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ABSTRACT
Microcontrollers (MCUs) for the Internet-of-Things (IoT) are pow-
erful and versatile computing platforms, which may be hard to
program correctly and efficiently; power performance is particu-
larly important.We inestigate automatic methods to detect software
performance anti-patterns for this class of systems, so as to help
the software developer with power-related aspects. We use a vir-
tual prototype, i.e., we execute the real object code on a simulated
model of the hardware platform, given as a transaction-level model
(TLM) augmented with dedicated monitors. We study two cases
taken from an industrial example, and show that our method can
help detect patterns that would be difficult to detect statically, even
when the source code is available, because they involve the state of
the hardware and the timing of operations.
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1 INTRODUCTION
1.1 IoT Chips
The STM32WB (STMicroelectronics), the CC2540 (Texas Instru-
ment), the BM70 (Microchip), or the QN9080 (NXP), are powerful
and versatile microcontrollers units (MCUs), containing one or
more CPUs (like ARM-Cortex series) and integrated with various
sensors, actuators, and connectors, designed with power perfor-
mance in mind. They may be powered by a battery and offer so-
phisticated clock and power modes. The difficulty to write good
software for those platforms is a known problem in the industry:
software should exploit the capabilities of the hardware correctly
(respecting its specification), efficiently (consuming as little power
as possible), and securely (resisting attacks). In this paper we fo-
cus on power efficiency. Dealing with numerous sensors makes
this type of HW/SW platform a cyber-physical system (CPS): some
knowledge about the physical environment can help build efficient
solutions, for instance by selecting appropriate refreshment rates
for sensors. A thorough understanding of the computing platform
is needed in order to guarantee power performance, because a very
small variation in the software can have tremendous effects on
the consumption, and therefore the lifetime of the IoT object. In
one of the examples below (see 2.1.2), the lifetime increases from
approximately 3 days to approximately 8 months with a 700 mAh
battery.
∗Also with STMicroelectronics, 38019, Grenoble, France.

1.2 Methods and Tools for the Software
Developer

Difficulties to write efficient and correct software can be tackled in
various ways. Let us consider the pros and cons of each solution.

(1) Careful reading of the source code by experts: requires high
expertise, not necessarily available at the customer site, and access
to the source code, not always available for libraries.

(2) Using some Hardware-Abstraction-Layer (HAL) provided by
the vendor: helps avoiding bugs and writing portable code; but
it is sometimes counter-productive as far as power efficiency is
concerned.

(3) Using interactive debugging tools like GDB for the software
running on the real chip: requires heavy human interaction and
may fail to correct power consumption or timing problems because
they are due to the invisible hardware states.

(4) Executing the software on some simulated (thus fully observ-
able) model of the hardware: gives non-intrusive access to many
details of the hardware platform that may be hard to observe on
the real chip, while having a clear impact on power consumption,
like the traffic on the bus or the power modes of the CPU; some
vendors provide simulators for a partial view of their platform, like
the configuration of the clocks.

(5) Applying data mining techniques to the automatic detection
of patterns in execution traces [10]: relies on the availability of a
large number of traces, and algorithms to search those large data
sets; it is not meant for a monitoring (incremental) implementation.

(6) Automatically detecting software (anti-)patterns [14]: can
identify critical points quickly in a large number of code lines, but
these points are not necessarily bugs or actual problems in real
executions; it was first proposed for object-oriented development;
it is more difficult on less-structured low-level code.

1.3 Exploiting Virtual Prototypes
We focus on power performance: the MCU or the sensors provide
several modes that influence power, which makes it very hard to
talk about power at a syntactical level; we need to look at the
dynamic behavior.

Our goal is to explore a solution of type (4) above. It relies on
a virtual prototype of the platform, given as a Transaction-Level
Model (TLM). Virtual prototypes in the form of TL models started
almost 20 years ago as tools to help hardware and software develop-
ers communicate, and also to allow for developing software before
the hardware is indeed available [8]; they are on the path to be a
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key aspect of the IoT ecosystem, providing developers with tools
that help accelerate software development [11].

Our ultimate objective is to provide a development kit based on
the TL model of a platform, extended with performance diagnosis
capabilities. This kit will automatically warn the user about ineffi-
cient uses of the hardware, at execution time. Our aim is not only
to diagnose inefficient uses, but also to provide the user with some
advice for better code, hence smoothing the learning curve.

1.4 Contributions and structure of the paper
In Sections 2 and 3 we study a weather station based on a
STM32F411 chip [5]. The code is a refactoring of a representa-
tive real industrial example from STMicroelectronics and partially
uses the hardware abstraction layer provided by the company. The
chip is mounted on a Nucleo-64 prototyping board [3] extended
with a sensor expansion board including various sensors [1]. We
identify two classes of very common problems to be detected by
monitors: polling loops, and inefficient use of sensors. we show
why dynamic information is key to the detection of real problems,
and we show how to choose specific events and patterns to observe
in TL traces in order to find occurrences of those two problems.
In Section 4 we give a quick view of the monitor implementation,
and evaluate our solution. Sections 5 and 6 give related work and
conclude.

2 CASE STUDY: POLLING LOOPS
The first example is about detecting polling loops because it is
generally more costly than waiting for an appropriate interrupt
if available. When using methods based on the structure of the
code, it means detecting the pattern while(condition){};, either
syntactically, or on the binary code. As far as power consumption
is concerned, the cost comes from the CPU being active (while it
could be sleeping), but also from the bus activity induced by the
evaluation of the condition. We aim at detecting polling loops even
if the corresponding code is spread across several layers of low-level
code, part of it possibly available in binary form only. Moreover, we
would like to warn only when they have a significant effect, which
may depend on the effective number of passes in the loop: looping
twice is probably harmless, but 50 times may be significant.

We give two examples: the first one has to be replaced by some-
thing more efficient; the second one can be kept as it is.

2.1 Example: a Delay implemented by a Polling
Loop

2.1.1 Existing Code. In the first example, polling is used to wait
for a certain delay, as shown on Figure 1. HAL_Delay() takes as
a parameter the time to wait (Delay), saves the current time and
starts the polling loop. uwTick is a global variable incremented on
every SysTick timer interrupt. The timer is configured to fire its
overflow interrupt every millisecond. This example is used in a
weather station application whose main() function is shown on
Figure 2: it reads the sensors, then prints the value using the UART
and then waits for 800 ms using the HAL_Delay() function.

2.1.2 Proposed Modification. Implementing the wait functionality
efficiently on our platform is easy: put the MCU in a deep sleep

1 void HAL_Delay(__IO uint32_t Delay) {
2 uint32_t tickstart = 0;
3 tickstart = HAL_GetTick();
4 while((HAL_GetTick() - tickstart) < Delay) {}
5 }
6 uint32_t HAL_GetTick(void) { return uwTick; }
7 void HAL_IncTick(void) { uwTick++; }
8 void SysTick_Handler(void) { HAL_IncTick(); }

Figure 1: A delay implemented by a polling loop
1 int main(void) {
2 init();
3 while(1) {
4 int16_t temp = EnvSensor_GetTemperature();
5 int32_t pressure = EnvSensor_GetPressure();
6 uint16_t humidity = EnvSensor_GetHumidity();
7 printf("T, P, H = %d\n",temp,pressure,humidity);
8 HAL_Delay(800);
9 }}

Figure 2: main() function of the weather station application

1 /* asking access to registers */
2 CLEAR_BIT(RTC->CR, RTC_CR_WUTE);
3 /* Wait till access to wakeup timer is allowed */
4 while(READ_BIT(RTC->ISR,RTC_ISR_WUTWF) != 1);
5 config_wakeup_timer();

Figure 3: Polling loop on registers of the wakeup timer

mode and use the Real Time Clock (RTC) to wake it up. The RTC
behaves as a timer, sending an interrupt after counting up to a
certain value. The delay function now simply launches the count
and puts the chip in STOP mode. The RTC also has to be initialized
and its interrupt handler has to acknowledge the interrupt.

The STOP mode disables a lot of peripherals, including the MCU,
the SysTick timer and the bus, in order to save power. According to
the ST tool “STM32 CubeMX” [4], which gives approximate power
consumption related to those MCU states, implementing the wait
process using the RTC and the STOP mode instead of the polling
loop decreases the consumption from 8.5 mA to 0.12mA. When
powered by a 700 mAh battery, the code modification can extend
the lifetime of the system approximately from 3 days to 8 months.

2.2 Example: Unlocking Registers
2.2.1 Existing Code. The second example (Figure 3) is a piece of
code used to unlock access to the configuration registers of the
wake-up timer. The manual [5] explicitly requires the software to
implement this polling loop. The loop waits for the Wakeup Timer
Writing Flag (WUTWF) to be set, indicating that other configuration
registers can now be written. The Wakeup timer is a feature of the
RTC component, so the left part of the condition checks for the
WUTWF bit of the RTC Initialization and Status Register (ISR) using
the macro READ_BIT(RTC->ISR,RTC_ISR_WUTWF).

In the real platform the wakeup timer has its own clock, different
from that of the CPU, and the unlocking operation takes a few cycles
of the wakeup timer’s clock. The effective number of iterations
depends on the relative speeds of the CPU’s clock and the wakeup
timer’s clock. The faster the CPU’s clock, the more loop iterations
can be executed during the time it takes to perform the unlocking
operation.
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2.2.2 Keeping the Polling Loop. This is a typical case of a harmless
polling loop because the way the hardware is designed ensures a
very small number of iterations (in our example, we observed 20
in the worst case). We use transaction-level models, which can be
approximately timed with realistic assumptions on the duration
of transactions. Hence simulations with such models also show a
small number of iterations. This type of polling case can be ignored
easily, by using a threshold on the number of iterations.

2.3 Characterizing and Detecting Polling Loops
on TL Models

The first step is to characterize problematic polling loops by ob-
serving the dynamic behavior of the code. The idea is to focus on
the actual effect of a polling mechanism, even if it is not written as
a typical polling loop; or it is, but with harmless effects.

The effect of a polling mechanism is characterized by some repet-
itive pattern being observed, and we can decide to issue a warning
after a given number of repetitions. We propose to observe the se-
quence S of READ transactions issued on the bus. Section 4 explains
what is indeed observable (not all variable accesses do generate bus
transactions), and how to filter out other READ transactions (e.g.,
from interrupt handlers).

In the first example above, there are 3 variables in the con-
dition of the loop: Delay, uwTick and tickstart. The latter is
stored in a CPU register, hence does not generate bus transactions.
There are only two addresses that appear in READ transactions;
(HAL_GetTick() function calls also generate READ transactions,
but this is not an issue as explained in section 4.) uwTick++ is
filtered since it is executed in an interrupt handler.

In the second example there is only one access to a register of
the RTC component that generates a READ transaction on the bus.
Section 4 explains the instrumentation of the TL model, and shows
how to detect the first case, while ignoring the second one.

The last important point is to characterize the repetitive patterns
of READ transactions that are indeed issued on the bus for typi-
cal polling loops. For instance, if the code indeed contains a loop
while(condition){};, each evaluation of the condition generates
successive READ transactions, depending on the logical structure
of the condition (in C the evaluation of cond1 && cond2 does not
evaluate cond2 — hence does not access its variables — if cond1
is false). There is no cache between the CPU and the bus, so each
access to a variable generates a transaction. Observing repeated
accesses to the variables of cond1 is a hint that some polling situa-
tion might be involved, but it depends on which other accesses are
observed between the accesses to the variables of cond1. Extracting
also the variables of cond2 helps confirm that there is a polling
case.

2.4 Formalizing Patterns
As an example, let us consider the dynamic behavior of a program
that checks repeatedly a condition cond:
((a < 12)&&(a >= 0))||(b == 0)||(c == 0),
either written exactly like that, or obtained with macros and calls to
other software layers. Notice the same variable may appear several
times in the condition.

The iterative evaluation of cond generates sequences of accesses
of the form (a|aa|aab|aabc)∗ if all variables are observable (i.e.,
generate transactions on the bus) or simply (a|aa|aac)∗ if, e.g., b
does not.

Since we do not know in advance which addresses a, b, c
to look for when searching for polling loops, our problem
is a parametric version of the above example: we search for
(x|xy|xyz|xyzt|...)∗, where x, y, z, t, ... can be instanti-
ated with any address. The number of these “parameters” depends
on the condition. It is not too restrictive to consider that it is bounded
by a relatively small number P . In the sequel, we take P = 3 as an
example (3 observable accesses). The problem becomes to check
whether an execution trace is of the form: (x|xy|xyz)∗ for some
x, y, z. For a given vocabulary V and m ∈ V ∗, we can define
m ∈(x|xy|xyz)∗ as: ∃(a,b, c) ∈ V 3.m ∈(a|ab|abc)∗. If the vocab-
ularyV where a, b, c belong is finite, this can be written as a sim-
ple regular expression, because ∃ can be expanded into ordinary al-
ternatives:m ∈(x|xy|xyz)∗ ⇐⇒m ∈

∨
(a,b ,c)∈V 3(a|ab|abc)∗.

Finally, we replace the ∗ by [n,+∞], to start warning about the
presence of a polling loop only if it exceeds a number n of effective
iterations. In order to validate quickly the idea of using monitor-
ing techniques to detect polling loops, we implemented a simpler
(yet very frequent) case without Boolean operations. Instead of
searching instances of (x|xy|xyz)[n,+∞], we search for x[n,+∞]

| (xy)[n,+∞] | (xyz)[n,+∞]. See details in Section 4.
This example does not fully characterize all polling loops. For

instance, instructions in the condition or the loop body (especially
branching) can partially hide the repetition or produce a large
number of repetitive addresses observed on the bus. Moreover, if
we choose a very big P , we might end up detecting the infinite
loop of the main program. However we think this is a promising
approach, since it already detects a lot of typical polling loops in
typical code samples. Further work will include more cases.

3 CASE STUDY: TEMPERATURE SENSOR
The second case-study concerns the use of the LPS22HB tempera-
ture sensor [2], which has several operating modes: (1) In one-shot
mode the software has to set the one-shot bit to ask for a new value
to be measured and prepared; the bit will be cleared by hardware
when the new value is available; (2) In auto-refresh mode the
sensor can produce a new value with a given period chosen in
{13, 20, 40, 100, 1000} milliseconds. If the application needs less
than one value per second, or more than one every 13 ms, it should
use the one-shot mode. In both modes the last measure is always
available so that the software can read the value at any time.

The idea of this example is to detect the uses of the one-shotmode
that could be improved by using the auto-refresh mode instead. The
one-shot mode can have a significant impact on the consumption,
because it involves more transactions on the MCU bus: (1) the
software sends the address of the control register of the sensor and
the data (“1” on the one-shot control bit), (2) it sends the address
of the temperature data register in order to read the value. The
auto-refresh mode is far more efficient, since only step (2) is needed.
Moreover a READ needs two distinct accesses to two 8-bit registers
containing the MSBs and the LSBs of the temperature value.
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3.1 Example
3.1.1 Existing Code. Our application uses the one-shot mode
(see 4). The bit is set (Set_One_Shot), requiring a newmeasure; next
time the function will be called, it will access the value (Get_Temp)
and get this new measure. In our example, the function is called
approximately each 800ms (see main code on Figure 2).

1 int16_t EnvSensor_GetTemperature(){
2 int16_t SensorValue;
3 if(TEMP_SENS_IsInitialized()){
4 /*Read the previous value of the sensor
5 and restart the One Shot for the
6 next measurement*/
7 if(TEMP_SENS_Get_Temp(&SensorValue)){
8 if(TEMP_SENS_Set_One_Shot()){
9 return SensorValue;}}}
10 return -1;} // Error

Figure 4: Temperature measurement code in one-shot mode
(simplified).

1 int16_t EnvSensor_GetTemperature(){
2 int16_t SensorValue;
3 if(TEMP_SENS_IsInitialized()){
4 if(TEMP_SENS_Get_Temp(&SensorValue)){
5 return SensorValue;}}}
6 return -1;} // Error

Figure 5: Temperature measurement code in auto-refresh
mode (simplified).

3.1.2 Proposed Modification. The alternative implementation is
to use the auto-refresh mode, as shown on Figure 5. The auto-
refresh period is set in the init() function called at startup in
the main() function. The idea is to choose a period close to the
delay D implemented by the application (800ms in our case). If we
do not have the full source code, or because it is hard to analyze
statically anyway, D can be estimated dynamically by looking at
the TL traces. On this example we choose 100ms .

The cost of one bus transaction alone is very hard to estimate,
so the power consumption of the main() function (Fig. 2) has been
measured on the board with the initial and modified versions of the
EnvSensor_GetTemperature() function and our proposed modi-
fication for the HAL_Delay() function (see section 2.1.2). Average
consumption is 1.57 mA (± 0.01 mA) for auto-refresh mode and
2.47 mA (± 0.01 mA) for one-shot mode. It would correspond to an
increase in the lifetime from approximately 12 days to more than
18 days with a 700 mAh battery.

3.2 Detecting the One-Shot Mode on TL Traces
The type of situation we want to detect involves software intended
to read a fresh value of the temperature at a regular rate. We assume
the one-shot mode is always less efficient than the auto-refresh
mode when used with a period Pr < 1s. Pmax and Pmin are the
respective maximum and minimum possible auto-refresh periods
of the sensor (here Pmax = 1s and Pmin = 13ms). The decision is
given by Table 1. The last line shows a hypothetical case where the
software needs a new value more than once every 13 ms. It might be
useful for some critical applications where the temperature is rising
up extremely fast, but it cannot be accomplished in auto-refresh

mode, the one-shot mode should be used. In this case this is not a
matter of power efficiency so this is out of our scope.

We can observe the accesses to the sensor registers: reading
the value, and requesting the one-shot mode. The tricky part is to
measure time between requests to estimate the period, because we
work with a simulated model of the hardware platform for which
timing is always an approximation; moreover, even with a simple
loop code, the software on the real platform does not read the value
on a strictly periodic way.

We measure the period several times and compute the average.

Table 1: Detecting Inefficient Uses of the Sensor

One-shot Auto-Refresh

Pmax > Pr >
Pmin

inefficient (too
many

transactions)
efficient

Pr > Pmax efficient

inefficient (some
values will be
overwritten

before they are
read)

Pr < Pmin correct
wrong (some
values will be
read twice)

4 IMPLEMENTATION AND EVALUATION
4.1 The TL Platform
The virtual prototype is implemented as a SystemC TL model of the
STM32 MCU, including an instruction-set-simulator provided by
ARM, and a TL model of the LPS22HB temperature sensor. For the
first example (polling loops) we observe bus transactions. Direct
Memory Interface (DMI) has to be disabled to ensure transactions
visibility. For the second example, we observe the transactions on
some registers of the sensor: CTRL_REG2 is written when a value is
asked in one-shot mode, TEMP_OUT_H and TEMP_OUT_L contain the
temperature value, CTRL_REG1 controls the auto-refresh rate.

4.2 How to Add Monitors
In our proof-of-concept implementation, the monitors are first im-
plemented as classes in Python scripts. The scripts are called at
the beginning of the SystemC simulation, and instantiate Python
objects representing the monitors. Using Python allows high flex-
ibility and coding simplicity: adding a new monitor can be done
without heavy C++ re-compiling of the platform.

In the TL model, the bus and the sensor registers are SystemC
modules that receive transactions. The object constructor of the
monitors sets a watchpoint on a SystemC module and is pro-
grammed to trigger when the module receives a transaction with
certain conditions, which may involve the metadata of the trans-
action. When it happens, the SystemC simulation is paused, the
state of the hardware model can be inspected (for instance bits in
control registers), the simulation date and all the metadata of the
transaction are given to a Python method of the monitor. When
the method returns it gives control back to the SystemC simulation.
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The monitors can wait for a user action before giving control back
to the SystemC simulator. This can be useful for the user to see
the current instruction of the embedded software, via a connected
debugger, or to inspect the internal state of the monitors.

4.3 Monitor for the Detection of Polling Loops
Observing the transactions on the bus is always available in TL
models, but not necessarily the values of the registers internal to
the CPU, like the program counter, if the CPU model is vendor-
specific. So our polling loop detection works only with the memory
accesses and the accesses to registers in components distant from
the CPU. The monitor sets a watchpoint on the bus that triggers on
the condition READ. When SystemC gives control to the Python
script, it also transmits the target module name and the address.

4.3.1 Filtering Bus Transactions. We need to observe the sequence
S of read addresses issued on the bus by running the polling loop
alone. But other accesses are due to the execution of the interrupt
handlers on the same CPU (or even other threads if some scheduler
was used, but we consider bare-metal implementations). It is possi-
ble to ignore any transaction issued while an interrupt is in active
state. The virtual prototype includes a model of the nested vec-
tor interrupt controller (NVIC) that provides a register to indicate
whether any interrupt is active or not. An interrupt is active when
the CPU is running the interrupt handler (see STM32 reference
manual [5]). As the first monitor is disabled when an interrupt is
active, we instantiate another monitor — destroyed at the end of
the interrupt handler — in order to detect polling loops inside it.
So the maximum number of monitor instances is the number of
possible interrupts: 255. Transactions due to fetching instructions
from memory can also be filtered out: the memory location of the
code is known so the corresponding addresses can be ignored.

4.3.2 Recognizing a Polling Loop Sequence. We now work only
with READ transactions observed on the bus, targeting the data
memory section and the peripherals. As mentioned in section 2.4,
the monitor looks for the regular expression x[n,+∞] | (xy)[n,+∞]

| (xyz)[n,+∞] in the sequence of transactions. The recognizer is
fully implemented in Python in the monitor class, initialized with
a given maximal size of the repetitive patterns to be recognized P ,
and a minimum number of iterations n. We use P = 3 and n = 21
in the example.

4.4 Monitor for Sensor Mode Advice
We consider that the user provides our tool with the reference of
the sensor used (here LPS22HB); the tool can instantiate a corre-
sponding TL model enriched with the detection of the available
refresh periods.

The monitor sets three watchpoints: (1) On the one-shot bit of
the register CTRL_REG2 triggering on the condition WRITE, (2) on
the register TEMP_OUT_L triggering on the condition READ and (3)
on the register TEMP_OUT_Hwith the same condition.When awatch-
point is triggered, the monitor updates the associated measured
periods with the simulation date. It then checks for the inequali-
ties of the table 1 and warns the user in the inefficient cases. The
monitor also checks the field ODR of the register CTRL_REG1 that
indicates the sensor mode (ODR , 0 for auto-refresh, 0 for one-shot).

4.5 Example Results as Shown to the Developer
In our example, Fig. 6 is the message displayed when the monitor de-
tects an inefficient use case of the sensor. If a debugger is connected
then the simulation is stopped and it indicates that the software
is currently running the TEMP_SENS_Set_One_Shot() function in
the call stack. Fig. 7 is the message for a polling loop. The debugger
indicates that the software is currently running HAL_Delay().

Possible inefficient use of the sensor:
top.NODE_0.LPS22HB.registers.CTRL_REG2
ONE-SHOT asked with a period: 803,135,151 ns.
auto-refresh at 100 ms might save some transactions.

Figure 6: Detection of Inefficient Uses of a Sensor

Polling suspected at addresses 0x20000260, 0x20017FD0
target: top.NODE_0.NUCLEO.STM32.RAM
You might consider putting the CPU in sleep mode and
programming a wake-up interrupt!

Figure 7: Detection of a Polling Loop

4.6 Accuracy of the Detection Principle
The Hal_Delay() polling loop (Fig. 1) is detected correctly after
21 iterations and the message of Fig. 7 is displayed. Our proposed
modification using the RTC wakeup timer, running the harmless
loop (Fig 3) is filtered out correctly with the same monitor. Other
polling loops are also successfully detected like the example of Fig. 8,
although they include some code inside the loop which generates
other transactions on the bus.

1 /* Wait until ADDR or AF flag are set */
2 tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR);
3 tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF);
4 tmp3 = hi2c->State;
5 while((tmp1 == RESET) &&
6 (tmp2 == RESET) &&
7 (tmp3 != HAL_I2C_STATE_TIMEOUT)){
8 if((Timeout == 0) ||
9 ((HAL_GetTick() - tickstart ) > Timeout))
10 hi2c->State = HAL_I2C_STATE_TIMEOUT;
11 tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR);
12 tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF);
13 tmp3 = hi2c->State;}

Figure 8: A Complex Polling-Loop Example.

4.7 Impact of the Instrumentation on
Simulation Time

In all cases above, the embedded software has been compiled with
the -O0 option using embedded GCC. The additional cost of the
instrumentation is due to: (1) the context switches between SystemC
and Python; (2) the fact that we have to disable the Direct-Memory-
Interface (DMI) optimization to ensure visibility of transactions;
(3) the cost of the pattern detection algorithms themselves. The
cost of detecting sensor uses is negligible, because the registers are
accessed very seldom in the main loop, and checking the sensor
mode does not require any costly operation.

We therefore focus on the polling-loop monitor. We measured
the simulation duration from the start until the first call to
HAL_Delay(800) in the main function (Fig. 2) with various com-
binations of DMI and monitor enabling and disabling. In table 2,
None indicates that the monitor is disabled. C++ indicates that the
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Monitor None C++ Empty Present

DMI On 0.7 sec 0.73 sec 2.82 sec 3.06 sec
Off 1.19 sec 1.24 sec 24.05 sec 28.41 sec

Table 2: Impact of enabling/disabling DMI and monitor dur-
ing simulation, measured until first call to HAL_Delay().

monitor is implemented directly in the model in C++, Empty indi-
cates a monitor that triggers a SystemC to Python context switch
at each READ bus transaction, but does nothing. This is useful to
evaluate separately the cost of the pattern detection algorithm. The
DMI is disabled (Off ) only on the data section memory zone, hence
code fetching remains invisible.

The duration have been measured using the “time” linux com-
mand, adding the user and the system times. Results show a serious
performance breakdown due to Python/SystemC context switches,
but this can be avoided writing the monitor in C++. The pattern
recognition algorithm itself and disabling the DMI also slow down
the simulation. In addition leaving DMI enabled, and instantiating
monitors, also have a small impact while it should not (DMI en-
abling hides all memory bus transactions, so the watchpoint never
triggers). This is due to the loading of the python monitor when
simulation starts.

These measures show that we can focus on the detection algo-
rithms alone, the instrumentation mechanism being sufficiently
efficient.

5 RELATEDWORK
[12] proposes to use dynamic binary instrumentation (DBI) to de-
tect excessive dynamic memory allocations, and argues that it is a
software performance anti-pattern very difficult to detect statically,
because it relies on timing (it detects short-lived, high-frequency dy-
namic memory allocations). The general framework is very similar
to ours. We use a simulation of the hardware because power con-
sumption depends on the state of the hardware platform, and some-
times on timing. We may use instrumentations of an instruction-set
simulator, which has the same potential as DBI. [12] also provides
an interesting review of other dynamic approaches for other soft-
ware performance anti-patterns.

[9] is able to detect certain software performance anti-patterns
(resource leaks such as CPU, memory, battery) in android applica-
tions, which are sometimes imposed by the underlying frameworks.
In our case, this would be due to the HAL. The approach is based on
analysing the code of the application, thus being static but without
the need for the source code. The 8 patterns detected are all related
to the static structure of the code.

[10] applies data mining techniques to the analysis of real-time
streams in multimedia applications. It helps understand the viola-
tions of QoS properties, due to tasks missing their deadline. The
implementation is not meant for monitoring contexts, and may
need the full trace.

[7] presents efficient algorithms to find frequent sequences in
databases of ordered transactions. The type of patterns that may be
searched resembles what we need for the polling case, but the search
criteria is a quantitative measure of the frequency in the whole
database. On the contrary, our definition of a polling is local, it does

not relate to the frequency, in the whole behavior, of the memory
transactions generated by the evaluation of the loop condition.
Moreover, the family of algorithms developed for pattern mining
in databases does not necessarily work in a incremental way, which
is necessary for our monitoring purpose.

6 CONCLUSION AND FURTHERWORK
We showed on two frequent examples how detecting problems dy-
namically allows to focus on the real impact of bad software. A piece
of code that looks like a polling loop is not always one, and even if it
is, it is not always bad for energy consumption. The replacement of
the polling loop involves the use of a CPU sleep mode, whose effect
cannot be captured at source level. For the sensor example, the
dynamic detection on a timed simulation model allows to reason
about periods, which, again, would be difficult statically. Further
work will be devoted to other classes of power-related problems.
Ongoing work is devoted to the design of a dedicated algorithm for
the detection of polling loops, exploiting the fact that the pattern
(x|xy|xyz) has a very particular shape. We will also investigate
whether our patterns can be formalized as properties of the traces
written in languages like PSL [6], so that they can then be com-
piled into monitors, using techniques similar to those of [13], for
instance.
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