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Abstract
The 1-2-3 Conjecture states that every connected graph different from K2 admits a proper

3-labelling, i.e., can have its edges labelled with 1, 2, 3 so that no two adjacent vertices are
incident to the same sum of labels. In connection with some recent optimisation variants of
this conjecture, in this paper we investigate the role of label 3 in proper 3-labellings of graphs.
An intuition from previous investigations is that, in general, it should always be possible to
produce proper 3-labellings assigning label 3 to a only few edges.

We prove that, for every p ≥ 0, there are various graphs needing at least p 3’s in their
proper 3-labellings. Actually, deciding whether a given graph can be properly 3-labelled with
p 3’s is NP-complete for every p ≥ 0. We also focus on classes of 3-chromatic graphs. For
various classes of such graphs (cacti, cubic graphs, triangle-free planar graphs, etc.), we prove
that there is no p ≥ 1 such that they all admit proper 3-labellings assigning label 3 to at most
p edges. In such cases, we provide lower and upper bounds on the number of needed 3’s.

Keywords: Proper labellings, 3-chromatic graphs, 1-2-3 Conjecture.

1 Introduction
This work is mainly motivated by the so-called 1-2-3 Conjecture, which can be defined through
the following terminology and notation. Let G be a graph and consider a k-labelling ` : E(G) →
{1, . . . , k}, i.e., an assignment of labels 1, . . . , k to the edges of G. To every vertex v ∈ V (G), we
can associate, as its colour c`(v), the sum of labels assigned by ` to its incident edges. That is,
c`(v) =

∑
u∈N(v) `(vu). We say that ` is proper if we have c`(u) 6= c`(v) for every uv ∈ E(G), that

is, if no two adjacent vertices of G get incident to the same sum of labels by `.
It turns out that K2, the complete graph on two vertices, is the only connected graph admitting

no proper labellings at all. Thus, when investigating the 1-2-3 Conjecture, we generally focus on
nice graphs, which are those graphs with no connected component isomorphic to K2, i.e., admitting
proper labellings. If a graph G is nice, then we can investigate the smallest k ≥ 1 such that proper
k-labellings of G exist. This parameter is denoted by χΣ(G).

A natural question to ask, is whether this parameter χΣ(G) can be large for a given graph G.
This question is precisely at the heart of the 1-2-3 Conjecture:

1-2-3 Conjecture (Karoński, Łuczak, Thomason [14]). If G is a nice graph, then χΣ(G) ≤ 3.

To date, most of the progress towards the 1-2-3 Conjecture can be found in [16]. Let us high-
light that the conjecture was verified mainly for 3-colourable graphs [14] and complete graphs [7].
Regarding the tightness of the conjecture, it was proved that deciding if a given graph G verifies
χΣ(G) ≤ 2 is NP-complete in general [11], and remains so even in the case of cubic graphs [9]. This
means there is no nice characterisation of graphs admitting proper 2-labellings (or, the other way
round, of graphs needing 3’s in their proper 3-labellings), unless P=NP. Lastly, to date, the best
result towards the 1-2-3 Conjecture, from [13], is that χΣ(G) ≤ 5 holds for every nice graph G.
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This work takes place in a recent line of research dedicated to studying optimisation problems
related to the 1-2-3 Conjecture which arise when wondering about proper labellings fulfilling addi-
tional constraints. In a way, one of the main sources of motivation here is further understanding
the very mechanisms that lie behind proper labellings. In particular, towards better understanding
the connection between proper labellings and proper vertex-colourings, the authors of [1, 5] studied
proper labellings ` for which the resulting vertex-colouring c` is required to be close to an optimal
proper vertex-colouring (i.e., with the number of distinct resulting vertex colours being close to the
chromatic number). Due to one of the core motivations behind the 1-2-3 Conjecture, the authors
of [4] also investigated proper labellings minimising the sum of labels assigned to the edges.

Each of these previous investigations led to presumptions of independent interest. In particular,
it is believed in [5], that every nice graph G should admit a proper labelling where the maximum
vertex colour is at most 2∆(G) (recall that ∆(G) and δ(G) are used to denote the maximum and
the minimum, respectively, degree of any vertex of G), while, from [4], it is believed that every G
should admit a proper labelling where the sum of assigned labels is at most 2|E(G)|. One of the
main reasons why these presumptions are supposed to hold, is the fact that, in general, it seems
that nice graphs admit 2-labellings that are almost proper, in the sense that they need only a few
3’s to design proper 3-labellings. Note that if this was true, then indeed the presumptions from [5]
and [4] above would be likely to hold. It is also worth mentioning that this belief on the number of
3’s is actually a long-standing one of the field, as, in a way, it lies behind the 1-2 Conjecture raised
by Przybyło and Woźniak [15], which states that we should be able to build a proper 2-labelling
of every graph if we are additionally allowed to locally alter every vertex colour by a bit.

Our goal in this work is to study and formally establish the intuition that, in general, graphs
should admit proper 3-labellings assigning only a few 3’s. We study this through two questions.

• The very first question to consider is whether, given a (possibly infinite) class F of graphs, the
members of F admit proper 3-labellings assigning only a constant number of 3’s, i.e., whether
there is a constant cF ≥ 0 such that all graphs of F admit proper 3-labellings assigning label 3
to at most cF edges. Note that this is something that is already known to hold for a few
graph classes. For instance, all nice trees admit proper 2-labellings, thus proper 3-labellings
assigning label 3 to no edge [7]. Similarly, from results in [4], it can be deduced that all nice
bipartite graphs admit proper 3-labellings assigning label 3 to at most two edges.

• In case F admits no such constant cF , i.e., the number of 3’s the members of F need in their
proper 3-labellings is a function of their number of edges, the second question we consider is
whether the number of 3’s needed can be “large” for a given member of F , with respect to
the number of its edges.

Throughout this work, we investigate these two questions in general and for more restricted
classes of graphs. We start off in Section 2 by formally introducing the terminology that we employ
throughout this work to treat these concerns, and by raising preliminary observations and results.
Then, in Section 3, we introduce proof techniques for establishing lower and upper bounds on the
number of 3’s needed to construct proper 3-labellings for some graph classes. In Section 4, we use
these tools to establish that, for several classes of graphs, the number of needed 3’s in their proper
3-labellings is not bounded by an absolute constant. In such cases, we exhibit bounds (functions
depending on the size of said graphs) on this number.

2 Terminology, preliminary results, and a conjecture

2.1 Proper 3-labellings assigning few 3’s
Let G be a graph and G′ be a subgraph of G (i.e., created by deleting vertices and/or edges of
G). For any vertex v ∈ V (G), let N(v) = {u ∈ V (G) : uv ∈ E(G)} denote the neighbourhood
of v, and let d(v) = |N(v)| denote the degree of v. Also, for any vertex v ∈ V (G) ∩ V (G′), let
dG′ = |{u ∈ V (G′) : uv ∈ E(G′)}| denote the degree of v in G′. Finally, recall that G′ is said to
be induced if it can be created by only deleting vertices of G. That is, for each edge uv ∈ E(G), if
u, v ∈ V (G′), then uv ∈ E(G′). For any additional notation on graph theory not defined here, we
refer the reader to [10].
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Let G be a (nice) graph, and ` be a k-labelling of G. For any i ∈ {1, . . . , k}, we denote by
nb`(i) the number of edges assigned label i by `. Focusing now on proper 3-labellings, we denote
by mT(G) the minimum number of edges assigned label 3 by a proper 3-labelling of G. That is,

mT(G) = min{nb`(3) : ` is a proper 3-labelling of G}.

We extend this parameter mT to classes F of graphs by defining mT(F) as the maximum value
of mT(G) over the members G of F . Clearly, mT(F) = 0 for every class F of graphs admitting
proper 2-labellings (i.e., χΣ(G) ≤ 2 for every G ∈ F).

Given a graph class F , we are interested in determining whether mT(F) ≤ p for some p ≥ 0.
From that perspective, for every p ≥ 0, we denote by Gp the class of graphs G with mT(G) = p.
For convenience, we also define G≥p := Gp ∪ Gp+1 ∪ . . . and G≤p := G0 ∪ · · · ∪ Gp.

As it was proved, for instance in [7], that nice trees admit proper 2-labellings, if we denote by
T the class of all nice trees, then the terminology above allows us to state that T ⊂ G0. More
generally speaking, bipartite graphs form perhaps the most investigated class of graphs in the
context of the 1-2-3 Conjecture. A notable result, due to Thomassen, Wu, and Zhan [17], is that a
bipartite graph G verifies χΣ(G) = 3 if and only if G is an odd multi-cactus, where odd multi-cacti
form a particular class of 2-edge-connected bipartite graphs obtained through pasting cycles with
certain lengths onto each other in a particular way. This specific class of graphs was further studied
in several works, such as [4], in which it was proved that odd multi-cacti admit proper 3-labellings
assigning label 3 at most twice.

Theorem 2.1 (Bensmail, Fioravantes, Nisse [4]). If G is a nice bipartite graph, then G ∈ G≤2.
More precisely, G ∈ G0 if G is not an odd multi-cactus, G ∈ G2 if G is a cycle of length congruent
to 2 modulo 4, and G ∈ G1 otherwise (i.e., if G is an odd multi-cactus different from a cycle C4k+2).

Theorem 2.1 is troublesome in the sense that, even without considering any additional con-
straint, we do not know much about how proper 3-labellings behave beyond the scope of bipartite
graphs. Our take in this work is to focus on the next natural case to consider, that of 3-chromatic
graphs, which fulfil the 1-2-3 Conjecture [14]. Unfortunately, as will be seen later on, a result
equivalent to Theorem 2.1 for 3-chromatic graphs does not exist, even for very restricted classes of
3-chromatic graphs.

Regarding the classes G0,G1, . . . , it is worth mentioning right away that each Gp is well pop-
ulated, in the sense that there exist infinitely many graphs with various substructures belonging
to Gp. Actually, it turns out that deciding whether a given graph G belongs to Gp is NP-complete
for every p ≥ 0. We postpone the proofs of these statements for Section 3 (Observation 3.3 and
Theorem 3.4), as they require the tools and results introduced in that same section.

As mentioned earlier, we will see throughout this work that, for several graph classes F , there
is no p ≥ 0 such that F ⊂ G≤p. For such a class, we want to know whether the proper 3-labellings
of their members require assigning label 3 many times, with respect to their number of edges.
We study this aspect through the following terminology. For a nice graph G, we define ρ3(G) :=
mT(G)/|E(G)|. We extend this ratio to a class F by setting ρ3(F) = max{ρ3(G) : G ∈ F}.

In this work, we are thus interested in determining bounds on ρ3(F) for some graph classes F
of 3-chromatic graphs, and, more generally speaking, in how large this ratio can be. Note that this
is similar to considering how large ρ3(G) can be for a given graph G. Also, notice that small graphs
G with χΣ(G) = 3 are more likely to have ρ3(G) close to 1. Through a quick study, it is easy to see
that, among the sample of small connected graphs (e.g., of order at most 6), the maximum ratio ρ3

is exactly 1/3, which is attained by C3 and C6. As will be seen through the next sections, at the
moment, these are the worst graphs we know of, which leads us to raising the following conjecture.

Conjecture 2.2. If G is a nice connected graph, then ρ3(G) ≤ 1/3.

It is worth adding that Conjecture 2.2 can be sort of seen as a much weaker version of an
equitable version of the 1-2-3 Conjecture, investigated in [2, 3]. In that version, it is believed that,
a few exceptions apart, every graph should admit a proper 3-labelling ` where all labels are assigned
about the same number of times, i.e., the difference between nb`(i) and nb`(j) is at most 1 for any
two assigned labels i, j. Such a labelling ` is called equitable.
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Unfortunately, this equitable version is obviously much stronger than our concerns in this paper,
and, as a consequence, we actually do not get much from the results in [2, 3]. Indeed, most of
these results are actually about equitable proper 3-labellings of classes of bipartite graphs, while
bipartite graphs form a pretty understandable case in our context (recall Theorem 2.1). One result
we actually get from [2] is an upper bound on ρ3 for complete graphs, which is actually improved
by another result (see Section 5).

2.2 General results on proper labellings
In this subsection, we prove results on proper labellings, which will be useful in the next sections.

Observation 2.3. Let G be a graph with a path (v1, v2, v3, v4) such that d(v2) = d(v3) = 2. Then,
by any proper labelling ` of G, we have `(v1v2) 6= `(v3v4).

Proof. Since, by any proper labelling ` of G, we have that c`(v2) = `(v1v2) + `(v2v3), c`(v3) =
`(v2v3) + `(v3v4), and c`(v2) 6= c`(v3), then `(v1v2) 6= `(v3v4).

Let ` be a k-labelling of some graph, and let σ : {1, . . . , k} → {1, . . . , k} be a permutation of
{1, . . . , k}. We denote by sw(`, σ) the k-labelling obtained from ` by switching labels as indicated
by σ. That is, if `(e) = i for some edge e and label i, then sw(`, σ)(e) = σ(i). Assuming the set
of labels {1, . . . , k} is clear from the context, for any two i, j ∈ {1, . . . , k}, we denote by σi↔j the
permutation only swapping labels i and j. That is, σi↔j(i) = j, σi↔j(j) = i, and σi↔j(l) = l for
every l ∈ {1, . . . , k} \ {i, j}.

Let G be a connected graph. If, for every vertex v ∈ V (G), we have that d(v) = d, then G is
said to be d-regular. If, in addition, G also has vertices of degree 1, then we say that G is d-quasi
regular. It is clear that every graph that is d-regular is also d-quasi regular.

Lemma 2.4. If ` is a proper 3-labelling of a quasi regular graph G, then sw(`, σ1↔3) is also proper.

Proof. Assume G is d-quasi regular for some d ≥ 2, and set `′ = sw(`, σ1↔3). Observe that, by
a labelling, a vertex of degree 1 can never be involved in a colour conflict with its neighbour. It
is thus sufficient to show that, for every vertex v ∈ V (G) with d(v) = d, the pair (c`(v), c`′(v))
is unique. Consider any v ∈ V (G) and let x be the number of its incident edges labelled 1, y be
the number of its incident edges labelled 2, and z be the number of its incident edges labelled 3
by `. We have that c`(v) = x + 2y + 3z and c`′(v) = 3x + 2y + z, while x + y + z = d since G
is d-quasi regular. It follows that c`(v) + c`′(v) = 4(x + y + z) = 4d. Moreover, we have that
c`(v), c`′(v) ∈ {d, . . . , 3d}. Let c`(v) = d+ λ, with λ ∈ {0, . . . , 2d}. Then, c`′(v) = 3d− λ and this
is a unique number in {d, . . . , 3d}.

A particular case of Lemma 2.4 is the following:

Observation 2.5. If ` is a proper 2-labelling of a 3-quasi regular graph, then sw(`, σ1↔2) is also
proper.

3 Tools for establishing bounds on mT and ρ3

3.1 Weakly induced subgraphs – A tool for lower bounds
Most of the lower bounds on mT and ρ3 that we exhibit in Section 4 are through a particular graph
construction. The general idea is that, if we have a collection of graphs H1, . . . ,Hn with certain
structural and labelling properties, then, under particular circumstances, it is possible to combine
these Hi’s in some fashion to form a bigger graph G in which the Hi’s retain their respective
labelling properties, from which we can deduce that G itself has certain labelling properties.

In order to state that construction formally, we need to introduce some terminology first (see
Figure 1 for an illustration). Let G and H be two graphs. We say that G contains H as a weakly
induced subgraph X if there exists an induced subgraph X of G such that H is a spanning subgraph
of X, and, for every vertex v ∈ V (H), either dH(v) = 1 or dH(v) = dG(v). In other words, if we
add to H the edges of G that connect the vertices of degree 1 in H, we obtain X. That is, for
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(a) G (b) X (c) H

Figure 1: A graph G containing another graph H as a weakly induced subgraph X. In G, the
white vertices can have arbitrarily many neighbours in the red part, while the full neighbourhood
of the black vertices is as displayed. In H, the white vertices are the border vertices, while the
black vertices are the core vertices.

every edge uv ∈ E(G), if u ∈ V (X) and v ∈ V (G)\V (X), then dH(u) = 1; we call these the border
vertices of H. Also, we call the other vertices of H (i.e., those that are not border vertices) its core
vertices. By the definitions, note that if G contains H as a weakly induced subgraph and δ(H) ≥ 2,
then G is isomorphic to H. For this reason, this notion makes more sense when δ(H) = 1.

Let X1, X2 be two weakly induced subgraphs of a graph G. We say that X1 and X2 are disjoint
(in G) if they share no core vertices. It follows directly from the definition that, for every v ∈ V (G),
if v ∈ V (X1) ∩ V (X2), then v is a border vertex of both X1 and X2.

Let ` be a labelling of G. For a subgraph H of G, we denote by `|H the restriction of ` to the
edges of H, i.e., we have `|H(e) = `(e) for every edge e ∈ E(H). Assume now that G contains H as
a weakly induced subgraph X. Abusing the notations, we will sometimes write `|H , which refers
to the labelling of H inferred from `|X , i.e., where `|H(e) = `|X(e) for every e ∈ E(H).

The key result is that, if a graph G contains other graphs H1, . . . ,Hn as pairwise disjoint weakly
induced subgraphs, then the labelling properties of the Hi’s can be inferred to those of G:

Lemma 3.1. Let G be a graph containing nice graphs H1, . . . ,Hn as pairwise disjoint weakly
induced subgraphs X1, . . . , Xn. If ` is a proper 3-labelling of G, then `|Hi

is a proper 3-labelling of
Hi for every i ∈ {1, . . . , n}. Consequently, mT(G) ≥

∑n
i=1 mT(Hi).

Proof. Consider Hj for some 1 ≤ j ≤ n. Since, by any labelling of a nice graph, a vertex of degree
1 cannot get the same colour as its unique neighbour, then it cannot be involved in a conflict. This
implies that `|Hj is proper if and only if any two adjacent core vertices of Hj get distinct colours by
`|Hj . By the definition of a weakly induced subgraph, recall that we have dHj (v) = dXj (v) = dG(v)
for every core vertex v of Hj , which implies that c`|Hj

(v) = c`|Xj
(v) = c`(v). Thus, for every edge

uv ∈ E(Hj) joining core vertices, we have c`(u) = c`|Hj
(u) = c`|Xj

(u) 6= c`|Xj
(v) = c`|Hj

(v) = c`(v)

since ` is proper, meaning that `|Hj
is also proper. Now, since G contains nice graphs H1, . . . ,Hn

as pairwise disjoint weakly induced subgraphs X1, . . . , Xn, then mT(G) ≥
∑n

i=1 mT(Hi).

In the next lemma, we point out that, in some contexts, we can add some structure to a given
graph without altering its value of mT. In some of the later proofs, this will be particularly
convenient for applying inductive arguments or simplifying the structure of a considered graph.

Lemma 3.2. Let G be a nice graph with minimum degree 1 and v ∈ V (G) be such that d(v) = 1.
If G′ is the graph obtained from G by adding x > 0 vertices of degree 1 adjacent to v, then
mT(G′) = mT(G).

Proof. Since G′ contains G as a weakly induced subgraph, then by Lemma 3.1, we have that
mT(G′) ≥ mT(G). To show that mT(G′) ≤ mT(G), it suffices to extend a proper 3-labelling of
G to one of G′ that uses the same number of edges labelled 3. To do this, simply note that since
each one of the leaves adjacent to v has degree 1, its colour cannot be in conflict with that of v.
Thus, the only colour conflict that can occur when extending the labelling, is between v and its
unique neighbour in G. If, by labelling all of the edges incident to the leaves adjacent to v with
1’s, there is a colour conflict between v and its neighbour in G, then it suffices to change exactly
one of those labels to 2.
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Through an easy use of Lemma 3.1, we can already establish results of interest regarding the
parameter mT. For instance, we can prove that each graph class Gp (p ≥ 1) contains infinitely
many graphs with various substructures.

Observation 3.3. Gp contains infinitely many graphs with various substructures for every p ≥ 1.

Proof. Let H be a graph with δ(H) = 1 and mT(H) = 1 (such graphs exist, see, e.g., our results
from Section 4). Let uv be an edge of H such that d(u) = 1 and d(v) ≥ 2. Also, let T be any
locally irregular graph1 with an edge u′v′ such that d(u′) = 1 and d(v′) ≥ 3p+ 3.

Now, let G be the graph that is the disjoint union of T and of p copies X1, . . . , Xp of H, and
identify u′ and the p copies of u to a single vertex w. Clearly, G contains T and the disjoint union
of p copies of H as pairwise disjoint weakly induced subgraphs T,X1, . . . , Xp (abusing the notation,
for simplicity we refer to both the original T and its copy in G as T ). By Lemma 3.1, we have
mT(G) ≥ mT(T ) + p ·mT(H) = p since T is locally irregular (thus, mT(T ) = 0) and mT(H) = 1.

To prove that the equality actually holds, it suffices to construct a proper 3-labelling ` of G
with nb`(3) = p. Let `′ be a proper 3-labelling of H such that nb`′(3) = 1, which exists since
mT(H) = 1. To obtain `, for each Xi, we set `(e) = `′(e) for every edge e of that Xi, while
we set `(e) = j for every edge e of T , where j ∈ {1, 2} is chosen so that c`(w) 6= c`′(v) for v in
each copy of Xi (recall that c`′(v) is the same for each copy of Xi). As a result, for any Xi, for
every vertex x 6= w from that Xi, we get c`(x) = c`′(x). Hence, for any Xi, for every edge xy not
containing w from that Xi, we have c`(x) 6= c`(y). Furthermore, for every vertex x of T different
from w, we have either c`(x) = d(x) or c`(x) = 2d(x), meaning that, for every edge xy of T not
containing w, we have c`(x) 6= c`(y) since T is locally irregular. Now, by the construction of `,
note that w cannot be in conflict with its neighbours in the Xi’s (due to the choice of j), and
c`(w) < 3p+ 3 ≤ d(v′) ≤ c`(v′), meaning that w and v′ cannot be in conflict. Thus, ` is proper.

Note that the “various substructures” part of the statement is implied by the fact that the
structure of T does not matter, and can be anything as long as T is locally irregular and has the
particular edge u′v′. In particular, T can potentially contain any graph as an induced subgraph.

Through the same ideas, we can actually prove that, more generally speaking, a nice charac-
terisation of any Gp should not exist, unless P=NP.

Theorem 3.4. Let p ≥ 1 and G be a graph. Deciding if G ∈ Gp is NP-complete.

Proof. The problem is obviously in NP. Let us focus on proving it is also NP-hard. This is done
by a reduction from the 2-Labelling problem, which was proved to be NP-hard, e.g., by Dudek
and Wajc in [11]. In that problem, a graph H is given, and the goal is to decide whether H admits
proper 2-labellings. Given an instance H of 2-Labelling, we construct, in polynomial time, a
graph G such that mT(G) = p if and only if H admits proper 2-labellings.

Looking closely at the proof from [11], it can be noted that 2-Labelling remains NP-hard
when restricted to graphs with minimum degree 1. Thus, we can assume H has this property.

The construction of G is achieved as follows. Let H ′ be a graph with δ(H ′) = 1 and mT(H ′) = 1
(as mentioned in the proof of Observation 3.3, such graphs exist). Let uv be an edge of H ′ such
that d(u) = 1 and d(v) ≥ 2. Now, start from G being the disjoint union of H and of p copies
X1, . . . , Xp of H ′, and then identify a vertex of degree 1 of H and of the p copies of u to a single
vertex w. Finally, attach new vertices of degree 1 to w so that the degree of w in G gets at least four
times bigger than the degree of any of its neighbours. Clearly, the construction of G is achieved in
polynomial time.

We now prove the equivalence between the two problems.

• Assume ` is a proper 3-labelling of G such that nb`(3) = p. Note that G contains H and p
copies of H ′ as pairwise disjoint weakly induced subgraphs H,X1, . . . , Xp. Due to Lemma 3.1,
and because mT(H ′) = 1, this means that we must have nb`|Xi

(3) = 1 for every i ∈ {1, . . . , p},
and, thus, nb`|H (3) = 0. Then, `|H must be a proper 2-labelling of H.

• Assume ` is a proper 2-labelling of H. Since mT(H ′) = 1, there exists a proper 3-labelling `′
of H ′ where nb`′(3) = 1. Now, let `′′ be the 3-labelling of G obtained by setting `′′(e) = `(e)

1A graph is locally irregular if no two of its adjacent vertices have the same degree.
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for every e ∈ E(H), setting `′′(e) = `′(e) for every e ∈ E(Xi) for each i ∈ {1, . . . , p}, and
setting `′′(e) = 1 for every remaining pending edge attached at w. By the properties of ` and
`′, and by arguments similar to those used in the proof of Observation 3.3, no conflict can
occur along an edge not containing w. Now, regarding w, due to the choice of its degree, it
can be noted that c`′′(w) must be strictly bigger than the colour of each of the neighbours of
w. Thus, `′′ is a proper 3-labelling of G, and nb`′′(3) = p.

3.2 Switching closed walks – A tool for upper bounds
Due to Theorem 2.1, investigating the parameters mT and ρ3 only makes sense for graphs with
chromatic number at least 3, i.e., that are not bipartite. These graphs have odd-length cycles. We
take advantage of these cycles to prove the following upper bound on ρ3 for 3-chromatic graphs.

Theorem 3.5. If G is a connected 3-chromatic graph, then ρ3(G) ≤ |V (G)|/|E(G)|.

Proof. Since G is not bipartite, there exists an odd-length cycle C in G. Let H be a subgraph of G
constructed as follows. Start from C = H. Then, until V (H) = V (G), repeatedly choose a vertex
v ∈ V (G) \ V (H) such that there exists a vertex u ∈ V (H) with uv ∈ E(G), and add the edge uv
to H. In the end, H is a connected spanning subgraph of G containing only one cycle, C, which is
of odd length. Then, we have |E(H)| = |V (G)|.

Let φ : V (G) → {0, 1, 2} be a proper 3-vertex-colouring of G. In what follows, our goal is to
construct a 3-labelling ` of G such that c`(v) ≡ φ(v) mod 3 for every vertex v ∈ V (G), thus making
` proper. Additionally, to prove the full statement, we want ` to verify nb`(3) ≤ |V (G)|/|E(G)|.
Note that, aiming at vertex colours modulo 3, we can instead assume that ` assigns labels 0, 1, 2,
and require nb`(0) ≤ |V (G)|/|E(G)|. To obtain such a labelling, we start from ` assigning label 2
to all edges of G. We then modify ` iteratively until all vertex colours are as desired modulo 3.

As long as G has a vertex v with c`(v) 6≡ φ(v) mod 3, we apply the following procedure. Choose
W = (v, v1, . . . , vn, v), a closed walk2 of odd length in G starting and ending at v, and going through
edges of H only. This walk is sure to exist. Indeed, consider, in H, a (possibly empty) path P
from v to the closest vertex u of C (if v lies on C, then note that u = v and P has no edge). Then,
the closed walk vPuCuPv is a possible W . We then follow the consecutive edges of W , starting
from v and ending at v, and, going along, we apply +2,−2,+2,−2, . . . ,+2 (modulo 3) to the labels
assigned by ` to the traversed edges. As a result, note that c`(x) is not altered modulo 3 for every
vertex x 6= v, while c`(v) is incremented by 1 modulo 3. If c`(v) ≡ φ(v) mod 3, then we are done
with v. Otherwise, we repeat this switching procedure once again, so that v fulfils that property.

Eventually, we get c`(v) ≡ φ(v) mod 3 for every v ∈ V (G), meaning that ` is proper. Recall
that we have `(e) = 2 for every e ∈ E(G) \ E(H). Thus, only the edges of H can be assigned
label 0 by `. Since there are exactly |V (G)| such edges, and we can replace all assigned 0’s
with 3’s without breaking the modulo 3 property, we have mT(G) ≤ |V (G)|, which implies that
ρ3(G) ≤ |V (G)|/|E(G)|.

Theorem 3.5, by itself, has implications on Conjecture 2.2. In particular, every sufficiently dense
connected 3-chromatic graph verifies the conjecture. This remark applies to, e.g., every connected
3-chromatic graph G with δ(G) ≥ 6, since it obviously verifies |E(G)| ≥ 3|V (G)|. Note that, in
that case, the connectivity condition can actually be dropped, as every connected component of a
3-chromatic graph is 3-colourable (so, for each component, one of Theorems 2.1 and 3.5 applies).

Corollary 3.6. If G is a 3-chromatic graph with δ(G) ≥ 6, then ρ3(G) ≤ 1/3.

In general, and more particularly for less dense graphs, it would be interesting to find ways
to improve the arguments in the proof of Theorem 3.5 to further reduce the number of assigned
3’s. Note that several of our arguments could actually be subject to improvement. For instance,
in the current proof, we always set `(e) = 2 for an edge e ∈ E(G) \ E(H), which might be one of
the reasons why many 3’s might appear through the eventual walk-switching procedure. It seems,
however, that in general, this is tough to improve upon significantly without further assumptions
on G. Similarly, in some contexts, it might be possible to choose the unicyclic subgraph H in a

2Recall that a walk in a graph is a path in which vertices and edges can be repeated.
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clever way, but this seems hard to do in general. A more interesting direction is about choosing
the proper 3-vertex-colouring φ in a more clever way. In the next lemma, we show a way to play
with φ in order to reduce the number of 3’s assigned by ` to certain sets of edges.

Lemma 3.7. Let G be a graph and ` be a proper {0, 1, 2}-labelling of G such that c`(u) 6≡ c`(v) mod
3 for every edge uv ∈ E(G). If H is a (not necessarily connected) spanning d-regular subgraph of G
for some d ≥ 1, then there exists a proper {0, 1, 2}-labelling `′ of G such that c`′(u) 6≡ c`′(v) mod 3
for every edge uv ∈ E(G) and that assigns label 0 to at most a third of the edges of E(H). Moreover,
for every edge e ∈ E(G) \ E(H), `′(e) = `(e).

Proof. We construct the following new labelling: starting from `, add 1 (modulo 3) to all the labels
assigned by ` to the edges of H. The resulting labelling `1 is a proper {0, 1, 2}-labelling of G such
that c`1(u) 6≡ c`1(v) mod 3 for every edge uv ∈ E(G). Indeed, for every v ∈ V (G), we have c`1(v) ≡
c`(v)+d mod 3. Thus, if there exist two vertices u, v ∈ V (G) such that c`1(u) ≡ c`1(v) mod 3, then
c`(u) ≡ c`(v) mod 3, a contradiction. We define `2 in a similar fashion, by adding 1 (modulo 3) to
all the labels assigned by `1 to the edges of H. Similarly, `2 is proper. Note that, for every edge
e ∈ E(H), we have {`(e), `1(e), `2(e)} = {0, 1, 2}. This implies that at least one of `, `1, `2 assigns
label 0 to at most a third of the edges of E(H). Finally, since none of the labels of the edges of
E(G) \E(H) were changed to obtain `1 from ` and to obtain `2 from `1, the last statement of the
lemma holds.

In Lemma 3.7, if d = 2, then H forms a cycle cover of G. Thus, when H is also a unicyclic
spanning connected subgraph of G, a particular application of Lemma 3.7 in conjunction with the
proof of Theorem 3.5 gives the following corollary:

Corollary 3.8. If G is a 3-chromatic Hamiltonian graph of odd order, then ρ3(G) ≤ 1/3.

Another application of Lemma 3.7 is for d = 1, i.e., H forms an independent edge cover. That
is, Lemma 3.7 in conjunction with the proof of Theorem 3.5 can be used, for instance, to prove
that class-1 cubic graphs (i.e., admitting three disjoint perfect matchings) verify Conjecture 2.2.
Indeed, let G be a class-1 cubic graph, and let M1,M2,M3 be three disjoint perfect matchings of
G. We can assume that G is not bipartite, as otherwise Theorem 2.1 would apply, and also that
G is not K4 (as it can be checked by hand that mT(K4) = 1). Thus, G is 3-chromatic. Mimicking
the proof of Theorem 3.5, we can use an odd-length cycle of G to deduce a {0, 1, 2}-labelling ` of G
where c`(u) 6≡ c`(v) mod 3 for every uv ∈ E(G), and, by Lemma 3.7, we can assume that, for every
Mi, at most a third of its edges are assigned label 0 by `. Since the Mi’s partition E(G), turning
all 0’s by ` into 3’s, we end up with a proper 3-labelling of G where at most a third of the edges
are assigned label 3. In Section 4, via a different approach we will actually prove Conjecture 2.2
for all cubic graphs.

Regarding the proof of Theorem 3.5 and the previous arguments, it would be interesting if we
could always choose the unicyclic subgraph H in such a way that it admits several disjoint perfect
matchings, so that Lemma 3.7 can be employed to reduce the number of assigned 3’s. In the proof
of Theorem 4.19, we will point out one graph class in which this strategy can be employed.

4 Results on the parameters mT and ρ3 for some graph classes
We now use the tools introduced in Section 3 to exhibit results on the parameters mT and ρ3 for
some particular classes of 3-chromatic graphs (and beyond sometimes). In particular, we prove
that, for many classes F of 3-chromatic graphs, there is no p ≥ 1 such that F ⊂ G≤p (i.e., a
constant number p of 3’s is not sufficient to construct a proper 3-labelling of at least one of the
graphs in F). In such cases, we provide upper bounds for ρ3(F).

4.1 Connected graphs needing lots of 3’s
As mentioned earlier, we are aware of only two connected graphs for which the parameter ρ3 is
exactly 1/3, and these are C3 and C6

3. A legitimate question to ask, is whether the bound in
Conjecture 2.2 is accurate in general, i.e., whether it can be attained by arbitrarily large graphs.

3Any disjoint union of C3’s and C6’s reaches that value. This is why Conjecture 2.2 focuses on connected graphs.
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Figure 2: Proper 3-labellings ` of A1 and A2 with nb`(3) = 1. The colours by c` are indicated by
integers within the vertices.

In light of these thoughts, our goal in this subsection is to provide a class of arbitrarily large
connected graphs achieving the largest possible ratio ρ3. Our arguments are based on our notion
of weakly induced subgraphs, introduced in Section 3. Basically, the idea is to have a connected
graph H with mT(H) ≥ 1, and to combine p copies of H to a single connected graph G so that
mT(G) ≥ p. To guarantee that ρ3(G) is large, the main ideas are 1) to choose H so that |E(H)| is
as small as possible, and 2) to construct G so that only a few edges join the p copies of H. These
two conditions are to ensure that |E(G)| itself is as small as possible.

We ran computer programs to find graphs H with δ(H) = 1, mT(H) ≥ 1, and with the fewest
edges possible. It turns out that the smallest such graphs have 10 edges. Two such graphs, which
we call A1 and A2 throughout this section, are depicted in Figure 2. Since these two graphs will
allow us to prove several lower bounds on ρ3 for various graph classes, let us formally establish
that they do have the desired property.

Observation 4.1. mT(A1) = 1.

Proof. A proper 3-labelling ` of A1 with nb`(3) = 1 is depicted in Figure 2(a), which shows that
mT(A1) ≤ 1. We now prove that mT(A1) > 0, i.e., that there is no proper 2-labelling of A1.
Towards a contradiction, assume a proper 2-labelling ` of A1 exists.

By Observation 2.3, we have `(v6v7) 6= `(v6v8). Also, since ` is a 2-labelling, we have c`(v5) ∈
{3, 4, 5, 6}. We distinguish the following cases:

• Case 1: c`(v5) = 3. Then, `(v3v5) = `(v4v5) = `(v5v6) = 1, and so, {c`(v3), c`(v4)} = {4, 5}.
Assume w.l.o.g., that c`(v3) = 4 and c`(v4) = 5. It follows that `(v2v3) = 1 and `(v2v4) =
`(v3v4) = 2, and thus, c`(v2) ∈ {4, 5} = {c`(v3), c`(v4)}, which contradicts that ` is proper.

• Case 2: c`(v5) = 4. Then, v5 has exactly one incident edge labelled 2. First, assume
that `(v5v6) = 2. It follows that `(v3v5) = `(v4v5) = 1, and thus, {c`(v3), c`(v4)} = {3, 5}.
Assume w.l.o.g, that c`(v3) = 3 and c`(v4) = 5. Since c`(v3) = 3, we have that `(v2v3) =
`(v3v4) = 1, and thus, c`(v4) ≤ 4, a contradiction. Second, assume that `(v5v6) = 1. Since
{`(v6v7), `(v6v8)} = {1, 2}, we have c`(v6) = 4 = c`(v5), a contradiction.

For the next two cases, let A′1 = A1 − {v7v8} and observe that A′1 is 3-quasi regular.
• Case 3: c`(v5) = 5. Then, by Observation 2.5, the 2-labelling `′ = sw(`|A′1 , σ1↔2) is also

proper for A′1. Moreover, recall that {`′(v6v7), `′(v6v8)} = {1, 2}. It follows that `′ can be
extended to a proper 2-labelling `′′ of A1 by setting `′′(v7v8) = 1. But then, c`′′(v5) = 4, and
we get a contradiction to Case 2 above.

• Case 4: c`(v5) = 6. Similarly to the previous case, the 2-labelling `′ = sw(`|A′ , σ1↔2) is
proper for A′1 and it can be extended to a proper 2-labelling `′′ of A1 by setting `′′(v7v8) = 1.
But then, c`′′(v5) = 3, and we get a contradiction to Case 1 above.

Observation 4.2. mT(A2) = 1.

Proof. A proper 3-labelling ` of A2 with nb`(3) = 1 is depicted in Figure 2(b). Thus, mT(A2) ≤ 1.
Let us prove now that mT(A2) > 0, i.e., that there is no proper 2-labelling of A2. Towards a
contradiction, assume a proper 2-labelling ` of A2 exists.
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Since ` is a 2-labelling, we have c`(v3) ∈ {3, 4, 5, 6}. We distinguish the following cases:

• Case 1: c`(v3) = 3. Then, `(v2v3) = `(v3v4) = `(v3v5) = 1, and so, {c`(v4), c`(v5)} = {4, 5}.
Assume w.l.o.g., that c`(v4) = 4 and c`(v5) = 5. It follows that `(v5v4) = `(v5v6) = 2 and
`(v4v6) = 1, and thus, c`(v6) ∈ {4, 5} = {c`(v4), c`(v5)}, which contradicts that ` is proper.

• Case 2: c`(v3) = 4. Then, v3 has exactly one incident edge labelled 2. First, assume
that `(v3v2) = 2. It follows that `(v3v4) = `(v3v5) = 1, and thus, {c`(v4), c`(v5)} = {3, 5}.
Assume w.l.o.g., that c`(v4) = 3 and c`(v5) = 5. Since c`(v4) = 3, we have that `(v4v5) =
1, and thus, c`(v5) ≤ 4, a contradiction. Then, assume w.l.o.g., that `(v3v5) = 2 (and
`(v3v2) = `(v3v4) = 1). It follows that c`(v5) ∈ {5, 6} and c`(v4) ∈ {3, 5}. If c`(v4) = 5,
then c`(v5) = 6. This implies that `(v4v6) = `(v5v6) = 2, and thus, c`(v6) ∈ {5, 6} =
{c`(v4), c`(v5)}, a contradiction. Otherwise, c`(v4) = 3, and so, c`(v5) = 5 and c`(v6) = 4.
Hence, `(v6v7) = `(v3v2) = 1, c`(v2), c`(v7) ∈ {3, 5} (because c`(v3) = c`(v6) = 4). We now
get a contradiction no matter how v1v2, v2v7, and v7v8 are labelled, as either c`(v2) = c`(v7)
or 4 ∈ {c`(v2), c`(v7)}.
• Case 3: c`(v3) = 5. Then, by Observation 2.5, the 2-labelling `′ = sw(`, σ1↔2) is also proper

(note that A2 is 3-quasi regular). Since c`′(v3) = 4, we get a contradiction to Case 2 above.

• Case 4: c`(v3) = 6. Then, by Observation 2.5, the 2-labelling `′ = sw(`, σ1↔2) is also proper.
Since c`′(v3) = 3, we get a contradiction to Case 1 above.

We can now use A1 or A2 to build arbitrarily large connected graphs with large ρ3.

Theorem 4.3. There exist arbitrarily large connected graphs G with ρ3(G) ≥ 1/10.

Proof. Let p ≥ 1 be fixed. We construct a connected graph G with 10p edges, such that nb`(3) ≥ p
for any proper 3-labelling ` of G, which implies that ρ3(G) ≥ 1/10. Start, as G, with p disjoint
copies of A1 (or A2), and identify a vertex of degree 1 from each of these p copies to a single vertex.
Clearly, G has the desired connectivity and size properties. The labelling property follows from
Lemma 3.1 and Observation 4.1 or 4.2, since G contains p copies of A1 or A2 as pairwise disjoint
weakly induced subgraphs. Moreover, these arguments apply for any value of p, and so, G can be
as large as desired.

It is worth mentioning that it can be checked that we actually have ρ3(G) = 1/10 for the graphs
G constructed in the proof of Theorem 4.3.

4.2 Bounds for connected cubic graphs
Recall that, given a cubic graph G, it is NP-complete to decide whether χΣ(G) ≤ 2 (see [9]).
In other words, unless P=NP, there is no nice characterisation of cubic graphs admitting proper
2-labellings. Then, a legitimate question to ask is whether they always admit proper 3-labellings
assigning only a limited number of 3’s. We prove that there is actually no p ≥ 1 such that the class
of all cubic graphs lies in G≤p. In contrast, we verify Conjecture 2.2 for this class of graphs.

First off, we note that the construction in the proof of Theorem 4.3 can be modified slightly to
reach the same conclusion for cubic graphs.

Theorem 4.4. There exist arbitrarily large connected cubic graphs G with ρ3(G) ≥ 1/10.

Proof. The proof is essentially the same as that of Theorem 4.3, except that we must combine
copies of A1 and of A2 in such a way that the resulting graph G is cubic. One way to proceed is
as follows. Let p ≥ 2 be fixed. The construction of G is as follows. Add p copies X0, . . . , Xp−1

of A2, and identify their vertices of degree 1 sequentially in a “cyclic” way. That is, for every
i ∈ {0, . . . , p − 1}, identify the vertex v8 of Xi and the vertex v1 of Xj , where j = i + 1 mod p,
to a single vertex (where we refer to the vertices of A2 following the terminology in Figure 2(b)).
Note that, at this point, G is not cubic because of p vertices of degree 2 (those we have identified),
which we denote by x0, . . . , xp−1.

Let us now further modify G as follows. For every i ∈ {0, . . . , p − 1}, add a copy Yi of A1 to
the graph, and identify its vertex v1 (following Figure 2(a)) and xi. As a result, the xi’s become
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of degree 3, but in each of the Yi’s there remain two vertices of degree 2 (vertices v7 and v8 in
Figure 2(a)). We denote by y1,i, y2,i those two vertices in a given Yi.

Finally, for every i ∈ {0, . . . , p− 1}, add a new copy Zi of A2 to G, identify one of its vertices
of degree 1 and y1,i, and identify its other vertex of degree 1 and y2,i. Note that G is now cubic.

To summarise, G was constructed using 2p copies (the Xi’s and Zi’s) of A2 and p copies (the
Yi’s) of A1, that were combined in an edge-disjoint way. Then |E(G)| = 30p. Also, these 3p copies
of A1 and A2 appear as pairwise disjoint weakly induced subgraphs of G, and thus, from Lemma 3.1
we get that mT(G) ≥ 3p, thereby our conclusion.

Again, it is not too complicated to check that, for any cubic graph G constructed in the proof
of Theorem 4.4, we actually have mT(G) = |E(G)|/10. Thus, our construction cannot be used to
further improve the 1/10 lower bound in the statement.

Regarding upper bounds, we prove that the parameter ρ3 cannot exceed the 1/3 barrier in cubic
graphs. In other words, we prove Conjecture 2.2 for these graphs.

Theorem 4.5. If G is a cubic graph, then ρ3(G) ≤ 1/3.

Proof. We can assume that G is connected. Also, we can assume that G is neither K4 (in which
case the claim can be verified by hand) nor bipartite (due to Theorem 2.1). Thus, by Brooks’
Theorem [6], we know that G is 3-chromatic. Recall that |E(G)| = 3

2 |V (G)|.
Let us now mimic the proof of Theorem 3.5 to get a proper 3-labelling ` of G such that,

for every edge e ∈ E(G) \ E(H) (where, recall, H is a particular unicyclic spanning connected
subgraph of G), we have `(e) = 2. This means that only the edges of H can be labelled 1 or 3
by `. If nb`(3) ≤ 1

2 |E(H)|, then the result follows since |E(H)| = 2
3 |E(G)|. So, assume now that

nb`(3) > 1
2 |E(H)|, and hence, nb`(1) < 1

2 |E(H)|. Since G is regular, by Lemma 2.4, the 3-labelling
`′ = sw(`, σ1↔3) of G is also proper. Since only the edges of H are labelled 1 or 3 by `, we deduce
that nb`′(3) = nb`(1) < 1

2 |E(H)| = 1
3 |E(G)|, and the result follows.

4.3 Bounds for connected planar graphs with large girth
Recall that the girth g(G) of a graph G is the length of its shortest cycle. For any g ≥ 3, we denote
by Pg the class of planar graphs with girth at least g. Note, for instance, that P3 is the class of all
planar graphs, and that P4 is the class of all triangle-tree planar graphs. Recall that the girth of
a tree is set to ∞, since it has no cycle.

To date, it is still unknown whether planar graphs verify the 1-2-3 Conjecture, which makes the
study of the parameters mT and ρ3 adventurous for this class of graphs. Something we can state,
however, is that there is no p ≥ 1 such that planar graphs lie in G≤p. This can be established from
the construction in the proof of Theorem 4.3 (or from that of Theorem 4.4 to additionally get a
cubic graph assumption), since the graphs A1 and A2 are planar.

Theorem 4.6. There exist arbitrarily large connected planar graphs G with ρ3(G) ≥ 1/10.

To go further, we can consider planar graphs with large girth. Indeed, as established by
Grötzsch’s Theorem [12], triangle-tree planar graphs are 3-colourable, which means that they verify
the 1-2-3 Conjecture (see [14]). In what follows, we prove two main results. First, we prove that,
for every g ≥ 3, there is no p ≥ 1 such that Pg ⊂ G≤p. Second, we prove that, as the girth g(G) of
a planar graph G grows, the ratio ρ3(G) decreases. As a side result, we prove Conjecture 2.2 for
planar graphs with girth at least 36.

In order to prove the first result above, note that we cannot use the graphs A1 and A2 introduced
previously, as they contain triangles. Instead, we provide another construction, yielding, for any
g ≥ 3, a planar graph Sg with girth g. Start from Sg being the cycle Cg = (v0, . . . , vg−1, v0) on g
vertices. Then, for each i ∈ {0, . . . , g − 1}, add a new vertex ui,1 and the edge viui,1 to Sg. Then,
for every i ∈ {1, . . . , g− 1}, add a cycle Bi = (ui,1, ui,2, . . . , ui,g, ui,1) to Sg, where ui,2, . . . , ui,g are
new vertices. Finally, let u0,1 be the root of Sg. See Figure 3 for an illustration of S3 and Sg. It is
clear that all the cycles of Sg have length g, and thus, g(Sg) = g. Moreover, Sg is clearly planar,
and |E(Sg)| = g2 + g.

Note that Sg is bipartite whenever g is even. Since δ(Sg) = 1, in such cases we have mT(Sg) = 0
by Theorem 2.1. When g ≡ 1 mod 4, it can be checked (for instance, by using some of the
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Figure 3: The planar graphs S3 (left) and Sg (right) of girths 3 and g, respectively.

arguments in the proof of upcoming Lemma 4.7) that Sg admits proper 2-labellings, and thus we
have mT(Sg) = 0 in those cases as well. The main point for considering this construction is for the
last possible values of g, the values where g ≡ 3 mod 4, for which the following is verified:

Lemma 4.7. For every g ≥ 3 with g ≡ 3 mod 4, we have mT(Sg) = 1.

Proof. We begin by showing that a proper 2-labelling of Sg must have specific properties. In what
follows, for every i ∈ {1, . . . , g− 1}, we denote by Hi the subgraph of Sg induced by V (Bi)∪ {vi}.

Claim 4.8. Let i ∈ {1, . . . , g − 1}. By any proper 2-labelling ` of Hi, we have `(ui,1ui,2) 6=
`(ui,gui,1), and thus, c`(ui,1) = `(ui,1vi) + 3. Furthermore, such a proper 2-labelling exists.

Proof of the claim. The first part of the claim follows from Observation 2.3. Indeed, since g ≡
3 mod 4, it follows that we must have `(ui,1ui,2) 6= `(ui,3ui,4) 6= · · · 6= `(ui,gui,1). Now, it is
easy to check that the following is a proper 2-labelling ` of Hi. Start by setting `(ui,1ui,2) = 2.
Then, continue from ui,2ui,3 and, following the edges of Bi until reaching ui,gui,1, assign labels
1, 1, 2, 2, 1, 1, . . . , 2, 2, 1, 1, 2, 2, 1, 1. The edge ui,1vi can then be assigned any label in {1, 2}. �

Assume now that there exists a proper 2-labelling ` of Sg, and let {α, β} be a permutation of
{1, 2}. Then, there exists at least one i ∈ {0, . . . , g− 1} such that `(vi−1vi) = α and `(vivi+1) = β
(where such operations over the indexes, here and further, are understood modulo g). Indeed,
assume that this is not the case. Then, we would have that all the edges of Cg receive the same
label α or β. For ` to be proper, the labels of the consecutive edges in E∗ = {ei = viui,1 : 0 ≤
i ≤ g − 1} have to alternate between α and β. That is, we must have `(e0) = α, `(e1) = β, `(e2) =
α, . . . , `(eg−1) = β. But, since g is odd, this is impossible. So let v′ = vx (for 0 ≤ x ≤ g−1) be one
vertex of Cg whose incident edges in Cg are labelled α and β respectively, and assume w.l.o.g. that
`(vxux,1) = α. It follows that c`(vx) = α+ 3. Note that the existence of at least one such vertex v′
guarantees the existence of at least one additional vertex v′′ = vy, where 0 ≤ y ≤ g− 1 and x 6= y,
such that `(vyvy−1) = β and `(vyvy+1) = α. Indeed, if this v′′ did not exist, then, w.l.o.g., all the
edges of Cg that are “after” v′ (following the ordering of the vertices of Cg given above) would be
labelled β. Cycling around, this would imply that `(vx−1vx) = β as well, a contradiction. Thus,
we can assume that v′ = vx 6= v0, and so, vx ∈ V (Hx) (i.e., Hx exists). Then, by Claim 4.8, we
have that c`(ux,1) = α+ 3 = c`(vx), a contradiction.

So far, we have proven that mT(Sg) ≥ 1. In order to show that mT(Sg) = 1, it suffices to
provide a proper 3-labelling ` of Sg such that nb`(3) = 1. We construct one such labelling as follows.
For every i ∈ {1, . . . , g − 1}, we label the subgraph Bi following the 2-labelling scheme provided
in Claim 4.8. Then, we set `(v0v1) = 3 and, for every edge e ∈ E(Cg) \ {v0v1}, we set `(e) = 1.
Finally, for the edges ei ∈ E∗, we set `(e0) = 1, `(e1) = 2, `(e2) = 1, . . . , `(eg−2) = 2, `(eg−1) = 1.
It is clear that c`(v0) = 5, and c`(v1) = 6, while the colours of the vertices of the rest of the cycle
Cg alternate between 3 and 4. Moreover, for all 2 ≤ i ≤ g − 1, if c`(vi) = 3, then c`(ui,1) = 4, and
if c`(vi) = 4, then c`(ui,1) = 5 (by Claim 4.8). Thus, ` is a proper 3-labelling that assigns label 3
to only one edge of Sg.
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We are now ready to prove our lower bound.

Theorem 4.9. For every g′ ≥ 3, there exist arbitrarily large connected planar graphs G with
g(G) ≥ g′ and ρ3(G) ≥ 1

g2+g , where g is the smallest natural number such that g ≥ g′ and
g ≡ 3 mod 4.

Proof. For any integer q ≥ 1, denote by G the graph obtained from q disjoint copies X1, . . . , Xq

of Sg by identifying their roots to a single vertex. Clearly, G is planar and has girth g ≥ g′.
Furthermore, G clearly contains q copies of Sg as pairwise disjoint weakly induced subgraphs
X1, . . . , Xq. Then, Lemma 3.1 implies that mT(G) ≥ q ·mT(Sg), which is at least q by Lemma 4.7.
Since G has q|E(Sg)| = q(g2 + g) edges, the result follows. Moreover, these arguments apply for
any value of q, and so, G can be as large as desired.

Again, it is not too complicated to check that our construction in the proof of Theorem 4.9
yields planar graphs G of girth g verifying mT(G) = |E(G)|/(g2 + g) (when g ≡ 3 mod 4), which
implies that the lower bound in the statement is somewhat tight here.

We now proceed to prove that ρ3(G) ≤ 2
k−1 for any nice planar graph G of girth g ≥ 5k + 1,

when k ≥ 7. In other words, the bigger the girth of a planar graph G, the smaller ρ3(G) gets.
The following theorem from [8] is one of the main tools we use to prove this result. Recall

that, for any k ≥ 1, a k-thread in a graph G is a path (u1, . . . , uk+2), where the k inner vertices
u2, . . . , uk+1 all have degree 2 in G.

Theorem 4.10 (Chang, Duh [8]). For any integer k ≥ 1, every planar graph with minimum degree
at least 2 and girth at least 5k + 1 contains a k-thread.

We can now proceed with the main theorem.

Theorem 4.11. Let k ≥ 7. If G is a nice planar graph with g(G) ≥ 5k + 1, then ρ3(G) ≤ 2
k−1 .

Proof. Throughout this proof, we set g = g(G). The proof is by induction on the order of G.
The base case is when |V (G)| = 3. In that case, G must be a path of length 2 (due to the girth
assumption), and the claim is clearly true. So let us focus on proving the general case.

We can assume that G is connected. If G is a tree, then χΣ(G) ≤ 2 and we have ρ3(G) = 0.
So, from now on, we may assume that G is not a tree. We can also assume that G has no vertex v
to which is attached a pending tree Tv that is not a star with center v. Indeed, if such a Tv exists,
then we can find a vertex u ∈ V (Tv) \ {v} whose all neighbours u1, . . . , ux but one are degree-1
vertices. Since G is not a tree, the graph G′ = G−{u1, . . . , ux} is clearly a nice planar graph with
girth g, admitting, by the induction hypothesis, a proper 3-labelling attesting that ρ3(G′) ≤ 2

k−1 .
Lemma 3.2 tells us that such a labelling can be extended to one of G.

Let G− be the graph obtained from G by removing all vertices of degree 1. Note that removing
vertices of degree 1 from G can neither decrease its girth nor result in a tree. Since G has girth
g ≥ 5k + 1 and does not contain any cut vertex v ∈ V (G) as described above, the graph G−

has minimum degree 2. By Theorem 4.10, G− contains a k-thread P . Let u1, . . . , uk+2 be the
vertices of P , where dH(ui) = 2 for all 2 ≤ i ≤ k + 1. Thus, the vertices of P exist in G except
that each of the vertices ui (for 2 ≤ i ≤ k + 1) may be adjacent to some vertices of degree 1 in
addition to their adjacencies in G−. Let G′ be the graph obtained from G by removing the vertices
u3, . . . , uk and all of their neighbours that have degree 1 in G. Note that G′ might contain up
to two connected components. In case G′ has exactly two connected components, then, due to a
previous assumption, none of these can be a tree, which implies that G′ is nice. If G′ is connected,
then, because it has at least two edges (u1u2 and uk+1uk+2), it must be nice. Furthermore, in both
cases, the girth of G′ is at least that of G. Then, by combining the inductive hypothesis and the
fact that every nice tree T verifies ρ3(T ) = 0, we deduce that ρ3(G′) ≤ 2

k−1 .
To obtain a proper 3-labelling ` of G such that ρ3(G) ≤ 2

k−1 , we extend a proper 3-labelling
`′ of G′ corresponding to ρ3(G′) ≤ 2

k−1 , as follows. First, label with 1 all of the edges incident to
the vertices of degree 1 we have removed. Note that none of these vertices of degree 1 can, later
on, be in conflict with their neighbour since they have degree 1. Now, for each 2 ≤ j ≤ k − 2, in
increasing order of j, label the edge ujuj+1 with 1 or 2, so that the resulting colour of uj does
not conflict with the colour of uj−1. Finally, label the edges uk−1uk and ukuk+1 with 1, 2 or 3,
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so that the resulting colour of uk−1 does not conflict with that of uk−2, the resulting colour of uk
does not conflict with that of uk−1 nor with that of uk+1, and the resulting colour of uk+1 does
not conflict with that of uk+2. Indeed, this is possible since there exist at least two distinct labels
{α, β} ({α′, β′}, respectively) in {1, 2, 3} for uk−1uk (ukuk+1, respectively) such that the colour of
uk−1 (uk+1, respectively) is not in conflict with that of uk−2 (uk+2, respectively). Thus, w.l.o.g.,
choose α and α′ for the labels of uk−1uk and ukuk+1, respectively. If the colour of uk does not
conflict with that of uk−1 nor with that of uk+1, then we are done. If the colour of uk conflicts
with both that of uk−1 and that of uk+1, then it suffices to change both the labels of uk−1uk and
ukuk+1 to β and β′, respectively. Lastly, w.l.o.g., if the colour of uk only conflicts with that of
uk−1, then it suffices to change the label of ukuk+1 to β′. The resulting labelling ` of G is thus
proper. Moreover, |E(G) \ E(G′)| ≥ k − 1 and ` uses label 3 at most twice more than `′, and so,
the result follows.

4.4 Bounds for connected cacti
Recall that a cactus is a graph in which any two cycles have at most one vertex in common.

First off, note that the graphs Sg introduced in Section 4.3, and those we have constructed from
them in the proof of Theorem 4.9, are all cacti (all of their cycles are actually disjoint). Since the
smallest graph Sg is S3, which has 12 edges, the proof of that theorem implies the following.

Theorem 4.12. There exist arbitrarily large connected cacti G with ρ3(G) ≥ 1/12.

We now focus on the upper bound. We actually end up proving Conjecture 2.2 for cacti.

Theorem 4.13. If G is a nice cactus, then ρ3(G) ≤ 1/3.

Proof. The proof is done by induction on |V (G)|. Since the claim is clearly true when G has only
three vertices, let us consider the general case. Clearly, we can assume that G is connected (as
otherwise we could use the induction hypothesis on each connected component), is not a tree (since
mT(T ) = 0 for every nice tree T ), is not bipartite (by Theorem 2.1), and is not a cycle (see [4]).

Throughout this proof, for readability reasons, we say that a proper 3-labelling is good if it
assigns label 3 to at most a third of the edges of the labelled graph. We first prove that if G has
some specific properties, then we can remove some vertices from G, resulting in a nice cactus G′
that is smaller than G, and extend a good labelling `′ of G′, obtained by induction, into a good
labelling ` of G, thus proving the statement for G. It can then be assumed that G does not have
these properties, which will simplify its structure and allow us to prove the final inductive step.

Let us state a few more remarks. Let ` be an extension of `′ that assigns labels from {1, 2} to
the edges of G that are not in G′. If this ` is proper, then note that it is also good. Similarly, for
m = |E(G)| − |E(G′)| and m ≥ 3, if ` assigns label 3 to at most a third of the edges of G that are
not in G′ and ` is proper, then it is also good.

We start by analysing certain cycles of G. To define those cycles, let us consider the following
terminology. We denote by G− the cactus obtained from G by repeatedly deleting vertices of
degree 1, until the remaining graph has minimum degree 2. Since G contains cycles, note that G−
is not empty. In what follows, we study structures around end-cycles, where an end-cycle C of G
refers to a cycle of G− which is connected to the rest of the graph via a single vertex r. That is,
in G−, all vertices of C but r, have degree 2. We call r the root of C, while its other vertices are
the inner vertices. Note that end-cycles are better defined as soon as G has at least two cycles. In
case G has only one cycle C, then we consider C as an end-cycle, its root being any of its vertices
of degree more than 2 (at least one exists since G is not a cycle).

In what follows, we consider any end-cycle C of G. We first investigate properties of pending
trees attached to the vertices of C. For every vertex v of C, we define Tv as the pending tree rooted
at v in G. Note that there might be no edges in such a Tv, i.e., we can have V (Tv) = {v}. We
implicitly assume that every Tv comes with the natural (virtual) orientation of its edges from the
root (v) to the leaves. Also, we say that Tv is inner if v is indeed an inner vertex of C.

Claim 4.14. If some Tv has edges and is not a star, then there is a good labelling of G.
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Proof of the claim. Let us consider a deepest (i.e., farthest from v) vertex u of Tv, where all of its
x ≥ 1 children are leaves. Since Tv is not a star, we have u 6= v. Then, the graph G′ obtained from
G by removing all these x leaves is a nice cactus (due to the presence of the cycle C) in which u
has degree 1. Thus, G′ admits a good labelling by the induction hypothesis. Lemma 3.2 tells us
that this good labelling of G′ can be extended to one of G. �

Claim 4.15. If some inner Tv is a star with at least two edges, then there is a good labelling of G.

Proof of the claim. Let G′ be the graph obtained from G by removing two leaves u, u′ of Tv.
Clearly, G′ is a cactus, and G′ is nice due to the presence of C. By the induction hypothesis, there
is a good labelling of G′. To obtain one of G, it suffices to extend this labelling to vu and vu′ by
assigning labels 1 and 2, in such a way that no colour conflict arises. Recall that, by a labelling
of a nice graph, a vertex of degree 1 cannot be involved in a conflict with its neighbour. Then, it
suffices to label vu and vu′ so that no colour conflict arises between v and its two neighbours in
C. Since there are three ways to alter the colour of v by labelling vu and vu′ this way (assigning
label 1 twice, assigning 2 twice, or assigning both 1 and 2 once), there is a way to extend the good
labelling of G′ to one of G. �

Thus, in C, any inner Tv can be assumed to have at most one edge.

Claim 4.16. If C has length at least 4 and some inner Tv has an edge, then there is a good labelling
of G.

Proof of the claim. Assume C = (v0, v1, . . . , vn−1, v0), where v0 = r is the root of C and n ≥ 4.
By Claims 4.14 and 4.15, each Tvi (where i ∈ {1, . . . , n− 1}) has at most one edge.

Assume first that there is an i ∈ {2, . . . , n − 2} such that Tvi has an edge viu. Let G′ be the
graph obtained from G by removing u and vi. Clearly, G′ is a cactus with at least two edges (v0v1

and vn−1v0), so it is nice. By the induction hypothesis, there is a good labelling of G′, which
we want to extend to one of G. To that aim, we have to label the three edges viu, vivi−1, vivi+1

(where, here and further, the operations are understood modulo n) so that no colour conflict arises,
and label 3 is assigned at most once. First, we assign 1 or 2 to vivi−1 so that vi−1 does not get
in conflict with vi−2. Second, we assign 1 or 2 to vivi+1 so that vi+1 does not get in conflict with
vi+2. Third, we assign 1, 2 or 3 to viu so that vi gets in conflict with neither vi−1 nor vi+1. As
mentioned earlier, u cannot get in conflict with vi due to its degree, so the resulting labelling of G
is good.

Assume now that Tvi has no edge for every i ∈ {2, . . . , n−2}, but Tv1 has an edge v1u (the case
where Tvn−1 has an edge is symmetrical). This means that each of v2, . . . , vn−2 has degree 2. In
this case, we consider G′ the cactus obtained from G by removing u and v2. Note that G′ has more
than one edge since r has degree at least 3 in G. Then, G′ is nice. By the induction hypothesis,
there is a good labelling of G′. To extend it to one of G, we must label the edges v1u, v1v2, v2v3

so that no colour conflicts arise, and label 3 is assigned at most once. Similarly as in the previous
case, this can be achieved by first labelling v2v3 with 1 or 2 so that no conflict between v3 and
v4 arises, then labelling v1v2 with 1 or 2 so that no conflict between v2 and v3 arises, and lastly
labelling v1u with 1, 2 or 3 so that v1 is not in conflict with v0 nor v2. �

Due to the previous claims, in G we can assume that C is either a cycle of any length at least 3
(i.e., all inner vertices have degree 2), or a triangle where one or two of its inner vertices have a
pending edge attached (i.e., one or two of the Tv’s have size 1). We call the first of these two triangle
configurations a 1-triangle, while we call the second configuration a 2-triangle. For convenience,
we also regard these configurations as end-cycles, though they are technically not cycles in G.

We are now ready to conclude the proof. If G has only one cycle, then, by the previous claims
and our original assumption that G is not just a cycle, it must be that G is a triangle (u, v, w, u)
with a pending vertex attached to u and possibly one attached to v, in which case the claim can
be verified easily. So G has at least two cycles. Let us consider a set of end-cycles that are the
“deepest” ones, in the following sense. Choose a cycle Cx of G. For every other cycle C of G, we
define the distance from C to Cx as the length of a shortest path from a vertex of C to a vertex of
Cx. In case C and Cx share a vertex, note that the distance from C to Cx is 0.
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Now, let d ≥ 0 be the maximum distance from Cx to a cycle in G. Let C1 be a cycle at
distance d from Cx. Note that C1 is an end-cycle in G, and let r denote its root. Observe that
there might be other (end-)cycles of G at distance d from Cx, with root r. In case they exist, we
denote them by C2, . . . , Cq. Then C1, . . . , Cq are end-cycles in G with the same root r, and, by how
these Ci’s were chosen, r either has only one neighbour u or only two neighbours u, u′ of degree at
least 2 that do not belong to the Ci’s. More precisely, r is connected to the rest of the graph either
via a path (through an edge ru), or via a unique cycle (containing both u and u′). Furthermore,
there might be vertices of degree 1 adjacent to r. Indeed, by Claim 4.14, if there is a pending tree
Tr attached at r, then Tr must be a star with center r. Recall that each of the Ci’s is a cycle, a
1-triangle, or a 2-triangle, due to previous claims.

Now, let G′ be the cactus obtained from G by removing all non-root vertices of the Ci’s (i.e.,
all their inner vertices, plus the at most two pending vertices of the 1-triangles and 2-triangles).
Since G′ contains at least one cycle, it is nice, and thus, admits a good labelling by the induction
hypothesis. Our goal is to extend it to one of G, by labelling the removed edges so that no conflict
arises and at most a third of these edges are assigned label 3.

• Assume q ≥ 2. We first label the edges of every Ci that is a cycle, assigning consecutive
labels 2, 1, 1, 2, 2, 1, 1, . . . while going around, starting and ending with an edge incident to r.
Note that this avoids any conflict between the inner vertices of Ci, that their colours are at
most 4, and that this alters the colour of r by at least 3. For every Ci that is a 1-triangle, we
assign label 2 to its two edges incident to r, and label 1 to its two other edges. Note that this
raises no conflict between the inner vertices of Ci, that their colours are at most 4, and that
the colour of r is altered by 4. Finally, for every Ci that is a 2-triangle, we assign label 2 to
its two edges incident to r and to one pending edge, and label 1 to the two other edges. As a
result, no conflict arises between inner vertices, their colours are at most 5, and the colour of
r is altered by 4.
Since q ≥ 2 and r has at least one neighbour not in the Ci’s, the colour of r is at least 7, and
thus, r cannot be in conflict with its neighbours in the Ci’s. However, we still have to make
sure that the colour of r is different from that of u and u′ (if it exists). Note that, in each
Ci, there is an edge labelled 2 incident to r that can be relabelled 3 without causing conflicts
between the inner vertices. Indeed, if Ci is a cycle, then the very first labelled edge is such
an edge. If Ci is a 1-triangle or 2-triangle, then the one of its two edges labelled 2 incident
to r going to the inner vertex with the largest colour, is such an edge. Thus, by changing the
label from 2 to 3, of one or two of these edges, we can increment the colour of r by 1 or 2 to
avoid the colours of u and u′ (if it exists). This means that, by introducing at most two 3’s,
we can get a proper 3-labelling of G, which is good since q ≥ 2.

• Assume q = 1. Assume first that C1 is a 1-triangle or a 2-triangle. Let (r, v1, v2, r) denote the
vertices of the cycle of C1, and u1 and u2 (if it exists) denote the pending vertices attached to
v1 and v2, respectively. We first label rv1 and rv2 with 1 or 2 so that no conflict arises between
r and u and u′ (if it exists). This is possible, since there are three possible combinations. In
case C1 is a 1-triangle, then we label v1v2 with 1 or 2 so that no conflict arises between v2 and
r. In case C1 is a 2-triangle, then we label v1v2 with any of 1 and 2. Now, if C1 is a 1-triangle,
then we label v1u1 with 1, 2 or 3 so that no conflict arises between v1 and r, and v1 and v2.
If C1 is a 2-triangle, then we label v1u1 with 1 or 2 so that no conflict arises between v1 and
r, and then we label v2u2 with 1, 2 or 3 so that no conflict arises between v2 and r, and v1

and v2. In all cases, we assign label 3 to only one edge, so the resulting proper 3-labelling of
G is good since no conflict arises.
Assume now that C1 is a cycle. First assume that u′ exists. We consider the edges of
C1, and assign to them labels 1 and 2 as previously, i.e., by applying the labelling pattern
2, 1, 1, 2, 2, 1, 1, . . . from one edge incident to r to the other. We consider two cases:
– Assume first that, in the labelling of C1, the two edges incident to r get assigned distinct

labels (1 and 2). As earlier, no two inner vertices of C1 are in conflict, their colours are at
most 4, and, since u′ exists, the colour of r is at least 5. If this raises no conflict between
r and u or u′, then we are done. Otherwise, note that turning into a 3 the label assigned
to any of the two edges of C1 incident to r, raises no conflict between two vertices of C1.
Since these two edges are labelled differently, 1 and 2, this means that by introducing
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Figure 4: Labelling a pending cycle in the proof of Theorem 4.13. Some colours by the labelling
are indicated by integers within the vertices.

label 3 once in C1, we can increment the colour of r by 1 or 2 so that we avoid any conflict
between r, and u and u′. Then we can deduce a good labelling of G.

– Assume now that both edges incident to r in C1 get assigned label 2. Then, this time,
the colour of r is at least 6. If there is no conflict between r and one of u and u′, then we
are done. So we can assume there is a conflict, and also that changing to 3 the label of
one of the two edges of C1 incident to r, makes r being in conflict with the second one of
these two vertices. Then, note that we get a good labelling when labelling C1 following
the pattern 1, 2, 2, 1, 1, 2, 2, . . . instead, since r gets its two incident edges in C1 being
assigned label 1, the colour of r is at least 4 and smaller than the previous colours we
have produced for r, and the colours of the two neighbours of r in C1 are at most 3.

Now assume u′ does not exist. We start by considering the cases where C1 has length at
least 6. Start by applying the labelling pattern 2, 1, 1, 2, 2, 1, 1, 2, 2, . . . to the edges of C1 as
before. Assume first that the two edges of C1 incident to r get assigned distinct labels. Then
change the 1 assigned as a label to one of these two edges into a 3. As a result, no conflicts
arise between inner vertices of C1, their colours are at most 5, while the colour of r is at least 6
due to the edge ru. So the only possible conflict is between r and u. Suppose it occurs. Then
no conflict remains when assigning label 3 to the second edge of C1 incident to r and we get
a good labelling (in particular, only two edges of C1 get assigned label 3 while its length is at
least 6, and this assumption also guarantees that no two inner vertices of C1 get in conflict).
Lastly, assume that both edges of C1 incident to r get assigned label 2 by the initial labelling
scheme. Then the colour of r is at least 5, which thus cannot be in conflict with its neighbours
in C1. If r is not in conflict with u, then we get a good labelling of G. Otherwise, we get one
by changing to 3 the label of one of the two edges of C1 incident to r.
It remains to check three length values for C1. The labelling schemes described below are
illustrated in Figure 4.
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– If C1 has length 3, then assigning either labels 2, 1, 3 or 1, 1, 3 to the edges while going
around, starting and ending with r, yields a good labelling, since r gets colour at least 6
or 5, respectively, while the inner vertices of C1 get colours at most 4, and the colour of
u is the only other colour to avoid. In particular, note that these two labelling schemes
alter the colour of r in two different ways (+5 and +4, respectively).

– If C1 has length 4, then we get the same conclusion from applying the labelling scheme
2, 1, 1, 3 or 2, 1, 1, 2. Note indeed that the inner vertices get colours at most 4 and 3,
respectively, while r gets colour at least 6 and 5, respectively. Also, these two schemes
alter the colour of r differently, by +5 and +4, respectively.

– If C1 has length 5, then the sequence 2, 1, 1, 2, 3 or 1, 2, 2, 1, 3 yields the same conclusion.
Indeed, the inner vertices get colours at most 5 and 4, respectively, while r gets colour at
least 6 and 5, respectively. Also, these two schemes alter the colour of r differently, by
+5 and +4, respectively.

In all cases, we can deduce a good labelling of G, which concludes the proof.

4.5 Bounds for other graph classes
In this section, we state, in the similar spirit as in the previous subsections, some lower or upper
bounds on ρ3 that can be obtained for other classes of graphs that are mostly 3-chromatic. Indeed,
we mostly focus on outerplanar graphs and Halin graphs. The difference in this section is that for
the considered graph classes, one of the two bounds is partially missing.

4.5.1 Outerplanar graphs

First off, we note that the construction described in the proof of Theorem 4.3, when performed
with copies of A1 only, provides graphs that are outerplanar4, since A1 is itself outerplanar.

Theorem 4.17. There exist arbitrarily large connected outerplanar graphs G with ρ3(G) ≥ 1/10.

Recall as well that outerplanar graphs form a subclass of series-parallel graphs. Thus, Theo-
rem 4.17 also holds for arbitrarily large connected series-parallel graphs.

Note however that the outerplanar graphs constructed above have cut vertices. So the question
remains, whether or not this lower bound still holds when considering 2-connected outerplanar
graphs (recall that outerplanar graphs are 2-degenerate, and thus, each of them is either separable
or 2-connected). As for an upper bound, we can provide the following:

Theorem 4.18. If G is a 2-connected outerplanar graph such that |E(G)| ≥ |V (G)| + 3, then
ρ3(G) ≤ 1/3.

Proof. We can assume that G is not bipartite, as otherwise the claim follows from Theorem 2.1.
Then χ(G) = 3 since outerplanar graphs are 2-degenerate. Now, if |V (G)| is odd, then the result
follows from Corollary 3.8. So, in what follows, we assume that |V (G)| is even.

In 2-connected outerplanar graphs, the outer face forms a Hamiltonian cycle (v0, . . . , vn−1, v0).
The other edges, which do not lie on the outer face, are called chords. Since G is not bipartite,
it has an odd-length cycle Cx. Since |V (G)| is even, this Cx is not the whole outer cycle of G.
Furthermore, we can assume that Cx consists of consecutive vertices of the outer face, i.e., that
Cx = (va, va+1, . . . , va+x−1, va) for some a ∈ {0, . . . , n− 1} (where the operations over the indices,
here and further, are understood modulo n), or, in other words, that vava+x−1 is the only chord
of G in Cx. Indeed, assume Cx has at least two chords, one of which is vivj , where i < j. Note
that {vi, vj} is a cut set of G. This means that V (Cx) is fully included in either {vj , vj+1, . . . , vi}
or {vi, vi+1, . . . , vj}. Assume that V (Cx) ⊆ {vj , vj+1, . . . , vi} (the other case being symmetrical).
Then note that |{vi, vi+1, . . . , vj}| must be even, as otherwise (vi, vi+1, . . . , vj , vi) would be an
odd-length cycle as desired. Now we note that replacing vivj in Cx by the path (vi, vi+1, . . . , vj)
results in another odd-length cycle of G with one less chord. Repeating this process as long as
the resulting odd-length cycle has more than one chord, eventually we end up with an odd-length
cycle of G with only one chord, which is as desired.

4Recall that a graph is outerplanar if it admits a planar embedding where all vertices lie on the outer face.
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Up to relabelling the vertices, we can assume, w.l.o.g., that Cx = (v1, . . . , vx, v1). Let us consider
H, the subgraph of G containing the x edges of Cx, and all the (other) edges of the Hamiltonian
cycle (v1, . . . , vn, v1) on the outer face of G except for the edge vnv1. Note that H is a unicyclic
spanning connected subgraph of G, in which the only cycle (being of odd length) is Cx, to which is
attached a hanging path (vx, vx+1, . . . , vn) containing all other vertices of G. Since H is spanning,
connected, and unicyclic, |E(H)| = |V (G)|, which is at most |E(G)|−3, since |E(G)| ≥ |V (G)|+3.

All conditions are now met to invoke the arguments in the proof of Theorem 3.5, from which we
can deduce a proper {0, 1, 2}-labelling ` of G where adjacent vertices get distinct colours modulo 3
and in which only the edges of (our) H are possibly assigned label 0. Let us now consider the
subgraph H ′ of G obtained from H by adding the edge vnv1, which is present in G. Recall that
`(vnv1) = 2 by default. Note that H ′ contains at least two disjoint perfect matchings M1,M2.
Indeed, since |V (G)| is even, a first perfect matching M1 of H ′ contains v1v2, v3v4, . . . , vn−1vn. A
second perfect matching M2 of H ′ contains v2v3, v4v5, . . . , vnv1. By Lemma 3.7, we can assume
that at most a third of the edges in M1 ∪M2 are assigned label 0 by `. Since |M1| + |M2| =
|E(H ′)| − 1 = |E(H)| but the edge v1vx ∈ E(H) is not included in M1 nor M2 (and so may have
label 0 too), this gives nb`(0) ≤ E(H)

3 + 1, which is less than |E(G)|/3 since |E(G)| ≥ |V (G)|+ 3.
By turning 0’s by ` into 3’s, we get a proper 3-labelling of G with the same upper bound on the
number of assigned 3’s.

Theorem 4.18 does not cover all 2-connected outerplanar graphs. However, it covers all such
graphs with at least three chords. Thus, to get a generalisation of Theorem 4.18 for all 2-connected
outerplanar graphs, it remains to prove a similar result for the 3-chromatic ones with at most two
chords. Those with no chords are exactly odd-length cycles, for which the claim holds (see, e.g., [4]).
For those with one or two chords, the claim can also be verified, for instance through considering
the possible ways for the at most two chords to interact in 2-connected outerplanar graphs, and,
for each possible configuration, extending a proper 3-labelling from face to face. Let us mention
that the number of cases to consider can be reduced drastically by applying some of the arguments
used in the proof of Theorem 4.11 to deal with long threads. We voluntarily omit a tedious proof,
which would be less interesting than that of Theorem 4.18 (whose main purpose is to illustrate
how some of the tools from Section 3 can be used).

4.5.2 Halin graphs

We now proceed by proving Conjecture 2.2 for a 4-chromatic family of graphs. A Halin graph is a
planar graph with minimum degree 3 obtained as follows. Start from a tree T with no vertex of
degree 2, and consider a planar embedding of T . Finally, add edges to form a cycle going through
all the leaves of T in the clockwise ordering in this embedding. A Halin graph is called a wheel if
it is constructed from a tree T with diameter 2 (i.e., being a star).

Halin graphs are known to have many properties of interest, such as having triangles, being
Hamiltonian, and having Hamiltonian cycles going through any given edge (see, e.g., [18]). Also,
Halin graphs are 3-degenerate, so, due to the presence of triangles, each of them has chromatic
number 3 or 4. The dichotomy is well understood, as a Halin graph has chromatic number 4 if and
only if it is a wheel of even order [19]. This allows us to use our tools from Section 3 to establish an
upper bound on ρ3 for most Halin graphs (the 3-chromatic ones), while we can treat the remaining
ones separately.

Theorem 4.19. If G is a Halin graph, then ρ3(G) ≤ 1/3.

Proof. First, consider the case where G is a wheel of even order n. If n = 4, then G = K4, and
the statement holds (since it can be checked by hand that ρ3(K4) = 1/6). For n ≥ 6, we have that
mT(G) = 0. Indeed, let v be the center of the star T , and let v2, . . . , vn be the leaves of T . We
can construct a proper 2-labelling ` of G as follows: start from v2v3 and, following the edges of the
cycle joining the leaves of T in increasing order of their indices, assign labels 1, 1, 2, 2, 1, 1, . . . , until
vnv2 is labelled. If `(vnv2) = 1, then set `(vv2) = 1 and `(vvi) = 2 for every 3 ≤ i ≤ n. Otherwise,
if `(vnv2) = 2 (and so, `(vn−1vn) = 1), set `(vv2) = 2 and `(vvi) = 1 for every 3 ≤ i ≤ n. It is
easy to check that in both cases ` is a proper 2-labelling of G. Thus, ρ3(G) = 0 and the statement
holds.
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Next, consider the case where G is not a wheel of even order. Then χ(G) = 3. If |V (G)| is odd,
then the result follows from Corollary 3.8. Thus, we can assume that |V (G)| is even.

By considering any non-leaf vertex r of T in G, and defining a usual root-to-leaf (virtual)
orientation, since no vertex has degree 2 in T , it can be seen that G has a triangle (u, v, w, u),
where v, w are leaves in T with parent u. Furthermore, dG(v) = dG(w) = 3, while dG(u) ≥ 3.
Due to these degree properties, note that if we consider C a Hamiltonian cycle traversing uv, then
C must also include either wu or vw. More precisely, if we orient the edges of C, resulting in a
spanning oriented cycle ~C, then, at some point, ~C enters (u, v, w, u) through one of its vertices,
goes through another vertex of the triangle and then through the third of its vertices, before leaving
the triangle. In other words, C traverses all vertices of (u, v, w, u) at once.

Up to relabelling the vertices of (u, v, w, u), we can assume that ~C enters the triangle through
u, then goes to v, before going to w and leaving the triangle. Let us consider H, the subgraph of
G containing the three edges of (u, v, w, u), and all successive edges traversed by C after leaving
the triangle except for the edge going back to u. Note that H is a unicyclic spanning connected
subgraph of G, in which the only cycle is the triangle (u, v, w, u) to which is attached a hanging path
(w, x1, . . . , xn−3) containing all other vertices of G (i.e., n = |V (G)|). Furthermore, in E(G)\E(H),
if we set x = xn−3, then the edge xu exists. Since H is spanning, connected, and unicyclic,
|E(H)| = |V (G)|, which is at most 2|E(G)|/3, since δ(G) ≥ 3.

All conditions are now met to invoke the arguments in the proof of Theorem 3.5, from which we
can deduce a proper {0, 1, 2}-labelling of G where adjacent vertices get distinct colours modulo 3
and in which only the edges of the chosen H are possibly assigned label 0. Let us now consider
the subgraph H ′ of G obtained from H by adding the edge xu, which is present in G. Recall
that `(xu) = 2 by default. Note that H ′ contains at least two disjoint perfect matchings M1,M2.
Indeed, since |V (G)| is even, then, in H, the hanging path attached at w has odd length. A
first perfect matching M1 of H ′ contains xn−3xn−4, xn−5xn−6, . . . , wx1 and uv. A second perfect
matching M2 of H ′ contains xn−4xn−5, xn−6xn−7, . . . , x2x1, and wv and xu. Now, by Lemma 3.7,
we can assume that at most a third of the edges in M1 ∪M2 are assigned label 0 by `. Since
|M1| + |M2| = |E(H ′)| − 1 = |E(H)|, this gives nb`(0) ≤ E(H)

3 + 1, which is less than |E(G)|/3
since |E(G)| ≥ 3|V (G)|/2. By turning 0’s by ` into 3’s, we get a proper 3-labelling of G with the
same upper bound on the number of assigned 3’s.

5 Conclusion
This work was dedicated to studying the importance of 3’s in designing proper 3-labellings, this
aspect being motivated by a presumption from previous works that proper 3-labellings of graphs,
in general, should require only a few 3’s. This led us to introducing the two quantifying parameters
mT and ρ3. As a main contribution, we have introduced, in Section 3, some tools for deducing
bounds on these parameters. Applications of these, in Section 4, led us to results for specific
classes of 3-chromatic graphs. In particular, we have established that, for several simple classes F
of graphs, there is no p ≥ 0 such that F ⊂ G≤p. In such cases, we have provided bounds on ρ3(F).

Several directions for further research sound particularly appealing. A first one is to prove
Conjecture 2.2 for more classes of graphs, or to exhibit weaker upper bounds towards it. Another
one is to investigate whether the bound of 1/3 in that conjecture is close to being tight or not, in
general. Indeed, at the moment we only know of two small connected graphs, namely C3 and C6,
which attain the bound, while the class of arbitrarily large graphs with the biggest value ρ3 we
could construct, achieves a ratio of 1/10 (Theorem 4.3).

Other directions of interest include bounds that are missing in Section 4. For instance, we are
missing an upper bound on ρ3 for a few classes of 3-chromatic graphs, such as separable outerplanar
graphs and, more generally, series-parallel graphs. Regarding our upper bound for Halin graphs
(Theorem 4.19), the main point of interest in the proof lies in that it shows an application of
Lemma 3.7. However, we were not able to come up with examples of arbitrarily large Halin graphs
needing more and more 3’s in their proper 3-labellings. Actually, we are aware of only three Halin
graphs that do not admit proper 2-labellings. Two of them are K4 and the prism graph (Cartesian
product of K3 and K2). The third one is constructed as follows: start with two perfect binary
trees on 7 vertices each and add an edge between the roots (degree-2 vertices) of these trees; from
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the resulting tree T , construct G as explained in Section 4.5.2. All three of these graphs turn out
to lie in G1. Thus, though we were not able to prove it, it is possible that there exists a p ≥ 1 such
that Halin graphs are in G≤p, and even that p = 1.

Let us mention a last intriguing open question regarding complete graphs. It is known from [2]
that complete graphs Kn with n ≥ 5 admit equitable proper 3-labellings, which implies that they
verify Conjecture 2.2, i.e., mT(Kn) ≤ |E(Kn)|/3 which is roughly of order n2/6. In [4], the authors
exhibited proper 3-labellings of complete graphs where the sum of assigned labels is as small as
possible. Looking closely at the proof, it turns out that the designed proper 3-labellings assign
label 3 to roughly n/4 edges, which yields a better upper bound on ρ3(Kn). Determining the
precise ratio in general sounds like an interesting challenge. Through computer experimentation,
we were able to verify that Kn ∈ G1 for 3 ≤ n ≤ 5, while Kn ∈ G2 for 6 ≤ n ≤ 9, and Kn ∈ G3 for
10 ≤ n ≤ 12. However, we did not manage to prove a general result. We are not even sure if there
exists a p ≥ 3 such that all complete graphs are in G≤p.

References
[1] O. Baudon, J. Bensmail, H. Hocquard, M. Senhaji, and E. Sopena. Edge weights and vertex

colours: Minimizing sum count. Discrete Applied Mathematics, 270:13–24, 2019.

[2] O. Baudon, M. Pilśniak, J. Przybyło, M. Senhaji, E. Sopena, and M. Woźniak. Equi-
table neighbour-sum-distinguishing edge and total colourings. Discrete Applied Mathematics,
222:40–53, 2017.

[3] J. Bensmail, F. Fioravantes, F. M. Inerney, and N. Nisse. Further results on an equitable 1-2-3
Conjecture. Submitted for publication, 2020.

[4] J. Bensmail, F. Fioravantes, and N. Nisse. On proper labellings of graphs with minimum label
sum. In L. Gąsieniec, R. Klasing, and T. Radzik, editors, Combinatorial Algorithms, pages
56–68, Cham, 2020. Springer International Publishing.

[5] J. Bensmail, B. Li, B. Li, and N. Nisse. On minimizing the maximum color for the 1-2-3
Conjecture. Discrete Applied Mathematics, 289:32–51, 2021.

[6] R. L. Brooks. On colouring the nodes of a network. Mathematical Proceedings of the Cambridge
Philosophical Society, 37(2):194–197, 1941.

[7] G. Chang, C. Lu, J. Wu, and Q. Yu. Vertex-coloring edge-weightings of graphs. Taiwanese
Journal of Mathematics, 15:1807–1813, 2011.

[8] G. J. Chang and G.-H. Duh. On the precise value of the strong chromatic index of a planar
graph with a large girth. Discrete Applied Mathematics, 247:389–397, 2018.

[9] A. Dehghan, M.-R. Sadeghi, and A. Ahadi. Algorithmic complexity of proper labeling prob-
lems. Theoretical Computer Science, 495:25–36, 2013.

[10] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer,
2012.

[11] A. Dudek and D. Wajc. On the complexity of vertex-coloring edge-weightings. Discrete
Mathematics and Theoretical Computer Science, 13:45–50, 2011.

[12] H. Grötzsch. Zur theorie der diskreten gebilde. VII. Ein Dreifarbensatz für dreikreisfreie Netze
auf der Kugel.(German) Wiss Z, Martin-Luther-Univ Halle-Wittenb, Math-Natwiss Reihe,
8:109–120, 1958.

[13] M. Kalkowski, M. Karoński, and F. Pfender. Vertex-coloring edge-weightings: Towards the
1-2-3-conjecture. Journal of Combinatorial Theory, Series B, 100(3):347–349, 2010.

[14] M. Karoński, T. Łuczak, and A. Thomason. Edge weights and vertex colours. Journal of
Combinatorial Theory, Series B, 91(1):151–157, 2004.

[15] J. Przybyło and M. Woźniak. On a 1,2 conjecture. Discrete Mathematics and Theoretical
Computer Science, 12(1):101–108, 2010.

[16] B. Seamone. The 1-2-3 Conjecture and related problems: a survey. 2012.

21



[17] C. Thomassen, Y. Wu, and C.-Q. Zhang. The 3-flow conjecture, factors modulo k, and the
1-2-3-conjecture. Journal of Combinatorial Theory, Series B, 121:308–325, 2016.

[18] W. Wang, Y. Bu, M. Montassier, and A. Raspaud. On backbone coloring of graphs. Journal
of Combinatorial Optimization, 23(1):79–93, 2012.

[19] W. Wang and K. Lih. List Coloring Halin Graphs. Ars Combinatoria -Waterloo then Winnipeg-
, 77(10):53–63, 2005.

22


	Introduction
	Terminology, preliminary results, and a conjecture
	Proper 3-labellings assigning few 3's
	General results on proper labellings

	Tools for establishing bounds on mT and 3
	Weakly induced subgraphs – A tool for lower bounds
	Switching closed walks – A tool for upper bounds

	Results on the parameters mT and 3 for some graph classes
	Connected graphs needing lots of 3's
	Bounds for connected cubic graphs
	Bounds for connected planar graphs with large girth
	Bounds for connected cacti
	Bounds for other graph classes
	Outerplanar graphs
	Halin graphs


	Conclusion

