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Affinity Maturation (AM) is the process through which our immune system is able to develop
potent antibodies against new pathogens it encounters, and is at the base of the efficacy of vaccines.
At his core AM is analogous to a Darwinian evolutionary process, where B-cells mutate and are
selected on the base of their affinity for an Antigen (Ag), and Ag availability tunes the selective
pressure. When this selective pressure is high the number of B-cells quickly decreases and the
population risks extinction in what is known as a population bottleneck. Here we study the probability
for a B-cell lineage to survive this bottleneck as a function of the progenitor affinity for the Ag.
Using recursive relations and probability generating functions we derive expressions for the average
extinction time and progeny size for lineages that go extinct. We then extend our results to the
full population, both in the absence and presence of competition for T-cell help, and quantify the
population survival probability as a function of Ag concentration and population initial size.

I. INTRODUCTION

Affinity Maturation (AM) is a biological process
through which our Immune System (IS) generates potent
Antibodies (Ab) against newly-encountered pathogens.
AM is also at the base of the efficacy of vaccination, in
which this process is artificially elicited through the ad-
ministration of a dose of Ag. The biological mechanisms
that govern AM are many and complex, and are the ob-
ject of many excellent reviews [1–8]. Simply speaking,
AM works by subjecting a population of B-lymphocytes
(or B-cells) to iterative cycles of mutations and selec-
tion for Ag binding, which generate a Darwinian evolu-
tionary process that progressively increases their affinity
for the Ag. Maturation takes place in Germinal Centers
(GCs), microanatomical structures that appear inside of
secondary lymphoid organs. They are divided in two ar-
eas: the GC Dark Zone (DZ) in which cells divide and
mutate,1 and the Light Zone (LZ) in which they undergo
selection. Cells iteratively migrate between these two
compartments. Selection in the LZ is completed in two
steps. In the first step cells try to bind the Ag, exposed
on the surface of Follicular Dendritic Cells (FDCs). In
the second step they compete to receive a survival sig-
nal from T-follicular helper (Tfh) cells, in the absence
of which they undergo apoptosys. Tfh cells are able
to probe the amount of Ag captured by B-cells, pref-
erentially delivering this survival signal to the cells that
were most successful in capturing Ag. Cells that receive
the signal either migrate back to the DZ for additional
rounds of mutation and selection, or they can differenti-
ate in Plasma or Memory Cells (PCs/MCs). The former
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1 In the DZ B-cells express high levels of Activation-Induced cy-
tidine Deaminase, an enzyme that increases the natural rate of
DNA mutations up to 10−3 per base-pair per generation [9–11].

are responsible for the production of Abs to fight the
infection, while the latter confer long-lasting protection
by remaining quiescent until the same Ag is encountered
again, in which case they reactivate and produce Abs or
enter GCs for further maturation.

In spite of the many recent experimental advancements
in the study of AM, several open questions still remain to
be answered, which have important implications in vac-
cine design. For example understanding the role of Ag
availability in controlling maturation might lead to op-
timization of Ag dosage in vaccines [12–14]. Given the
complexity of this process, computational models repre-
sent an invaluable tool to guide our understanding of AM
[15, 16]. In this paper we introduce a stochastic model
of AM to study the survival probability of B-cell lineages
in GCs. Experimental analysis of vaccine-responsive lin-
eages shows signatures of selection in their reconstructed
phylogenies [17]. This selection pressure, which is par-
tially controlled by Ag availability [13], is important to
push lineages towards maturation, but at the same time
an excessive pressure might be deleterious. Indeed, sev-
eral maturation models present a phenomenology termed
population bottleneck [18–20], in which strong selection
pressure causes a decrease in GC population size, po-
tentially leading to extinction. As a consequence of this
trade-off optimal maturation is achieved at intermediate
levels of selection pressure. In these models however the
survival probability is only quantified using numerical
simulations. Here we perform instead a more theoreti-
cal analysis. We start by considering the dependence of
a lineage survival probability on the progenitor affinity.
Through the use of recursive relations and probability
generating functions we are able to evaluate this prob-
ability, and also quantify extinction time and progeny
size for lineages that go extinct. We then extend our ap-
proach to analyze the extinction probability for the full
B-cell population, and its dependence on Ag concentra-
tion and initial population size. Our analysis provides
theoretical insight on what controls the survival proba-
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bility in maturation.

II. MODEL FOR STOCHASTIC MATURATION

Our model for stochastic maturation is inspired from
previous works [13, 19]. The model is simple enough to be
analytically tractable, while retaining the main aspects
of the bottleneck phenomenology.

A. Steps in affinity maturation

We consider the evolution of a population of B-cells
inside a GC. Through repeated cycles of mutation and
selection the population increases its average affinity for
the Ag over time. In our model each cell in the population
is solely characterized by its affinity for the Ag, measured
in terms of binding energy ε and expressed in units of
kBT .

The simulation starts when the GC is mature (roughly
1 week after Ag injection [2]). The initial population
is composed of Ni cells whose binding energy is indepen-
dently extracted from a Gaussian distribution of naive re-
sponders, with mean µi and standard deviation σi. Cells
undergo iterative rounds of duplication, mutation and
selection. These steps are schematized in fig. 1.

At the beginning of the round cells duplicate once in
the GC DZ. Each daughter cell can then independently

• undergo an affinity-affecting mutation with proba-
bility paa, which causes its binding energy to change

duplication

next round...

selection for Ag binding

competitive selection
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FIG. 1. Schematic representation of the processes that consti-
tute an evolution round. Initially all cells in the population
duplicate. Each daughter cell can develop affinity-affecting
(paa = 0.1) or lethal (plet = 0.15) mutations. Most of the
affinity-affecting mutations have a deleterious effect. Cells are
then selected on the base of their ability to bind the Antigen
(Ag), and compete to receive T-cell help. Surviving cells have
a small probability (pdiff = 0.1) of differentiating into Memory
or Plasma Cells (MC/PC) and exiting the cycle. Moreover if
the size of the population at this step exceeds the maximum
carrying capacity (Nmax = 2500) then extra cells are removed
randomly. The remaining cells begin then a new evolution
round.

1 0 1
0.0

0.5

1.0

P a
a(

)

16% 84%

2.5 0.0 2.5 5.0 7.5
0

100

200

300

n.
 c

el
ls

5.0 2.5 0.0 2.5 5.0
0.0

0.5

1.0

P A
g(

)

Ag

Ag C
0.1
1
10

2.5 0.0 2.5 5.0 7.5
0.0

0.5

1.0

P T
(

)

A B

C D

FIG. 2. A: probability distribution of the energy change ∆ε
introduced by affinity-affecting mutations. Most of the muta-
tions are deleterious. B: example of binding energy histogram
for the initial population of B-cells and the corresponding
value of ε̄. C: probability for a cell with binding energy ε of
surviving Ag-binding selection for different values of Ag con-
centration C. The threshold value εAg is represented with a
gray dashed line. An higher concentration corresponds to an
higher survival probability. D: same as panel C, but for T-cell
selection survival probability. Competition is introduced by
the fact that in this case the threshold ε̄ depends on the bind-
ing energy distribution of the population, as shown in panel
B.

by some amount ∆ε. We assume that ∆ε is a ran-
dom variable, extracted from a Gaussian distribu-
tion with mean µM and standard deviation σM (see
fig. 2 A);

• not mutate or develop silent mutations, with prob-
ability psil. In both cases its affinity is unchanged;

• be hit by a lethal mutation with probability plet, in
which case it is removed from the population.

As a result, the distribution of the changes ∆ε is therefore
given by the kernel

K(∆ε) =
paa√
2πσ2

M

exp

(
− (∆ε− µM )2

2σ2
M

)
+ psil δ(∆ε)

(1)
where δ(∆ε) is Dirac delta distribution.Notice that, due
to lethal mutations, the integral of the kernel K is not
normalized to unity but to paa + psil = 1 − plet. Param-
eters are chosen such that only a small fraction of the
mutations is beneficial, i.e. decreases the binding energy
(cf. appendix A).

After duplication and mutation cells migrate to the LZ
where they try to bind the Ag exposed on the surface of
FDCs. Failure to do so results in cell death, and only
cells that are able to bind the Ag with sufficient affinity
survive this step of selection. Similarly to [13, 19] we
consider the survival probability for a cell with binding
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energy ε to be given by the following Langmuir isotherm:

PAg(ε) =
Ce−ε

Ce−ε + e−εAg
, (2)

where εAg is a threshold binding energy and C represents
the dimensionless concentration of Ag available for cells
to bind. This concentration controls the strength of se-
lection, making successful binding more likely when more
Ag is available to bind. In practice it acts by imparting
a shift of magnitude logC to the energy threshold. The
functional dependence of the selection probability on ε
and C is displayed in fig. 2C.

In a second selection step cells compete to receive a sur-
vival signal from T-follicular helper cells, with the signal
being preferentially delivered to cells that bind more Ag.
The survival probability for a cell with binding energy ε
is:

PT(ε, ε̄) =
Ce−ε

Ce−ε + e−ε̄
, with e−ε̄ = 〈e−ε〉pop (3)

Where the term 〈e−ε〉pop represents the average of this
quantity over the population and encodes for competi-
tion, cf. fig. 2 B and D. The surviving cells then can
differentiate into plasma or memort cells with total prob-
ability pdiff . We do not keep track of these differentiated
cells in the simulation.

After this step if the population size exceeds the maxi-
mum carrying capacity Nmax cells are randomly removed
until this threshold is met. The surviving cells start then
the next round of evolution. The values of the model
parameters are reported in table I, and discussed in ap-
pendix A.

B. Population bottleneck and lineage survival

Similarly to other AM models [18, 19], for standard
parameter values the population initially undergoes a
bottleneck state. This is caused by the strong selection
pressure initially imposed by Ag-binding selection, which
later relaxes if the average population energy reaches val-
ues 〈ε〉pop ∼ εAg. By controlling the selection pressure
(cf. eqs. (2) and (3)) Ag concentration also impacts the
population survival probability.

As an illustration we report in fig. 3 the average evolu-
tion of 1000 stochastic simulations for three different val-
ues of the concentration C. For all three values the pop-
ulation size initially decreases under the combined effect
of the two selection steps (fig. 3A). This decrease lasts
for few turns, and is accompanied by a quick increase in
average affinity (fig. 3B). At this point surviving popu-
lations are composed of few high-affinity cells, on which
the main acting selection force is competitive selection in
eq. (3). If this selection pressure is not too strong then
the population will later expand and mature. Through a
mechanism analogous to the one studied in [13] Ag con-
centration then controls the maturation speed, as can be

seen by comparing the time dependence of the average
energy in the cases C = 10 and C = 2.7 in fig. 3B.

The fraction of surviving simulations as a function of
time is shown in fig. 3C. At low concentration (C = 1)
the population goes quickly extinct in all simulations.
For such small value of Ag concentration competitive se-
lection alone is sufficiently strong to impede population
growth. Intermediate concentration value (C = 3.5), on
the contrary, are sufficient to sustain population growth.
In this case extinction can nevertheless occur close to the
bottleneck state, when population size gets transiently
small, see fig. 3A; if some cells are able to survive and
pass this bottleneck, then the population again grows
to full size and continues maturation. Last of all, at
high concentration (C = 10), the bottleneck pressure is
not sufficient to significantly endanger population sur-
vival, and all simulations are able to overcome the low-
population state without going extinct, but maturation
proceeds very slowly. We will study in detail in the next
section the dependence of the survival probability of the
population of cells upon Ag concentration.

Survival and future expansion is also strongly depen-
dent on the initial distribution of affinities. This effect
can be readily observed on lineages originated from a
single ancestor, with energy ε. In fig. 4 we display three
examples of lineage evolution in the form of trees in which
each node corresponds to a different cell. These lineages
differ by the affinity of their progenitor at the root of
the tree. The progeny of the lowest-affinity one (red,
εi ∼ −0.3) goes extinct in few evolution rounds. In the
one with intermediate affinity (orange, εi ∼ −0.45) only
few individuals are able to survive the bottleneck. The
high-affinity one (green, εi ∼ −1.3) instead expands and
eventually takes over the population. To quantify the
population survival probability we will first investigate
how the survival of single lineages depends on the pro-
genitor affinity.

III. PROBABILITY OF SURVIVAL AND
DISTRIBUTION OF EXTINCTION TIMES

In this Section we study the probability that a B-cell
lineage descending from a single progenitor cell survives
through a population bottleneck, in particular how the
probability of survival depends on the affinity of the pro-
genitor. We also determine the distribution of extinction
times of the lineage. We then make use of these results to
evaluate the survival probability for the full population.

A. Case of one lineage

1. Probability of survival

Let us consider a progenitor cell with binding energy
ε, present in the population at the beginning of evolution
t = 0. At each evolution round this cell will divide and
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FIG. 3. Average evolution for 1000 different stochastic simulations of the model at three different levels of Ag concentration
C = 1, 3.5, 10, color-coded according to the legend on the right. A: population size N as a function of evolution round.
Shaded area covers one standard deviation for surviving simulations. The minimum population size on the bottleneck depends
strongly on Ag concentration B: same as panel A but for the average population binding energy 〈ε〉. Notice how for surviving
populations the maturation speed depends on Ag concentration. C: Fraction of surviving simulations as a function of time. At
low concentration the bottleneck drives all simulations to extinction, while at high concentration the population survives with
high probability.

FIG. 4. Examples of stochastic lineage evolution through a population bottleneck. We perform a single simulation of our
model at Ag concentration C = 5 and consider three different progenitors with different initial affinities (red εi ∼ −0.3, orange
εi ∼ −0.45 and green εi ∼ −1.3). We represent their progeny evolution in the form of a tree with each cell corresponding to a
node, and encoding affinity in the branch color. The lineage of the red progenitor quickly goes extinct, while the lineage of the
orange progenitor survives the bottleneck but only with few individuals. The green progenitor lineage conversely survives the
population bottleneck and undergoes great expansion. Notice how fate correlates with the initial progenitor affinity.

its offspring will have some probability of being removed
from the population, either due to selection, differentia-
tion or lethal mutations. In fig. 5A we report an example
of lineage evolution for a progenitor with binding energy
ε = 1. Color indicates the binding energy of each cell,
according to the color-scale on top. In this example cells
accumulate deleterious mutations until the lineage even-
tually goes extinct after t = 26 evolution rounds.

We are interested in computing the probability dt(ε)
that all of the offspring of a progenitor with binding en-
ergy ε will be extinct by evolution round t, see fig. 5B.
The expression for t = 1 can easily be written as the prob-
ability that both daughter cells generated during the du-
plication phase will be removed by the end of the round.
As stated above, this can occur either by lethal muta-

tion, by failing selection or by differentiation. For each
daughter cell this probability is more easily expressed as
one minus the probability of not being removed:

d1(ε) =

[
1−

∫
d∆εK(∆ε)PS(ε+ ∆ε) (1− pdiff)

]2

,

(4)
where the expression for K(∆) is the one given in eq. (1),
and PS(ε) is the probability for a cell with binding energy
ε of surviving selection. In the bottleneck state most of
the selection pressure is generated by Ag-binding selec-
tion (i.e. ε̄t < εAg). As a first approximation we therefore
neglect competitive selection for T-cell help, and consider
simply PS(ε) = PAg(ε) (cf. eq. (2)). This introduces two
important simplifications. First, the expression of PS
does not depend on time. Second, removing the com-
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Probability for a progenitor cell with
energy that:

the lineage goes extinct by
evolution round
the lineage goes extinct with
a total progeny size of cells
(not counting the progenitor)

a root branch of the lineage
goes extinct extinct with cells
on the branch

0
1
2
3
4
5
...

=

progeny size at extinction:
extinction time:

9
5

cell
cell removed (failed selection, lethal mutation or differentiation)

= 1

progeny size at extinction: 82
extinction time: 26A B

FIG. 5. A. Example of lineage issued from a progenitor with binding energy εi = 1 obtained from a stochastic simulation
performed at Ag concentration C = 7 in the approximation of only Ag-binding selection. Each node in the tree represents a cell,
its binding energy ε encoded using the colorscale on top. In this example cells progressively accumulate deleterious mutations
until after 26 evolution rounds the population eventually goes extinct. B. Schematic illustration of the quantities analyzed in
our theory. On the left we depict a lineage evolution, stemming from a progenitor with binding energy ε. The probability that
such a lineage goes extinct by time t is indicated with dt(ε) (in this example t = 5). The quantity qn(ε) represents instead
the probability that the lineage goes extinct counting a total of n cells not including the progenitor (n = 9 in this example).
Finally, bm(ε) is the probability that one of the two sub-lineage stemming from the progenitor goes extinct counting m cells
(here m = 6 for the left branch and m = 3 for the right one).

petitive selection decouples the fate of all cells in the
population.

The probabilities dt(ε) for t > 1 can be evaluated using
recursive relations that express the probability of extinc-
tion in t rounds as the probability for each daughter cell
to either go extinct in one round, or to survive the first
round but to have their respective offspring go extinct in
t− 1 rounds:

dt(ε) =

[
1−

∫
d∆εK(∆ε)PS(ε+ ∆ε) (1− pdiff)

× (1− dt−1(ε+ ∆ε))

]2

(5)

In other words, the probability that all of the offspring
goes extinct in t rounds is the probability that each of
the two daughter cells generated during the duplication
phase of the first round independently are removed before
the end of round t. Since division is symmetric this prob-
ability must be the same for each daughter cell, and is the
probability inside the square brackets. Then, this prob-
ability that the daughter cell is removed is more easily
expressed as one minus the probability that it survives,
and some of its offspring also survives for other t − 1
rounds (term in the integral). In turn this is expressed
as the probability of surviving mutation (with a potential
energy change of entity ∆ε), selection and differentiation,
multiplied by the probability that the daughter cell off-
spring does not go extinct in t − 1 rounds (term on the
second line).

In fig. 6A we plot the behavior of dt(ε) as a function of
evolution round t and binding energy ε (orange curves,
color indicates extinction round t). As expected, the ex-
tinction probability is a monotonically increasing func-
tion of time and of energy, and reaches an asymptotic
value d∞(ε) for large t. Our analytical result is in ex-

cellent agreement with simulations for the mean extinc-
tion probability (blue dots). The asymptotic probability
d∞(ε) ranges between

• d∞(ε → +∞) = 1, as high-energy, i.e. low-affinity
cells do not pass the selection step and quickly go
extinct, and

• d∞(ε → −∞) = min{1, [1 − 1/α]2}, with α =
(1− plet)(1− pdiff). The value of d∞ for very high-
affinity cells may be lower than one since lethal mu-
tations and differentiation may drive the lineage to
extinction, especially during the first few evolution
rounds when the number of offspring is still small.
The above expression for d∞(ε→ −∞) can be ob-
tained by searching a fixed point to eq. (5), and
considering that, for ε → −∞, mutations do not
sensibly change the survival probability and can be
neglected. The parameter α defined above is then
the probability for a high-affinity cell to survive one
round and not be removed by lethal mutations or
through differentiation. Notice that, if α < 1/2, we
have d∞(ε → +∞) = 1, as is to be expected when
on average less than one individual in the offspring
will survive. However this case is pathological: in
this regime, irrespective of the progenitor energy,
the population always goes extinct (d∞(ε) = 1).

2. Distribution of extinction times

The probability that a lineage generated by a progen-
itor with energy ε goes extinct exactly at round t can
easily be expressed as

rt(ε) = dt(ε)− dt−1(ε) . (6)
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FIG. 6. Comparison between stochastic simulations (blue) and theory (orange) for the probability of extinction (A), lineage
extinction time (B) and average progeny size at extinction (C) as a function of the progenitor energy εi in absence of com-
petitive selection. For each conditions we consider 5000 different stochastic simulations that terminate with extinction at
Ag concentration C = 7. A: stochastic extinction probability (blue dots, error bar indicate the standard error of the mean)
evaluated as the fraction of simulations that terminate with extinction over the total number of simulations performed. This
is compared to the value of dt(ε) as described by our theory. B: mean and standard deviation of extinction time (blue) over
5000 simulations terminating in extinction. This is compared to the theoretical prediction (orange) for the mean and standard
deviation of this quantity, obtained using the time extinction probability rt(ε). C: same as B but for the progeny size. In this
case the theoretical predictions are obtained using the generating function theory.

This allows us to evaluate the mean and variance for the
extinction time probabilities (see fig. 6B) simply from the
first two moments of the distribution:

〈t〉ε =

∞∑
t=0

t rt(ε), 〈t2〉ε =

∞∑
t=0

t2 rt(ε), (7)

In fig. 6B we compare, in the approximation of no com-
petitive selection, the average extinction time computed
from simulations (blue, error bars indicate the standard
deviation of extinction times for each progenitor affinity)
with theoretical predictions (orange, shaded area covers
one standard deviations). We again find a very good
match,. The average extinction time shows a peak for
intermediate affinities, which can be interpreted as fol-
lows. Low-affinity progenitors, i.e. having high binding
energy have close-to-one probability of extinction, and
very often go extinct in the first few rounds. High-affinity
cells on the contrary have a small but non-zero probabil-
ity of extinction, see value of extinction probability in
fig. 6A. This is mainly due to affinity-independent terms
such as differentiation probability, which confer to the
lineage a small chance of going extinct after the first
selection rounds, when the progeny is still small. For
affinities close to ε = 1 we observe intermediate values
for the probability of survival, and maximum value for

average extinction time. This behaviour can be better
understood when mutations are turned off, in which case
equations can be solved exactly, as shown below.

3. Exactly solvable case of no mutation

We hereafter consider the case of no affinity-affecting
mutations, for which the mutation kernel eq. (1) reads

K(∆) = (1− plet) δ(∆) . (8)

In this case genealogies belong to the class of Galton-
Watson trees [21], and the asymptotic survival proba-
bility can be derived exactly. This probability is better
expressed by considering the quantity

γ(ε) = (1− plet)PS(ε) (1− pdiff) (9)

which represents the probability for a daughter cell to
remain in the GC and not be removed by either lethal
mutations, selection or differentiation. The infinite-time
extinction probability d∞(ε) can be found by rewriting
eq. (5) in the limit t→∞:

d∞(ε) = min

(
1,

(
1

γ(ε)
− 1

)2
)
. (10)
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area covers one standard deviation. Notice how extinction
times and genealogy sizes diverge at γ = 1

2
.

As expected, lineages will always go extinct if the av-
erage number of surviving offspring at division is not
greater than one: d∞(ε) = 1 if γ(ε) ≤ 1

2 . In fig. 7A we
report the behavior of d∞ as a function of γ. This func-
tion presents a singularity at the critical value γ = 1/2,
for which the Galton-Watson process is critical.

Finding an explicit expression for the distribution of
extinction times is harder, but results can be obtained
for the critical value γ = 1

2 . We find that the extinction
time probability behaves asymptotically as a power law,
with infinite mean and variance: rt ∼ 4/t2 for large t.
This result, which is a known feature of critical Galton-
Watson processes, can be verified by inserting the Ansatz
dt ∼ 1−αt−1 +o(t2) in eq. (5), together with the simpli-
fied form of the mutation kernel (8) and the assumption
that γ = 1/2. The only admissible solution is α = 4
which, combined with the definition of rt eq. (6), proves
the statement. In fig. 7B we display the mean and vari-
ance of the extinction time distribution as a function of
γ. Comparison with fig. 6B shows that the divergence
is removed when evolution includes affinity-affecting mu-
tations. Mutations drive lineages away from the critical
line, either to high affinities and survival, or to lower
affinities and extinction.

B. Case of full population

Building on the results derived above, we now turn
to the problem of quantifying the average probability of

extinction for the whole population.
As a first approximation we do not consider compet-

itive selection, since most of the selection pressure in a
bottleneck is given by Ag-binding selection. Given a to-
tal of Ni cells in the initial population, having energies
{εk}k=1...Ni the probability that all cells will be extinct
by evolution round t is simply given by the product of
extinction probabilities for all cells

∏
k dt(εk). Moreover,

since the initial energies are independently extracted
from a Gaussian distribution ϕ(ε) with mean µi and stan-
dard deviation σi, the average extinction probability by
round t over all possible extractions of the initial popu-
lation is given by:

Pext(t) =

(∫
dε ϕ(ε) dt(ε)

)Ni

(11)

With the help of this formula we evaluate the average
survival probability as a function of Ag concentration
C and initial population size Ni, and compare the pre-
diction with stochastic simulations in which we turn off
T-cell selection. The results, reported in fig. 8B and C
(blue), match exactly.

In the presence of competitive selection the empirical
survival probability evaluated from simulations slightly
decreases, compare blue and orange dotted lines in fig. 8B
and C. The theory can be extended to account for T-
selection in an effective manner. In practice, one needs
first to extend the theory to include a time-dependence
of the survival probability. At this point competitive se-
lection can be included by introducing an effective cou-
pling between cells in a ‘mean field’ fashion, by estimat-
ing the average evolution of the term ε̄ = − log〈e−ε〉pop

contained in the expression for the T-selection survival
probability eq. (3).

Assume that the survival probability PS(ε, t) is now
time-dependent. The probability of extinction does not
depend solely on the number of evolution rounds any-
more, but also on the initial time at which the progenitor
is considered. We define dt,s(ε) as the probability that a
cell, which at the end of round t has binding energy ε,
will have all of its offspring extinct by the end of round
s > t. For any value t ≥ 0 we can write as before the
probability of extinction in one round:

dt,t+1(ε) =

(
1−

∫
d∆K(∆)PS(ε+ ∆, t) (1− pdiff)

)2

(12)
And for any pair of rounds s > t ≥ 0, with s− t > 1, the
following recursive relation, analogous to eq. (5), holds:

dt,s(ε) =

[
1−

∫
d∆K(∆)PS(ε+ ∆, t) (1− pdiff)

× (1− dt+1,s(ε+ ∆))

]2

(13)

Finally, similarly to eq. (11), the probability that the full
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C

FIG. 8. Probability of population survival in a bottleneck condition as a function of initial population size Ni and Ag concen-
tration C. A: Left: comparison between the evolution of ε̄ in stochastic simulations (blue, mean and standard deviation over
5000 simulations) and theoretical prediction without (red) and with (orange) finite-size correction. This correction consists in
cutting the tail of the initial energy distribution in proximity of the expected value for the highest-affinity individual. The
correction improves the prediction for the evolution of ε̄ at short times. Right: fraction of surviving simulations as a function
of evolution round. With the finite-size correction the value of ε̄ is well-approximated during the time it takes for most of the
simulations to go extinct. In this example we set C = 7, Ni = 100. B: bottleneck survival probability as a function of antigen
concentration C. Comparison between stochastic simulations (dotted line, error bars indicate the standard error of the mean)
and the predictions our theory (full lines). Stochastic simulations are reported both without (blue) and with (orange) competi-
tive selection for T-cell help (T-sel). For the theory instead we consider the case without T-sel (blue), with T-sel (red) and with
T-sel plus finite-size correction (orange). In the absence of T-sel all cells evolve independently, and the theory and simulations
match exactly. The inclusion of T-sel slightly decreases the survival probability in stochastic simulations. Accounting for this
contribution by using the infinite-size estimate for the evolution of ε̄ overestimates the selection pressure. Adding the finite-size
correction results in a much better estimate. In this example we set Ni = 100. C: same as B, but the survival probability is
evaluated as a function of the initial size of the population Ni. Here we set C = 7.

population goes extinct by evolution round t is given by:

Pext(t) =

(∫
dεϕ(ε) d0,t(ε)

)Ni

, (14)

where ϕ(ε) is a Gaussian distribution with mean µi and
standard deviation σi.

At this point we can make explicit the time depen-
dence of the survival probability including selection for
T-cell help: PS(ε, t) = PAg(ε)PT(ε, ε̄t) (cf. eq. (3)).
Given the stochastic nature of our model, the variable ε̄t
which quantifies selection pressure is in reality a stochas-

tic variable. We estimate its average evolution using
the large-population-size limit described in appendix B,
under which the model becomes deterministic. This al-
lows us to numerically evaluate the extinction probabil-
ity eq. (14). The outcome, however, underestimates the
real survival probability (compare red curve and orange
dotted line in fig. 8B and C). This mismatch originates
mainly from the fact that in the big-size approximation ε̄
evolves faster than in stochastic simulations (cf. blue and
orange line in fig. 8A-left). In turn, this occurs because
the value of ε̄ is strongly dependent on the high-affinity
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tail of the population, whose evolution is influenced by
finite-size effects.

This discrepancy can, however, be reduced with a sim-
ple finite-size correction. This correction is based on
the consideration that the large-size limit of the model
approximates the population binding energy histogram
with a continuous distribution, encoded in the density
function ρt(ε) (cf. appendix B). At the beginning of evo-
lution this function takes the shape of a normal distribu-
tion, corresponding to the initial binding energy distribu-
tion of naive responders, with tails extending indefinitely
in both directions. As the population is finite in reality,
consisting of Ni individuals, we do not expect these tails
to be populated. The correction procedure consists in
removing these tails, by setting the initial distribution
equal to zero outside a range delimited by two values
[ε−, ε+].

These two values are chosen equal to the expected en-
ergy of, respectively, the highest and lowest affinity in-
dividual in the population. The probability distribution
for their binding energies can be expressed as a func-
tion of the naive binding energy distribution ϕ(ε) (as
before a Gaussian with mean µi and variance σ2

i ) from
which the energy of all cells is extracted. If we call
F (ε) =

∫ ε
−∞ dε′ ϕ(ε′) the cumulative distribution func-

tion, then these distributions can be expressed as:

ϕ+(ε) =
d

dε
[F (ε)]Ni (15)

ϕ−(ε) = − d

dε
[1− F (ε)]Ni (16)

The values ε± simply correspond to the means of these
distributions.

Removing the tails to the initial distribution causes
an initial slow-down in the evolution of ε̄ (cf. green line
in fig. 8A-left). This slow-down is eventually lost, but
the agreement remains for a time sufficient for most of
the stochastic simulations to go extinct (cf. fig. 8A-right)
which is the relevant timescale to capture bottleneck sur-
vival.

Taking the value of ε̄ obtained by combining the big-
size approximation (cf. appendix B) with the cutoff cor-
rection described above, and using it to evaluate the
population survival probability, we obtain a much bet-
ter agreement of the theory with simulations (compare
orange curve and orange dotted line in fig. 8B and C).
The remaining discrepancy are due to the fact that the
average evolution of ε̄ is still not exactly captured, and
the ‘mean-field’ nature of our approximation, which ne-
glects the feedback of the energies in the population onto
ε̄.

IV. LINEAGE SIZE AT EXTINCTION

In this Section we focus on the distribution of sizes of
the progeny at extinction. This size strongly depends on

the model parameters, such as the energy of the progen-
itor. An example is displayed in fig. 5A, in which the
lineage consists of a total of 82 cells. Like extinction
time, this quantity is well-defined only for lineages that
go extinct. Populations that are able to pass the bottle-
neck undergo exponential growth, with a rate that can
be calculated from the large-size theory of Appendix B,
see [13].

1. Recursion equations for the distribution of sizes

Similarly to what was done in the previous Section for
the extinction time and probability, we now derive a re-
cursive formula to quantify the total offspring size. We
need to keep track of the sum of two random variables
representing the numbers of descendants of each daugh-
ter cell. The recursion therefore includes a convolution,
which is numerically harder to compute but can be han-
dled using probability generating functions. The recur-
sive relations can be expressed in term of these functions,
and can be used to evaluate the moments of the proba-
bility distribution without having to numerically perform
the convolution.

We name qn(ε) the probability that a progenitor with
energy ε generates a total offspring of exactly n cells be-
fore extinction, not counting the progenitor itself (see
fig. 5B). This probability can be better expressed if we
separate the contribution of the two daughter cells. Con-
sidering genealogies encoded as binary trees, we call
bm(ε) the probability that along the branch correspond-
ing to one of the daughter cells of a progenitor with en-
ergy ε we find a total of m descendants (including the
daughter cell itself) before extinction (see fig. 5). The
expression for m = 0 is simply given by the probability
that the daughter cell is removed before the end of the
round:

b0(ε) = 1−
∫
d∆K(∆)PS(ε+ ∆) (1− pdiff)

=
√
d1(ε)

(17)

The recursive relation in this case is composed of two
equations. The first is a convolution that decomposes
the probability of having n descendants as a sum over all
possible repartitions of the descendant number along the
two branches:

qn(ε) =

n∑
m=0

bm(ε) bn−m(ε) (18)

The second expresses the probability to find m descen-
dants along a branch as the probability that the daughter
cell survives and has m− 1 descendants:

bm(ε) =

∫
d∆K(∆)PS(ε+ ∆) (1− pdiff) qm−1(ε+ ∆)

(19)
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We introduce the generating functions Q(z, ε) and
B(z, ε), defined as:

Q(z, ε) =

∞∑
n=0

qn(ε) zn, B(z, ε) =

∞∑
m=0

bm(ε) zm .

(20)
In terms of these generating functions equations eqs. (18)
and (19) become

Q(z, ε) = B(z, ε)2 (21)

1

z
[B(z, ε)− b0(ε)] =

∫
d∆K(∆)PS(ε+ ∆)

× (1− pdiff)Q(z, ε+ ∆)

(22)

These relations can be used to evaluate the moments of
these distributions with two additional considerations.
The first is that

∑∞
n=0 qn(ε) = d∞(ε). This sum does

not converge to one since it only considers lineages that
eventually go extinct. For the functions Q and B this
translates into:

Q(z = 1, ε) = d∞(ε), B(z = 1, ε) =
√
d∞(ε) . (23)

Secondly, the moments of the distributions can be eval-
uated from the generating functions as:

〈nk〉ε =
1

d∞(ε)

∞∑
n=0

nk qn(ε)

=
1

d∞(ε)
(z∂z)

k
Q(z, ε)|z=1

(24)

〈mk〉ε =
1√
d∞(ε)

∞∑
m=0

mk bm(ε)

=
1√
d∞(ε)

(z∂z)
k
B(z, ε)|z=1

(25)

Applying the operator z∂z one and two times on eq. (21)
restitutes the following relations between the first two
moments:

〈n〉ε = 2〈m〉ε , 〈n2〉ε = 2〈m2〉ε + 2〈m〉2ε (26)

This corresponds simply to the fact that the total number
of descendants is the sum of the descendants along the
two branches. Applying the same operator on eq. (22)
gives:√

d∞(ε) 〈m〉ε =

∫
d∆K(∆)PS(ε+ ∆) (1− pdiff)

× d∞(ε+ ∆) [2〈m〉ε+∆ + 1]

(27)

√
d∞(ε) 〈(m− 1)2〉ε =

∫
d∆K(∆)PS(ε+ ∆)

× (1− pdiff) d∞(ε+ ∆) [2〈m2〉ε+∆ + 2〈m〉2ε+∆ + 1]

(28)

These equations can be solved numerically if we express
them as fixed-point equations for the functions 〈m〉ε and

〈m2〉ε:

〈m〉ε =
1√
d∞(ε)

∫
d∆K(∆)PS(ε+ ∆) (1− pdiff)

× d∞(ε+ ∆) [2〈m〉ε+∆ + 1]

(29)

〈m2〉ε =
1√
d∞(ε)

∫
d∆K(∆)PS(ε+ ∆) (1− pdiff)

× d∞(ε+ ∆) [2〈m2〉ε+∆ + 2〈m〉2ε+∆ + 4〈m〉ε+∆ + 1]

(30)

The moments for n can then easily be evaluated using
eq. (26).

In fig. 6C we compare the theoretical prediction for the
first two moments (orange line represents the mean and
shaded area covers one standard deviation) with the cor-
responding quantities from stochastic simulations (blue,
error bars cover one standard deviation). Once more we
find a good match. The peak at intermediate affinities
can be explained, as done above for the extinction time,
considering the critical nature of this phenomenon at in-
termediate values of the binding energy. This is done in
the next section.

2. Exactly solvable case of no mutation

Similarly to what done for extinction probability, in
the absence of affinity-affecting mutations we can find
an explicit expression for the mean and variance of the
population size at extinction. By plugging the simplified
expression for the mutation kernel eq. (8) into eqs. (21)
and (22) one obtains the following second degree equation
for the generating function B:

z γ(ε)B(z, ε)2 −B(z, ε) + 1− γ(ε) = 0 (31)

Where as before γ(ε) is the probability for a daughter
cell not to be removed from the population during the
evolution round, cf. eq. (9). This equation has two so-
lutions. The correct one can be chosen by considering
that B must be a monotonically increasing function of z.
This gives:

B(z, ε) =
1−

√
1− 4 z γ(ε) (1− γ(ε))

2 z γ(ε)
(32)

The function Q(z, ε) can be evaluated from eq. (21), and
the mean and variance for the population extinction sizes
can be obtained using eq. (24). This results in:

〈n〉ε =

{
2γ(ε)

1−2γ(ε) if γ(ε) < 1/2
2−2γ(ε)
2γ(ε)−1 if γ(ε) > 1/2

(33)

〈n2〉ε − 〈n〉2ε = 〈n〉ε(〈n〉ε + 1)(〈n〉ε + 2)/2 (34)

This quantity are reported as a function of γ in fig. 7C.
Similarly to what observed for the mean and variance of
the extinction time, Both of these quantities diverge for
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the critical value γ = 1
2 , but this divergence is removed

when mutations are considered.
It is interesting to consider the effect of this divergence

on the coefficients qn(ε), that represent the probability of
a lineage that stems from a progenitor with binding en-
ergy ε to go extinct with a total progeny of n cells (see
fig. 5B). From the definition of the generating function
Q(z, ε) (cf. eq. (20)) it follows that the coefficients qn can
be obtained by Taylor expansion of this function around
z = 0. In turn Q can be easily obtained from eq. (32)
using the property Q = B2 (see eq. (21)). The expan-
sion results in the following expression for the coefficients
when mutations are absent:

qn =
(2n+ 2)!

(n+ 1)!(n+ 2)!
γn(1−γ)n+2 n�1∼ (1− γ)2

√
πn3

(4γ(1−γ))n

(35)
In general these probabilities decay exponentially fast as
a function of the size n. At the critical value γ = 1/2 how-
ever the term 4γ(1−γ) becomes equal to 1 and the coef-
ficients decay as power law, with n−3/2. This same result
can more simply be obtained by considering that for any
fixed value of ε the asymptotic decay of the coefficients
qn for n� 1 is related to the behavior of the generating
function Q around its singularity at zc = 1/(4γ(1 − γ)).
In particular in our case Q ∝ (1 − z/zc)1/2 close to the
singularity, and therefore qn ∝ n−3/2 z−mc [22], which
gives the expected asymptotic behavior described above.

3. Case of small-effect mutations

Corrections to the asymptotic behavior above arise
when small-effect mutations are considered. In partic-
ular in eq. (8) we substitute the Dirac delta distribution
with a peaked Gaussian, and consider a mutation kernel
having the form:

K(∆) = (1− plet)
1√
2πσ

exp

(
− ∆2

2σ2

)
with σ � 1

(36)
When the standard deviation is small enough one can ap-
proximate the integrals in eqs. (17) and (22) by Taylor-
expanding the functions that multiply the mutation ker-
nel around ∆ = 0. This results in the following approxi-
mation for eq. (22):

B − 1 + γ +
σ2

2
γ′′ = zγB2 + z

σ2

2

[
γB2

]′′
, (37)

according to the definition of γ (cf. eq. (9)), and with
inverted commas indicating derivatives with respect to
ε. This equation is analogous to eq. (31) with the addi-
tion of perturbation terms of the order of σ2. We there-
fore suppose B(z, ε) ∼ B0(z, ε) + σ2∆B(z, ε) where B0

is given by eq. (32) and ∆B represents a perturbation
to this σ2 = 0 solution. By plugging this Ansatz in the
previous equation we find the following expression for the

perturbation:

∆B =
(B0 − 1)

2γr4

[
2zγ′2(1− 2γ) + r

γ′2

γ
+ r2

(
γ′′ − γ′2

γ

)]
,

(38)
where r is defined through

r =
√

1− 4zγ(1− γ) =

√
zc − z
zc

. (39)

The critical value of z is given as before by zc = 1/(4γ(1−
γ)). Moreover, when the survival probability PS is given
by eq. (2), the derivatives of γ (cf. eq. (9)) can be ex-
pressed as

γ′ = −γ(1− γ̃) . (40)

γ′′ = γ(1− γ̃)(1− 2γ̃) , (41)

where γ̃ = PAg(ε). From the expression for ∆B we can
derive the perturbation to Q by using eq. (21). Keeping
only the higher order in σ2, we obtain

Q ∼ Q0 + σ2∆Q , with ∆Q = 2B0 ∆B (42)

As stated in the previous section, the behavior of the
probabilities qn is strictly related to the behavior of Q
around its singularity zc. In particular the magnitude
of the perturbation to the coefficients qn introduced by
mutations can be derived from the study of ∆Q. If we
operate the substitution z = zc(1 − r2) and expand ∆Q
in powers of r we obtain:

∆Q = c4r
−4 + c3r

−3 + c2r
−2 + c1r

−1 +O(1) (43)

with the following expressions for the coefficients:

c4 = (1− 2γ)2(1− γ̃)2

c3 = −(1− 2γ)2(1− γ̃)2

c2 = −2(1− γ)(1− γ̃)(1− 2γγ̃)

c1 = 2(1− γ)(1− γ̃)(3− 2γ − 2γγ̃)

(44)

Based on this expansion we can derive an expression for
the perturbation to the coefficients ∆qn = qn−q0

n caused
by weak mutations [22], where q0

n represents the value in
the absence of mutations (cf. eq. (35)). We obtain that,
for large n,

∆qn = σ2[c4(n+ 1) + c3(n/π)1/2(2 + 3/4n) + c2

+ c1(πn)−1/2 +O(n−3/2)](4γ(1− γ))n (45)

In fig. 9A we plot the values of the coefficients c as
a function of γ̃. It is interesting to notice that both c4
and c3, controlling the two leading orders, are null for
the critical value γ = 1/2. This leaves the next leading
order to c2 which, for this value of γ, is negative. As
a result, we expect that the perturbation tends to lower
the values of qn at large n for γ ∼ 1/2, and to raise it for
γ ≶ 1/2. This means that large-size extinction events are
made less probable by the presence of mutations around
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the critical value, which is consistent with the removal
of the divergence observed in fig. 7C when mutations are
present.

In fig. 9B,C,D we compare the above prediction for
∆qn with the value provided by numerical simulations
for different values of γ, as indicated in each plot. We
expect the theoretical prediction to be accurate for large
values of n, and as long as the perturbation ∆qn remains
small with respect to the unperturbed value q0

n. However,
for increasing values of n the perturbation grows faster
than the unperturbed value, eventually invalidating this
assumption. As a proxy for an accuracy upper limit we
mark with a green dotted line the value of n at which
the perturbation ∆q has a magnitude equal to 10% of
the unperturbed value q0

n. Based on eqn. (45) this value
scales as σ−4/5 for small σ’s.

V. DISCUSSION

In this work we focused on the effects of a bottleneck
on a B-cell population in the course of the affinity mat-
uration process. Through a recursive relation that links
the probability of bottleneck survival of a cell to the one
of its daughter cells we were able to retrieve the depen-
dence of a lineage extinction probability on its progenitor
affinity. For lineages that go extinct we also evaluated the
mean and variance of extinction time and progeny size,
revealing a peak in extinction time corresponding to av-
erage affinity progenitors. Lineages stemming from these
progenitor spawn in equilibrium between extinction and
survival, and persist in this state until mutations drive
the lineage either to survival or to extinction. Building on
these results we then evaluated the survival probability
for the full population as a function of Ag concentration
and population size. We also included the effect of com-
petition in an effective manner, using the deterministic
model limit combined with a finite-size correction.

The bottleneck phenomenology was included in differ-
ent maturation models [18, 19], which considered as opti-
mal the maturation regime in which the B-cell population
was subject to a strong enough selection force to grant
good affinity enhancement, while at the same time not
strong enough to cause population extinction. While the
properties of the above models were numerically evalu-
ated based on stochastic simulations, we here present ex-
act or approximate derivations for various quantities of
interest through the use of recursive relations and prob-
ability generating functions. These techniques are often
encountered in the context of branching processes, and
similar approaches have been used in the study of AM
[23, 24]. In our case we coupled the theoretical anal-
ysis with a more realistic model that included both the
effect of mutations and selection for Ag binding and com-
petition. We hope our approach both provides a better
understanding of what controls the lineage survival prob-
ability, and requires less computational resources when
compared to averaging over many stochastic simulations.

One could therefore easily explore the effect of changing
different model parameters on the survival probability
and the lineage size.

Compared to real AM, our model is obviously sim-
plified in many aspects, for example we do not impose
an affinity ceiling and beneficial mutations can accumu-
late indefinitely. However we believe this approxima-
tion to be reasonable since for the bottleneck scenario
we consider low-affinity cells that could potentially un-
dergo many affinity-improving mutations. Moreover we
consider Ag concentration to be constant, while in real-
ity Ag is subject to natural decay and consumption by
B-cells. We believe this approximation to be acceptable
when studying bottleneck survival, that in most cases is
resolved in few evolution rounds. In our analysis we fo-
cused on the evolution of the population of B-cells inside
a single GC. In the course of a response however many
GCs form inside the body.2 By averaging over the dis-
tribution of energies in the initial population our theory
indeed quantifies the average bottleneck survival proba-
bility of GCs in this ensemble, in the hypothesis that the
affinity of cells each initial population is independent. If
instead affinities are correlated or if cells are able to mi-
grate between GCs then the average would be harder to
compute. Unfortunately the lack of precise experimental
quantification of these processes forbids any meaningful
modeling so far.

An important implication of our work is the relation
between progenitor affinity to lineage survival probabil-
ity. One of the current challenges in vaccine design
against mutable pathogens consists in designing immuno-
gens that are capable of stimulating specific naive B-cell
precursors [26]. The affinity of these naive precursors for
the immunogens, along with the precursors frequency,
are important variables for the successful colonization of
GCs by these lineages [27]. In this context our theoretical
work defines a natural affinity threshold in proximity of
the extinction time peak (cf. fig. 6B). Designed immuno-
gens in vaccines should aim at binding a target progenitor
cell with affinity around this peak, and not much lower.
Theory suggests that the progeny of such a cell will reside
in the GC for a long enough time to have a non-negligible
chance of accumulating enough mutations to increase the
affinity for the Ag. A progenitor with lower affinity in-
stead might be removed too quickly from the GC to be
able to accumulate sufficient mutations.

The results obtained here could be extended in dif-
ferent directions. For instance it would be interest-
ing to investigate how stochasticity and permissiveness
in selection influence survival probability. These effect,
which are supposed to play a major role in AM against
complex pathogens [13, 28], might confer an affinity-
independent contribution to the survival probability and

2 While their number is not known with accuracy, it could range
from many tens to few hundreds since spleen sections revealed
around 20-50 GCs in mice [25].
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FIG. 9. A: values of the power expansion coefficients in eq. (43) as functions of the progenitor survival probability γ̃ = PAg.
Both c4 and c3 are null at the critical value γ = 1/2. B,C,D: perturbations to the probabilities qn due to weak mutations (cf.
eq. (36), with σ = 0.05) for three different progenitor affinities, corresponding to γ = 0.4, 0.5, 0.6 (B,C and D respectively).
The perturbation ∆qn = qn − q0

n is evaluated as the difference between the probability of lineage extinction at progeny size
n without (q0

n) and with (qn) mutations. These were evaluated by performing 108 numeric simulations for each of the two
conditions. In the plots we report the value ∆qn (4γ(1 − γ))−n from simulations (blue) and compare it with the theoretical
prediction (orange). The value of n at which |∆qn| = 10% |q0

n| sets an upper limit for the validity of the theory (green).

increase the survival probability and extinction time of
low-affinity cells. Another interesting direction would be
the extension of these results to the case of mutant Ags.
Understanding how maturation plays out in the pres-
ence of multiple Ag mutants is currently an open issue,
whose solution could lead to the development of vacci-
nation strategies against mutable pathogens such as HIV
[8, 29, 30]. One could extend our model by considering
that a single cell possesses different affinities for each Ag
mutant. These affinities are potentially correlated, de-
pending on the similarity between the different mutants,
and so is the effect of mutations. Taking this into account
one could define mutation and selection probabilities in
the presence of multiple Ag mutants, and use a similar
approach to the one introduced in this paper to evaluate
the lineage and population survival probability.

Acknowledgments: We are deeply grateful to Jean
Baudry, Arup Chakraborty and Klaus Eyer for many use-
ful discussions and interactions.

Appendix A: Model parameters choice

The values of the parameters are reported in table I,
and were chosen based on existing literature.

Mature GCs have a B-cells population consisting of
a few thousands cell [31–33]. We therefore set the ini-

tial and maximum size of the population equal to Ni =
Nmax = 2500. This is in agreement with [5] which re-
ports around 3000 cells per GC. However we stress that
GCs are heterogeneous in size [25]. Similarly to [13, 19]
we consider the duration of a turn of evolution to be
Tround ∼ 12h, which is consistent with timing of cell mi-
gration [4, 34]. Time in our model will be rescaled by this
standard quantity, so that the variable t has no dimen-
sion. Similarly, also the binding energy ε is dimensionless,
expressed in standard units of kBT . For simplicity fol-
lowing experiments that indicate a cell-cycle time of 12h
or longer [35] we consider a single division per round.
Other experiments indicate an average of two cell divi-
sion in the DZ [36]. We point out that, at the expense
of simplicity, our theory can also be extended to account
for an higher number of cell divisions.
In [18, 20] mutations occur at a rate of 0.5 per sequence
per division, and are silent, lethal or affinity affecting
with probabilities of respectively 0.5, 0.3, 0.2. This fixes
our effective mutation probabilities to psil = 0.75, plet =
0.15, paa = 0.1. To reproduce the fact that most of the
mutations are deleterious we pick for simplicity µM = σM.
This fixes the amount of beneficial mutations to ∼ 16%,
which is somewhat higher but still compatible with other
models [13, 18, 19] in which this fraction is set to 5%.
Moreover we set µM = 0.3 so as to set the mean effect
of beneficial mutations to 〈∆ε〉beneficial ∼ −0.15. This
value is slightly smaller than 〈∆ε〉beneficial ∼ −0.53 used
in [13], but this is compensated by the higher rate of
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parameter value description
µi, σi 4, 1.5 mean and variance of the population initial binding energy distribution

Ni 2500 initial population size
Nmax 2500 maximum carrying capacity

psil, plet, paa 0.75, 0.15, 0.1 probabilities of silent, lethal, affinity-affecting mutations
µM, σM 0.3, 0.3 mean and variance of distribution of affinity-affecting mutations

εAg 0 Ag-binding selection threshold energy
C see figure captions Ag concentration

pdiff 0.1 differentiation probability

TABLE I. standard values of model parameters. Unless otherwise specified these are the values used in simulations. The choice
of their value is discussed in appendix A

.

beneficial mutations in our model. The binding energy
distribution of the initial population is set to a Gaussian
with standard deviation σi = 1.5, which is compatible
with experimental data [13]. Since evolution of the pop-
ulation is invariant for shifts of the energy space we set
εAg = 0. Under this choice of gauge the zero in the
energy space is the threshold energy for Ag-binding se-
lection. Moreover we pick µi = 4 so that the difference
µi − εAg − logC ∼ 2σi for the values of Ag concentra-
tions considered in this work (C ∼ 5) and on average only
around 2% of cells from the initial population meet this
threshold. For simplicity we independently extract the
energy of each cell in the initial population from this ini-
tial distribution. By doing so we might overestimate the
diversity of the initial population. In fact, experiments
probing the clonal composition of GCs estimated that
early GCs contain around 50 to 200 different clonal fam-
ilies [33]. A more realistic initiation of our GCs would
require us to extract the energies of around a hundred
different founder cells, and let them duplicate without
mutating up to to the full GC capacity. This would gen-
erate a less homogeneous initial population than the one
we consider in our simulation, but would not otherwise
strongly impact our results. Lastly, as in [13, 19], the
probability of differentiation is set to pdiff = 0.1.

Appendix B: Estimation of ε̄ evolution

Including the effect of competition in our evaluation
of the population survival probability requires us to es-
timate the evolution of ε̄, defined in eq. (3). To obtain
a tractable approximation, we consider the deterministic
limit of big population size. In this limit the population
binding energy can be approximated with a continuous
distribution, and the state of the system is completely
determined by the density function ρt(ε). This function
represents the density of cells having energy ε at evolu-
tion round t, so that its integral is equal to the size of the
population, and its normalized version is the population
binding energy distribution. Evolution is expressed in
terms of operators acting on this function. In particular:

1. Cell duplication corresponds simply to doubling in

size:

A[ρ](ε) = 2× ρ(ε) (B1)

2. Mutations are represented as the convolution with
the mutation kernel K(∆ε) defined in eq. (1). No-
tice that the kernel K is not normalized, to account
for the contribution of lethal mutations. It acts on
the distribution as:

M[ρ](ε) =

∫
d∆ε ρ(ε−∆ε)K(∆ε) (B2)

3. Ag-binding selection is implemented by in the prod-
uct of the population function with the survival
probability eq. (2):

SAg[ρ](ε) = PAg(ε) ρ(ε) (B3)

4. Similarly, T-cell help selection is given by the prod-
uct with the survival probability eq. (3):

ST[ρ](ε) = PT(ε, ε̄) ρ(ε), with e−ε̄ =
1

N

∫
dε e−ε ρ(ε)

(B4)
Where N =

∫
dερ(ε) is the current population size.

5. Differentiation consists simply in a product involv-
ing the differentiation probability:

D[ρ](ε) = (1− pdiff) ρ(ε) (B5)

6. Finally, the carrying capacity constraint is imple-
mented again by a product and is operated only
if the size of the population exceeds the maximum
limit:

C[ρ](ε) = min{1, Nmax/N} ρ(ε) (B6)

Where again N =
∫
dερ(ε) is the current popula-

tion size.

From these definitions the evolution of the population
density function ρt(ε) can be expressed as:

ρt+1 = CDST SAg MA ρt (B7)
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Combining with the definition for ε̄ eq. (B4) provides a way for us to estimate the average evolution of ε̄t.
3
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[23] I. Balelli, V. Milǐsić, and G. Wainrib, Random walks on
binary strings applied to the somatic hypermutation of
b-cells, Mathematical biosciences 300, 168 (2018).
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