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Abstract

The 1-2-3 Conjecture states that every connected graph different from K2 admits a proper
3-(edge-)labelling, i.e., can have its edges labelled with 1, 2, 3 so that no two adjacent vertices
are incident to the same sum of labels. In connection with some recent optimisation variants
of this conjecture, in this paper we investigate the role of the label 3 in proper 3-labellings
of graphs. An intuition from previous investigations is that, in general, it should always be
possible to produce proper 3-labellings assigning label 3 to a only few edges.

We prove that, for every p ≥ 0, there are various graphs needing at least p 3s in their
proper 3-labellings. Actually, deciding whether a given graph can be properly 3-labelled with
p 3s is NP-complete for every p ≥ 0. We also focus on classes of 3-chromatic graphs. For
various classes of such graphs (cacti, cubic graphs, triangle-free planar graphs, etc.), we prove
that there is no p ≥ 1 such that all their graphs admit proper 3-labellings assigning label 3
to at most p edges. In such cases, we provide lower and upper bounds on the number of 3s
needed.

Keywords: Proper labellings, 3-chromatic graphs, 1-2-3 Conjecture.

1 Introduction
This work is mainly motivated by the so-called 1-2-3 Conjecture, which can be defined through
the following terminology and notation. Let G be a graph and consider a k-(edge-)labelling ` :
E(G)→ {1, . . . , k}, i.e., an assignment of labels 1, . . . , k to the edges of G (from here on, the term
“edge-” will be dropped). To every vertex v ∈ V (G), we can associate, as its colour c`(v), the sum
of labels assigned by ` to its incident edges. That is, c`(v) =

∑
u∈NG(v) `(vu). We say that ` is

proper if c`(u) 6= c`(v) for every uv ∈ E(G), that is, if no two adjacent vertices of G are incident
to the same sum of labels by `.

It turns out that K2, the complete graph on two vertices, is the only connected graph admitting
no proper k-labellings (for any k ≥ 1) [15]. In other words, any connected graph with at least
three vertices admits a proper k-labelling (for some k ≥ 1). Thus, when investigating the 1-2-3
Conjecture, we generally focus on nice graphs, which are those graphs with no connected component
isomorphic to K2, i.e., admitting proper labellings. If a graph G is nice, then we can investigate
the smallest k ≥ 1 such that proper k-labellings of G exist. This parameter is denoted by χΣ(G).

A natural question to ask, is whether this parameter χΣ(G) can be large for a given nice graph
G. This question is precisely at the heart of the 1-2-3 Conjecture:

1-2-3 Conjecture (Karoński, Łuczak, Thomason [15]). If G is a nice graph, then χΣ(G) ≤ 3.

To date, most of the progress towards the 1-2-3 Conjecture can be found in [17]. Let us high-
light that the conjecture was verified mainly for 3-colourable graphs [15] and complete graphs [8].

∗This work was supported by the ANR project DISTANCIA (ANR-17-CE40-0015). An extended abstract of
parts of this paper has been presented in [3].
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Regarding the tightness of the conjecture, it was proved that deciding if a given graph G verifies
χΣ(G) ≤ 2 is NP-complete in general [12], and remains so even in the case of cubic graphs [10].
This means that recognising graphs admitting proper 2-labellings (or, the other way around, of
graphs needing 3s in their proper 3-labellings) cannot be done in polynomial time unless P=NP.
Lastly, to date, the strongest result towards the 1-2-3 Conjecture is that χΣ(G) ≤ 5 for every nice
graph G [14].

This work follows a recent line of research dedicated to studying optimisation problems related
to the 1-2-3 Conjecture which arise when investigating the existence of proper labellings fulfilling
additional constraints. In a way, one of the main sources of motivation here is to further understand
the very mechanisms that lie behind proper labellings. In particular, to better understand the
connection between proper labellings and proper vertex-colourings, the authors of [1, 6] studied
proper labellings ` for which the resulting vertex-colouring c` is required to be close to an optimal
proper vertex-colouring (i.e., with the number of distinct resulting vertex colours being close to
the chromatic number). It is also worth mentioning the work done in [5], where proper labellings
minimising the sum of labels assigned to the edges were investigated.

Each of these previous investigations led to presumptions of independent interest. In particular,
it is believed in [6], that every nice graph G should admit a proper labelling where the maximum
vertex colour is at most 2∆(G) (recall that ∆(G) and δ(G) are used to denote the maximum and
the minimum degree, respectively, of any vertex of G), while, from [5], it is believed that every nice
graph G should admit a proper labelling where the sum of assigned labels is at most 2|E(G)|. One
of the main reasons why these presumptions are supposed to hold, is the fact that, in general, it
seems that nice graphs admit 2-labellings that are almost proper, in the sense that they only need
a few 3s to design proper 3-labellings. Note that, if this was true, then indeed the presumptions
from [6] and [5] above would be likely to hold. It is also worth mentioning that this belief on
the number of 3s is actually a long-standing one of the field, as, in a way, it lies behind the 1-2
Conjecture raised by Przybyło and Woźniak [16], which states that we should be able to build a
proper 2-labelling of every graph if we are additionally allowed to locally alter every vertex colour
a bit.

Our goal in this work is to study and formally establish the intuition that, in general, graphs
should admit proper 3-labellings assigning only a few 3s. We study this through two questions.

• The very first question to consider is whether, given a (possibly infinite) class F of graphs, the
members of F admit proper 3-labellings assigning only a constant number of 3s, i.e., whether
there is a constant cF ≥ 0 such that all graphs of F admit proper 3-labellings assigning label 3
to at most cF edges. Note that this is something that is already known to hold for a few
graph classes. For instance, all nice trees admit proper 2-labellings, thus proper 3-labellings
assigning label 3 to no edge [8]. Similarly, from results in [5], it can be deduced that all nice
bipartite graphs admit proper 3-labellings assigning label 3 to at most two edges.

• In case F admits no such constant cF , i.e., the number of 3s the members of F need in their
proper 3-labellings is a function of their number of edges, the second question we consider is
whether the number of 3s needed must be “large” for a given member of F , with respect to
the number of its edges.

Throughout this work, we investigate these two questions in general and for more restricted
classes of graphs. We start off in Section 2 by formally introducing the terminology that we
employ throughout this work to treat these concerns, and raising preliminary observations and
results. Then, in Section 3, we introduce proof techniques for establishing lower and upper bounds
on the number of 3s needed to construct proper 3-labellings for some graph classes. In Section 4,
we use these tools to establish that, for several classes of graphs, the number of 3s needed in their
proper 3-labellings is not bounded by an absolute constant. In such cases, we exhibit bounds
(functions depending on the size of the considered graphs) on this number.

2 Terminology, preliminary results, and a conjecture
Let G be a graph and G′ be a subgraph of G (i.e., created by deleting vertices and/or edges of G).
For any vertex v ∈ V (G), let NG(v) = {u ∈ V (G) : uv ∈ E(G)} denote the neighbourhood of v in
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G, and let dG(v) = |NG(v)| denote the degree of v in G. Furthermore, recall that a subgraph G′
is induced if it can be created only by deleting vertices of G. That is, for each edge uv ∈ E(G), if
u, v ∈ V (G′), then uv ∈ E(G′).

Let G be a graph and c : V (G) → {1, . . . , k} be a k-vertex-colouring of G. If, for every edge
uv ∈ E(G), we have that c(u) 6= c(v), then we say that c is a proper k-vertex-colouring of G.
Furthermore, the chromatic number χ(G) is defined as the minimum k such that there exists a
proper k-vertex-colouring of G. Finally, recall that a graph G is k-chromatic if χ(G) = k and
k-colourable if χ(G) ≤ k. Note that the same terminology can be used for families of graphs as
well. For any additional notation on graph theory not defined here, we refer the reader to [11].

2.1 Proper 3-labellings assigning few 3s
Let G be a (nice) graph, and ` be a k-labelling of G. For any i ∈ {1, . . . , k}, we denote by nb`(i) the
number of edges assigned label i by `. Focusing now on proper 3-labellings, we denote by mT(G)
the minimum number of edges assigned label 3 by a proper 3-labelling of G. That is,

mT(G) = min{nb`(3) : ` is a proper 3-labelling of G}.

We extend this parameter mT to classes F of graphs by defining mT(F) as the maximum value
of mT(G) over the members G of F . Clearly, mT(F) = 0 for every class F of graphs admitting
proper 2-labellings (i.e., χΣ(G) ≤ 2 for every G ∈ F).

Given a graph class F , we are interested in determining whether mT(F) ≤ p for some p ≥ 0.
From this perspective, for every p ≥ 0, we denote by Gp the class of graphs G with mT(G) = p.
For convenience, we also define G≤p = G0 ∪ · · · ∪ Gp.

As it was proved, for instance in [8], that nice trees admit proper 2-labellings, if we denote by
T the class of all nice trees, then the terminology above allows us to state that T ⊂ G0. More
generally speaking, bipartite graphs form perhaps the most investigated class of graphs in the
context of the 1-2-3 Conjecture. A notable result, due to Thomassen, Wu, and Zhan [18], is that,
for any bipartite graph G, χΣ(G) = 3 if and only if G is an odd multi-cactus, where odd multi-cacti
form a particular class of 2-edge-connected bipartite graphs obtained through pasting cycles with
certain lengths onto each other in a particular way. This specific class of graphs was further studied
in several works, such as [5], in which it was proved that odd multi-cacti admit proper 3-labellings
assigning label 3 at most twice.

Theorem 2.1 (Bensmail, Fioravantes, Nisse [5]). If G is a nice bipartite graph, then G ∈ G≤2.
More precisely, G ∈ G0 if G is not an odd multi-cactus, G ∈ G2 if G is a cycle of length congruent
to 2 modulo 4, and G ∈ G1 otherwise (i.e., if G is an odd multi-cactus different from a cycle C4k+2).

Theorem 2.1 is worrisome in the sense that, even without considering any additional constraint,
we do not know much about how proper 3-labellings behave beyond the scope of bipartite graphs.
Our take in this work is to focus on the next natural case to consider, that of 3-chromatic graphs,
which fulfil the 1-2-3 Conjecture [15]. Unfortunately, as will be seen later on, a result equivalent to
Theorem 2.1 for 3-chromatic graphs does not exist, even for very restricted classes of 3-chromatic
graphs (e.g., cacti, cubic graphs, triangle-free planar graphs, etc.).

Regarding the classes G0,G1, . . . , it is worth mentioning right away that each Gp is well-
populated, in the sense that there exist infinitely many graphs, with various properties, belonging
to Gp. Actually, it turns out that deciding whether a given graph G belongs to G≤p is NP-complete
for every p ≥ 0. We postpone the proofs of these statements to Section 3 (Observation 3.3 and
Theorem 3.4), as they require the tools and results introduced earlier in the same section.

As mentioned earlier, we will see throughout this work that, for several graph classes F , there
is no p ≥ 0 such that F ⊂ G≤p. For such a class, we want to know whether the proper 3-
labellings of their members require assigning label 3 many times, with respect to their number
of edges. We study this aspect through the following terminology. For a nice graph G, we define
ρ3(G) = mT(G)/|E(G)|. We extend this ratio to a class F by setting ρ3(F) = max{ρ3(G) : G ∈ F}.

In this work, we are thus interested in determining bounds on ρ3(F) for some graph classes F
of 3-chromatic graphs, and, more generally speaking, in how large this ratio can be. Note that this
is similar to considering how large ρ3(G) can be for a given graph G. Also, notice that graphs G of

3



small size with χΣ(G) = 3 are more likely to require many (compared to |E(G)|) 3s to be properly
3-labelled, resulting in these graphs having “large” ρ3(G) (meaning a value close to 1). Through
an exhaustive search, it is easy to see that, among the sample of small connected graphs (e.g., of
order at most 6), the maximum ratio ρ3 is exactly 1/3, which is attained by C3 and C6. As will
be seen through the next sections, at the moment, these are the worst graphs we know of, which
leads us to raising the following conjecture.

Conjecture 2.2. If G is a nice connected graph, then ρ3(G) ≤ 1/3.

It is worth adding that Conjecture 2.2 can be seen as a sort of weaker version of an equitable
version of the 1-2-3 Conjecture, investigated in [2, 4]. In that version, it is believed that, a few
exceptions apart, every graph should admit a proper 3-labelling ` where all labels are assigned
about the same number of times, i.e., the absolute value of the difference between nb`(i) and
nb`(j) is at most 1 for any two assigned labels i, j. Such a labelling ` is called equitable.

We actually cannot benefit much from the results in [2, 4] since most of these results are about
equitable proper 3-labellings of classes of bipartite graphs, while bipartite graphs form a pretty
well-understood case in our context (recall Theorem 2.1). One result we do get from [2] is an upper
bound on ρ3 for complete graphs, which is actually improved by another result (see Section 5).

2.2 General results on proper labellings
In this subsection, we prove results on proper labellings, which will be useful in the next sections.

Observation 2.3. Let G be a graph containing two adjacent vertices v2 and v3 of degree 2. Let
v1 be the other neighbour of v2, and let v4 be the other neighbour of v3 (possibly v1 = v4). Then,
by any proper labelling ` of G, we have `(v1v2) 6= `(v3v4).

Proof. Since, by any proper labelling ` of G, we have that c`(v2) = `(v1v2) + `(v2v3), c`(v3) =
`(v2v3) + `(v3v4), and c`(v2) 6= c`(v3), then `(v1v2) 6= `(v3v4).

Let ` be a k-labelling of some graph, and let σ : {1, . . . , k} → {1, . . . , k} be a permutation of
{1, . . . , k}. We denote by sw(`, σ) the k-labelling obtained from ` by switching labels as indicated
by σ. That is, if `(e) = i for some edge e and label i, then sw(`, σ)(e) = σ(i). Assuming the set
of labels {1, . . . , k} is clear from the context, for any two i, j ∈ {1, . . . , k}, we denote by σi↔j the
permutation only swapping labels i and j. That is, σi↔j(i) = j, σi↔j(j) = i, and σi↔j(l) = l for
every l ∈ {1, . . . , k} \ {i, j}.

Let G be a connected graph. If every vertex v ∈ V (G) satisfies dG(v) = d, then G is d-regular.
Furthermore, if every vertex v ∈ V (G) satisfies dG(v) ∈ {1, d}, then we say that G is quasi d-regular.
It is clear that every graph that is d-regular, is also quasi d-regular.

Lemma 2.4. If ` is a proper 3-labelling of a quasi d-regular graph G, then sw(`, σ1↔3) is also
proper.

Proof. Assume G is quasi d-regular for some d ≥ 2, and set `′ = sw(`, σ1↔3). Observe that, by a
k-labelling, a vertex of degree 1 can never be involved in a colour conflict with its neighbour (this
is true because all labels assigned by a k-labelling are, by definition, positive). Consider any edge
vw ∈ E(G) with dG(v) = dG(w) = d. For 1 ≤ i ≤ 3, let ni be the number of edges incident to v that
are labelled i by `. Then, n1 +n2 +n3 = d, c`(v) = n1 +2n2 +3n3, and c`′(v) = 3n1 +2n2 +n3, and
thus, c`(v) + c`′(v) = 4(n1 +n2 +n3) = 4d. Similarly, we have that c`(w) + c`′(w) = 4d. Therefore,
c`(v) − c`(w) = c`′(w) − c`′(v), with c`(v) 6= c`(w) (since ` is a proper labelling) implying that
c`′(w) 6= c`′(v). It follows that `′ is a proper 3-labelling of G.

Analogously, one can prove:

Observation 2.5. If ` is a proper 2-labelling of a quasi 3-regular graph, then sw(`, σ1↔2) is also
proper.
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(a) G (b) H

Figure 1: A graph G containing another graph H as a weakly induced subgraph. In G, the white
vertices can have arbitrarily many neighbours in the grey part, while the full neighbourhoods of
the black vertices are as displayed. In H, the white vertices are the border vertices, while the black
vertices are the core vertices.

3 Tools for establishing bounds on mT and ρ3

3.1 Weakly induced subgraphs – A tool for lower bounds
Most of the lower bounds on mT and ρ3 that we exhibit in Section 4 are through a particular graph
construction. The general idea is that, if we have a collection of graphs H1, . . . ,Hn with certain
structural and labelling properties, then it is possible to combine these Hi’s in some fashion to
form a bigger graph G in which the Hi’s retain their respective labelling properties, from which
we can deduce that G itself has certain labelling properties.

In order to state this construction formally, we need to introduce some terminology first (see
Figure 1 for an illustration). Let G and H be two graphs such that V (H) ⊆ V (G). We say that
G contains H as a weakly induced subgraph if, for every vertex v ∈ V (H), either dH(v) = 1 or
dH(v) = dG(v). For every edge uv ∈ E(G), if u ∈ V (H) and v ∈ V (G) \ V (H), then dH(u) = 1;
we call these the border vertices of H. Also, we call the other vertices of H (i.e., those that are
not border vertices) its core vertices. By definition, note that if G contains H as a weakly induced
subgraph and δ(H) ≥ 2, then H is a connected component of G. In particular, if G is a connected
graph, then H is isomorphic to G. For this reason, this notion makes more sense when δ(H) = 1.

Let H1, H2 be two weakly induced subgraphs of a graph G. We say that H1 and H2 are disjoint
(in G) if they share no core vertices. It follows directly from the definition that, for every v ∈ V (G),
if v ∈ V (H1) ∩ V (H2), then v is a border vertex of both H1 and H2. For a labelling ` of G and a
subgraph H of G, we denote by `|H the labelling of H inferred from `, i.e., we have `|H(e) = `(e)
for every edge e ∈ E(H).

The key result is that, if a graph G contains other graphs H1, . . . ,Hn as pairwise disjoint weakly
induced subgraphs, then the labelling properties of the Hi’s, in particular mT(Hi), can be inferred
to those of G:

Lemma 3.1. Let G be a graph containing nice graphs H1, . . . ,Hn as pairwise disjoint weakly
induced subgraphs. If ` is a proper 3-labelling of G, then `|Hi is a proper 3-labelling of Hi for every
i ∈ {1, . . . , n}. Consequently, mT(G) ≥

∑n
i=1 mT(Hi).

Proof. Consider Hj for some 1 ≤ j ≤ n. Since, by any k-labelling of a nice graph, a vertex of degree
1 cannot get the same colour as its unique neighbour, then it cannot be involved in a colouring
conflict. This implies that `|Hj

is proper if and only if any two adjacent core vertices of Hj get
distinct colours by `|Hj . By the definition of a weakly induced subgraph, we have dHj (v) = dG(v)
for every core vertex v of Hj , which implies that c`|Hj

(v) = c`(v). Thus, for every edge uv ∈ E(Hj)

joining core vertices, we have c`(u) = c`|Hj
(u) 6= c`|Hj

(v) = c`(v) since ` is proper, meaning that
`|Hj

is also proper. Now, since G contains nice graphs H1, . . . ,Hn as pairwise disjoint weakly
induced subgraphs, then mT(G) ≥

∑n
i=1 mT(Hi).

In the next lemma, we point out that, in some contexts, we can add some structure to a given
graph without altering its value of mT. In some of the later proofs, this will be particularly
convenient for applying inductive arguments or simplifying the structure of a considered graph.
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Lemma 3.2. Let G be a nice graph with minimum degree 1 and v ∈ V (G) be such that dG(v) = 1.
If G′ is the graph obtained from G by adding x > 0 vertices of degree 1 adjacent to v, then
mT(G′) = mT(G).

Proof. Since G′ contains G as a weakly induced subgraph, then by Lemma 3.1, we have that
mT(G′) ≥ mT(G). To show that mT(G′) ≤ mT(G), it suffices to extend a proper 3-labelling of G
to one of G′ that assigns label 3 to the same number of edges. To do this, simply note that since
each one of the leaves adjacent to v has degree 1, its colour cannot be in conflict with that of v.
Thus, the only colour conflict that can occur when extending the labelling, is between v and its
unique neighbour in G. If, by labelling all of the edges incident to the leaves adjacent to v with
1s, there is a colour conflict between v and its neighbour in G, then it suffices to change exactly
one of those labels to 2.

Through an easy use of Lemma 3.1, we can already establish results of interest regarding the
parameter mT. For instance, we can prove that each graph class Gp (p ≥ 1) contains infinitely
many graphs with various properties.

Observation 3.3. Gp contains infinitely many graphs for every p ≥ 1.

Proof. Let H be a graph with δ(H) = 1 and mT(H) = 1 (such graphs exist, see, e.g., our results
from Section 4, in particular the graphs illustrated in Figure 2). Let uv be an edge of H such that
dH(u) = 1 and dH(v) ≥ 2. Also, let T be any locally irregular graph1 with an edge u′v′ such that
dT (u′) = 1 and dT (v′) ≥ 3p+ 3.

Now, let G be the graph that is the disjoint union of T and of p copies H1, . . . ,Hp of H, and
identify u′ and the p copies of u to a single vertex w. Clearly, G contains T and the disjoint union
of p copies of H as pairwise disjoint weakly induced subgraphs (with a slight abuse of notations,
for simplicity we refer to both the original T and its copy in G as T ). By Lemma 3.1, we have
mT(G) ≥ mT(T ) + p ·mT(H) = p since T is locally irregular (thus, mT(T ) = 0) and mT(H) = 1.

To prove that the equality actually holds, it suffices to construct a proper 3-labelling ` of G
with nb`(3) = p. Let `′ be a proper 3-labelling of H such that nb`′(3) = 1, which exists since
mT(H) = 1. To obtain `, for each Hi, we set `(e) = `′(e) for every edge e of Hi, while we set
`(e) = j for every edge e of T , where j ∈ {1, 2} is chosen so that c`(w) 6= c`′(v) for v in each copy of
Hi (recall that c`′(v) is the same for each copy ofHi). As a result, for anyHi, for every vertex x 6= w
of Hi, we get c`(x) = c`′(x). Hence, for any Hi, for every edge xy of Hi not containing w, we have
c`(x) 6= c`(y). Furthermore, for every vertex x of T different from w, we have either c`(x) = dG(x)
or c`(x) = 2dG(x), meaning that, for every edge xy of T not containing w, we have c`(x) 6= c`(y)
since T is locally irregular. Now, by the construction of `, note that w cannot be in conflict with
its neighbours in the Hi’s (due to the choice of j), and c`(w) < 3p+ 3 ≤ dG(v′) ≤ c`(v′), meaning
that w and v′ cannot be in conflict. Thus, ` is proper.

Note that, in the proof above, the structure of T does not matter, and can be anything as long
as T is locally irregular and has the particular edge u′v′. In particular, T can potentially contain
any graph as an induced subgraph. Thus, each graph class Gp (p ≥ 1) contains infinitely many
graphs with various properties.

Using similar ideas, we can actually prove that deciding if a graph G belongs to Gp cannot be
done in polynomial time, unless P=NP.

Theorem 3.4. Given a graph G and any (fixed) integer p ≥ 1, deciding if G ∈ G≤p is NP-complete.

Proof. The problem is obviously in NP. Let us focus on proving it is also NP-hard. This is done
by a reduction from the 2-Labelling problem, which was proved to be NP-hard, e.g., by Dudek
and Wajc in [12]. In that problem, a graph H is given, and the goal is to decide whether H admits
proper 2-labellings. Given an instance H of 2-Labelling, we construct, in polynomial time, a
graph G such that mT(G) = p if and only if H admits proper 2-labellings.

Looking closely at the proof from [12], it can be noted that 2-Labelling remains NP-hard
when restricted to graphs with minimum degree 1. Thus, we can assume H has this property.

1A graph is locally irregular if no two of its adjacent vertices have the same degree.
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The construction of G is achieved as follows. Let H ′ be a graph with δ(H ′) = 1 and mT(H ′) = 1
(as mentioned in the proof of Observation 3.3, such graphs exist, and two are illustrated in Figure 2).
Let uv be an edge of H ′ such that dH′(u) = 1 and dH′(v) ≥ 2. Now, start from G being the disjoint
union of H and of p copies H ′1, . . . ,H ′p of H ′, and then identify a vertex of degree 1 of H and of
the p copies of u to a single vertex w. Finally, attach new vertices of degree 1 to w so that the
degree of w in G gets at least four times bigger than the degree of any of its neighbours. Clearly,
the construction of G is achieved in polynomial time.

We now prove the equivalence between the two problems.

• Assume ` is a proper 3-labelling of G such that nb`(3) = p. Note that G contains H and p
copies of H ′ as pairwise disjoint weakly induced subgraphs. Due to Lemma 3.1, and because
mT(H ′) = 1, this means that we must have nb`|H′

i

(3) = 1 for every i ∈ {1, . . . , p}, and, thus,
nb`|H (3) = 0. Then, `|H must be a proper 2-labelling of H.

• Assume ` is a proper 2-labelling of H. Since mT(H ′) = 1, there exists a proper 3-labelling `′
of H ′ where nb`′(3) = 1. Now, let `′′ be the 3-labelling of G obtained by setting `′′(e) = `(e)
for every e ∈ E(H), setting `′′(e) = `′(e) for every e ∈ E(H ′i) for each i ∈ {1, . . . , p}, and
setting `′′(e) = 1 for every remaining pending edge attached at w. By the properties of ` and
`′, and by arguments similar to those used in the proof of Observation 3.3, no conflict can
occur along an edge not containing w. Now, regarding w, due to its degree, it follows that
c`′′(w) must be strictly bigger than the colour of each of the neighbours of w. Thus, `′′ is a
proper 3-labelling of G, and nb`′′(3) = p.

3.2 Switching closed walks – A tool for upper bounds
Due to Theorem 2.1, investigating the parameters mT and ρ3 only makes sense for graphs with
chromatic number at least 3, i.e., that are not bipartite. These graphs have odd-length cycles. We
take advantage of these cycles to prove the following upper bound on ρ3 for 3-chromatic graphs.

Theorem 3.5. If G is a connected 3-chromatic graph, then ρ3(G) ≤ |V (G)|/|E(G)|.

Proof. Since G is not bipartite, there exists an odd-length cycle C in G. Let H be a subgraph of G
constructed as follows. Start from C = H. Then, until V (H) = V (G), repeatedly choose a vertex
v ∈ V (G) \ V (H) such that there exists a vertex u ∈ V (H) with uv ∈ E(G), and add the edge uv
to H. In the end, H is a connected spanning subgraph of G containing only one cycle, C, which is
of odd length. Then, we have |E(H)| = |V (G)|.

Let φ : V (G) → {0, 1, 2} be a proper 3-vertex-colouring of G. In what follows, our goal is to
construct a 3-labelling ` of G such that c`(v) ≡ φ(v) mod 3 for every vertex v ∈ V (G), thus making
` proper. Additionally, to prove the full statement, we want ` to satisfy nb`(3) ≤ |V (G)|/|E(G)|.
Note that, aiming at vertex colours modulo 3, we can instead assume that ` assigns labels 0, 1, 2,
and require nb`(0) ≤ |V (G)|/|E(G)|. To obtain such a labelling, we start from ` assigning label 2
to all edges of G. We then modify ` iteratively until all vertex colours are as desired modulo 3.

As long as G has a vertex v with c`(v) 6≡ φ(v) mod 3, we apply the following procedure. Choose
W = (v, v1, . . . , vn, v), a closed walk2 of odd length in G starting and ending at v, and going through
edges of H only. This walk is sure to exist. Indeed, consider, in H, a (possibly empty) path P
from v to the closest vertex u of C (if v lies on C, then u = v and P has no edge). Then, the closed
walk vPuCuPv is a possible W . We then follow the consecutive edges of W , starting from v and
ending at v, and, going along, we apply +2,−2,+2,−2, . . . ,+2 (modulo 3) to the labels assigned
by ` to the traversed edges. As a result, note that c`(x) is not altered modulo 3 for every vertex
x 6= v, while c`(v) is incremented by 1 modulo 3. If c`(v) ≡ φ(v) mod 3, then we are done with v.
Otherwise, we repeat this switching procedure once again, so that v fulfils that property.

Eventually, we get c`(v) ≡ φ(v) mod 3 for every v ∈ V (G), meaning that ` is proper. Recall
that we have `(e) = 2 for every e ∈ E(G) \ E(H). Thus, only the edges of H can be assigned
label 0 by `. Since |E(H)| = |V (G)| and we can replace all assigned 0s with 3s without breaking
the modulo 3 property, we have mT(G) ≤ |V (G)|, which implies that ρ3(G) ≤ |V (G)|/|E(G)|.

2Recall that a walk in a graph is a path in which vertices and edges can be repeated.

7



Theorem 3.5, by itself, has implications on Conjecture 2.2. In particular, every sufficiently dense
connected 3-chromatic graph verifies the conjecture. This remark applies to, e.g., every connected
3-chromatic graph G with δ(G) ≥ 6, since it obviously verifies |E(G)| ≥ 3|V (G)|. Note that, in
that case, the connectivity condition can actually be dropped, as every connected component of a
3-chromatic graph is 3-colourable (so, for each component, one of Theorems 2.1 and 3.5 applies).

Corollary 3.6. If G is a 3-chromatic graph with δ(G) ≥ 6, then ρ3(G) ≤ 1/3.

In general, and more particularly for less dense graphs, it would be interesting to find ways
to improve the arguments in the proof of Theorem 3.5 to further reduce the number of assigned
3s. Note that several of our arguments could actually be subject to improvement. For instance,
in the current proof, we always set `(e) = 2 for an edge e ∈ E(G) \ E(H), which might be one of
the reasons why many 3s might appear through the eventual walk-switching procedure. It seems,
however, that in general, this is tough to improve upon significantly without further assumptions
on G. Similarly, in some contexts, it might be possible to choose the unicyclic subgraph H in a
clever way, but this seems hard to do in general. A more interesting direction is about choosing
the proper 3-vertex-colouring φ in a more clever way. In the next lemma, we show a way to play
with φ in order to reduce the number of 3s assigned by ` to certain sets of edges.

Lemma 3.7. Let G be a graph and let ` be a proper {0, 1, 2}-labelling of G such that c`(u) 6≡
c`(v) mod 3 for every edge uv ∈ E(G). If H is a (not necessarily connected) spanning d-regular
subgraph of G for some d ≥ 1, then there exists a proper {0, 1, 2}-labelling `′ of G such that
c`′(u) 6≡ c`′(v) mod 3 for every edge uv ∈ E(G) and that assigns label 0 to at most a third of the
edges of E(H). Moreover, for every edge e ∈ E(G) \ E(H), `′(e) = `(e).

Proof. We construct the following new labelling: starting from `, add 1 (modulo 3) to all the
labels assigned by ` to the edges of H. The resulting labelling `1 is a proper {0, 1, 2}-labelling of
G such that c`1(u) 6≡ c`1(v) mod 3 for every edge uv ∈ E(G). Indeed, for every v ∈ V (G), we
have c`1(v) ≡ c`(v) + d mod 3. Thus, if there exist two adjacent vertices u, v ∈ V (G) such that
c`1(u) ≡ c`1(v) mod 3, then c`(u) ≡ c`(v) mod 3, a contradiction. We define `2 in a similar fashion,
by adding 1 (modulo 3) to all the labels assigned by `1 to the edges of H. Similarly, `2 is proper.
Note that, for every edge e ∈ E(H), we have {`(e), `1(e), `2(e)} = {0, 1, 2}. This implies that at
least one of `, `1, `2 assigns label 0 to at most a third of the edges of E(H). Finally, since none of
the labels of the edges of E(G) \E(H) were changed to obtain `1 from ` and to obtain `2 from `1,
the last statement of the lemma holds.

In Lemma 3.7, if d = 2, then H forms a cycle cover of G. Thus, when H is also a unicyclic
spanning connected subgraph of G, a particular application of Lemma 3.7 in conjunction with the
proof of Theorem 3.5 gives the following corollary:

Corollary 3.8. If G is a 3-chromatic Hamiltonian graph of odd order, then ρ3(G) ≤ 1/3.

Another application of Lemma 3.7 is for d = 1, i.e., H forms an independent edge cover. That
is, Lemma 3.7 in conjunction with the proof of Theorem 3.5 can be used, for instance, to prove
that class-1 cubic graphs (i.e., admitting three disjoint perfect matchings) verify Conjecture 2.2.
Indeed, let G be a class-1 cubic graph, and let M1,M2,M3 be three disjoint perfect matchings of
G. We can assume that G is not bipartite, as otherwise Theorem 2.1 would apply, and also that
G is not K4 (as it can be checked by hand that mT(K4) = 1). Thus, G is 3-chromatic. Mimicking
the proof of Theorem 3.5, we can use an odd-length cycle of G to deduce a {0, 1, 2}-labelling ` of G
where c`(u) 6≡ c`(v) mod 3 for every uv ∈ E(G), and, by Lemma 3.7, we can assume that, for every
Mi, at most a third of its edges are assigned label 0 by `. Since the Mi’s partition E(G), turning
all 0s by ` into 3s, we end up with a proper 3-labelling of G where at most a third of the edges are
assigned label 3. In Section 4, via a different approach, we will actually prove Conjecture 2.2 for
all cubic graphs.

Regarding the proof of Theorem 3.5 and the previous arguments, it would be interesting if we
could always choose the unicyclic subgraph H in such a way that it admits several disjoint perfect
matchings, so that Lemma 3.7 can be employed to reduce the number of assigned 3s. In the proof
of Theorem 4.20, we will point out one graph class where this strategy can be employed.
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Figure 2: Proper 3-labellings ` of A1 and A2 with nb`(3) = 1. The colours by c` are indicated by
integers within the vertices.

4 Results on the parameters mT and ρ3 for some graph classes
We now use the tools introduced in Section 3 to exhibit results on the parameters mT and ρ3 for
some particular classes of 3-chromatic graphs (and beyond sometimes). In particular, we prove
that, for many classes F of 3-chromatic graphs, there is no p ≥ 1 such that F ⊂ G≤p (i.e., a
constant number p of 3s is not sufficient to construct a proper 3-labelling of at least one of the
graphs in F). In such cases, we provide upper bounds for ρ3(F).

4.1 Connected graphs needing lots of 3s
As mentioned earlier, we are aware of only two connected graphs for which the parameter ρ3

is exactly 1/3, and these are C3 and C6
3. A natural question to ask, is whether the bound in

Conjecture 2.2 is accurate in general, i.e., whether it can be attained by arbitrarily large graphs.
In light of these thoughts, our goal in this subsection is to provide a class of arbitrarily large

connected graphs achieving the largest possible ratio ρ3. Our arguments are based on our notion
of weakly induced subgraphs, introduced in Section 3. Basically, the idea is to have a connected
graph H with mT(H) ≥ 1, and to combine p copies H1, . . . ,Hp of H to a single connected graph
G so that mT(G) ≥ p. To guarantee that ρ3(G) is large, the main ideas are 1) to choose H so that
|E(H)| is as small as possible, and 2) to construct G so that only a few edges join the p copies of
H. These two conditions ensure that |E(G)| itself is as small as possible.

We ran computer programs to find graphs H with δ(H) = 1, mT(H) ≥ 1, and with the fewest
edges possible. It turns out that the smallest such graphs have 10 edges. Two such graphs, which
we call A1 and A2, are depicted in Figure 2. It is worth emphasising that these two graphs will
be used throughout the rest of this paper, and thus, the reader should keep in mind that any later
mentioning of A1 (A2, respectively) refers to the graph A1 (A2, respectively) in Figure 2. These
two graphs will allow us to prove several lower bounds on ρ3 for various graph classes, so, let us
formally establish that they do have the desired property.

Observation 4.1. mT(A1) = 1.

Proof. A proper 3-labelling ` of A1 with nb`(3) = 1 is depicted in Figure 2(a), which shows that
mT(A1) ≤ 1. We now prove that mT(A1) > 0, i.e., that there is no proper 2-labelling of A1.
Towards a contradiction, assume a proper 2-labelling ` of A1 exists.

By Observation 2.3, we have `(v6v7) 6= `(v6v8). Also, since ` is a 2-labelling, we have c`(v5) ∈
{3, 4, 5, 6}. We distinguish the following cases:

• Case 1: c`(v5) = 3. Then, `(v3v5) = `(v4v5) = `(v5v6) = 1, and so, {c`(v3), c`(v4)} = {4, 5}.
Assume, w.l.o.g., that c`(v3) = 4 and c`(v4) = 5. It follows that `(v2v3) = 1 and `(v2v4) =
`(v3v4) = 2, and thus, c`(v2) ∈ {4, 5} = {c`(v3), c`(v4)}, which contradicts that ` is proper.

• Case 2: c`(v5) = 4. Then, v5 has exactly one incident edge labelled 2. First, assume
that `(v5v6) = 2. It follows that `(v3v5) = `(v4v5) = 1, and thus, {c`(v3), c`(v4)} = {3, 5}.

3Any disjoint union of C3’s and C6’s reaches that value. This is why Conjecture 2.2 focuses on connected graphs.
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Assume, w.l.o.g, that c`(v3) = 3 and c`(v4) = 5. Since c`(v3) = 3, we have that `(v2v3) =
`(v3v4) = 1, and thus, c`(v4) ≤ 4, a contradiction. Second, assume that `(v5v6) = 1. Since
{`(v6v7), `(v6v8)} = {1, 2}, we have c`(v6) = 4 = c`(v5), a contradiction.

For the next two cases, let A′1 = A1 − {v7v8} and observe that A′1 is quasi 3-regular.

• Case 3: c`(v5) = 5. Then, by Observation 2.5, the 2-labelling `′ = sw(`|A′1 , σ1↔2) is also
proper for A′1. Moreover, recall that {`′(v6v7), `′(v6v8)} = {1, 2}. It follows that `′ can be
extended to a proper 2-labelling `′′ of A1 by setting `′′(v7v8) = 1. But then, c`′′(v5) = 4, and
we get a contradiction to Case 2 above.

• Case 4: c`(v5) = 6. Similarly to the previous case, the 2-labelling `′ = sw(`|A′ , σ1↔2) is
proper for A′1 and it can be extended to a proper 2-labelling `′′ of A1 by setting `′′(v7v8) = 1.
But then, c`′′(v5) = 3, and we get a contradiction to Case 1 above.

Observation 4.2. mT(A2) = 1.

Proof. A proper 3-labelling ` of A2 with nb`(3) = 1 is depicted in Figure 2(b). Thus, mT(A2) ≤ 1.
Let us prove now that mT(A2) > 0, i.e., that there is no proper 2-labelling of A2. Towards a
contradiction, assume a proper 2-labelling ` of A2 exists.

Since ` is a 2-labelling, we have c`(v3) ∈ {3, 4, 5, 6}. We distinguish the following cases:

• Case 1: c`(v3) = 3. Then, `(v2v3) = `(v3v4) = `(v3v5) = 1, and so, {c`(v4), c`(v5)} = {4, 5}.
Assume, w.l.o.g., that c`(v4) = 4 and c`(v5) = 5. It follows that `(v5v4) = `(v5v6) = 2 and
`(v4v6) = 1, and thus, c`(v6) ∈ {4, 5} = {c`(v4), c`(v5)}, which contradicts that ` is proper.

• Case 2: c`(v3) = 4. Then, v3 has exactly one incident edge labelled 2. First, assume
that `(v3v2) = 2. It follows that `(v3v4) = `(v3v5) = 1, and thus, {c`(v4), c`(v5)} = {3, 5}.
Assume, w.l.o.g., that c`(v4) = 3 and c`(v5) = 5. Since c`(v4) = 3, we have that `(v4v5) =
1, and thus, c`(v5) ≤ 4, a contradiction. Then, assume, w.l.o.g., that `(v3v5) = 2 (and
`(v3v2) = `(v3v4) = 1). It follows that c`(v5) ∈ {5, 6} and c`(v4) ∈ {3, 5}. If c`(v4) = 5,
then c`(v5) = 6. This implies that `(v4v6) = `(v5v6) = 2, and thus, c`(v6) ∈ {5, 6} =
{c`(v4), c`(v5)}, a contradiction. Otherwise, c`(v4) = 3, and so, c`(v5) = 5 and c`(v6) = 4.
Hence, `(v6v7) = `(v3v2) = 1, c`(v2), c`(v7) ∈ {3, 5} (because c`(v3) = c`(v6) = 4). We now
get a contradiction no matter how v1v2, v2v7, and v7v8 are labelled, as either c`(v2) = c`(v7)
or 4 ∈ {c`(v2), c`(v7)}.
• Case 3: c`(v3) = 5. Then, by Observation 2.5, the 2-labelling `′ = sw(`, σ1↔2) is also proper

(note that A2 is quasi 3-regular). Since c`′(v3) = 4, we get a contradiction to Case 2 above.

• Case 4: c`(v3) = 6. Then, by Observation 2.5, the 2-labelling `′ = sw(`, σ1↔2) is also proper.
Since c`′(v3) = 3, we get a contradiction to Case 1 above.

Through the next constructions, A1 and A2 (and any other graph with convenient properties)
can be used to build arbitrarily large connected graphs with large ρ3 and particular properties.
Let G be a graph. Given a graph H with at least two distinct vertices of degree 1, we define
H-augmenting an edge uv of G by the following operations:

1. deleting uv from G;

2. adding a copy of H to G;

3. identifying u and any degree-1 vertex of H, and identifying v and any other degree-1 vertex
of H.

Analogously, assuming H has at least one vertex of degree 1, by H-attaching a pending edge
uv of G, where v has degree 1, we mean the following:

1. deleting v from G;

2. adding a copy of H to G;

3. identifying u and any degree-1 vertex of H.

The next lemma illustrates how we can use these two operations:

10



Lemma 4.3. Let G be a nice graph and let H be a graph with at least two vertices of degree 1
(at least one vertex of degree 1, respectively). Let G′ be the graph obtained by H-augmenting (H-
attaching, respectively) p distinct edges (pending edges, respectively) of G (where 1 ≤ p ≤ |E(G)|).
Then, mT(G′) ≥ p ·mT(H).

Proof. This follows from Lemma 3.1 since G′ contains p copies H1, . . . ,Hp of H as pairwise disjoint
weakly induced subgraphs.

The following theorem can be deduced from Lemma 4.3 since both graphs A1 and A2 have
degree-1 vertices, verify the properties of Observations 4.1 and 4.2, and have 10 edges.

Theorem 4.4. There exist arbitrarily large connected graphs G with ρ3(G) ≥ 1/10.

Proof. Let p ≥ 1 be fixed. We construct a connected graph G with 10p edges such that nb`(3) ≥ p
for any proper 3-labelling ` of G, which implies that ρ3(G) ≥ 1/10. One possible construction
(using A2) is as follows. Start from any connected graph with p edges, and A2-augment all the p
edges to get G. Then G has the claimed properties due to Observation 4.2 and Lemma 4.3.

4.2 Bounds for connected cubic graphs
Recall that, given a cubic graph G, it is NP-complete to decide whether χΣ(G) ≤ 2 (see [10]).
Then, a natural question to ask is whether they always admit proper 3-labellings assigning only
a limited number of 3s. We prove that there is actually no p ≥ 1 such that the class of all cubic
graphs lies in G≤p. In contrast, we verify Conjecture 2.2 for this class of graphs.

First off, we note that the construction in the proof of Theorem 4.4 can be modified slightly to
reach the same conclusion for cubic graphs.

Theorem 4.5. There exist arbitrarily large connected cubic graphs G with ρ3(G) ≥ 1/10.

Proof. This follows from applying the same construction as in the proof of Theorem 4.4, but
starting from a connected cubic graph with p edges, where p is a multiple of 3. In particular, note
that A2 is quasi 3-regular with exactly two degree-1 vertices (the ones that are used during the
A2-augmentations), which implies that the resulting graph G is cubic.

Note that, through playing with A2-augmentations and the starting graph, we can go a bit
beyond Theorem 4.5. For instance, since A2 has exactly two cut vertices and each one is adjacent
to one of its two degree-1 vertices, it can be checked that, performing the construction described
in the proof of Theorem 4.5 starting from 2-connected cubic graphs, yields arbitrarily large 2-
connected cubic graphs G with ρ3(G) ≥ 1/10.

Regarding upper bounds, we prove that the parameter ρ3 cannot exceed the 1/3 barrier in cubic
graphs. In other words, we prove Conjecture 2.2 for these graphs.

Theorem 4.6. If G is a cubic graph, then ρ3(G) ≤ 1/3.

Proof. We can assume that G is connected. Also, we can assume that G is neither K4 (in which
case the claim can be verified by hand) nor bipartite (due to Theorem 2.1). Thus, by Brooks’
Theorem [7], we know that G is 3-chromatic. Recall that |E(G)| = 3

2 |V (G)|.
Let us now mimic the proof of Theorem 3.5 to get a proper 3-labelling ` of G such that,

for every edge e ∈ E(G) \ E(H) (where, recall, H is a particular unicyclic spanning connected
subgraph of G), we have `(e) = 2. This means that only the edges of H can be labelled 1 or 3
by `. If nb`(3) ≤ 1

2 |E(H)|, then the result follows since |E(H)| = 2
3 |E(G)|. So, assume now that

nb`(3) > 1
2 |E(H)|, and hence, nb`(1) < 1

2 |E(H)|. Since G is regular, by Lemma 2.4, the 3-labelling
`′ = sw(`, σ1↔3) of G is also proper. Since only the edges of H are labelled 1 or 3 by `, we deduce
that nb`′(3) = nb`(1) < 1

2 |E(H)| = 1
3 |E(G)|, and the result follows.
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Figure 3: The planar graphs S3 (left) and Sg (right) of girth 3 and g, respectively.

4.3 Bounds for connected planar graphs with large girth
Recall that the girth g(G) of a graph G is the length of its shortest cycle. For any g ≥ 3, we denote
by Pg the class of planar graphs with girth at least g. Note, for instance, that P3 is the class of all
planar graphs, and that P4 is the class of all triangle-free planar graphs. Recall that the girth of
a tree is set to ∞, since it has no cycle.

To date, it is still unknown whether planar graphs verify the 1-2-3 Conjecture, which makes the
study of the parameters mT and ρ3 adventurous for this class of graphs. Something we can state,
however, is that there is no p ≥ 1 such that planar graphs lie in G≤p. Indeed, since the graphs
A1 and A2 are planar, this can be established by the construction in the proof of Theorem 4.4 (or
from that of Theorem 4.5 to additionally get a cubic graph assumption), by performing it from
planar starting graphs.

Theorem 4.7. There exist arbitrarily large connected planar graphs G with ρ3(G) ≥ 1/10.

To go further, we can consider planar graphs with large girth. Indeed, as established by
Grötzsch’s Theorem [13], triangle-free planar graphs are 3-colourable, which means that they verify
the 1-2-3 Conjecture (see [15]). In what follows, we prove two main results. First, we prove that,
for every g ≥ 3, there is no p ≥ 1 such that Pg ⊂ G≤p. Second, we prove that, as the girth g(G) of
a planar graph G grows, the ratio ρ3(G) decreases. As a side result, we prove Conjecture 2.2 for
planar graphs with girth at least 36.

In order to prove the first result above, note that we cannot use the graphs A1 and A2 introduced
previously, as they contain triangles. Instead, we provide another construction, yielding, for any
g ≥ 3, a planar graph Sg with girth g. Start from Sg being the cycle Cg = (v0, . . . , vg−1, v0) on g
vertices. Then, for each i ∈ {0, . . . , g − 1}, add a new vertex ui,1 and the edge viui,1 to Sg. Then,
for every i ∈ {1, . . . , g− 1}, add a cycle Bi = (ui,1, ui,2, . . . , ui,g, ui,1) to Sg, where ui,2, . . . , ui,g are
new vertices. Finally, let u0,1 be the root of Sg. See Figure 3 for an illustration of S3 and Sg. It is
clear that all the cycles of Sg have length g, and thus, g(Sg) = g. Moreover, Sg is clearly planar,
and |E(Sg)| = g2 + g.

Note that Sg is bipartite whenever g is even. Since δ(Sg) = 1, in such cases we have mT(Sg) = 0
by Theorem 2.1. When g ≡ 1 mod 4, it can be checked (for instance, by using some of the arguments
in the proof of the upcoming Lemma 4.8) that Sg admits proper 2-labellings, and thus, we have
mT(Sg) = 0 in those cases as well. The main point for considering this construction is for the last
possible values of g, the values where g ≡ 3 mod 4, for which the following is verified:

Lemma 4.8. For every g ≥ 3 with g ≡ 3 mod 4, we have mT(Sg) = 1.

Proof. We begin by showing that a proper 2-labelling of Sg must have specific properties. In what
follows, for every i ∈ {1, . . . , g− 1}, we denote by Hi the subgraph of Sg induced by V (Bi)∪ {vi}.

Claim 4.9. Let i ∈ {1, . . . , g − 1}. By any proper 2-labelling ` of Hi, we have `(ui,1ui,2) 6=
`(ui,gui,1), and thus, c`(ui,1) = `(ui,1vi) + 3. Furthermore, such a proper 2-labelling exists.
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Proof of the claim. The first part of the claim follows from Observation 2.3. Indeed, since g ≡
3 mod 4, it follows that we must have `(ui,1ui,2) 6= `(ui,3ui,4) 6= · · · 6= `(ui,gui,1). Now, it is
easy to check that the following is a proper 2-labelling ` of Hi. Start by setting `(ui,1ui,2) = 2.
Then, continue from ui,2ui,3 and, following the edges of Bi until reaching ui,gui,1, assign labels
1, 1, 2, 2, 1, 1, 2, . . . , 2, 1, 1, 2, 2, 1, 1. The edge ui,1vi can then be assigned any label in {1, 2}. �

Assume that there exists a proper 2-labelling ` of Sg, and let {α, β} be a permutation of {1, 2}.
We define the set

J = {j ∈ {0, . . . , g − 1} : `(vj−1vj) 6= `(vjvj+1)},

where, here and in what follows, indices are taken modulo g. Observe that |J | ≡ 0 mod 2 and that
J 6= ∅. Indeed, assume that J = ∅. Then, we would have that all the edges of Cg receive the same
label α or β. Since ` is proper, it must be that `(viui,1) 6= `(vi+1ui+1,1) for all 0 ≤ i ≤ g − 1.
This is a contradiction since g is odd and ` is a 2-labelling. Let j ∈ J such that j ≥ 1 (the vertex
vj exists since |J | ≡ 0 mod 2 and J 6= ∅). We have that `(vj−1vj) 6= `(vjvj+1), which implies
that `(vj−1vj) + `(vjvj+1) = 3. It follows that c`(vj) = `(vjuj,1) + 3. Note now that the labelling
`j = `|Hj

is a proper 2-labelling of Hj (since dHj
(vj) = 1). Therefore, by Claim 4.9, it follows that

c`(uj,1) = c`j (uj,1) = `j(uj,1vj) + 3 = `(uj,1vj) + 3 = c`(vj), a contradiction.
So far, we have proved that mT(Sg) ≥ 1. In order to show that mT(Sg) = 1, it suffices to

provide a proper 3-labelling ` of Sg such that nb`(3) = 1. We construct one such labelling as
follows. For every i ∈ {1, . . . , g − 1}, we label the subgraph Bi following the 2-labelling scheme
provided in Claim 4.9. Then, we set `(v0v1) = 3 and, for every edge e ∈ E(Cg) \ {v0v1}, we set
`(e) = 1. Finally, for the edges of the form viui,1 (0 ≤ i ≤ g−1), we set `(v0u0,1) = 1, `(v1u1,1) = 2,
`(v2u2,1) = 1, . . . , `(vg−2ug−2,1) = 2, `(vg−1ug−1,1) = 1. It is clear that c`(v0) = 5, and c`(v1) = 6,
while the colours of the vertices of the rest of the cycle Cg alternate between 3 and 4. Moreover,
for all 2 ≤ i ≤ g − 1, if c`(vi) = 3, then c`(ui,1) = 4, and if c`(vi) = 4, then c`(ui,1) = 5 (by
Claim 4.9). Thus, ` is a proper 3-labelling that assigns label 3 to only one edge of Sg.

We are now ready to prove our lower bound.

Theorem 4.10. For every g′ ≥ 3, there exist arbitrarily large connected planar graphs G with
g(G) ≥ g′ and ρ3(G) ≥ 1

g2+g , where g is the smallest natural number such that g ≥ g′ and
g ≡ 3 mod 4.

Proof. For any integer p ≥ 1, denote by G the graph obtained from p disjoint copies H1, . . . ,Hp

of Sg by identifying their roots to a single vertex. Clearly, G is planar and has girth g ≥ g′.
Furthermore, G clearly contains p copies of Sg as pairwise disjoint weakly induced subgraphs.
Then, Lemma 3.1 implies that mT(G) ≥ p ·mT(Sg), and p ·mT(Sg) = p by Lemma 4.8. Since G
has p|E(Sg)| = p(g2 + g) edges, the result follows. Moreover, these arguments apply for any value
of p, and so, G can be as large as desired.

It is not too complicated to check that our construction in the proof of Theorem 4.10 yields
planar graphs G of girth g satisfying mT(G) = |E(G)|/(g2 + g) (when g ≡ 3 mod 4), which
implies that the lower bound in the statement is somewhat tight here. Note also that the graph G
constructed in the proof of Theorem 4.10 does not have girth g′ when g′ 6≡ 3 mod 4. In this case,
to obtain a similar result for a graph of girth g′, we can additionally identify a single vertex of a
new cycle of length g′ to the same single vertex as the roots of the p copies of Sg in the previous
proof.

We now proceed to prove that ρ3(G) ≤ 2
k−1 for any nice planar graph G of girth g ≥ 5k + 1,

when k ≥ 7. In other words, the bigger the girth of a planar graph G, the smaller ρ3(G) gets.
The following theorem from [9] is one of the main tools we use to prove this result. Recall

that, for any k ≥ 1, a k-thread in a graph G is a path (u1, . . . , uk+2), where the k inner vertices
u2, . . . , uk+1 all have degree 2 in G.

Theorem 4.11 (Chang, Duh [9]). For any integer k ≥ 1, every planar graph with minimum degree
at least 2 and girth at least 5k + 1 contains a k-thread.

We can now proceed with the main theorem.
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Theorem 4.12. Let k ≥ 7. If G is a nice planar graph with g(G) ≥ 5k + 1, then ρ3(G) ≤ 2
k−1 .

Proof. Throughout this proof, we set g = g(G). The proof is by induction on the order of G.
The base case is when |V (G)| = 3. In that case, G must be a path of length 2 (due to the girth
assumption), and the claim is clearly true. So let us focus on proving the general case.

We can assume that G is connected. If G is a tree, then χΣ(G) ≤ 2 and we have ρ3(G) = 0.
So, from now on, we may assume that G is not a tree. We can also assume that G has no vertex v
to which is attached a pending tree Tv that is not a star with center v. Indeed, if such a Tv exists,
then we can find a vertex u ∈ V (Tv) \ {v} whose all neighbours u1, . . . , ux but one are degree-1
vertices. Since G is not a tree, the graph G′ = G−{u1, . . . , ux} is clearly a nice planar graph with
girth g, admitting, by the inductive hypothesis, a proper 3-labelling attesting that ρ3(G′) ≤ 2

k−1 .
Lemma 3.2 tells us that such a labelling can be extended to one of G.

Let G− be the graph obtained from G by removing all vertices of degree 1. Note that removing
vertices of degree 1 from G can neither decrease its girth nor result in a tree. Since G has girth
g ≥ 5k + 1 and does not contain any cut vertex v ∈ V (G) as described above, the graph G−

has minimum degree 2. By Theorem 4.11, G− contains a k-thread P . Let u1, . . . , uk+2 be the
vertices of P , where dG−(ui) = 2 for all 2 ≤ i ≤ k + 1. Thus, the vertices of P exist in G except
that each of the vertices ui (for 2 ≤ i ≤ k + 1) may be adjacent to some vertices of degree 1 in
addition to their adjacencies in G−. Let G′ be the graph obtained from G by removing the vertices
u3, . . . , uk and all of their neighbours that have degree 1 in G. Note that G′ might contain up
to two connected components. In case G′ has exactly two connected components, then, due to a
previous assumption, none of these can be a tree, which implies that G′ is nice. If G′ is connected,
then, because it has at least two edges (u1u2 and uk+1uk+2), it must be nice. Furthermore, in both
cases, the girth of G′ is at least that of G. Then, by combining the inductive hypothesis and the
fact that ρ3(T ) = 0 for every nice tree T , we deduce that ρ3(G′) ≤ 2

k−1 .
To obtain a proper 3-labelling ` of G such that ρ3(G) ≤ 2

k−1 , we extend a proper 3-labelling
`′ of G′ corresponding to ρ3(G′) ≤ 2

k−1 , as follows. First, for each edge incident to a vertex of
degree 1 that we have removed, label it with 1. Note that none of these vertices of degree 1 can,
later on, be in conflict with their neighbour since they have degree 1. Now, for each 2 ≤ j ≤ k− 2,
in increasing order of j, label the edge ujuj+1 with 1 or 2, so that the resulting colour of uj does
not conflict with the colour of uj−1. Finally, label the edges uk−1uk and ukuk+1 with 1, 2 or 3,
so that the resulting colour of uk−1 does not conflict with that of uk−2, the resulting colour of uk
does not conflict with that of uk−1 nor with that of uk+1, and the resulting colour of uk+1 does
not conflict with that of uk+2. Indeed, this is possible since there exist at least two distinct labels
{α, β} ({α′, β′}, respectively) in {1, 2, 3} for uk−1uk (ukuk+1, respectively) such that the colour of
uk−1 (uk+1, respectively) is not in conflict with that of uk−2 (uk+2, respectively). Thus, w.l.o.g.,
choose α and α′ for the labels of uk−1uk and ukuk+1, respectively. If the colour of uk does not
conflict with that of uk−1 nor with that of uk+1, then we are done. If the colour of uk conflicts
with both that of uk−1 and that of uk+1, then it suffices to change both the labels of uk−1uk and
ukuk+1 to β and β′, respectively. Lastly, w.l.o.g., if the colour of uk only conflicts with that of
uk−1, then it suffices to change the label of ukuk+1 to β′. The resulting labelling ` of G is thus
proper. Moreover, |E(G) \E(G′)| ≥ k− 1 and ` assigns label 3 to at most two more edges than `′,
and so, the result follows.

4.4 Bounds for connected cacti
Recall that a cactus is a graph in which every edge is contained in at most one simple cycle. Note
that trees are also cacti since they do not contain cycles.

First off, note that the graphs Sg introduced in Section 4.3, and those we have constructed from
them in the proof of Theorem 4.10, are all cacti (all of their cycles are actually disjoint). Since the
smallest graph Sg is S3, which has 12 edges, the proof of that theorem implies the following.

Theorem 4.13. There exist arbitrarily large connected cacti G with ρ3(G) ≥ 1/12.

We now focus on the upper bound. We actually end up proving Conjecture 2.2 for cacti.

Theorem 4.14. If G is a nice cactus, then ρ3(G) ≤ 1/3.
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(a) The cactus G
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(b) The cactus G−
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(c) The block graph B(G−)

Figure 4: An example of a cactus G, with the corresponding cactus G− and the block graph B(G−),
as they are introduced in the proof of Theorem 4.14. The black vertices of G− are cut vertices of
G−. Observe that the leaves bB1 , bB4 , and bB7 of B(G−), correspond exactly to the cycles B1, B4,
and B7 of G (and of G−), which are considered as end-cycles of G, while B5 is not considered as
an end-cycle of G since bB5

is not a leaf of B(G−). Clearly, bB1
is at distance 10 from bB7

, while
bB4

is at distance 6 from both bB1
and bB7

in B(G−).

Proof. The proof is done by induction on |V (G)|. Since the claim is clearly true when G has only
three vertices, let us consider the general case. Clearly, we can assume that G is connected (as
otherwise we could use the inductive hypothesis on each connected component), is not a tree (since
mT(T ) = 0 for every nice tree T ), is not bipartite (by Theorem 2.1), and is not a cycle (see [5]).

Throughout this proof, for readability reasons, we say that a proper 3-labelling is good if it
assigns label 3 to at most a third of the edges of the labelled graph. We first prove that if G has
some specific properties, then we can remove some vertices from G, resulting in a nice cactus G′
that is smaller than G, and extend a good labelling `′ of G′, obtained by induction, into a good
labelling ` of G, thus proving the statement for G. It can then be assumed that G does not have
these properties, which will simplify its structure and allow us to prove the final inductive step.

Let us state a few more remarks. Let ` be an extension of `′ that assigns labels from {1, 2} to
the edges of G that are not in G′. If this ` is proper, then note that it is also good. Similarly, if `
assigns label 3 to at most a third of the edges of G that are not in G′ and ` is proper, then it is
also good.

We start by analysing certain cycles of G. To define those cycles, let us consider the following
terminology (see Figure 4 for an accompanying illustration). We denote by G− the cactus obtained
from G by repeatedly deleting vertices of degree 1 until the remaining graph has minimum degree 2.
Since G contains cycles, note that G− is not empty. We now consider the block graph B(G−) of
G−, which is defined as follows [11]. A block of G− is a maximal 2-connected subgraph of G−. The
block graph B(G−) is the tree having a block vertex bB for every block B of G−, a vertex cv for
every cut vertex v of G−, and in which two vertices bB and cv are joined by an edge if and only if
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B contains v in G−. Note that B(G−) is not empty since G− has at least one cycle, and, due to
how G− was obtained from G, note that all the leaves of B(G−) are block vertices corresponding
to cycles in G−. In what follows, we study structures around end-cycles, where an end-cycle C of
G refers to a cycle of G−, which corresponds to a leaf bC of B(G−). In G−, every vertex of an
end-cycle C has degree 2, except for one, which we denote by r and call the root of C, while its
other vertices are the inner vertices of C. Note that end-cycles are better defined as soon as G has
at least two cycles. In case G has only one cycle C, then we consider C as an end-cycle, its root
being any of its vertices of degree more than 2 in G (at least one exists since G is not a cycle).

In what follows, we consider any end-cycle C of G. We first investigate properties of pending
trees attached to the vertices of C. For every vertex v of C, we define Tv as the pending tree rooted
at v in G. Note that there might be no edges in such a Tv, i.e., we can have V (Tv) = {v}. We
implicitly assume that every Tv comes with the natural (virtual) orientation of its edges from the
root (v) to the leaves. Also, we say that Tv is inner if v is indeed an inner vertex of C.

Claim 4.15. If some Tv has edges and is not a star, then there is a good labelling of G.

Proof of the claim. Let us consider a deepest (i.e., farthest from v) vertex u of Tv, where all of its
x ≥ 1 children are leaves. Since Tv is not a star, we have u 6= v. Then, the graph G′ obtained from
G by removing all of these x leaves is a nice cactus (due to the presence of the cycle C) in which
u has degree 1. Thus, G′ admits a good labelling by the inductive hypothesis. Lemma 3.2 tells us
that this good labelling of G′ can be extended to one of G. �

Claim 4.16. If some inner Tv is a star with at least two edges, then there is a good labelling of G.

Proof of the claim. Let G′ be the graph obtained from G by removing two leaves u, u′ of Tv.
Clearly, G′ is a cactus, and G′ is nice due to the presence of C. By the inductive hypothesis, there
is a good labelling of G′. To obtain one of G, it suffices to extend this labelling to vu and vu′ by
assigning labels 1 and 2 in such a way that no colour conflict arises. Recall that, by a k-labelling of
a nice graph, a vertex of degree 1 cannot be involved in a colour conflict with its neighbour. Then,
it suffices to label vu and vu′ so that no colour conflict arises between v and its two neighbours
in C. Note that there are three different ways to label edges vu and vu′ (assigning label 1 twice,
assigning 2 twice, or assigning both 1 and 2 once). Under these labellings, the vertex v can take
three different colours, while it has two neighbours in C. Hence, at least one labelling for the two
edges extends the labelling of G′ to a good labelling of G. �

Thus, in C, any inner Tv can be assumed to have at most one edge.

Claim 4.17. If C has length at least 4 and some inner Tv has an edge, then there is a good labelling
of G.

Proof of the claim. Assume C = (v0, v1, . . . , vn−1, v0), where v0 = r is the root of C and n ≥ 4.
By Claims 4.15 and 4.16, each Tvi (where i ∈ {1, . . . , n− 1}) has at most one edge.

Assume first that there is an i ∈ {2, . . . , n − 2} such that Tvi
has an edge viu. Let G′ be the

graph obtained from G by removing u and vi. Clearly, G′ is a cactus with at least two edges (v0v1

and vn−1v0), so it is nice. By the inductive hypothesis, there is a good labelling of G′, which we
want to extend to one of G. To that aim, we have to label the three edges viu, vivi−1, vivi+1 (where,
here and in what follows, indices are taken modulo n) so that no colour conflict arises, and label 3
is assigned at most once. First, we assign 1 or 2 to vivi−1 so that vi−1 does not get in conflict with
vi−2. Second, we assign 1 or 2 to vivi+1 so that vi+1 does not get in conflict with vi+2. Third, we
assign 1, 2 or 3 to viu so that vi gets in conflict with neither vi−1 nor vi+1. As mentioned earlier,
u cannot get in conflict with vi due to its degree, so the resulting labelling of G is good.

Assume now that Tvi has no edge for every i ∈ {2, . . . , n−2}, but Tv1
has an edge v1u (the case

where Tvn−1
has an edge is symmetrical). This means that each of v2, . . . , vn−2 has degree 2. In

this case, we consider G′ the cactus obtained from G by removing u and v2. Note that G′ has more
than one edge since r has degree at least 3 in G. Then, G′ is nice. By the inductive hypothesis,
there is a good labelling of G′. To extend it to one of G, we must label the edges v1u, v1v2, v2v3

so that no colour conflicts arise, and label 3 is assigned at most once. Similarly as in the previous
case, this can be achieved by first labelling v2v3 with 1 or 2 so that no conflict between v3 and
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Figure 5: Proper 2-labellings for the two cases in the proof of Theorem 4.14, where the cactus G
is one cycle C = (u, v, w, u) with one or two of its inner vertices having a pending edge attached.

v4 arises, then labelling v1v2 with 1 or 2 so that no conflict between v2 and v3 arises, and lastly
labelling v1u with 1, 2 or 3 so that v1 is not in conflict with v0 nor v2. �

Due to the previous claims, in G we can assume that C is either a cycle of any length at least 3
(i.e., all inner vertices have degree 2), or a triangle where one or two of its inner vertices have a
pending edge attached (i.e., one or two of the Tv’s have size 1). We call the first of these two triangle
configurations a 1-triangle, while we call the second configuration a 2-triangle. For convenience,
we also regard these configurations as end-cycles, though they are technically not cycles in G.

We are now ready to conclude the proof. If G has only one cycle, then, by the previous claims
and our original assumption that G is not just a cycle, it must be that G is a triangle (u, v, w, u)
with a pending vertex attached to u and possibly one attached to v, in which case the claim can be
verified easily (Figure 5 illustrates proper 2-labellings of G for these two cases). So G has at least
two cycles. From now on, let us consider two cycles Cx and C1 of G such that the block vertices
bCx

and bC1
are two leaves at maximum distance d in B(G−). Note that C1 is an end-cycle in G,

and let r denote its root. Observe that there might be other (end-)cycles of G at distance d (in
B(G−)) from Cx, with root r. In case these cycles exist, we denote them by C2, . . . , Cq. Then
C1, . . . , Cq are end-cycles in G with the same root r, and, by how these Ci’s were chosen, r either
has only one neighbour u or only two neighbours u, u′ of degree at least 2 that does/do not belong
to the Ci’s. More precisely, r is connected to the rest of the graph either via a path (through an
edge ru), or via a unique cycle (containing both u and u′). Furthermore, there might be vertices
of degree 1 adjacent to r. Indeed, by Claim 4.15, if there is a pending tree Tr attached at r, then
Tr must be a star with center r. Recall that each of the Ci’s is a cycle, a 1-triangle, or a 2-triangle,
due to previous claims.

Now, let G′ be the cactus obtained from G by removing all the non-root vertices of the Ci’s (i.e.,
all their inner vertices, plus the at most two pending vertices of the 1-triangles and 2-triangles).
Since G′ contains at least one cycle, it is nice, and thus, admits a good labelling by the inductive
hypothesis. Our goal is to extend it to one of G by labelling the removed edges so that no conflict
arises and at most a third of these edges are assigned label 3.

• Assume q ≥ 2. We first label the edges of every Ci that is a cycle, assigning consecutive
labels 2, 1, 1, 2, 2, 1, 1, . . . while going around, starting and ending with an edge incident to r.
Note that this avoids any conflict between the inner vertices of Ci, that their colours are at
most 4, and that this increases the colour of r by at least 3. For every Ci that is a 1-triangle,
we assign label 2 to its two edges incident to r, and label 1 to its two other edges. Note that
this raises no conflict between the inner vertices of Ci, that their colours are at most 4, and
that the colour of r is increased by 4. Finally, for every Ci that is a 2-triangle, we assign
label 2 to its two edges incident to r and to one pending edge, and label 1 to the two other
edges. As a result, no conflict arises between inner vertices, their colours are at most 5, and
the colour of r is increased by 4.
Since q ≥ 2 and r has at least one neighbour not in the Ci’s, the colour of r is at least 7,
and thus, r cannot be in conflict with its neighbours in the Ci’s. However, we still have to
make sure that the colour of r is different from that of u (where u is the sole neighbour of r
that does not belong to any of the Ci’s) or of that of u and u′ (where u and u′ are the two
neighbours of r that do not belong to any of the Ci’s). Note that, in each Ci, there is an edge
labelled 2 incident to r that can be relabelled 3 without causing conflicts between the inner
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Figure 6: A good labelling as described in the proof of Theorem 4.14 in the case where q = 1, C1 is
a 2-triangle, and, apart from v1 and v2, the vertex r has two neighbours u and u′. The underlined
labels and colours correspond to the labelling provided from the inductive hypothesis (and thus,
must not be modified). Now, assuming that the underlined labels and colours are as shown in the
figure, we must have c`(r) = 4, as otherwise r would be in a colour conflict with either u or u′.
Thus, it must be that `(rv1) = `(rv2) = 1. Then, we get that `(v1u1) = 1 and `(v2u2) = 3.

vertices. Indeed, if Ci is a cycle, then the very first labelled edge is such an edge. If Ci is
a 1-triangle or 2-triangle, then the one of its two edges labelled 2 incident to r going to the
inner vertex with the largest colour, is such an edge. Thus, by changing the label from 2 to 3,
of one or two of these edges, we can increment the colour of r by 1 or 2 to avoid the colours
of u and u′ (if it exists). This means that, by introducing at most two 3s, we can get a proper
3-labelling of G, which is good since q ≥ 2.
• Assume q = 1. Assume first that C1 is a 1-triangle or a 2-triangle. Let (r, v1, v2, r) denote the

vertices of the cycle of C1, and u1 and u2 (if it exists) denote the pending vertices attached
to v1 and v2, respectively. We first label rv1 and rv2 with 1 or 2 so that no conflict arises
between r and its neighbours u and u′ (if it exists). This is possible since there are three
possible combinations. In the case where C1 is a 1-triangle, then we label v1v2 with 1 or 2 so
that no conflict arises between v2 and r. In the case where C1 is a 2-triangle, then we label
v1v2 with 1. Now, if C1 is a 1-triangle, then we label v1u1 with 1, 2 or 3 so that no conflict
arises between v1 and r nor between v1 and v2. If C1 is a 2-triangle, then we label v1u1 with 1
or 2 so that no conflict arises between v1 and r, and then we label v2u2 with 1, 2 or 3 so
that no conflict arises between v2 and r nor between v1 and v2. In all cases, we assign label 3
to at most one edge, so the resulting proper 3-labelling of G is good since no conflict arises.
Figure 6 illustrates a possible good labelling for the case where C1 is a 2-triangle and both u
and u′ exist.
Assume now that C1 is a cycle. First, assume that u′ exists. We consider the edges of
C1, and assign to them labels 1 and 2 as previously, i.e., by applying the labelling pattern
2, 1, 1, 2, 2, 1, 1, . . . from one edge incident to r to the other. We consider two cases:
– Assume first that, in the labelling of C1, the two edges incident to r get assigned distinct

labels (1 and 2). As earlier, no two inner vertices of C1 are in conflict, their colours are at
most 4, and, since u′ exists, the colour of r is at least 5. If this raises no conflict between
r and its neighbours u or u′, then we are done. Otherwise, note that turning the label
assigned to any of the two edges of C1 incident to r into a 3, raises no conflict between
two vertices of C1. Since these two edges are labelled differently, one with label 1 and the
other with label 2, this means that by introducing label 3 once in C1, we can increment
the colour of r by 1 or 2 so that we avoid any conflict between r and its neighbours u and
u′. Then, we can deduce a good labelling of G.

– Assume now that both edges incident to r in C1 get assigned label 2. Then, this time,
the colour of r is at least 6. If there is no conflict between r and one of its neighbours u
and u′, then we are done. So, we can assume there is a conflict, and also that changing
the label of one of the two edges of C1 incident to r to 3, makes r in conflict with the
second one of these two vertices. Then, note that we get a good labelling when labelling
C1 following the pattern 1, 2, 2, 1, 1, 2, 2, . . . instead, since r gets its two incident edges
in C1 being assigned label 1, the colour of r is at least 4 and smaller than the previous
colours we have produced for r, and the colours of the two neighbours of r in C1 are at
most 3.
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Figure 7: Labelling a pending cycle in the proof of Theorem 4.14. Some colours by the labelling
are indicated by integers within the vertices.

Now assume u′ does not exist. We start by considering the cases where C1 has length at
least 6. Start by applying the labelling pattern 2, 1, 1, 2, 2, 1, 1, . . . to the edges of C1 as
before. Assume first that the two edges of C1 incident to r get assigned distinct labels. Then,
change the 1 assigned as a label to one of these two edges into a 3. As a result, no conflicts
arise between inner vertices of C1, their colours are at most 5, while the colour of r is at
least 6 due to the edge ru. So, the only possible conflict is between r and u. Suppose it
occurs. Then, no conflict remains when assigning label 3 to the second edge of C1 incident to
r and we get a good labelling (in particular, only two edges of C1 get assigned label 3 while
its length is at least 6, and this assumption also guarantees that no two inner vertices of C1

get in conflict). Lastly, assume that both edges of C1 incident to r get assigned label 2 by the
initial labelling scheme. Then, the colour of r is at least 5, which thus cannot be in conflict
with its neighbours in C1. If r is not in conflict with u, then we get a good labelling of G.
Otherwise, we get one by changing the label of one of the two edges of C1 incident to r to 3.
All that remains to check are three length values for C1. The labelling schemes described
below are illustrated in Figure 7.

– If C1 has length 3 (see Figures 7(a),(b)), then assigning either labels 2, 1, 3 or 1, 1, 3 to
the edges while going around, starting and ending with r, yields a good labelling, since
r gets a colour of at least 6 or 5, respectively, while the inner vertices of C1 get colours
of at most 4, and the colour of u is the only other colour to avoid. In particular, note
that these two labelling schemes increase the colour of r in two different ways (by 5 and
4, respectively).

– If C1 has length 4 (see Figures 7(c),(d)), then we get the same conclusion from applying
the labelling scheme 2, 1, 1, 3 or 2, 1, 1, 2. Indeed, the inner vertices get colours of at most 4
and 3, respectively, while r gets a colour of at least 6 and 5, respectively. Also, these two
schemes increase the colour of r differently, by 5 and 4, respectively.
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– If C1 has length 5 (see Figures 7(e),(f)), then the sequence 2, 1, 1, 2, 3 or 1, 2, 2, 1, 3 yields
the same conclusion. Indeed, the inner vertices get colours of at most 5 and 4, respectively,
while r gets a colour of at least 6 and 5, respectively. Also, these two schemes increase
the colour of r differently, by 5 and 4, respectively.

In all cases, we can deduce a good labelling of G, which concludes the proof.

4.5 Bounds for other graph classes
In this section, we state, in the same spirit as in the previous subsections, some lower or upper
bounds on ρ3 that can be obtained for other classes of graphs that are 3-chromatic. Indeed,
we focus on outerplanar graphs and Halin graphs. Note that, strictly speaking, Halin graphs
are 4-colourable, but the main part of our proof will treat the 3-chromatic ones (see upcoming
Section 4.5.2 for more details). The difference in this section is that for the considered graph
classes, one of the two bounds is partially missing.

4.5.1 Outerplanar graphs

Recall that a graph is outerplanar if it admits a planar embedding where all vertices lie on the
outer face. First off, we can obtain a result similar to Theorem 4.4 for outerplanar graphs.

Theorem 4.18. There exist arbitrarily large connected outerplanar graphs G with ρ3(G) ≥ 1/10.

Proof. For a p ≥ 1, we construct a connected outerplanar graph G with the same properties as in
the proof of Theorem 4.4. One possible construction (using A1) is as follows. To obtain G, start
from a star with p edges, and A1-attach all of its p edges. Again, G has the claimed labelling
properties due to Observation 4.1 and Lemma 4.3. Also, note that G is clearly outerplanar, since
the same holds true for every star, as well as A1.

Recall as well that outerplanar graphs form a subclass of series-parallel graphs. Thus, Theo-
rem 4.18 also holds for arbitrarily large connected series-parallel graphs.

Note however that the outerplanar graphs constructed above have cut vertices. So the question
remains, whether or not this lower bound still holds when considering 2-connected outerplanar
graphs (recall that outerplanar graphs are 2-degenerate, and thus, each of them is either separable
or 2-connected). As for an upper bound, we can prove the following:

Theorem 4.19. If G is a 2-connected outerplanar graph such that |E(G)| ≥ |V (G)| + 3, then
ρ3(G) ≤ 1/3.

Proof. We can assume that G is not bipartite, as otherwise the claim follows from Theorem 2.1.
Then, χ(G) = 3 since outerplanar graphs are 2-degenerate. Now, if |V (G)| is odd, then the result
follows from Corollary 3.8. So, in what follows, we assume that |V (G)| is even.

In 2-connected outerplanar graphs, the outer face forms a Hamiltonian cycle (v0, . . . , vn−1, v0).
The other edges, which do not lie on the outer face, are called chords. Since G is not bipartite,
it has an odd-length cycle Cx. Since |V (G)| is even, this Cx is not the whole outer cycle of G.
Furthermore, we can assume that Cx consists of consecutive vertices of the outer face, i.e., that
Cx = (va, va+1, . . . , va+x−1, va) for some a ∈ {0, . . . , n−1} (where, here and in what follows, indices
are taken modulo n), or, in other words, that vava+x−1 is the only chord of G in Cx. Indeed, assume
Cx has at least two chords, one of which is vivj , where i < j. Note that {vi, vj} is a cut set ofG. This
means that V (Cx) is fully included in either {vj , vj+1, . . . , vi} or {vi, vi+1, . . . , vj}. Assume that
V (Cx) ⊆ {vj , vj+1, . . . , vi} (the other case being symmetrical). Then, note that |{vi, vi+1, . . . , vj}|
must be even, as otherwise (vi, vi+1, . . . , vj , vi) would be an odd-length cycle as desired. Now, we
note that replacing vivj in Cx by the path (vi, vi+1, . . . , vj) results in another odd-length cycle of
G with one less chord. Repeating this process as long as the resulting odd-length cycle has more
than one chord, eventually we end up with an odd-length cycle of G with only one chord, which is
as desired.

Up to relabelling the vertices, we can assume, w.l.o.g., that Cx = (v1, . . . , vx, v1). Let us
consider H, the subgraph of G containing the x edges of Cx, and all the (other) edges of the
Hamiltonian cycle (v0, . . . , vn−1, v0) on the outer face of G except for the edge v0v1. Note that H
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is a unicyclic spanning connected subgraph of G, in which the only cycle (being of odd length) is
Cx, to which is attached a hanging path (vx, vx+1, . . . , v0) containing all the other vertices of G.
Since H is spanning, connected, and unicyclic, |E(H)| = |V (G)|, which is at most |E(G)|−3, since
|E(G)| ≥ |V (G)|+ 3.

All conditions are now met to invoke the arguments in the proof of Theorem 3.5, from which we
can deduce a proper {0, 1, 2}-labelling ` of G where adjacent vertices get distinct colours modulo 3,
and in which only the edges of (our) H are possibly assigned label 0. Let us now consider the
subgraph H ′ of G obtained from H by adding the edge v0v1, which is present in G. Recall that
`(v0v1) = 2 by default. Note that H ′ contains at least two disjoint perfect matchings M1,M2.
Indeed, since |V (G)| is even, a first perfect matching M1 of H ′ contains v0v1, v2v3, . . . , vn−2vn−1.
A second perfect matching M2 of H ′ contains v1v2, v3v4, . . . , vn−1v0. By Lemma 3.7, we can
assume that at most a third of the edges in M1∪M2 are assigned label 0 by `. Since |M1|+ |M2| =
|E(H ′)| − 1 = |E(H)|, but the edge v1vx ∈ E(H) is not included in M1 nor M2 (and so may have
label 0 too), this gives nb`(0) ≤ E(H)

3 + 1, which is less than |E(G)|/3 since |E(G)| ≥ |V (G)|+ 3.
More formally,

nb`(0) ≤ |E(H)|
3

+ 1 =
|V (G)|

3
+ 1 ≤ |E(G)| − 3

3
+ 1 =

|E(G)|
3

.

By turning 0s by ` into 3s, we get a proper 3-labelling of G with the same upper bound on the
number of assigned 3s.

Theorem 4.19 does not cover all 2-connected outerplanar graphs. However, it covers all such
graphs with at least three chords. Thus, to get a generalisation of Theorem 4.19 for all 2-connected
outerplanar graphs, one has to prove a similar result for the 3-chromatic ones with at most two
chords. Those with no chords are exactly odd-length cycles, for which the claim holds (see, e.g., [5]).
For those with one or two chords, the claim can also be verified, for instance through considering
all of the possible ways for the (at most two) chords to interact in such a 2-connected outerplanar
graph, and, for each possible configuration, extending a proper 3-labelling from face to face. Let
us mention that the number of cases to consider can be reduced drastically by applying some of
the arguments used in the proof of Theorem 4.12 to deal with long threads. We voluntarily omit
a tedious proof, which would be less interesting than that of Theorem 4.19 (whose main purpose
is to illustrate how some of the tools from Section 3 can be used).

4.5.2 Halin graphs

We now proceed by proving Conjecture 2.2 for a 4-colourable family of graphs. A Halin graph is
a planar graph with minimum degree 3 obtained as follows. Start from a tree T with no vertex of
degree 2, and consider a planar embedding of T . Finally, add edges to form a cycle going through
all the leaves of T in the clockwise order w.r.t. this embedding. A Halin graph is called a wheel if
it is constructed from a tree T with diameter 2 (i.e., T is a star).

Halin graphs are known to have many properties of interest, such as having triangles, being
Hamiltonian, and having Hamiltonian cycles going through any given edge (see, e.g., [19]). Also,
Halin graphs are 3-degenerate, so, due to the presence of triangles, each of them has chromatic
number 3 or 4. The dichotomy is well-understood, as a Halin graph has chromatic number 4 if and
only if it is a wheel of even order [20]. This allows us to use our tools from Section 3 to establish an
upper bound on ρ3 for most Halin graphs (the 3-chromatic ones), while we can treat the remaining
ones separately.

Theorem 4.20. If G is a Halin graph, then ρ3(G) ≤ 1/3.

Proof. First, consider the case where G is a wheel of even order n. If n = 4, then G = K4, and
the statement holds (since it can be checked by hand that ρ3(K4) = 1/6). For n ≥ 6, we have that
mT(G) = 0. Indeed, let v be the center of the star T , and let v2, . . . , vn be the leaves of T . We can
construct a proper 2-labelling ` of G as follows: start from v2v3, and, following the edges of the
cycle joining the leaves of T in increasing order of their indices, assign labels 1, 1, 2, 2, 1, 1, 2 . . . ,
until vnv2 is labelled. If `(vnv2) = 1, then set `(vv2) = 1 and `(vvi) = 2 for every 3 ≤ i ≤ n.
Otherwise, if `(vnv2) = 2 (and so, `(vn−1vn) = 1), set `(vv2) = 2 and `(vvi) = 1 for every 3 ≤ i ≤ n
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(b) A wheel of order n = 8 ≡ 0 mod 4

Figure 8: The proper 2-labelling for wheels of even order described in the proof of Theorem 4.20.

(see Figure 8 for an illustration of the described labelling). It is easy to check that in both cases `
is a proper 2-labelling of G. Thus, ρ3(G) = 0 and the statement holds.

Next, consider the case where G is not a wheel of even order. Then, χ(G) = 3. If |V (G)| is
odd, then the result follows from Corollary 3.8. Thus, we can assume that |V (G)| is even.

By considering any non-leaf vertex r of T in G, and defining a usual root-to-leaf (virtual)
orientation, since no vertex has degree 2 in T , it can be seen that G has a triangle (u, v, w, u),
where v, w are leaves in T with parent u. Furthermore, dG(v) = dG(w) = 3, while dG(u) ≥ 3.
Due to these degree properties, note that if we consider C a Hamiltonian cycle traversing uv, then
C must also include either wu or vw. More precisely, if we orient the edges of C, resulting in a
spanning oriented cycle ~C, then, at some point, ~C enters (u, v, w, u) through one of its vertices,
goes through another vertex of the triangle, and then through the third one, before leaving the
triangle. In other words, C traverses all the vertices of (u, v, w, u) at once.

Up to relabelling the vertices of (u, v, w, u), we can assume that ~C enters the triangle through
u, then goes to v, before going to w and leaving the triangle. Let us consider H, the subgraph of
G containing the three edges of (u, v, w, u), and all successive edges traversed by C after leaving
the triangle except for the edge going back to u. Note that H is a unicyclic spanning connected
subgraph of G, in which the only cycle is the triangle (u, v, w, u) to which is attached a hanging
path (w, x1, . . . , xn−3) containing all the other vertices of G (i.e., n = |V (G)|). Furthermore, in
E(G) \ E(H), if we set x = xn−3, then the edge xu exists. Since H is spanning, connected, and
unicyclic, |E(H)| = |V (G)|, which is at most 2|E(G)|/3, since δ(G) ≥ 3.

All conditions are now met to invoke the arguments in the proof of Theorem 3.5, from which we
can deduce a proper {0, 1, 2}-labelling ` of G where adjacent vertices get distinct colours modulo 3,
and in which only the edges of the chosen H are possibly assigned label 0. Let us now consider
the subgraph H ′ of G obtained from H by adding the edge xu, which is present in G. Recall
that `(xu) = 2 by default. Note that H ′ contains at least two disjoint perfect matchings M1,M2.
Indeed, since |V (G)| is even, then, in H, the hanging path attached at w has odd length. A
first perfect matching M1 of H ′ contains xn−3xn−4, xn−5xn−6, . . . , wx1, and uv. A second perfect
matching M2 of H ′ contains xn−4xn−5, xn−6xn−7, . . . , x2x1, and wv and xu. Now, by Lemma 3.7,
we can assume that at most a third of the edges in M1 ∪M2 are assigned label 0 by `. Since
|M1|+ |M2| = |E(H ′)|− 1 = |E(H)|, this gives nb`(0) ≤ E(H)

3 + 1, which is at most |E(G)|/3 since
|E(G)| ≥ 3|V (G)|/2 and |V (G)| ≥ 6 (any Halin graph has at least 4 vertices, and the only Halin
graph with exactly 4 vertices is K4, which we have already treated separately). That is,

nb`(0) ≤ |E(H)|
3

+ 1 =
|V (G)|

3
+ 1 ≤ 1

3
· 2|E(G)|

3
+ 1 ≤ |E(G)|

3
.

By turning 0s by ` into 3s, we get a proper 3-labelling of G with the same upper bound on the
number of assigned 3s.
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5 Conclusion
This work was dedicated to studying the importance of 3s in designing proper 3-labellings, this
aspect being motivated by a presumption from previous works that proper 3-labellings of graphs,
in general, should require only a few 3s. This led us to introducing the two quantifying parameters
mT and ρ3. As a main contribution, we have introduced, in Section 3, some tools for deducing
bounds on these parameters. Applications of these, in Section 4, led us to results for specific
classes of 3-chromatic graphs. In particular, we have established that, for several simple classes F
of graphs, there is no p ≥ 0 such that F ⊂ G≤p. In such cases, we have provided bounds on ρ3(F).

Several directions for further research sound particularly appealing. A first one is to prove
Conjecture 2.2 for more classes of graphs, or to exhibit weaker upper bounds towards it. Another
one is to investigate whether the bound of 1/3 in that conjecture is close to being tight or not, in
general. Indeed, at the moment we only know of two small connected graphs, namely C3 and C6,
which attain the bound, while the class of arbitrarily large graphs with the biggest value ρ3 we
could construct, achieves a ratio of 1/10 (Theorem 4.4).

An interesting perspective could be to provide better lower bounds, i.e., find graphs requiring
even more 3s in their proper 3-labellings. This could be done through using Lemma 4.3 (just as
in Theorem 4.4 for instance) with graphs H that are better than those used throughout this work.
In particular, it would be interesting to find such graphs H with similar properties to A1 and
A2, but with ρ3(H) > 1/10. Other properties of interest for H include large density. Note that
the graphs we construct, for instance, in the proof of Theorem 4.4, are rather sparse due to how
H-augmentations are performed. It is not always true, however, that performing H-augmentations
results in sparse graphs. For example, consider A2-augmenting a small number of edges of a
huge complete graph. Following these thoughts, we wonder whether denser versions of A1 and A2

exist. Another property of interest could be high connectivity. As mentioned after the proof of
Theorem 4.5, the graphs A1 and A2 can be used to produce 2-connected graphs. However, these
graphs cannot be used to produce graphs with connectivity at least 3.

Other directions of interest include bounds that are missing in Section 4. For instance, we are
missing an upper bound on ρ3 for a few classes of 3-chromatic graphs, such as separable outerplanar
graphs and, more generally, series-parallel graphs. Regarding our upper bound for Halin graphs
(Theorem 4.20), the main point of interest in the proof lies in that it shows an application of
Lemma 3.7. However, we were not able to come up with examples of arbitrarily large Halin graphs
needing more and more 3s in their proper 3-labellings. Actually, we are aware of only three Halin
graphs that do not admit proper 2-labellings. Two of them are K4 and the prism graph (Cartesian
product of K3 and K2). The third one is constructed as follows: start with two perfect binary
trees on 7 vertices each and add an edge between the roots (degree-2 vertices) of these trees; from
the resulting tree T , construct G as explained in Section 4.5.2. All three of these graphs turn out
to lie in G1. Thus, though we were not able to prove it, it is possible that there exists a p ≥ 1 such
that Halin graphs are in G≤p, and even that p = 1.

Let us mention a last intriguing open question regarding complete graphs. It is known from [2]
that complete graphs Kn with n ≥ 5 admit equitable proper 3-labellings, which implies that they
verify Conjecture 2.2, i.e., mT(Kn) ≤ |E(Kn)|/3 which is roughly of order n2/6. In [5], the authors
exhibited proper 3-labellings of complete graphs where the sum of assigned labels is as small as
possible. Looking closely at the proof, it turns out that the designed proper 3-labellings assign
label 3 to roughly n/4 edges, which yields a better upper bound on ρ3(Kn). Determining the
precise ratio in general sounds like an interesting challenge. Through computer experimentation,
we were able to verify that Kn ∈ G1 for 3 ≤ n ≤ 5, while Kn ∈ G2 for 6 ≤ n ≤ 9, and Kn ∈ G3 for
10 ≤ n ≤ 12. However, we did not manage to prove a general result. We are not even sure if there
exists a p ≥ 3 such that all complete graphs are in G≤p.
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