues indicated
by arrows in panel (a) is illustrated in Fig. 4. Vertical dashed
lines show band edges. Only a part of the eigenvalue spectrum
(ω − ω0)/Γ0 ∈ [−2, 2] is shown.

therefore confined at the sample boundary as we have an-
ticipated. The confinement at the boundary explains the
relatively large decay rates of these modes and the weak
dependence of decay rates on the sample size. Although
the role of surface modes discussed above may appear to
be important in the calculations presented in this work,
this is due to the relatively small sizes k0L = 30–60 of
considered atomic samples limited by the computational
constraints to which our numerical calculations are sub-
jected. In the limit of k0L→∞ relevant for the analysis
of modes localized by disorder in the bulk, surface modes
play no role. In finite samples accessible to numerical
calculations, the impact of surface modes can be mini-
mized by using a scaling analysis presented in the next
section. The need for a scaling analysis is also due to the
absence of a univocal relation between the decay rate Γ
of a quasimode and its localization properties. Indeed,
some of the black points in Fig. 3(a) correspond to much
larger Γ than some of the grey points, showing that the

FIG. 4. Visualization of eigenvectors (quasimodes) corre-
sponding to the eigenvalues indicated by arrows in Fig. 3(a).
A quasimodes ψm is represented by N red spheres centered
at the locations rj (j = 1, . . . , N) of the N atoms and having

radii proportional to the intensities Ijm =
∑3
µ=1 |ψ

3(j−1)+µ
m |2

of the quasimode on the atom. The quasimode (a) is spatially
localized and has a relatively high IPR whereas the quasimode
(b) is spatially extended. Grey spheres in both panels visual-
ize the spherical region occupied by the disordered photonic
crystal.

IPR and Γ are not directly related. However, a relation
can be established between the scaling of (normalized)
Γ with the sample size L and the spatial localization of
quasimodes at a given frequency. Surface states do not
follow the same scaling with the sample size as the modes
localized in the bulk, which provides a way of discrimi-
nating between these two types of modes.

Similarly to the panels (b) and (d) of Fig. 2, Fig. 3(a)
shows that quasimodes with large IPR appear inside the
band gap of the photonic crystal due to disorder. The
spatial structure of these spatially localized quasimodes
is very different from that of the extended quasimodes
with frequencies outside the band gap, as we illustrate in
Fig. 4.
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IV. FINITE-SIZE SCALING

The finite-size scaling analysis is a way to access the be-
havior of an infinitely large system from the experimental
or numerical data available for finite-size systems only. It
is a common approach for analysis of phase transitions
[60, 67] and has been widely used to characterize Ander-
son localization transitions in electronic [68–71], optical
[52, 72] and mechanical [73, 74] systems. Very gener-
ally, one chooses a quantity (let’s denote it by Ω) that
is supposed to take two very different values (say, 0 and
∞) for the infinitely large system in the two different
phases. The behavior of the quantity Ω is then studied
as a function of sample size L and regions of the parame-
ter space are identified in which Ω increases or decreases
with L. A point (for 1D parameter space), a line (2D), or
a surface (3D) separating these regions is identified as a
boundary between the two phases at which Ω is indepen-
dent of L. Moreover, it often turns out that even when
the parameter space of the physical system under con-
sideration is multidimensional, all the parameters can be
combined into a single one that is the only relevant near
the phase transition point. In this situation known as
the ‘single-parameter scaling’ [68], the critical exponents
of the transition can be estimated from the behavior of
Ω with L for finite L.

In the context of Anderson localization, the (dimen-
sionless) electrical conductance g of a sample of size L
was identified as the most relevant quantity to consider:
Ω = g [35]. Obviously, the conductance of a 3D metallic
cube of side L in which all the electronic eigenstates are
extended, g ∝ L, grows with L whereas one expects a
decreasing conductance g ∝ exp(−L/ξ) if the electronic
eigenstates are localized at the scale of localization length
ξ and the sample is an (Anderson) insulator. We thus see
that in the limit of L→∞, g →∞ if the eigenstates are
extended and g → 0 if they are spatially localized. In
addition, one expects g to be independent of L at the
critical point [35]. This is, by the way, the essence of the
Thouless criterion of Anderson localization g ∼ const
[35, 75], where ‘const’ is a number of order unity.

The conceptual picture described above needs some ad-
justments when it comes to its application to the phys-
ical reality. Indeed, in a disordered system, g is a ran-
dom quantity and it is not clear how exactly its scaling
with the sample size should be understood [76]. The
simplest option of analyzing its average value 〈g〉 turned
out to be not always appropriate because 〈g〉 may be
dominated by rare realizations of disorder with large g
[76, 77]. Another, more intelligent guess is to use the
average of the logarithm of g, 〈ln g〉. This indeed allows
to obtain reasonable results [70] but has the weakness
of being somewhat arbitrary as a choice: why 〈ln g〉 and
not 〈(ln g)2〉, 〈(ln g)3〉 or the mean value of some other
function of g? Although averaging different functions of
g may yield identical results for the critical properties
of the localization transition in some models [70], it is
not so for the model of point scatterers considered here

[65]. This is why studying the full probability distri-
bution function P (g) instead of statistical moments of
g or ln g is necessary [76, 77]. Conductance g and its
probability distribution function P (g) are not the only
quantities that can be used for the scaling analysis of the
Anderson transition. Alternatives include the distribu-
tion of eigenvalue (level) spacings [69] or the multifractal
spectrum [78] as the most prominent examples. Note
that although initially proposed for Hermitian systems
[69], the finite-size scaling of spacings between eigenval-
ues has been recently extended to the non-Hermitian case
[79, 80] and thus can, in principle, be applied to analyze
open disordered systems as the one considered in this
work. However, g and P (g) still remain the most simple
and computationally accessible quantities to analyze.

Conductance as a ratio of the electric current to the
voltage that causes it, is a notion that is proper to elec-
tronics and seems to be impossible to generalize to light.
However, Thouless has noticed that if one divides the typ-
ical decay rate Γ/2 of quasimodes of an open quantum or
wave system by the average spacing between quasimode
frequencies ∆ω, the resulting ‘Thouless conductance’ is
equal to the electrical conductance g for a metal wire:
(Γ/2)/∆ω = g [75]. The advantage of the Thouless defi-
nition is that it can be readily generalized to any waves
independent of any electrical currents or potential differ-
ences in the considered physical system. In our open,
finite-size photonic crystal we define

gm =
Γm/2

〈|ωm − ωm−1|〉
=

ImΛm
〈|ReΛm − ReΛm−1|〉

, (8)

where the eigenfrequencies ωm are assumed to be or-
dered. We note that in a closed system the matrix Ĝ
would be Hermitian and its eigenvalues real. Then the
denominator of Eq. (8) would be equal to 1/[3NN (ω)].
However, in the open system that we consider, the rela-
tion between the average spacing between eigenfrequen-
cies ωm and DOS is only approximate because the defi-
nition of DOS (6) involves decay rates of quasimodes as
well. In practice, we can still approximately write

gm '
Γm
2
N (ωm)3N. (9)

Using this definition instead of Eq. (8) would barely mod-
ify the results following from the finite-size scaling anal-
ysis below because neither 〈|ωm − ωm−1|〉−1 nor N (ω)
exhibit singularities at the localization transition points.

In a disordered photonic crystal, the Thouless conduc-
tance defined by Eq. (8) is a random quantity and at
fixed scatterer density ρ and disorder strength W , its
statistical properties can be characterized by a proba-
bility density function P (ln g;ω,L). Here we choose to
work with ln g instead of g because g varies in a rather
wide range. The probability density is parameterized by
the frequency ω of the quasimodes and the sample size L.
We estimate P (ln g;ω,L) for different ω around the upper
edge of the band gap observed in Fig. 1 by numerically
diagonalizing many independent random realizations of
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the matrix Ĝ for different sizes L of the disordered pho-
tonic crystal. Figure 5 shows the results for W = 0.1
and a particular frequency ω = ω0 − 0.44Γ0 for which
the so-called Harald Cramér’s distance between probabil-
ity density functions corresponding to the smallest and
largest L is minimized (see the inset of Fig. 5). The Har-
ald Cramér’s distance is

D(ω) =

∞∫
−∞

d(ln g)
∣∣P (ln g;ω,L = 30k−10 )

− P (ln g;ω,L = 60k−10 )
∣∣2 . (10)

Interestingly, the frequency ω for which D(ω) is min-
imal also corresponds to the frequency for which distri-
butions P (ln g;ω,L) corresponding to different L tend to
coincide for small g, see the main panel of Fig. 5. Fol-
lowing our previous work [65], we identify this relative L-
independence of P (ln g;ω,L) as a signature of a critical
point of a localization transition (also called a mobility
edge). The probability density of conductance near the
transition from extended to localized states has been ex-
tensively studied in the past for both quasi-1D [81, 82]
and 3D [83–85] disordered systems without band gaps.
For small g, our P (ln g;ω,L) exhibits a tail decreasing
to zero as g → 0 in agreements with the previous pre-
diction [84]. However, in contrast to the expectations
[83–85], our P (ln g;ω,L) does not have a smooth, size-
independent shape for large g. We attribute this fact to
the following reason. The realistic physical model of two-
level atoms arranged in a diamond lattice that we con-
sider, may exhibit other physical phenomena in addition
to the eigenmode localization near band edges. These
phenomena may be due, for example, to the collective
interaction between atoms (sub- [86–88] and superrradi-
ance [89, 90]) or to the specific structure of their spatial
arrangement (potential topological phenomena [91, 92]).
Without having any relation to quasimode localization,
these phenomena may cause some particular features of
P (ln g;ω,L) and exhibit some L-dependence. Some of
these features may disappear in the limit of k0L → ∞
but it is impossible to claim such a disappearance from
our calculations performed for finite k0L = 30–60, which
are likely to be insufficient to clearly observe the behavior
expected in the limit of k0L → ∞. For example, we see
from Fig. 5 that P (ln g;ω,L) exhibits a pronounced peak
at ln g & 5. The peak shifts to larger g and reduces in
magnitude as L increases. This peak corresponds to su-
perradiant states with short lifetimes which always exist
in a finite-size system but which have a statistical weight
decreasing with L. It is likely that the peak would vanish
in the limit of L→∞ which is, however, inaccessible for
our calculations.

We will use the small-g part of P (ln g;ω,L) that be-
comes L-independent at ω ' ω0 − 0.44Γ0 (see Fig. 5),
to quantify the localization transition. The finite-size
scaling analysis of P (ln g;ω,L) can be conveniently per-
formed by analyzing its percentiles ln gq [93]. The q-th
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FIG. 5. Probability density of the logarithm of the Thouless
conductance g at the critical point of the localization tran-
sition for different sizes of the disordered crystal: k0L = 30
(black), 40 (red), 50 (green), 60 (blue). The numbers of ran-

dom realizations of the matrix Ĝ used for different sizes are
2200, 900, 461 and 180, respectively. All eigenvalues within a
frequency interval of width 0.01Γ0 around ω − ω0 = −0.44Γ0

are used to estimate P (ln g;ω,L). Probability densities cor-
responding to different sizes coincide for small g; the grey
shaded area below P (ln g;ω,L) illustrates the notion of q-th
percentile ln gq for the firth percentile q = 0.05. Inset: the
distance D(ω) between probability densities corresponding to
k0L = 30 and 60 attains a minimum at the critical point
(ω − ω0)/Γ0 ' −0.44. The step of frequency discretization is
0.01Γ0 for this figure.

percentile ln gq is defined by a relation:

q =

ln gq∫
−∞

P (ln g;ω,L)d(ln g) (11)

illustrated in Fig. 5 for q = 0.05 (firth percentile). Inde-
pendence of the small-g part of P (ln g;ω,L) of L implies
that ln gq should be L-independent for small q as well. Vi-
sual inspection of Fig. 5 suggests that q = 0.05 is more or
less the maximal value of q for which the L-independence
of P (ln g;ω,L) can be assumed. For larger q, the dashed
vertical line in Fig. 5 would shift to the right and enter
into the range of ln g in which P (ln g;ω,L) correspond-
ing to different L are clearly different. The grey shaded
area q on the left from the dashed line would then be
ill-defined.

We have computed and analyzed the percentiles ln gq
for q = 0.01–0.05 and present the results for q = 0.05 in
Fig. 6. The results for smaller q are similar but exhibit
stronger fluctuations and larger error bars due to poorer
statistics. As discussed above, crossings between ln gq
corresponding to different L are potential signatures of
localization transitions. Figure 6(a) suggests that there
are two pairs of such crossings, a pair near the lower edge
of the band gap and another pair near the upper edge.
Panels (b) and (c) zoom on the corresponding frequency
ranges. Let us discuss the behavior with increasing the
frequency ω. First, a transition to localized states can
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FIG. 6. (a) Firth percentile ln gq=0.05 of the Thouless conductance as a function of frequency ω for four different sizes k0L of
the disordered photonic crystal. Very large error bars in the range (ω−ω0)/Γ0 ∈ (−0.58,−0.54) are not shown. Vertical dashed
lines show the band edges. Panels (b) and (c) zoom on the spectral ranges in which ln gq=0.05 drops near the lower and upper
band edges, respectively. (d) Finite-size scaling analysis of the localization transition taking place at ω = ωc ' ω0 − 0.44Γ0

where curves corresponding to different crystal sizes cross in a single point {(ωc − ω0)/Γ0, ln g
(c)
q }. Solid lines represent a joint

polynomial fit of Eq. (15) with m = n = 3 to the numerical data, dashed lines show their extrapolation beyond the range of

data ln gq ∈ [ln g
(c)
q − δ(ln gq), ln g(c)q + δ(ln gq)] used for the fit. δ(ln gq) = 2 for this figure. The inset shows the best-fit values

of the critical exponent ν for q = 0.01–0.05 with errors bars corresponding to the standard deviation, the grey area showing
the 95% confidence interval, and the dashed horizontal line indicating the average of ν over q.

be identified around (ω−ω0)/Γ0 ' −1.015 where a com-
mon crossing of ln gq corresponding to k0L = 40, 50 and
60 takes place. The line corresponding to k0L = 30 does
not pass through this common crossing point, most prob-
ably because this sample size is insufficient to observe the
expected large-sample behavior. ln gq remains a decreas-
ing function of L for (ω − ω0)/Γ0 & −1.015 and up to
(ω − ω0)/Γ0 ' −0.97. This is consistent with the ap-
pearance of states localized in the bulk of the disordered
crystal at frequencies near a band egde (see Figs. 2 and
3). The states with frequencies in the middle of the band
gap, −0.97 . (ω−ω0)/Γ0 . −0.57 in Fig. 6(a), appear as
relatively localized according to their IPR in Figs. 2 and
3 but show a scaling behavior that identify them as ex-
tended (i.e., ln gq grows with L). This is consistent with
their surface nature: indeed, surface states are restricted
to the boundary of the sample and hence the number of
atoms on which they have significant amplitudes grows
as L2 instead of L3 for extended states in the bulk. Thus,
they have larger IPR as compared to the extended states

in the bulk, but this IPR still decreases with L (as IPR
∝ 1/L2 instead of 1/L3). This decrease is reflected in
the growth of ln gq shown in Fig. 6(a). A second band
of localized states arises near the upper edge of the band
gap, for −0.57 . (ω − ω0)/Γ0 . −0.44.

Our results for ln gq(ω,L) around (ω−ω0)/Γ0 ' −0.44
are smooth and have sufficiently small error bars to allow
for a quantitative analysis of the transition from localized
to extended states. We apply the finite-size scaling pro-
cedure to analyze small-q percentiles of g in the frame-
work of the single-parameter scaling hypothesis [93]. The
latter postulates that in the vicinity of the localization
transition point, ln gq is a function of a single parameter
L/ξ(ω), where |ξ(ω)| is the localization length on the one
side from the mobility edge ωc and the correlation length
on the other side: ln gq(ω,L) = Fq[L/ξ(ω)]. Assuming
that the divergence of ξ(ω) at the transition is power-law,
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we represent ξ(ω) as

ξ(ω) =

 m∑
j=1

Ajw
j

−ν (12)

near w = (ω − ωc)/ωc = 0. Here Aj are constants and
ν is the critical (localization length) exponent. We thus
can write

ln gq(ω,L) = Fq[L/ξ(ω)] = Fq[ψ(ω,L)] (13)

with a scaling variable

ψ(ω,L) =

[
L

ξ(ω)

]1/ν
= L1/ν

m∑
j=1

Ajw
j . (14)

Finally, the scaling function Fq(ψ) is expanded in Taylor
series:

Fq(ψ) = ln g(c)q +

n∑
j=1

Bjψ
j , (15)

where ln g
(c)
q is the critical value of ln gq independent of

L.
Fits of Eq. (15) to the numerical data are performed

with with ωc, ln g
(c)
q , ν, Aj (j = 1, . . . ,m), and Bj (j =

1, . . . , n) as free fit parameters. The orders m and n of
the expansions (14) and (15) are chosen large enough to
ensure that the χ2 statistics

χ2 =
1

Ndata

Ndata∑
j=1

{Fq[ψ(ωj , L)]− ln g
(j)
q }2

σ2
j

(16)

is of the order 1. Here Ndata is the number of data points

{ωj , ln g(j)q } and σj are statistical errors of ln g
(j)
q shown

by error bars in Fig. 6. We only fit the numerical data

in the range ln gq ∈ [ln g
(c)
q − δ(ln gq), ln g

(c)
q + δ(ln gq)]

around the critical value ln g
(c)
q estimated in advance by

looking for the minimum of the sum of squares of differ-
ences between points corresponding to different L.

A joint fit to the numerical data corresponding to four
different values of L and q = 0.05 is shown in Fig. 6(d). It
yields ωc = −0.4401± 0.0003 and ν = 0.94± 0.02 as the
best fit parameters. We repeated the fits for other values
of q in the range from 0.01 to 0.05 with the same fre-
quency resolution 0.005Γ0 as in Fig. 6(d) [see the inset of
Fig. 6(d) for the best-fit ν] and with a twice finer resolu-
tion and δ(ln gq) = 1 instead of δ(ln gq) = 2 in Fig. 6(d).
In addition, we varied the orders m and n of the series
expansions (14) and (15) from 1 to 3 and introduced an
additional, irrelevant scaling variable [71]. All fits yield
consistent values of (ωc − ω0)/Γ0 in the range [−0.441,
−0.436]. The best-fit values of the critical exponent are
more scattered but remain in the range ν = 0.8–1.1, with
large uncertainties up to 20% for the narrower data range
δ(ln gq) = 1.

V. DISCUSSION

Whereas the position of the mobility edge found from
the finite-size scaling analysis agrees well with the esti-
mation following from the analysis of P (ln g;ω,L) (see
Fig. 5), the value of the critical exponent ν turns out to
be well below νAM ' 1.57 found numerically for the An-
derson model (AM) in the 3D orthogonal symmetry class
and believed to be universal for disorder-induced local-
ization transitions in 3D systems in the absence of any
particular symmetry breaking mechanisms [71]. Cold-
atom experiments mimicking the so-called quasiperiodic
kicked rotor model indeed yielded values of ν compatible
with νAM [94], but ν . 1 significantly different from νAM

were reported in low-temperature electron transport ex-
periments in doped semiconductors [95, 96]. Recently,
values of ν . 1 have been also found in numerical sim-
ulations and attributed to the differences between the
physics of real materials and that of the paradigmatic
Anderson model and, in particular, to the hybridization
of conduction and impurity bands [97]. In our optical
problem, the impurity band (i.e., the modes appearing
in the band gap due to disorder W 6= 0) is not clearly
separated from the band of propagating modes (i.e., the
modes in the bands of the perfect crystal) either (see Fig.
1). This may be a reason for the value of the critical ex-
ponent ν different from νAM. Other possible reasons may
include a strong anisotropy of optical properties of a pho-
tonic crystal near a band edge due to the fact that the
first modes that become allowed upon crossing a band
edge propagate only in certain directions, and, of course,
the vector nature of light of which the full impact on
Anderson localization still remains to be understood.

To determine the precise value of ν and to obtain a
better estimation of its uncertainty, more accurate calcu-
lations are required. Unfortunately, such calculations are
difficult to perform using our approach. Indeed, the ap-
proach is based on the diagonalization of large 3N × 3N
non-Hermitian matrices Ĝ and has an advantage of yield-
ing the whole spectrum of a single realization of an open
disordered system at once. The downsides of this are that
(i) the approach does not allow for focusing on a partic-
ular frequency range at a lower computational cost and
(ii) studying large systems (N & 104) is computation-
ally expensive. Because the localization transition takes
place in a narrow frequency range, only a small fraction
of eigenvalues obtained by the numerical diagonalization
of Ĝ is actually used for the estimation of ν. Indeed,
in Fig. 6(d) we have chosen to analyze the behavior of

ln gq within an interval ln g
(c)
q ± 2, which restricts the

number of eigenvalues of Ĝ used in the calculations of
ωc and ν to less than 1% of the total number of eigen-
values. Narrowing the interval of considered ln gq only
decreases the fraction of useful eigenvalues whereas ex-
panding this interval and using more eigenvalues would
correspond to leaving the critical regime and hence is
not desirable. Thus, significantly increasing the statis-
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tical accuracy of calculations requires large amounts of
computations. Although this drawback of our approach
is general and complicates the analysis of fully random
ensembles of atoms as well [52, 65], its impact is ampli-
fied here by the particular narrowness of the frequency
range in which the localization transition takes place and
the low DOS in this range. Indeed, for scalar waves in
a random ensemble of point scatterers studied in Ref.

65, ln gq=0.05 grows from ln g
(c)
q=0.05 − 1 to ln g

(c)
q=0.05 + 1

in a frequency range δω/Γ0 ' 0.08 whereas in the pho-
tonic crystal studied here the same growth takes place
within δω/Γ0 ' 0.02 [see Fig. 6(d)]. In addition, DOS
of the fully random system has no particular features in
the transition region, whereas in the photonic crystal,
the localization transition takes place near a band edge
where DOS is quite low [see Fig. 1(b)]. These factors
limit the statistical accuracy of our numerical data and
make the high-precision estimation of ν a heavy compu-
tational task.

The frequency range in which the quasimodes are lo-
calized can be broadened and DOS in this range can be
raised by increasing the strength of disorder W . How-
ever, the space for increase of W without closing the gap
and loosing localization altogether is rather limited. As
we show in Fig. 1, the gap closes already for W = 0.2,
and this closing is accompanied by the disappearance of
states localized due to disorder. We illustrate this in Fig.
7(a) where the firth percentile of conductance is shown as
a function of frequency for W = 0.2 and the same sizes L
of the disordered photonic crystal as in Fig. 6. Contrary
to the latter figure, no crossings between lines ln gq(ω,L)
occur in Fig. 7(a), signaling the absence of localization
transitions. Moreover, the values of ln gq(ω,L) in Fig.
7(a) are rather high: ln gq(ω,L) > 2 for all ω. This
means that at any frequency, less than 5% of g values
obtained for different atomic configurations are smaller
than exp(2) ≈ 7, which is incompatible even with the
“weakest” form of the Thouless localization criterion re-
quiring that some typical value of g (〈g〉, exp(〈g〉), me-
dian g, etc.) is less than 1. Finally, another signature of
the absence of localization is the monotonous growth of
ln gq with L at all frequencies indicating that most prob-
ably, ln gq → ∞ in the limit of L → ∞, as it should be
for spatially extended modes.

Further increase of the strength of disorder W beyond
W = 0.2 does not modify the situation qualitatively as
the behavior of the system gets closer to that of a fully
random ensemble of atoms studied previously [49]. The
fully random limit is illustrated in Fig. 7(b) that exhibits
the same characteristic features as Fig. 7(a) (absence of
crossings between different curves, large values of ln gq
and its monotonous growth with L) and hence confirms
the previously discovered absence of the localization of
light in the fully random system [49].

The presence of localization only at weak disorder
highlights the important differences between localiza-
tion phenomena in disordered crystals and fully random
media. As it has been largely discussed in the litera-
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FIG. 7. Firth percentile ln gq=0.05 of the Thouless conduc-
tance as a function of frequency ω for different diameters L
of a disordered crystal with disorder strength W = 0.2 (a)
and a fully disordered spherical ensemble of resonant atoms
(b). The average number density of atoms is the same as in
the photonic crystal analyzed in Fig. 6. Vertical dashed lines
show band edges of the ideal crystal. The absence of cross-
ings between curves corresponding to different L confirms the
absence of localization transitions in these systems.

ture starting from the pioneering works of Sajeev John
[19, 33, 38], the localization in a photonic crystal takes
place due to an interplay of order and disorder in con-
trast to the localization in a fully random medium that
is due to disorder only. Whereas localized states may ap-
pear in a 3D random medium only when the strength of
disorder exceeds some critical value, even a weak disor-
der introduces spatially localized modes in the band gap
of a disordered photonic crystal and the notion of critical
disorder does not exist. However, the possibility of reach-
ing localization at arbitrary weak disorder is counterbal-
anced by the narrowness of frequency ranges inside the
band gap in which the density of states is large enough
to allow for observation of the localization of light in an
experiment or a numerical simulation. Increasing disor-
der widens the relevant frequency ranges but also tends to
close the band gap and hence to suppress the ‘order’ part
of the interplay between order and disorder. A compro-
mise is reached at some intermediate disorder strength
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that is sufficient to significantly affect wave propagation
at frequencies near band edges but not large enough to
close the band gap. For the atomic crystal considered in
this work, such a compromise seems to be reached around
W = 0.1 for which the band gap remains open (see Fig.
1) while localized states become visible (see Fig. 2).

The disappearance of localized modes with the in-
crease of disorder strength W allows for an additional
insight about the reasons behind the absence of Ander-
son localization of light in a completely random 3D en-
semble of point scatterers. Indeed, recent work [55, 98]
has confirmed the initial suggestion [49] that the reso-
nant dipole-dipole coupling between scatterers impedes
the formation of spatially localized optical modes in 3D.
This explanation seems to be supported by the fact that
localized modes do arise in a photonic crystal where
the distance ∆r between any two scatterers (atoms) is

always larger than a certain minimal distance (a
√

3/4
for a diamond crystal with a lattice constant a consid-
ered in this work) and hence the strength of the dipole-
dipole coupling between scatterers that scales as 1/∆r3,
is bounded. The increase of W enhances chances for two
atoms to be closer, the minimum possible distance be-
tween atoms being equal to (

√
3/4− 2W )a in our model.

The probability for two neighboring atoms to get in-
finitely close because of disorder becomes different from
zero for W ≥

√
3/8 ' 0.22. This estimation of disor-

der strength for which dipole-dipole interactions should
become particularly strong, is reasonably close to the
approximate value W ' 0.2 for which localized modes
disappear [see Fig. 7(a)] and the band gap closes (see
Fig. 1). The closeness of the two values suggests a re-
lation between the near-field dipole-dipole interactions,
the photonic band gaps, and the spatial localization of
optical modes although the exact nature of this relation
still remains to be established. Although our analysis
supports the arguments based on Eq. (1) and suggesting
that the underlying crystalline structure facilitates the
localization phenomenon due to the suppression of DOS
near band edges, it also highlights the importance of yet
another feature of a crystal—the existence of a minimal
distance between two scattering units (atoms or, more
generally, “particles”). At the same time, the impact of
the crystalline structure of the atomic lattice on the spa-
tial localization of optical modes does not reduce to keep-
ing neighboring atoms far apart from each other. One of
the consequences of the crystalline structure is the fact
that in our photonic crystal, the localized modes are red-
shifted with respect to the atomic resonance frequency
(ω < ω0) in contrast to the blue-shifted localized modes
that arise in a fully disordered ensemble of atoms in a
strong magnetic field [51, 52].

A final remark concerns the spatially extended quasi-
modes in the middle of the band gap, corresponding to
large ln gq=0.05 & 2 between (ω − ω0)/Γ0 ' −0.97 and
−0.57 in Fig. 6. As we have illustrated already in Fig. 3,
most of these quasimodes are bound to the surface of the
crystal. Their statistical weight is thus expected to de-

crease with L roughly as the surface-to-volume ratio 1/L,
which tends to zero when L→∞ but remains significant
in our calculations restricted to rather small L. Neverthe-
less, we clearly see from Figs. 6(a–c) that the frequency
range in the middle of the bandgap where ln gq=0.05 takes
large values ln gq=0.05 & 2 and remains a globally grow-
ing function of L, shrinks as L increases. No transi-
tion point where curves ln gq corresponding to different
L cross can be identified around (ω−ω0)/Γ0 ' −0.97 or
−0.57, which is especially clear in Fig. 6(b) whereas less
obvious in Fig. 6(c) due to much stronger fluctuations of
the numerical data. We note that the above picture of
surface modes playing less and less important role as L
increases is certainly only a rough approximation to the
complete explanation of the evolution of the spectrum
in the middle of the band gap. Nontrivial features that
are already seen from our results and call for explana-
tion include the nonmonotonous behavior of ln gq with
L near the high-frequency end of the interval −0.97 .
(ω − ω0)/Γ0 . −0.57 [note the red line that crosses the
green line around (ω − ω0)/Γ0 ' −0.7 in Fig. 6(a)] and
much stronger fluctuations around (ω − ω0)/Γ0 ' −0.57
than around (ω − ω0)/Γ0 ' −0.97 [compare Figs. 6(c)
and (b)]. Unfortunately, a study of these puzzling fea-
tures is difficult to perform using our numerical method
because it mobilizes significant computational power to
obtain the full spectrum of the system of which only a
very small fraction [i.e., a small number of eigenvalues
Λm of the matrix (3)] fall in the band gap where the
density of states is low.

VI. CONCLUSIONS

We performed a thorough theoretical study of the lo-
calization of light in a 3D disordered photonic crystal
made of two-level atoms. The atoms are first arranged
in a diamond lattice with a lattice constant a and are
then slightly displaced in random directions by random
distances up to Wa. We show that spatially localized
quasimodes appear near edges of the band gap of the
ideal crystal when the disorder strength is W = 0.1 or
smaller. W = 0.2 or larger leads to the closing of the
band gap and the disappearance of localized states. The
finite-size scaling analysis of the transition between ex-
tended and localized states near the high-frequency edge
of the band gap suggests that the critical (localization-
length) exponent of the transition ν is in the interval 0.8–
1.1, which is different from νAM ' 1.57 corresponding to
the Anderson transition of the 3D orthogonal universal-
ity class to which the investigated transition might be
expected to belong because of the absence of any partic-
ular symmetry breaking mechanisms and, in particular,
the preserved time-reversal symmetry.

From the practical standpoint, arranging atoms in a
diamond lattice may be a realistic alternative to sub-
jecting them to strong magnetic fields in order to reach
the localization of light in cold-atom systems. Indeed,
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atomic lattices can be readily designed by loading atoms
in optical potentials created by interfering laser beams
with carefully adjusted phases and propagation direc-
tions [99, 100]. Some degree of disorder may arise in
such lattices due to experimental imperfections; ways to
create additional, controlled disorder have been largely
explored in recent years [45]. Calculations presented
in this work provide quantitative estimates for disorder
strengths and frequency ranges for which localized quasi-
modes should appear in lattices of cold atoms featuring
a Jg = 0 → Je = 1 transition. Examples of appropriate
chemical elements for vapors of which laser cooling tech-
nologies are readily available include strontium (Sr) or
ytterbium (Yb). Multiple scattering of light in large en-
sembles of Sr atoms has been already reported [101] and

high atomic number densities have been reached in ex-
periments with Yb [102]. In addition, some of our conclu-
sions may hold for atomic species with more complicated
level structure, which may be easier to manipulate and
control in an experiment (e.g., rubidium). This opens a
way towards the experimental observation of phenomena
reported in this work.
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57 A. Cazé, R. Pierrat, and R. Carminati, “Strong coupling
to two-dimensional Anderson localized modes,” Phys.
Rev. Lett. 111, 053901 (2013).

58 S.B. Hasan, A.P. Mosk, W.L. Vos, and A. Lagendijk,
“Finite-size scaling of the density of states in photonic
band gap crystals,” Phys. Rev. Lett. 120, 237402 (2018).

59 M. Antezza and Y. Castin, “Fano-Hopfield model and
photonic band gaps for an arbitrary atomic lattice,” Phys.
Rev. A 80, 013816 (2009).

60 K. Binder and D.W. Heermann, Monte Carlo Simulation
in Statistical Physics, 3rd ed. (Springer-Verlag, Berlin,
1997).

61 J.A. Klugkist, M. Mostovoy, and J. Knoester, “Mode soft-
ening, ferroelectric transition, and tunable photonic band
structures in a point-dipole crystal,” Phys. Rev. Lett. 96,
163903 (2006).

62 M.D. Leistikow, A.P. Mosk, E. Yeganegi, S.R. Huisman,
A. Lagendijk, and W.L. Vos, “Inhibited spontaneous
emission of quantum dots observed in a 3d photonic band
gap,” Phys. Rev. Lett. 107, 193903 (2011).

63 C.P. Mavidis, A.C. Tasolamprou, S.B. Hasan, T. Koschny,
E.N. Economou, M. Kafesaki, C.M. Soukoulis, and
W.L. Vos, “Local density of optical states in the three-
dimensional band gap of a finite photonic crystal,” Phys.
Rev. B 101, 235309 (2020).

64 G. Schubert, J. Schleede, K. Byczuk, H. Fehske, and
D. Vollhardt, “Distribution of the local density of states as



14

a criterion for Anderson localization: Numerically exact
results for various lattices in two and three dimensions,”
Phys. Rev. B 81, 155106 (2010).

65 S.E. Skipetrov, “Finite-size scaling analysis of localization
transition for scalar waves in a three-dimensional ensem-
ble of resonant point scatterers,” Phys. Rev. B 94, 064202
(2016).
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70 K. Slevin, P. Markoš, and T. Ohtsuki, “Reconciling con-
ductance fluctuations and the scaling theory of localiza-
tion,” Phys. Rev. Lett. 86, 3594–3597 (2001).

71 K. Slevin and T. Ohtsuki, “Critical exponent for the An-
derson transition in the three-dimensional orthogonal uni-
versality class,” New J. Phys. 16, 015012 (2014).

72 A. Sheikhan, M.R. Tabar, and M. Sahimi, “Numeri-
cal simulations of localization of electromagnetic waves
in two- and three-dimensional disordered media,” Phys.
Rev. B 80, 035130 (2009).

73 S.D. Pinski, W. Schirmacher, and R.A. Römer, “Ander-
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Mello, and J.J. Sáenz, “Conductance distributions in
quasi-one-dimensional disordered wires,” Phys. Rev. Lett.
89, 246403 (2002).
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