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Abstract
During the steady gait, humans stabilize their head around the verti-

cal orientation. While there are sensori-cognitive explanations for this

phenomenon, itsmechanical effect on the body dynamics remains un-

explored. In this study,we takeprofit from the similarities that human

steady gait share with the locomotion of passive dynamics robots. We

introduce a simplified anthropometric 2Dmodel to reproduce a broad

walking dynamics. In a previous study, we showed heuristically that

the presence of a stabilized head-neck system significantly influences

the dynamics of walking. �is paper gives new insights that lead to

understanding this mechanical effect. In particular, we introduce an

original cart upper-body model that allows to better understand the

mechanical interest of head stabilization when walking, and we study

how this effect is sensitive to the choice of control parameters.

Humanoid Robots, Legged Robots, Biomimetics

1 Introduction
Bipedal locomotion covers various kinds of walking behaviors.

For robots, it ranges from quasi-static locomotor sequences

through dynamical fully actuated walking pattern generations

to themotion of passivewalkingmechanical systems also called

passive-dynamic walkers (Wieber et al., 2015). While the first

ones require a big amount of energy to ensure locomotion, the

latter need no external energy on shallow slopes, but without a

heavyweight trunk (Collins et al., 2005), and if equipped with

weak actuators, they can have an upright trunk and face flat

grounds with human-like energy efficiency (Alexander, 2005).
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Humans also have different walking strategies depending on

their environment, mostly the ground roughness, that we call

also texture of the ground (Laumond et al., 2017). We define a
texturedgroundby a surface forwhich theunevenness follows a

probability distribution. On high textures, such as uneven ter-

rain, walking requires anticipation for the stepping position,

which uses cognitive resources and causes cautious, highly

stiff and energy-consuming motions. When walking on flat

grounds humans don’t need attention on their foot placement,

walking control is thenmainly generatedwithin the spinal cord

rather than in the brain (Dietz, 2003). �is strategy is usually

modeled by the combination of a rhythm generator called Cen-

tral Pattern Generator and reflexes in response to peripheral

stimuli. We call this control “steady gait”. Steady-gait-based

walking is more energy-efficient and takes maximum advan-

tage of the natural passivity of the mechanical structure of the

body. �e dependency on the passive dynamics and the weak-

ness of actuationmake this walking control sensitive to the en-

vironment. If the texture is too uneven, humans switch to the

robust predictivemode. Similarly, passive dynamics robots are

not stable on too highly textured grounds and eventually fall.

Passive dynamics robot walking and human steady gait share

someother characteristics, suchas their periodic dynamics and

the natural attractive limit-cycle (Goswami et al., 1997). Pas-

sive dynamic robots are also believed to produce visually more

human-like motions (Collins et al., 2005).

�ese gaits emerge from the dynamics of all body parts. Each

limb or joint influences the motion according to its inertia and

applied forces, either subject to its passivity or under a spe-

cific actuation. �erefore, several researchers used the resem-

blance between walking humans and passive dynamic robots

for studying the dynamical contribution of several features of

humangait (Kaddar et al., 2015;Wisse et al., 2006; Chevallereau

et al., 2009). �ese studies aim at understanding the effect

of these features and their importance in human gait and en-

able to exploit them to improve the performances of the robotic

walkers.

Among the recognized features of human gait lies one im-

portant phenomenon: active head tilt stabilization. Head sta-

bilization is believed to offer a stable and consistent egocentric

reference frame for motion perception and control (Berthoz,

2002). A more recent result shows also that head stabilization

improves the estimation of the vertical direction by allowing

to resolve the gravito inertial ambiguity (Farkhatdinov et al.,

2019).

�is stabilization is known to be particularly important for

locomotion (Pozzo et al., 1990). �e stability of the head in-
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creases the gaze efficiency, for example through vestibulo-

ocular reflex, into anticipating the future paths (Hicheur et al.,

2005). �is allows preserving the energy-efficient gait on var-

ious kinds of real-world environments (Matthis et al., 2018).

�e effort for stabilization is known to be increased partic-

ularly when balance becomes more challenging such as for

elderly people (Cromwell et al., 2002), or when subject to a

disturbance (Cromwell and Wellmon, 2001; Cromwell, 2003;

Cromwell et al., 2004), even when the spinal segments were

stiffened into a "rigid" body, requiring compensation from the

neck and the pelvis joints (Nadeau et al., 2003).

In this paper, we aim at understanding what is the mechan-

ical effect of the control of the head on the dynamics of both

the upper body and the whole body gait. Indeed, the head rep-

resents 8% of total body mass and occupies the top 12% of the

body (Armstrong, 1988). �e head accounts then for an impor-

tant contribution to the angularmomentumof thebody relative

to the stance foot position. �e dynamics of head stabilization

should then have noticeable effects on gait motion
1
.

However, to our best knowledge, no work attempted to un-

derstand the effects of the control of the head-neck system on

the gait dynamics. In fact, classic studies of the dynamics of

gait neglect this effect (Delp et al., 1990; Anderson and Pandy,

2001;�elen and Anderson, 2006; Skalshøi et al., 2015).

In a formerwork (Laumondet al., 2017),wehave shown that a

stabilized upper-body in an anthropometricmodel contributes

to stabilizing walking dynamics compared to a walker with a

rigid neck.

�is paper aims at studying more in-depth the mechanical

effect of head stabilization on the dynamics of gait. We first in-

troduce two walker models. Both walkers share the same mass

distribution. In thefirstmodel the torso, theneck, and thehead

constitute a single rigidbody. In the secondmodel the torso, the

neck, and the head constitute a two-degree-of-freedom articu-

lated chain. �en we recap the heuristic approach introduced

in (Benallegue and Laumond, 2013). It is based on numerical

simulation and it shows that the average number of successful

steps on uneven grounds significantly increases when the head

is stabilized.

�e first contribution of this paper is to give an explanation

of the head stabilization effect in terms of energy consumption

during the steady gait and its effect on the swing leg dynamics.

�e second contribution is the study of an original cart

upper-body model that allows accounting for the impacts

within the limit-cycle. �e head-neck system appears to play

the role of a low-pass filter on the force dynamics of the upper-

body.

�e third contribution is the study of the sensitivity of this ef-

fect to control parameters. By generating random parameters,

we show that head stabilization provides a significant contri-

bution to the viability of a stable gait on flat ground. We show

also that it improves the overall robustness of the control with

regard to ground perturbations.

Afterward, the consequences and perspectives of these re-

1
�e angular momentum of a body around the contact point is the cross

product of the velocity vector 2and the distance to the contact point, all mul-

tiplied with the mass. �e head, being at the longest distance to the contact,

and given its mass, tells us about the importance of its contribution to the total

angular momentum.
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Figure 1: A representation of the model we simulate. �e A

model is the same structure subject to the constraintsα = β =
γ. �e Bmodel has stabilized neck joints.

sults are presented.

�e details of the actuation and impactmodels, as well as the

technical developments of the cart upper bodymodel lineariza-

tion, are reported in the supplementary material.

2 Passive walker models, ground texture
and simulations

�is section introduces the walker models we consider and

gives an overview of the results presented in (Laumond et al.,

2017).

2.1 �e kinematic and dynamicmodel

Our passive-dynamics walker model is a planar 5 limbs kine-

matic tree which operates in the sagittal plane. �e limbs are: a

head with a mass on the top; a neck and a torso with masses at

the middle; and the (knee-free) legs, each of which with a mass

at distance ll from the hip. Every two successive limbs are at-

tached with a rotational joint (see Fig 1). Each leg is ended with

a prismatic joint equipped with a spring-damper. We call toe,
the bottom of the mobile part of the leg. �e hip-toe length lp
at the rest position of the spring is denoted by lp,0. Note that
the neck is modeled as an articulated body and not as a simple

joint. �is setting reflects the property of the head-neck system

to have two centers of rotation in the sagittal plane: one at the

base of the neck and the other at ear level (Viviani and Berthoz,

1975).

Arms have an important impact when 3D dynamics is con-

sidered (Chevallereau et al., 2009). However, since ourmodel is

in the sagittal plane, the influence of symmetric swinging arms

should be minor and is then neglected.
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Table 1: �e parameters of our simulated walker

Length (m) Mass (Kg)

Head lh=0.09 mh = 4

Neck ln=0.07 mn = 1

Torso lt=0.75 mt = 45

Leg lp,0=1 ml = 15

Leg CoM ll = 0.40

�e total height of the robot is 1.91 m and the total mass is

80 Kg
2
. �e segment length and mass relative distribution are

anthropometric (Armstrong, 1988).

It is important to emphasize that we do certainly not aim
at reproducing perfectly the human gait. Indeed, up to now,

only simple dynamical models allow to recreate locomotion

gaits (Mombaur, 2009) andaccuratedynamicalmodelingofhu-

man walking is out of reach of current simulators. Here we

model only a broad dynamics of an anthropomorphic walker in

a steady limit-cycle gait, similarly to what is done in (Donelan

et al., 2002; Roos and Dingwell, 2011; Tlalolini et al., 2011). Of

course, any claim made on human dynamics requires a ded-

icated experimental validation on human subjects. However,

modeling can be an important step to guide the research on hu-

mans by highlighting phenomena which would be more diffi-

cult to identify for humans.

2.2 Two actuationmodels

In order to see the effect of head stabilization, we simulate the

presentedwalker with two different actuationmodels. �efirst

walker (ModelA)we consider, has a rigidneck, i.e. the torso, the

neck, and the headmake a single rigid body. �e secondwalker

corresponds to the model of head stabilization (Model B): the

neck joints are controlled to maintain a zero tilt for the head.

Apart from the neck, both walkers have the same controls:

the torso is actuated to be stabilized uprightwhile a lightweight

controller actuates the inter-leg angle. Finally, a velocity driven

foot impulsion is given just before the swing phase. Ex-

cept for toe-off impulsion, the controllers for the robot are

proportional-derivative (PD), eachof themhas twogainparam-

eters. �e gains for the lower body are chosen to be lightweight,

to approach the low energy consumption of human’s steady

walk. �eweakness of the control of the lower limbsmake them

sensitive to perturbations, and their dynamics can differ ac-

cording to upper-body control. �e upper body has to guaran-

tee a successful vertical stabilization for the trunk and the head

and has, therefore, stiffer actuators.

Each PD controller has two gain parameters. �e parameters

wepresent here are the same thatwereused to obtain ourprevi-

ous results on uneven ground (Laumond et al., 2017). A detailed

description of the gains is given in the supplementarymaterial.

Nevertheless, in the next section, we study howdifferent values

of these gains influence this dynamical effect.

2
�e actual simulation were performedwith amodel 10 times lighter to im-

prove numerical conditioning, but all the dynamics is preserved since it is only

a scale factor of the actual one

Table 2: �e value of the limit-cycle state for each model.

Rigid neck (Model A) Head stab. (Model B)

θ (rad) 6.23× 10−1 5.17× 10−1

θ̇ (rad/s) −2.64× 10−1 1.07

φ̇ (rad/s) 1.58 1.32
η (rad) 0 0
α (rad) −2.88× 10−2 −2.89× 10−2

α̇ (rad/s) −2.83× 10−1 −2.77× 10−1

γ (rad) - −2.60× 10−2

γ̇ (rad/s) - −6.60× 10−2

β (rad) - −4.49× 10−3

β̇ (rad/s) - −1.32× 10−2

lp (m) −1.12× 10−2 −1.28× 10−2

l̇p (m/s) 1.53× 10−2 4.40× 10−3

2.3 Simulation and limit-cycle

Our numerical simulations are performed in a tailored C++

framework for simulating passivity based walkers. �e reso-

lution of dynamics integration is achieved using the dynamic

simulator OpenDynamics Engine (ODE).�e simulation time-

sample is of 1ms, but a special simulation time-sample is set to

0.1 ms at impact instants in order to increase the physical real-

ism.

During the motion, we consider the state vector ξ =
(θ, θ̇, φ̇, η, α, α̇, γ, γ̇, β, β̇, lp, l̇p) in the state spaceS evolving in
time. �e dynamics of walking systems is cyclic. At each step,

there is an impact and a swing phase.

By simulating bothmodels A and Bwe see that starting from

the appropriate state their gaits are stable and balanced on flat

ground. Furthermore, the motion is attracted to a stable limit-

cycle. To obtain the values of these limit-cycles, we simulate the

walking motion on a flat ground starting from 8000 uniformly

distributed state values in the state-space. �e simulation runs

until it falls or it converges to a limit-cycle. If a simulated mo-

tion does not fall, we assume that an accurate convergence to

the limit cycle happens after 400 steps. For each viable sample,

we record the states between the 400th and the 500th step. �is

gives a set of ξ̃i of recorded states after the convergence. In the
absence of a perfectly accurate value for the limit cycle, we ap-

proximate ξl by the mean value of the recorded states{ξ̃i} (see
Table 2).

We see in this table that the values are globally close between

the models, particularly the inclination of the trunk segment,

but with few notable exceptions. First, the head (β for Model
B and α for Model A) is more vertical for the head stabiliza-
tion model, which is the purpose of this model. Second, the

lower limb values are relatively different with 18% longer steps

for Model A, and even a different sign for the inter-leg angu-

lar velocity. �is discrepancy is only due to the difference be-

tween the twomodels in the actuation of the head-neck system.

We recall in the next section our previous result on the conse-

quences of this difference on simulated uneven ground, andwe

investigate afterward this effect more deeply.
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Figure 2: �emodel of ground texture for our walkers

2.4 Amodel for ground texture

Both models have stable limit-cycle gaits on flat ground. �is

gives the walkers equivalently perfect balance performances on

this ideal environment. However, the dynamics ofModel A and

Model B differ because of head stabilization. �e limit cycle is

different and more importantly, the robustness of the walkers

to a textured ground could also be different.

In our former work, we simulated the walkers on a textured

ground. For the case of our 2D walker, we model the uneven

terrain by changing the slope of the ground at each step, fol-

lowing a centered Gaussian distribution (see Figure 2). We can

make the terrain more or less rough by changing the standard

deviation (std) of the Gaussian law. For any non zero standard

deviation, the probability to fall tends to 1 when time tends to

infinity.

To compare robustness performances, we use a metrics

adapted to textured terrain (Byl and Tedrake, 2009). �is met-

rics called Mean First Passage Time (MFPT) is derived from the

analysis of metastable systems. MFPT of walkers on stochas-

tically rough terrain is the average number of steps the walker

makes before falling. �is metrics has the advantage of being

easy to interpret and to give an idea on the real performances of

a walking system. Furthermore, it synthesizes all the dynamics

of reachable state space on rough terrain. In another previous

work, we designed an approach to compute this value for com-

plex walking system (Benallegue and Laumond, 2013).

2.5 MFPT on textured ground

On flat terrain and for both control models, it has not been

possible to find an upper bound on MFPTs. However, as soon

as a slight non-flat texture appears, the walkers’ performances

greatly differ from each other. In Fig. 3 we show the different

values of MFPT obtained for different ground textures, com-

paredbetween theheadstabilizationand the rigidneckmodels.

We see in the plot that head stabilization enables a substan-

tial improvement of the mean number of steps on weakly tex-

tured grounds. �e phenomenon can be seen from the exam-

ple of 0.01 rad standard deviation. In this case, MFPT of the

0 0.02 0.04 0.06 0.08 0.1
10

0

10
2

10
4

10
6

Ground texture (rad)

M
ea

n 
nu

m
be

r 
of

 s
te

ps

 

Head stabilization

Rigid neck

Figure 3: Mean number of steps of the walker models on dif-

ferent textures of the ground. By texture wemean the standard

deviation of the ground slope. MFPTs are displayed in logarith-

mic scale.

rigid neck model is 23 steps, while head stabilization guaran-

tees MFPT of several million steps. �is performance improve-

ment persists as the ground texture increases, even if the dif-

ference declines.

However, we don’t believe this is the most appropriate way

to interpret these results. Instead, we would emphasize more

on the fact that the head stabilizationmoves the rigid-neck line

of Fig. 3 to the right. �at means that the same balance per-

formances can be achieved on higher textures thanks to head

stabilization.

�e next section introduces complementary results that give

deeper insights into themechanical contribution of head stabi-

lization to walking dynamics.

3 �e effect of head stabilization on
lower-body kinematics

�erigid neckModel A andhead stabilizationModel B have dif-

ferent kinematics and internal torques in the neck joints dur-

ing walking. But in Model A, the head is attached to the torso

which is stabilized upright as well with quite high gains. We

may expect then that the difference between the two models

would be very slight, especially regarding the fact that the head

has a small mass compared to the rest of the body. However, as

we have seen before, the difference between themodels induces

an important difference in terms of robustness to ground per-

turbations.

In order to remove all the disturbances and study the dif-

ferences in ideal conditions, we study the dynamics when they

are on the stable limit cycle. We start our dynamics analysis by

studyingmechanical energy during the gait. Here, bymechan-

ical energy wemean the sum of kinetic and gravitational poten-
tial energy. We do not include the potential energy stored in

spring compression, or in deviation from the reference of PD

controllers. We see in the top of Fig. 4 a plot of the total me-

chanical power (time-derivative of mechanical energy) of both

walkers during one cycle of walking.
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Figure 4: Mechanical power and leg velocity over the walking

limit cycle. On the top: �emechanical power during phases of

limit-cycle on flat ground. From 0% to 30% of the cycle, the dis-

tribution of mechanical energy consumption is different, the

head stabilization offers a lower energy absorption following

the impact. On themiddle: �eangular velocity of the swing leg

during the limit-cycle. �e influence of the mechanical power

difference in the first 5% is visible, the swing leg has a better

initial velocity until 30% of the cycle. On the bottom: �e swing

leg angle, we see that despite similar initial and final values, the

angle is higher when the head is stabilized.

At the beginning of the cycle, the walker is in a post-impact

state. �is part is truncated in the plot because of very low

power values corresponding to the absorption of mechanical

energy, mostly by the spring-damper at the toe. After the im-

pact, theupper body is propelled forwardby the conservationof

momentum. �e active trunk stabilization of both models dis-

sipates apart of thismotion tomaintain theupper-bodyaround

upright orientation. �is stabilization tends then to reduce the

amount of the mechanical energy of the system, and thus has

a negative power during almost all the cycle. Finally, following

thehybridnatureof the system, at thepre-impact instant, there

is a discontinuous impulsion given by the toe. �is gives an ‘in-

finite’ mechanical power at the last instant of the cycle. �is

value is obviously omitted in the plot.

Since this motion is a periodic limit cycle, both mechanical

powers have zero integral when we consider these truncated

values. And evenby subtracting the impulsion energy of the last

instants the twoplots have approximately the samenegative in-

tegral.

In addition, what is striking about this plot is the difference

that lies between the plots just after the impact. For instance, in

the case of head stabilization, there is a noticeable amount of

mechanical energy dissipation which is delayed from the very

first post-impact instants (0 to 7% of the cycle) to a later part of

the cycle (7 to 30%of the limit cycle). �eoriginof this difference

is investigated in the following section on a simplifiedmodel of

the upper body.

�is phenomenon has an effect also on the lower body. �e

difference inmechanical energy at the beginning of the step in-

volves partly the swing leg velocity. �e plot on the middle of

Figure 4 shows the angular velocity of the swing leg during the

limit cycle. �ere is a clear increase in swing leg velocity at the

beginning of the step when the head is stabilized. �e velocity

decreases then later in the cycle. �e effect appears at the bot-

tom of Figure 4 with different trajectories of the swing leg an-

gle despite similar initial and final values. For instance during

most of the limit cycle period the head stabilization guarantees

higher swing leg angle.

�is modification of the legs kinematics has an influence on

the way the gait responds to ground perturbations. Indeed,

having higher foot elevation enables to overcome more obsta-

cles in the environment. But there is also another effect, which

is to reduce forward falls: in the case of human gait, as for our

simulated models, the imbalance caused by uneven and tex-

tured ground result mostly in forward falls (Smeesters et al.,
2001). A forward fall happens when the swing foot reaches the

ground too close to the stance foot, and cannot compensate for

the destabilizing linear and angularmomenta after the impact.

�erefore when the swing leg velocity is increased at the begin-

ning of the cycle, the walker reaches earlier a balanced position

with a forward leg better prepared for the next impact (Wisse

and Van der Linde, 2007). �is is precisely what happens to our

simulated model with a stabilized head.

To understand the origins of this effect, we show in the next

section how this difference in actuation affects a linearized

model of the upper body alone.
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4 Linearized dynamics

Cart upper-bodymodel
�e upper-body, i.e. everything above the hips, represents the

majority of the weight of our model, distributed on an upright

structure which is broadly as tall as the legs. �erefore, during

steady gait, it has a remarkable contribution to the dynamics

of walking (Benallegue et al., 2013). Moreover, beside its simple

presence, the internal dynamics of the upper-body has also its

own effects on the gait, this is known for example for the case

of articulated arms (Chevallereau et al., 2009). Similarly, any

difference in thedynamics of thehead-neck systemshouldhave

its effects on the whole-body motion.

We consider here the upper-body model of our previous

walker, which is the 2D chain composed with the three seg-

ments: the head, the neck, and the torso. �is model is con-

trolled similarly to the walker presented earlier with a rigid

trunk system (Model A) and head-stabilizing one (Model B)

and having the same control parameters as in (Laumond et al.,

2017). Note that even if the models could remind of the classic

inverted pendulum-like systems (Wieber et al., 2015), with its

unstable natural dynamics, the main difference is that all the

rotational degreesof freedomof thesemodels are actuated, giv-

ing then global stability of the control when coupled with the

described control.

In the equilibrium state of Model B, the center of mass of

each segment is vertically aligned with the previous and next

joint. �is systembecomes therefore stiff regarding verticalper-
turbation forces. Or in otherwords, themaindifference thatwe

would see betweenModel A andModel Bwill lie in the horizontal
component. For this reason, we put thesemodels on simulated

carts moving on horizontal planes.

We define the state vector for the upper-body of Model B:

ξu =
(
p ṗ α α̇ γ γ̇ β β̇

)>
where p is the horizon-

tal position of the cart. �e state vector of Model A can be re-

duced by removing the four redundant last components.

We equip the cart with an acceleration-driven actuator (see

Figure 5). �is ideal actuator generates perfectly the necessary

force in order to track a reference acceleration p̈. �ismodeling

choice allows comparing the dynamical responses in terms of

reaction forces and energy. �e dynamics can be written as

ξ̇u = f(ξu, p̈), (1)

where f is the state dynamicswhich is different betweenModel
A andModel B. Note that developing this dynamics boils down

to solving a mixture between forward and inverse dynamics.

�at is because we know part of the forces through gravity and

pure torque control law (equations (6)-(8) in supplementaryma-

terial) and part of the second-order kinematics through p̈.
�edynamics functionf is nonlinear because of trigonomet-

ric operators. We choose to linearize this dynamics around the

equilibrium state (α = β = γ = α̇ = β̇ = γ̇ = 0). �e

linearization enables us to catch the dynamics in the vicinity of

this state while allowing easy frequency analysis and impulsion

response study. �e linearization provides us with the follow-

ing approximated dynamics:

ξ̇u = Aξu +Bp̈ (2)

tt

Figure 5: �e upper body models on carts. On the left the A

model with a rigid neck and on the right the B model with an

actuated articulated neck. �e dynamics of these both models

is linearized to be studied.
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Figure 6: Bode plot of the response of β the head angle to p̈
the cart acceleration inputs for the linearized cart-upper-body

model with rigid trunk and head stabilization.

where A and B are matrices of appropriate dimensions. We

can compute these matrices for both models by using available

equations provided by Newton-Euler dynamics and kinematic

constraints. We redirect to the supplementary material for de-

tailed computation of these matrices.

4.1 Spectral analysis

�efirst assessment that can bemade is on the efficiency of the

head stabilization. �e head inclination β is part of the state
vector and can, therefore, be studied in the Bode diagram of

Figure 6. We can see that the head-neck PD control is more ef-

ficient than the rigid trunk to stabilize the head for frequencies

lower than 30 rad/s (about 4.77Hz)which is sufficient to contain

most of walking dynamics. �e dynamics of head orientation

is very comparable for higher frequencies, which may appear

mostly during impacts. We can state then that the head is suc-

cessfully stabilized thanks to our control model.

More interestingly, the horizontal forces ft that are applied
by the cart on the trunk are also linear outputs of the system.

�is output represents the necessary force required tomove the

cart at a given acceleration p̈. �erefore, this response can be
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rigid trunk and head stabilization.

seen as the apparent inertia of the upper-body seen as a black
box. �e Bode diagram of this output is presented in Figure 7.

We see in this plot that this apparent inertia decreases for

Model B for high frequencies, compared toModel A, due to the

mobility of its head-neck system. �is modification of the dy-

namics is partly due to the fact that the moment of inertia of

the rigid trunk regarding the hip joint is much higher than the

sum of moments of inertia of each segment separately relative

to the corresponding lower joint. �anks to this property, the

head-neck system appears to play the role of a low-pass filter on
the force dynamics of the upper-body.

�is difference observed in the forces imply that the impact

responses are different. Since impacts can be considered as

acceleration Dirac functions they can be simulated on our lin-

earized upper-body model.

4.2 Response to impacts

�e impact during the limit-cycle of walker models happens

just after the limit state ξl, and its dynamics is determined by
the value of this state. �is value is different between Model A

and Model B but it generates roughly comparable post-impact

dynamics. For instance, the outcoming horizontal motion of

the hip joint is relatively similar between Model A and Model

B and can be approximated by a discontinuous transition from

1.2 m/s velocity to 1 m/s. �is transition can be simulated as an

impulse response of this linear system.

Similarly to thewalkermodel, we show the response in terms

of mechanical power as a time-plot in Figure 8.

�e integrals of the two curves have comparable values (-9.3 J

for Model A and -10.3 J for Model B) since both models start

and end at specific energy levels determined by the pre-impact

and post-impact velocities. Also, we see in this plot that after

0.5 seconds, the cart has almost no need for power to keep the

new constant velocity. However, before this instant, the dis-

tributions of this energy consumption are relatively different.

Specifically, the head stabilizing Model B reaches a low level

of energy consumption significantly faster than the rigid neck

Model A but keeps this level longer (between 0.08 s to 0.15 s).
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Figure 8: Time-plot of the impact response of the cart mechan-

ical power for both models.

Of course, this difference is due to the difference in terms of

apparent inertia showed earlier.

It is important to note that this plot looks very similar to the

mechanical power at the top of Figure 4. �is is because it de-

scribes the very same phenomenon which allowed our model

to better overcome ground perturbations. �e head-neck sys-

tem acts as a low-pass filter on the dynamics of upper-body. In

someway, this amounts to save a part ofmechanical energy and

to dissipate it at amore appropriate phase of the walking cycle.

�is allows propelling the leg forward to better prepare for the

next step.

�is dynamical effect obviously depends on the parameters

of the controllers, specifically the actuator gains, and might

have different outcomes if they had different values. In the fol-

lowing section, we study how the viability and the robustness

are sensitive to various gain values.

5 Sensitivity to control parameters

�egait of ourwalkers is the result of the coordination between

the natural dynamics of the mechanical rigid structure and the

introduced forces into the system through active actuators at

the joint level or the passively compliant toe. Nevertheless, this

coordination emerges from simple control schemes and only a

few parameters define the nature of their responses. To pro-

duce the robustness results seen in the previous section, these

parameters did not need to be finely tuned. �ey were actually

in the first set of valueswe tested that allowed the emergence of

a stable gait for both of our walkers. However, not all values for

these gains produce a viable walker, i.e. a walker able to have

stable gait on flat ground. And the robustness also depends on

these parameters to the same extents.

�erefore, we study, in this section, the sensitivity of our ef-

fect to variations of these control parameters, in termsof viabil-

ity and robustness to groundperturbations. Todo that, we gen-

erate random gain parameters for both walkers and we study

these two controllers for every combination.
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5.1 Generating randomparameters

Both walkers share the same architecture up to the neck joint.

�ey share then at least 7 control parameters: the stiffness and

damping of the toe compliance, the impulse velocity reference

and the proportional and derivative gains for the interleg angle

and for the trunk inclination. If these values are too small, the

walker will either generate less power than it dissipates or will

be too compliant and unbalanced. If the values are too high,

the robot would either be too stiff to allow a stable gait or would

produce unstable simulations.

For each of these control parameters, the value was gener-

ated uniformly ranging between the quarter and the double or

the quadruple of their initial values. A dedicated section in the

additional material provides details on this generation, and on

the methods, we used to measure the viability and the robust-

ness to ground perturbations.

5.2 Viability

For each combination of the control parameter, we tested the

viability of the walker, i.e. its ability to generate stable gaits on

even flat ground. On a total of 2,270,600 combinations tested,

1,121,695 (49%) were not viable for any walker, 523,867 (23%)

were viable for both walkers, 482,781 (21%) were viable for the

head stabilization walker and not viable for rigid neck and only

142,257 (6%) were viable only for the rigid neck walker. See the

top of Figure 9 for amore visual representation of these results.

We call exclusive viability the situation inwhich, for the same

parameters, one of the models was able to reach a steady gait

and the other not. It is either due to the inability of one control

to generate a stablemotionwhile the other achieves it, or when

the simulator was not able to start inside the basin of attraction

of the failing walker but succeeded for the other one.

�ese results mean that the head stabilization allows more

controllers to perform a viable gait than the rigid trunk walker,

mostly due to better control and a larger basin of attraction,

and only a few combinations are exclusively viable for the rigid

trunk.

�e parameters giving exclusive viability for the rigid neck

tend to have a higher impulse velocity in average (2.31m/s com-

pared to 1.68 m/s for viable head stabilization), which is much

more energy-consuming. �is can be seen by constraining the

impulse velocity to be below 2 m/s, which is twice the velocity

of our original system. In that case, we have 1,445,360 combi-

nations, among which 383,930 (26%) are viable for both walk-

ers, 312,286 (21%) are viable exclusively for the head stabiliza-

tion and 27,774 (2%) only are viable for the rigid trunk and not

for the head stabilization. �is means that for low energy walk

thehead stabilizationprovidedalmost twicemore viability than

having a rigid trunk, without losing the viability of almost any

control parameter.

Conversely, in the case where the impulse is bigger than

2m/s. Head stabilization had only 21% of exclusive viability,

which is only a bitmore than 14% of the exclusive viability of the

rigid trunk. See the bottomof Figure 9 for amore visual display

of these split results.

Another particular property of the combinations exclusively

viable for rigid trunk is that they have lower stiffness and

Total
2270600

Head stabilization
1006648

Rigid neck
666124

Total (impulse < 2 m/s)
1445360

Head stab.
696216

Rigid 
411704

Total (impulse > 2 m/s)
825240

Stab.
310432

Rigid 
254420

Figure 9: Representation of the viability tests on walkers with

random parameters. �ere were 7 different generated parame-

ters, which cannot be represented in a plot. �erefore each bar

represents the number of combinations lying in a set. �e clear

area represents the total sampled parameters, the solid gray

area represents the viable parameters forhead stabilizationand

the striped area represents the viable parameters for the rigid

trunk. �e representation allows seeing the overlap between vi-

able rigid trunk walkers and viable head stabilization walkers.

On the top are the global results onparameter sampling, andon

the bottom are the same results split into stronger and weaker

impulsions.

8



D
is

tr
ib

ut
io

n
 (

%
)

10
2

10
3

10
4

10
5

10
0

20

10

5

15

25
Rigid neck

Head stabilization

Mean Number of steps

Figure 10: �e distribution of the mean number of steps when

generating random control parameters with weak impulsion

(<2m/s). �eMFPTs are shown in a logarithmic scalewith each

tick is
4
√

10 ' 1.78 times higher than the previous one.

damping for trunk upright stabilization (385.49 Nm/rad

and 131.85 Nms/Rad compared to 401.12 Nm/rad and

174.68 Nms/Rad) which makes it more prone to deviate

from the limit cycle when subject to perturbations such as

rough terrain. Indeed,wenext test the randomizedparameters

for these walkers when exposed to ground perturbations.

5.3 Robustness to terrain disturbances

In this simulation, the control parameters were generated fol-

lowing the samedistribution and tested on a rough terrain hav-

ing 0.03 rad of standard deviation. Here we separate also the

parameters into two sets, one with impulse velocities higher

than 2 m/s, the high energy group, and the other with weaker

impulses, the low energy group.

�e performance estimation is performed also using MFPT

metrics. But due to the required time to obtain this measure-

ment, the number of tested configurations is much smaller

than for the simple viability analysis.

For the lower energy group, there were 7713 configurations

which were viable for both walkers. For these configurations,

the simulations start at the limit cycle and the comparison be-

tween theMFPTs of thesewalkers is only amatter of robustness

to ground perturbations. Among these values, 4516 (58%) had

higher MFPTs for head stabilization than for rigid trunk, and

the remaining had higherMFPT for rigid neck system. �is can

seem a bit balanced between the walkers, however, the average

improvement when head stabilization is better is of 1256 steps,

while it is only 269 steps when the rigid trunk is better. In-

deed, the average number of steps for the rigid neck is 167while

for head stabilization it is 754 steps. To emphasize this differ-

ence, the distribution of these MFPTs is presented in Fig 10,

and shows that head stabilization provides higher robustness

to ground perturbations. Head stabilization seems to provide a

strong advantage for the robustness of the walker with regard

to ground perturbation.

However, this property is completely reversed for the set of

parameterswith stronger impulsions (>2m/s). Head stabiliza-
tion decreases drastically the robustness to ground perturba-

tions. �e average number of steps for the rigid neck is of 10537

steps while it is only 222 steps for head stabilization. �is re-

sult may have two reasons: the first one is that the impulsion

alone provides the swing leg with a high initial velocity, which

makes the contribution of the head stabilization much less rel-

evant, and the second one is that the high velocities of the re-

sulting gait create large motions of the head which disturb the

walking trajectories. It could be hypothesized that the quality

of the resulting gait could be improved by using a stiffer head

stabilization. However, going to stiffer actuation decreases the

efficiency and the “passivity” of the gait. More than that, highly

dynamicmotion create large impacts that are not properly sim-

ulated with this kind of dynamic engines.

Finally, the head stabilization effect of gait seems to be re-

lated a lot on the need for thewalker to delay the response to the

impact to help the swing leg to overcome obstacles with min-

imum additional energy. �ese considerations, together with

the impact and extensions of this result are presented in the fol-

lowing conclusive discussion.

6 Discussion and Conclusion

In this paper, we have investigated the origins of the effects

of head stabilization on the dynamics of the walking dynamics

in general and on the upper-body dynamics in particular. �e

study has been performed on simple 2D models, in the sagit-

tal plane, aiming at mimicking the mechanical features of hu-

man gait while minimizing its complexity and the variety of

parameters defining its dynamics. �erefore, despite the an-

thropometric values used, we intend to extract from thismodel

more qualitative observations than quantitativemeasurements

of the dynamics.

�e head stabilization appears to provide a substantial dy-

namical advantage over the model with a rigid neck. �is ef-

fect enabled thewalker to generate intrinsicallymore stable gait

kinematics and to obtain significantly better performances in

terms of robustness to environment perturbations.

In a deeper investigation,we studiedhowdifferent gaits pro-

ducedby various control parameters are influencedbyhead sta-

bilization,wehave shown that this effect is rather generalizable

as far as the walk is power efficient, but the effect becomes ac-

tually negative for high energy, highly dynamic gaits.

While this effect is significant for ourmodel, we do not claim

that the same phenomenon happens also for humans. We do

not say that humans fall after few steps if they have their neck

locked. �at observation could transfer to humans by hypoth-

esizing that the set of textures humans can absorb using their

energy-efficient steady gait is extended thanks to the mobility

of their vertebral column, especially cervical joints, and their

active head stabilization. If the neck joint is locked, instead of

falling, humans compensate for this loss andmove to stiffer and

costlier actuation to keep balance.

In fact, our results fit with clinical observations on humans.

�e unsteadiness and the loss of balance resulting from head-

neck system sensorimotor disturbances have been widely doc-

umented. Deficiency in neck-joint motor abilities have an

important impact on balance, whether in chronic neck in-

juries (Stokell et al., 2011) or in one-time experimental induced
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impairment (Bove et al., 2002; Vuillerme et al., 2005). It has

even been suggested that the impairments in the neck so-

matosensory inputs and sensorimotor control are as important

for balance as a lower-limbproprioception loss following a knee

or an ankle injury (Treleaven, 2008). �erefore, our study opens

potentially new clinical perspectives in diagnosis and therapy.

However, it is necessary to remind that in the case of humans

the sensory system is also involved, and it is difficult to sep-

arate it from the pure mechanical effect of head stabilization.

We think that our work could give a new perspective aiming

at disentangling the mechanics from the control and helping

to devise clinical protocols to detect impairments and improve

recovery. Nevertheless, we note that the entanglement of the

sensory-motor system in head stabilization, especially during

locomotion, canbenot only a tool to detect impairnesses (Schu-

bert et al., 2002) but also ameans to help rehabilitation patients

with vestibular deficiencies (Herdman and Clendaniel, 2014),

where the gait is considered as a task allowing to assess the re-

sulting recovery (Herdman et al., 2003; Schubert et al., 2008).

In addition, we believe our results may give an insight into

the role of the control of a vertebral column in themanagement

of gait mechanics. �e whole upper-body inertia and elastic-

ity could similarly store energy and use it at the relevant in-

stant. �is can inspire future mechanical designs of humanoid

robots in order to include vertebral-like structures (Ly et al.,

2011; Takuma et al., 2018).

Of course, one could design a different control of other parts

of the body, such as the legs, and reaches the same results if not

better. But our study focuses on the specific issue of explor-

ing, at least qualitatively, the mechanical effect of head stabi-

lization on the dynamics of gait, which is a recognized feature

of human walking. On the contrary, the design and control of

optimal models is the topic of our related research regarding

simultaneous model design and control of robots in the same

optimization loop (Saurel et al., 2016).

Finally, an interpretation of our study is that head stabiliza-

tion may be a heuristic answer to the question of taking advan-
tage of head mobility during walking. Indeed, head stabiliza-

tion it is likely not the optimal control of the neck regarding bal-
ance. Nevertheless, it could be a very simple control that pro-

duces a complex behavior with significant benefits.

In that perspective, the expected outcomes of this study will

be to consider the design of future humanoid robots by intro-

ducing different mechatronic architectures and new sensory-

motor systems.

SupplementaryMaterial

In this supplemental material, we present the control and the

actuation of the two models, then how the dynamics is lin-

earized for the cart-upper body model, we describe how the

mean first passage time was computed and finally, we give de-

tails on the generation and tests of randomcontrol parameters.

A ActuationModels

A.1 Toes
�eexchangebetween the swingphase and the stancephase oc-

curs at impacts of the swing leg with the ground. Impacts are

considered inelastic and contacts are considered perfect with

no slipping. �e toe of the stance leg has a spring-damper dy-

namics. �e contact force follows the direction of the stance leg

and its magnitude has a proportional-derivative (PD) expres-

sion:

ft = −Ktoe,p(lp − lp,0)−Ktoe,d l̇p (3)

whereKtoe,p = 50000 N/m is the elasticity of the spring and

Ktoe,d = 2000 Ns/m is the damping factor. �is force is ap-

plied onlywhen it is positive because of the unilateral force con-

straint of the contact (the ground cannot pull the body).

When a leg is in a swing phase, its toe comes back instantly to

the rest position lp,0 of the spring, and remains constant until
the end of the swing phase. We denote then simply by lp the
length of the stance leg.

�ewalkers lose a part of theirmechanical energy at each im-

pact. �ey require then to be actively fed with an equivalent

source of energy. �erefore, at the instant of the take-off of

the stance leg, a velocity controlled impulsion is applied to the

ground to give propulsion to the robot (Figure 11). �e required

force for this impulsion is ft:

ft = h(l̇p,r) (4)

where l̇p,r = 1 m.s−1 is the desired velocity and h is the con-
troller function. Mostmodern dynamic simulators provide im-

plementations of ideal velocity-driven motors. �ese can be

seen as models of velocity-driven motors with short response

time and tracking high quality enabling the motor to reach de-

sired velocities within one iteration of the dynamic simulator.

In reality, the simulator solves the problem of finding the exact

force that has to be applied to the joint during one time-sample

to reach this velocity. �is gives an automatic computation of h
which has no closed-form. We use it then to apply the force ft
during one time-step of simulation.

�e idea of velocity-driven impulsion is to compensate for

the energy loss of foot impact. Moreover, by having a constant

toe-off velocity at the beginning of each step, we ensure to start

every step with comparable levels of energy and momentum.

�erefore the impulsion force is smaller for high-velocity step-

ping and bigger for low-velocity ones, and this helps to reject a

part of the deviations from the limit cycle.

In addition, even if the role of propulsion during human

gait is still a subject of debate, several studies show the im-

portance of calf and ankle in the propulsion during the sup-

port phase (Hill, 1953;Winter, 1983), their contribution to swing

leg initiation (Hof et al., 1992; Meinders et al., 1998) and their

involvement in the control of trunk dynamics (Neptune et al.,

2001).

Interleg joint �e inter-leg joint is controlled by a PD pure

torque generator toward a reference angle:

τhip = −Khip,p(θ − θr)−Khip,dθ̇ (5)
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A B

Figure 11: Actuation model. On the left, we see the two mod-

els of upper-body (for Model A and Model B). On the right, a

scheme of the spring-damper at impact and the impulsion at

take-off.

where Khip,p = 10 Nm/rad is the proportional gain, θr =
0.3 rad is the reference angle and Khip,d = 1.5 Nms/rad is

the derivative gain. We see that these values are small, even

when they are scaled to natural humanmass, in order to reduce

energy consumption and preserve the natural dynamics of the

legs.

Trunk �e trunk stabilization is achieved by applying torque

on the stance leg similarly to what is done in (McGeer, 1990).

�e trunk torque is given by:

τt = −Kt,pα−Kt,dα̇, (6)

where τt is the trunk to stance-leg torque,Kt,p = 300Nm/rad
is theproportional gain andKt,d = 150Nms/rad is thederiva-

tive gain.

Head stabilization For Model B, there are two other con-

trollers,which are theneck stabilization andhead stabilization,

they are also controlled by PD pure torque generators. �eir

torques expressions are the following:

τn = −Kn,pγ −Kn,dγ̇ (7)

τh = −Kh,pβ −Kh,dβ̇ (8)

where τn is the torque applied to the torso-neck joint,Kn,p =
50Nm/rad is theneckproportional gain,Kn,d = 0.6Nms/rad

is the neck derivative gain, τh is the torque applied to the neck-
head joint,Kh,p = 150 Nm/rad is the head proportional gain
andKh,d = 1Nms/rad is the head derivative gain.

A.2 Other details on the dynamics
Some additional details have to be specified hereinafter.

A fall is spotted by detecting contact between the floor and a

non-support limb.

Since the walker has no knees, �e stance leg is a little bit

shorter than the swing leg because of the spring of the stance

being compressed under the effect of the weight of the walker.

�erefore when the legs are parallel, the swing leg touches the

ground, even during the flight phase of the walker. �is would

stop any gait from being performed. �is problem is classically

taken into account in simulation by neglecting the contact until

a threshold angle between the legs is reached, and this is how

we proceeded. Beyond the threshold, the collision detection is

activated to catch the actual impact with the ground. In actual

compass walkers, a usual way to avoid it is to rock the walker

sideways in order to clear the swing trajectory, but for 2D con-

strained walkers, the solution is to use stepping tiles to ensure

the swing leg does not touch the ground (McGeer, 1990).

At the impact of stepk, there is apre-impact state ξ(tk)− and
a post-impact state ξ(tk)+where tk is the time instant of the k-
th impact. �e set of all possible pre-impact states constitute a

manifold that is called Poincaré section S∗ ⊂ S. �erefore at

the end of each step, the state of the robot ξ(t) reaches S∗. �e

process of returning to this manifold is called a first recurrence

map or a Poincaré map. �e number of steps is then the num-

ber of times the walker’s state reached S∗ before to finish in a
“fallen state” denoted ξf which gathers all the states considered
as “fallen walker”.

In the presence of a limit-cycle C ⊂ S, we have one state
value ξl defined by C ∩ S∗ = {ξl} such that on flat ground ξl
is the fixed point of the Poincaré map, i.e. (ξ(tk)− = ξl) ⇒
(ξ(tk+1)− = ξl). Furthermore, if the limit cycle is attractive,
then for any neighborhood v(ξl) ⊂ S∗, and starting from any

state x0 in the basin of attraction S̄, there is a number of steps
k after which all the pre-impact states ξ(tk+i)

−
, with i > 0, lie

inside the neighborhood v(ξl).

B Mean First Passage Time Computation
Algorithm

�is pseudo-code of Algorithm 1 describes in details the algo-

rithm summarized in the main text.

�e neighborhood v(ξl), also called limit kernel, is approxi-
mated by a multidimensional ellipsoid such that:

ξ ∈ Xl ⇐⇒ (ξ − ξ̃i)>C(ξ − ξ̃i) < d0 (9)

where C = (cov{ξ̃i})+ is the semi positive definite matrix

defined by the Moore-Penrose pseudoinverse of the covariance

matrix of the set {ξ̃i}, and d0 is a threshold defining the size of
v(ξl). For our case, we take d0 = 1000.

C Linearized dynamics of cart-upper
bodymodel

C.1 �e segmented linearizedmodel

�e linearized dynamics of the cart-upper body model can be

obtainedbywriting all the equationsprovidedbyNewton-Euler

dynamics and kinematic constraints. �ese equations can be

described by considering each segment si attached at the bot-
tomand at the top to other segments si−1 and si+1 respectively
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Procedure 1MFPT limit-cycle-based estimation
procedureMFPT(n: # of samples, σ: slope std)

nl, nf ,ml,mf ← 0
for i ∈ {1, · · · , n} do //sampling big loop

ξ ← ξl //initialize at limit-cycle
continue← true
m← 0 //number of steps of the sample

repeat //one sample simulation
slope← SimulateGaussian(0,σ)
ξ ← SimulateStep(ξ,slope)
if ξ = ξf then //fall detected

continue← false
nf ← nf + 1 //fall counter

mf ← m //falling step-counter

else
m← m+ 1 //successful step

if ξ ∈ v(ξl) then //limit-cycle return
continue← false
nl ← nl + 1 //returns counter

ml ← m //return step-counter

endif
endif

until continue = false
endfor
pf ← mf

mf+ms
//probability of a sample to fall

r ← 1−pf

pf
//average returns number before to fall

n̄f ← nf

mf
//average step number before falling

n̄l ← nl

ml
//average step number before returning

m̄← r n̄l + n̄f //MFPT

return m̄

X

Z

+

Figure 12: One segment si of the model.

(see Figure 12). Each segment is subject to control torques ap-

plied at the bottom and top joints, it undergoes also forces ap-

plied by the upper and the lower segments. �e kinematic con-

straint ensures obviously that the segments are linked together.

�e equilibrium state is the state where the segment angles

and their time-derivatives are null (νi = ν̇i = 0 for all the val-
ues of i). Since the dynamics is linearized around the equilib-
rium state, this simplifies the dynamics by providing that the

joints have constant height and onlymove in horizontal with pi
is the position of the lower link of the i-th segment. �is implies

that the vertical force acting on each joint is the opposite of the

weight of all above segments, leaving only horizontal forces fi
to be determined. �e linearization allows also approximating

sin νi by νi. �is enables us to produce the following equations:

0 = −Ki,pνi −Ki,dν̇i +Ki+1,pνi+1 +Ki+1,dν̇i+1

−Iiν̈i − li,1fi − li,2fi+1 + g(li,1mi + li
∑n

j=i+1mj)νi (10)

0 = mi(p̈i + li,1ν̈i)− fi + fi+1 (11)

0 = −p̈i+1 + liν̈i + p̈i (12)

whereKi,p andKi+1,p (Ki,d andKi+1,d) are the proportional

(derivative) gains of the stabilization of the current segment i
and the upper segment i + 1. mi is the mass and Ii is the mo-
ment of inertia around the center of mass for the segment i. li,
li,1 and li,2 are for the i-th segment the total length, the length
of the lower part (between the lower link and the CoM) and the

length of the upper part respectively.

Equation (10) is Euler’s relation for the variation of angular

momentum around the center of mass of the segment i. Equa-
tion (11) is Newton’s law for the variation of linear momentum

along the horizontal axis. Equation (12) describes the kinemat-

ics constraint linking each segment with the upper one, this

equation does not apply if there is no upper link (at the end of

the kinematic chain).

In the case of our upper-bodymodels. We have two different

controls, the model with head stabilization and themodel with

rigid neck. Let’s study the linearization of each related dynam-

ics:
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C.2 Stabilized head

the equations of all the segments canbe summarized as follows:

Lz + Eξu + F p̈ = 0 (13)

where ξu =
(
p ṗ α α̇ γ γ̇ β β̇

)>
is

the state vector described in the main text, z =(
α̈ ft γ̈ p̈1 fn β̈ p̈2 fh

)>
, with ft, fn and fh

the internal horizontal forces applied at the hip-trunk, the

trunk-neck and the neck-head joints respectively.

L =



0 −lt,1 0 0 −lt,2 0 0 0
mtlt,1 −1 0 0 1 0 0 0
lt 0 0 −1 0 0 0 0
0 0 0 0 −ln,1 0 0 −ln,2
0 0 mnln,1 mn −1 0 0 1
0 0 ln 1 0 0 −1 0
0 0 0 0 0 0 0 −lh
0 0 0 0 0 mhlh mh −1


,

(14)

F =
[
0 mt 1 0 0 0 0 0

]>
, (15)

and

E =



0 0 E0,2 −Kt,d Kn,p Kn,d 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 E3,4 −Kn,d Kh,p Kh,d

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 E6,6 −Kh,d

0 0 0 0 0 0 0 0


,

(16)

where

E0,2 =−Kt,p + lt,1mg + lt,2(mn +mh)g (17)

E3,4 =−Kn,p + ln,1(mn +mh)g + ln,2mhg (18)

E6,6 =−Kh,p + lhmhg (19)

withm = mt +mn +mh

L is an invertible matrix, which leads to the expression:

z = −L−1Eξu − L−1F p̈ (20)

On another hand, we have that

ξ̇u = Gz +Mξu +Hp̈ (21)

with

G =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0


, (22)

H =
[
1 0 0 0 0 0 0

]>
, (23)

and

M =



0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


(24)

Replacing (20) in (21) provides us finally with the following

linear dynamics:

ξ̇u = (M −GL−1E)ξu + (H −GL−1F )p̈, (25)

which is rewritten as following :

ξ̇u = Aξu +Bp̈ (26)

C.3 Rigid upper-body
For the case of rigid neck model, the state is much simpler

since there is only one segment in the upper-body. In this case,

z =
(
α̈ ft

)>
and ξu =

(
p ṗ α α̇

)>
Nevertheless, all the

equations above are the same except that the constantmatrices

have different values:

L =

[
−I −l1
mI −1

]
(27)

where l1 = 1
m

(
mt

lt
2 +mn(lt + ln

2 ) +mh(lt + ln + lh)
)
is

the distance from the hip joint to the center of mass of the

upper-body, I = mt(l1 − lt
2 )2 +mn(l1 − lt − ln

2 )2 +mh(l1 −
lt−ln−lh)2 is themoment of inertia of the upper-body relative
to its CoM.

E =

[
0 0 −Kt,p + l1m −Kt,d

0 0 0 0

]
(28)

F =
[
0 m

]>
(29)

G =


0 0
0 0
0 0
1 0

 (30)

H =
[
0 1 0 0

]>
(31)

M =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (32)

C.4 Remark
It is worth to note that with these developments, it is easy to

obtain the internal forces fi since they are components of the z
variable. �e external force applied by the cart at the hip joint is

simply the joint force ft. �is enables us to compute easily the

force and energy required to move the cart which provides us

with the results showed in the main text.
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Table 3: �e range of values for sampling random parameters.

initial min max

Ktoe,p 50000 N/m 12500 N/m 150000 N/m

Ktoe,d 2000 N 500 N 6000 N

l̇p,r 1 m/s 0.25 m/s 3 2m/s

Khip,p 10 Nm/rad 2.5 Nm/rad 30 Nm/rad

Khip,d 1.5 Nms/rad 0.375 Nms/rad 4.5 Nms/rad

Kt,p 300 Nm/rad 75 Nm/rad 600 Nm/rad

Kt,d 150 Nms/rad 37.5 Nms/rad 300 Nms/rad

D �e study of the sensitivity to random
control parameters

D.1 �egeneration of randomcontrol parameters

In order to study the sensitivity of the dynamical effects of head

stabilization to the control parameters of these walking sys-

tems, we generate random values for these parameters. �e

considered parameters are the stiffness and damping of the

support foot Ktoe,p, Ktoe,d, the impulsion velocity reference

l̇p,r, the proportional and derivative gains for the interleg an-
gleKhip,p,Khip,d and for the trunk orientationKt,p andKt,d.

Each of these parameters was ranging between the quarter to

the double or the triple of its initial value. �e initial values are

the values used to produce the results for theMFPTs in Figure 3.

Please see Table 3 for detailed values of these parameters.

D.2 �e evaluation

�ere are two parameters that were estimated for this study.

�e first one was the viability and the second one was the ro-

bustness to external disturbances.

�e viability was estimated by starting the simulation on a

flat floor at the limit cycle of the initial values, and stopping ei-

ther at a fall or after 100 steps. �e walker is considered viable

if it does not fall.

�e robustness was estimated by continuing the simulation

after this 100th step. �en theground inclination started tovary

with 0.3 rad of standard deviation. �eMFPT of this walker the

average number of steps the walker is able to perform after the

ground inclination started changing.
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