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This paper deals with an optimal linear insurance demand model, where the protection buyer can also exert time-dynamic costly prevention effort to reduce her risk exposure. This is expressed as a stochastic control problem, that consists in maximizing an exponential utility of a terminal wealth. We assume that the effort reduces the intensity of the jump arrival process, and we interpret this as dynamic self-protection. We solve the problem using a dynamic programming principle approach, and we provide a representation of the certainty equivalent of the buyer as the solution to an SDE. Using this representation, we prove that an exponential utility maximizer has an incentive to modify her effort dynamically only in the presence of a terminal reimbursement in the contract. Otherwise, the dynamic effort is actually constant, for a class of Compound Poisson loss processes. If there is no terminal reimbursement, we solve the problem explicitly and we identify the dynamic certainty equivalent of the protection buyer. This shows in particular that the Lévy property is preserved under exponential utility maximization. We also characterize the constant effort as a the unique minimizer of an explicit Hamiltonian, from which we can determine the optimal effort in particular cases. Finally, after studying the dependence of the SDE associated to the insurance buyer on the linear insurance contract parameter, we prove the existence of an optimal linear cover, that is not necessarily zero or full insurance.

Introduction

Self-protection activities, also called primary prevention measures, are actions taken by a protection buyer facing a loss risk, to reduce the probability that a loss happens, but not the severity of the loss. The losses 1 can be monetary or not, so examples include actions taken by individuals to enhance their health condition, i.e. to reduce the probability of getting an illness. The situation where the size of the loss is impacted by the effort is referred to as self-insurance, or secondary prevention.

In the seminal paper [START_REF] Ehrlich | Market insurance, self-insurance, and self-protection[END_REF], the arbitrage between market insurance and prevention measures is studied, in both cases of self-insurance and self-protection. In this paper, we analyze a self-protection model, in a timedynamic framework, for a general class of losses distribution, containing in particular all compound Poisson processes, which are close to actuarial models and practice. The processes we consider are described by a counting process N , modeling the claim arrivals and a one-dimensional probability distribution, modeling the cost, or severity of each claim. We formulate and solve an optimization problem in which an individual or institution chooses both the purchased quantity of market insurance and the exerted prevention effort by maximizing an expected utility. Since we focus here on self-protection, we assume that only the counting process is impacted by the effort. We include in the analysis a terminal reimbursement made by the insurer to the buyer, in order to incentivize prevention activities. Let us briefly mention two practical situations where terminal payments arise in insurance. Consider first the case of bonus malus systems in motor insurance [START_REF] Lemaire | Bonus-malus systems in automobile insurance[END_REF]: depending on the claim history, the buyer receives premium discounts for the following years, which can be interpreted as a monetary reward at the end of an insurance period. Terminal payments can also arise in a reinsurance context: it is common to find profit commission clauses in proportional reinsurance contracts. These clauses stipulate that the protection seller pays back to the ceding company a part of the profitability, when it exceeds a given threshold. These terminal payments are meant to encourage the protection buyers to take risk mitigation measures, such as quality underwriting in the case of reinsurance agreements.

Our main economic result is the impossibility for the protection seller to stimulate dynamic prevention efforts by the buyer without resorting to terminal reimbursements. Said otherwise, if there is no terminal payment, the protection buyer still performs an autonomous prevention effort to reduce her risk, but the optimal effort is constant, i.e. it is fixed at time 0, and then it does not change with time or with loss occurrences. We formulate the control problem in a weak sense: the protection buyer only controls the probability distribution of the loss process, and her effort is not observable by the insurance seller. In the case where the terminal reimbursement is null, our main result says that the protection buyer, who can choose among a large class of semimartingales distributions, should maximize her utility only in the subclass of Lévy processes, hence making the loss process homogeneous and Markovian.

Let us describe more precisely the modeling approach that we retain.

Summary of the approach

A Stochastic Control Problem. The utility maximization problem that we consider is formulated as a stochastic control problem, in which the protection buyer, through dynamic prevention effort, controls the jump intensity of the claim counting process. In a continuous-time setting, the distinction between self-protection and self-insurance is made clear by the decomposition of the compensator of the considered jump measures as a claim counting part and a claim cost part. More precisely, for a pure jump càdlàg process X defined on a probability space (Ω, F, P), let µ X be its associated random jump measure given by µ X (ω, [0, t], A) = s≤t 1 {∆Xs∈A} , for all A ∈ B(R), where ∆X s := X s -X s -. Provided it exists, let ν(ω, dt, dx) be the compensator of µ X . We assume in all the paper that ν is absolutely continuous with respect to the Lebesgue measure and takes the following form ν(ω, dt, dx) = λ t (ω) dG(x) dt, where G is a given cumulative distribution function that represents the cost of the claims. We emphasize that we allow the compensator of the jump measure to be random, since in our control setting, λ t will be impacted by the effort process, which will naturally depend on the driving randomness. Hence if the effort only impacts λ t , it is a self-protection framework, whereas if the effort only impacts the distribution G, it is a self-insurance setting. In this paper, we focus on the control of the jump intensity λ t (ω).

The controller optimally determines her linear insurance contract parameter and her dynamic effort process in order to maximize an expected exponential utility of her wealth at a terminal time T > 0.

Dynamic Programming Principle. In order to solve the formulated stochastic control problem, we first prove that it satisfies a dynamic programming principle (DPP). It says that the problem of determining the optimal prevention effort between times 0 and T can be simplified into determining the optimal effort first in [0, τ ], secondly in [τ, T ], and then pasting the solutions together, where τ is a stopping time for the natural filtration of the loss process. Because of the exponential utility framework, the DPP takes here a multiplicative form (see Lemma A.1) and this allows us to use martingale techniques to characterize the value of the problem. In particular, using the martingale representation property and some techniques from the theory of backward stochastic differential equations (BSDEs), we are able to link explicitly the certainty equivalent of the insurance buyer with the terminal reimbursement of the contract through a well-posed SDE. Such SDE includes the presence of a process H which gives the level of decrease of dynamic utility when a claim arrives. This representation also allows to characterize the optimal effort at each time t ≤ T as the minimizer of an explicit Hamiltonian. When the terminal reimbursement is null, the representation takes a particular homogeneous form which implies that H ≡ 0 and the optimal effort is constant in time and in ω.

The effort process of the protection buyer is unobservable by the insurance seller: our model thus includes moral hazard. Indeed, only the wealth process distribution is impacted by the effort and not the wealth values directly, since we consider a weak formulation of the control problem. The wealth distributions that we consider, seen as probability measures on the space of càdlàg trajectories from [0, T ] to R, are all equivalent. In particular, all these measures have the same negligible sets and this considerably simplifies the analysis. The initial distribution of the loss process, when there is no effort, is given by a particular Lévy process: a compound Poisson process. The fact that the optimal prevention effort is constant says that the Lévy property is preserved under exponential utility maximization, which is the main result in the case with no terminal reimbursement.

Related literature

The first systematic study of prevention effort, in the form of self-protection or self-insurance, was made in the economic literature in the seminal paper of Ehrlich and Becker [START_REF] Ehrlich | Market insurance, self-insurance, and self-protection[END_REF]. Their main result states that market insurance and self-insurance are substitutes, while surprisingly, market insurance and self-protection can be complements. These results triggered a large literature about prevention in insurance economics, in which the robustness of Ehrlich and Becker's results are tested. We refer the reader to [START_REF] Gollier | Risk and choice: A research saga[END_REF], [START_REF] Eeckhoudt | Economic and Financial Decisions Under Risk. Economic and Financial Decisions Under Risk[END_REF] (chapter 9) and to the survey paper [START_REF] Courbage | Prevention and precaution[END_REF] for an account of the large body of results around prevention. In the case of observable effort, prevention is well understood, both for self-protection and self-insurance. However, in the case of moral hazard, little is known on optimal choices under these two forms of risk reduction. [START_REF] Hölmstrom | Moral hazard and observability[END_REF] and [START_REF] Winter | Optimal insurance contracting under moral hazard[END_REF] both determine the form of the optimal insurance contract, under expected utility, respectively in case of self-protection, where a deductible is optimal, and in case of self-insurance, where this time low losses are fully covered while large losses are partially covered. When the criteria of both the protection buyer and seller are given by coherent risk measures, [START_REF] Bensalem | Prevention efforts, insurance demand and price incentives under coherent risk measures[END_REF] shows under moral hazard, that if the buyer's risk measure decreases faster in effort than his expected loss, optimal effort is non-decreasing in the insurance price with a potential discontinuity when optimal coverage switches from full to zero. On the contrary, if the decrease of the buyer's risk measure is slower than the expected loss, optimal effort may or may not be non-decreasing with the insurance price. Our results differ from these papers in various aspects. First, we fix the class of possible contracts, to consider only linear insurance covers. Note that this is not restrictive, since many contracts in practice take this form, in particular in health insurance. These contracts are also standard in a reinsurance context, under the name of quota-share. Secondly, our most important contribution is that we consider a continuous-time version of the problem of self-protection, using the full power and generality of semimartingale processes.

Risk reduction effort, in a time dynamic context is known as precaution in the economic literature (see [START_REF] Courbage | Prevention and precaution[END_REF]). The main issue there is how the knowledge of arrival of future "better" information impacts decisions today [START_REF] Henry | Investment decisions under uncertainty: the" irreversibility effect[END_REF], [START_REF] Epstein | Decision making and the temporal resolution of uncertainty[END_REF]. The definition of information taken in this literature dates back to [START_REF] Bohnenblust | Reconnaissance in game theory[END_REF] and is based on the notion of convex order between one-dimensional probability distributions. Our model is again very different as it relies on a filtration generated by a jump process to define a notion of information. The papers mentioned above deal with the precaution problem in discrete time, in a one or two period models. A more similar framework in the literature, would be the accident prevention problem in a Principal-Agent context. In such a model the Principal faces all the losses and the Agent performs a prevention effort. In a continuous-time setting, [START_REF] Biais | Large risks, limited liability, and dynamic moral hazard[END_REF], [START_REF] Capponi | Dynamic contracting: accidents lead to nonlinear contracts[END_REF], [START_REF] Pagès | A mathematical treatment of bank monitoring incentives[END_REF] and [START_REF] Hernández-Santibáñez | Bank monitoring incentives under moral hazard and adverse selection[END_REF] all consider costly effort to control the jump frequency of a stochastic process. Still in a Principal-Agent framework, [START_REF] Euch | Optimal make-take fees for market making regulation[END_REF] determines the optimal compensation scheme of a financial market maker, as well as the optimal quotes that he should display. The control problem introduced in [START_REF] Euch | Optimal make-take fees for market making regulation[END_REF] consists among other things in controlling the arrival intensity of a jump process, so it has strong methodological similarities with the control problem under study in our paper. We can mention two main reasons which sets us apart from the Principal-Agent framework. First, we do not study an optimization problem at the upper level of the insurance seller. Second, our insurance buyer both faces the losses and takes risk mitigation actions. Nonetheless, we point out that the particular case where the buyer chooses full coverage can be identified with the problem of an Agent hired by a Principal. Finally, let us mention that the problem of entropy minimization, under a martingale constraint is solved in [START_REF] Miyahara | Minimal entropy martingale measures of jump type price processes in incomplete assets markets[END_REF] in dimension 1, and in [START_REF] Esche | Minimal entropy preserves the lévy property: how and why[END_REF] and [START_REF] Andrusiv | On the minimal entropy martingale measure for lévy processes[END_REF] in dimension d ≥ 1. All these papers show, using different arguments, which are also different from the arguments in this paper, that entropy minimization preserves the Lévy property: in particular, the optimal jump measure compensator is constant. This is reminiscent of our result in the absence of terminal reimbursement, where the Lévy property is preserved under exponential utility maximization.

Structure of the paper

Section 2 discusses the stochastic control problem at hand and our main assumptions. In Section 4.1, we determine the optimal effort of the protection buyer and we write the value of the problem in terms of the solution of an associated SDE. Section 4.2 is dedicated to the optimal insurance cover: we prove that it exists by studying the dependence of the SDE in the linear insurance contract. Section 3 is dedicated to the case of no terminal reimbursement, while Section 3.1 illustrates the results in a particular case.

Model and Assumptions

Let (Ω, F, P 0 ) be a fixed probability space and N be a Poisson process of fixed intensity λ 0 > 0 under P 0 . Consider a risk averse economic agent with initial wealth ω 0 , who is facing potential losses, whose distribution takes the form of a Compound Poisson process. The individual has the possibility to enter a proportional insurance contract for a period of time [0, T ], where she chooses her level of insurance denoted α ∈ [0, 1], for which she pays a premium Π(α) ≥ 0. The insurance coverage is assumed to be fixed over [0, T ] and the premium Π(α) is paid at time 0. In addition, the insurer offers the protection buyer a terminal reimbursement at time T , in order to encourage time-dynamic self-protection actions to reduce the occurrence of the losses. The prevention effort is assumed to be a predictable1 process e with values in [0, ∞). Prevention efforts come with a monetary cost function c, that is assumed to be increasing, twice continuously differentiable and convex. We also assume that lim e→∞ c(e) = ∞. We assume that the insurance buyer determines her level of effort and of purchased market insurance by maximizing her expected utility at terminal time T . The terminal reimbursement is described by an

F T -measurable random variable, ξ α ∈ [0, Π(α)].
Wealth process dynamics. Let X e denote the wealth process of the insurance buyer, after obtaining coverage α. Its value at time T is given by

X e T = ω 0 + ξ α -Π(α) - T 0 c(e s )ds -(1 -α)J T , (2.1) 
where J t is a compound Poisson process, written as

J t = Nt i=1 Z i , 0 ≤ t ≤ T,
where (Z i ) i≥1 is a sequence of non-negative independent and identically distributed random variables with cumulative distribution function denoted G and independent of N . Recall that under P 0 , N is a Poisson process with intensity λ 0 . At a jump time of J, we say that an accident occurred and it affects negatively the wealth process X e . The random variable Z i quantifies the cost of the i-th accident, and under the proportional insurance contract, the insured person only pays the fraction (1 -α)Z i of each accident's cost. We denote by F = (F t ) t≥0 the P 0 -completion of the filtration generated by the process J.

Let µ J be the jump measure associated to J, so that J can be written as

J t = t 0 ∞ 0 xµ J (ds, dx).
Furthermore, we assume that the jump sizes are bounded by a constant M J > 0. As a consequence, the support of the jump size distribution is contained in [0, M J ]. Note that Equation (2.1) can be rewritten using the random measure µ J as

X e T = ω 0 + ξ α -Π(α) - T 0 c(e s )ds -(1 -α) T 0 ∞ 0 xµ J (ds, dx).
Note that we do not take into account the time-value of money. This is for simplicity and the approach we will use to solve the problem still works in the presence of an interest rate.

Effort. The insurance buyer undertakes self-protection activities, which means that her actions reduce the probability of a claim arrival, but not the severity of the claims: this is included in our model in the fact that she controls the intensity e → λ(e) of the compound Poisson process. We assume that the function λ is non-increasing, and satisfies λ(0) =: λ 0 > 0 and lim e→∞ λ(e) =: λ ∞ > 0.2 For a given effort process (e t ) 0≤t≤T , we introduce the probability measure P e , defined by the following change of measure on (Ω, F T )

D e T := dP e dP 0 = e -T 0 (λ(es)-λ 0 )ds+ T 0 (log(λ(es))-log(λ 0 ))dNs , (2.2) 
so that D e is an F-adapted martingale. The compensated measure associated to µ J under P e , denoted μe J , is defined by μe J (dt, dx) = µ J (dt, dx) -λ(e t )dtdG(x).

We define Σ, the set of prevention efforts verifying E P 0 e γp T 0 c(es)ds < ∞ for some p > 1, such processes are said admissible.

Reimbursements. The F T -measurable random variable ξ α represents the payment made to the protection buyer by the protection seller at the end of the period. A common particular case found in practice is ξ α = 0, in which case we are able to solve the optimization problem described below explicitly. To have an example where ξ α depends on α, consider the case of a proportional reinsurance treaty, in which the protection seller takes in charge a fixed proportion α of the losses. These contracts come with a clause of profit commission, saying that the reinsurer pays back to the insurer a negociated percentage of his profits, if they are positive. In other terms, we have a reimbursement ξ α = p(B -αJ T ) + , where p ∈ (0, 1) is the profit commission rate, and B > 0 is a constant.

A more challenging example is when ξ α depends on the claims history in a non Markovian way. Let us give another example inspired from real reinsurance contracts: let us consider the particular case of the so-called ECOMOR contracts. Let be a fixed positive integer and let (Z * 1 , . . . , Z * N T ) denote the increasing order statistics associated to the random vector (Z 1 , . . . , Z N T ). The reinsured amount in the ECOMOR treaty is then given by

R := Nt i=1 Z i -Z * Nt- + ,
if N T > , and R = 0 otherwise. Said differently, the contract covers the part of the largest claims above the random threshold Z * N T -. Now, it is also common to have a "No claim bonus" clause in reinsurance contracts, stating that the protection buyer will receive a fixed payment b α > 0 if R = 0. To sum up, the situation where an insurer buys both a linear protection (quota-share treaty) and an ECOMOR contract with a no claim bonus falls in our model description with ξ α = b α 1 {R =0} , which clearly depends on the whole claims history.

The optimization problem. Let u be the following exponential utility function

u(x) = - 1 γ exp(-γx), x ∈ R,
where γ > 0 is a constant relative risk aversion coefficient. We assume that the insurance buyer maximizes her expected utility at terminal time

T , E e [u(X e T )]
, where E e denotes the expectation with respect to the measure P e . As ω 0 is a constant independent of α and e, the utility maximization problem of the insurance buyer reduces to

V := sup (α,e)∈[0,1]×Σ E e - 1 γ exp -γ ξ α -Π(α) -(1 -α) T 0 ∞ 0 xµ J (ds, dx) - T 0 c(e s )ds , (2.3) 
where V denotes the value of the problem. We can write V as

V = sup α∈[0,1] e γΠ(α) V α , (2.4) 
where

V α := sup e∈Σ E e - 1 γ e -γ(ξ α -(1-α) T 0 ∞ 0 xµ J (ds,dx)-T 0 c(es)ds) , (2.5) 
i.e. we first solve the stochastic control problem for fixed α, and then we maximize utility over the real variable α. In the next section, we obtain a representation of V α by means of an SDE (via BSDEs techniques): so in order to solve the full problem, we have to understand the dependence of the solution on α, which is the purpose of Section 4.2.

Remark 2.1. Notice that the for every e ∈ Σ the expectation in (2.3) is finite, due to the integrability condition satisfied by the admissible efforts. Indeed, in the proof of Theorem 4.1, step 1, we can see that there exists q > 1 such that L T (0, e) ∈ L q .

We will assume that the problem V α has a solution, that is, there exists an optimal prevention effort for each level of coverage.

Assumption 2.1. For every α ∈ [0, 1] there exists a solution to problem (2.5).

Remark 2.2. We can assume in our problem that the buyer can reject the insurance contract if her value is not high enough, that is she will take the cover only if V ≥ R 0 for some reservation value R 0 ≥ 0. In this case rejection of the contract simply means choosing α = 0. Some useful spaces. For β ≥ 0, we define the following spaces, that will be used in Theorem 4.1 to provide integrability conditions to the stochastic processes associated to the problem of the insurance buyer:

L 2 β := ξ is an R-valued, F T -measurable random variable with ξ 2 L 2 β := E 0 e βT |ξ| 2 < ∞ , S 2 β := φ is an R-valued O-semimartingale with càdlàg paths and φ 2 S 2 β := E 0 sup t∈[0,T ] e βt |φ t | 2 < ∞ , H 2, β := H : (Ω × [0, T ] × R, P ⊗ B(R)) -→ (R, B(R)), H 2, β := E 0 T 0 ∞ 0 e βt |H t (x)| 2 λ 0 dG(x)dt < ∞ , H 2 β := φ is an R-valued O-semimartingale with càdlàg paths and φ 2 H 2 β := E 0 T 0 e βt |φ t | 2 dt < ∞ ,
where O denotes the optional sigma-algebra and P denotes the predictable sigma-algebra on Ω × [0, T ]. When β = 0, we suppress it from the notation. We also define the two following spaces for dt ⊗ dP 0 -almost every

(t, ω) ∈ R + × Ω H t,ω := {H : (R, B(R)) → (R, B(R)), |||H(•)||| t (ω) < ∞}, H := H : Ω × [0, T ] × R → R, H t (ω, •) ∈ H t,ω for dt ⊗ dP 0 -almost every (t, ω) ∈ R + × Ω , where |||H t (ω, •)||| t (ω) := R H t (ω, x)λ 0 dG(x), 0 ≤ t ≤ T . From [33], Lemma 2.14, the space (H t,ω , ||| • ||| t (ω)) is Polish for dt ⊗ dP 0 -almost every (t, ω) ∈ R + × Ω.

The case of no reimbursement

We start our study with the simplest case in which there is no reimbursement in the contract, that is ξ α = 0 for every α ∈ [0, 1]. These contracts are common in practice, for example in health insurance, where there are usually no bonus malus systems. 3In this setting, the main observation is that the problem of the buyer (2.5) is Markovian, so we can thus use the standard techniques in stochastic control, (see for instance [START_REF] Kharroubi | Feynman-kac representation for hamilton-jacobi-bellman ipde[END_REF] or [START_REF] Øksendal | Applied stochastic control of jump diffusions[END_REF]), to obtain the corresponding partial integro-differential equation (PIDE) which is linked to the problem V α . In this case the PIDE is given by

∂ ∂t w(t, x) + sup e∈[0,+∞) γc(e)w(t, x) + λ(e) +∞ 0 (w(t, x + ) -w(t, x))dG( ) = 0, (t, x) ∈ [0, T ) × [0, ∞), w(T, x) = - 1 γ e γ(1-α)x , x ∈ [0, ∞),
where the variable x represents the state of the problem, that is the value of the process J. The previous equation can be solved explicitly, and its solution is given by

w(t, x) = - 1 γ e βα(T -t) e γ(1-α)x ,
where

β α := γ inf e∈[0,+∞) [c(e) + λ(e) γ (L G (γ(1 -α)) -1)
] and L G (y) := ∞ 0 e yx dG(x) denotes the Laplace transform of G. It is easy to see that the coefficient functions in our model satisfy the Lipschitz conditions that ensure a Verification result holds, such as [31, Theorem 3.1] rewritten for the exponential utility case.

Let us assume that the infimum defining β α is attained at a unique point, noticing that the existence of a minimizer holds true because the function inside the bracket is coercitive. We have therefore the following explicit result in the case of no reimbursement, which identifies the value of the insurance problem and the optimal deterministic and constant effort the buyer needs to make in order to maximize her utility. Theorem 3.1. Let e be the minimizer of the following one-dimensional problem

inf e∈[0,∞) c(e) + 1 γ λ(e) [L G (γ(1 -α)) -1] . (3.1)
Then the constant control e t (ω) := e is the unique optimal control of problem (2.5). Moreover, the value of the problem under coverage α admits the following explicit expression

V α = - 1 γ exp γT c(e ) + 1 γ λ(e ) [L G (γ(1 -α)) -1] .
As already mentioned, Theorem 3.1 can be proved by the standard techniques in stochastic control, given that the solution to the PIDE is a smooth function. However, we refrain to do so and we present in Appendix D an alternative proof which is a direct application of the general solution to the problem with reimbursement.

Remark 3.1. Let us provide an intuition for the minimization problem appearing in (3.1). If one assumes that the optimal effort is deterministic and constant in time, then

E e - 1 γ exp -γ -Π(α) -(1 -α) Nt i=1 Z i - T 0 c(e s )ds = - 1 γ exp γΠ(α) + γ T 0 c(e s )ds E e exp γ(1 -α) Nt i=1 Z i = - 1 γ exp γΠ(α) + γ T 0 c(e s )ds + (L G (γ(1 -α)) -1) T 0 λ(e s )ds ,
from which it can be seen directly that the optimal prevention effort is given by the minimizer in (3.1). Of course, the a priori assumption that the optimal effort is deterministic and constant in time is very strong and our analysis rigorously shows this, when there is no reimbursement.

The main consequence of Theorem 3.1 is that without terminal reimbursement the optimal effort is constant. This can be extended a bit further, for instance to the case of a deterministic reimbursement ξ α = c α . In this case the solution to Problem (2.5) is the same and V α changes by the factor e -γcα with respect to the value when there is no reimbursement. From this result we can deduce that the insurance buyer has an incentive to modify her prevention effort dynamically only in presence of a terminal reimbursement which depends on the total losses. More precisely, when the terminal payment does not depend on the process (J t ) t∈[0,T ] , the insurance buyer should not have any incentive to modify her effort dynamically.

Example: Linear cost and linear effect on the frequency

In this section, we present a simple example in which problem (3.1), the choice of the optimal effort, can be solved explicitly. Assume that the intensity of the Poisson process N is linear in e, equal to

λ(e) = 1 -e if e ≤ 1 -ε, ε if e > 1 -ε,
with ε ∈ (0, 1). This type of function allows to reduce the intensity until a minimum value of ε. Exerting an effort e has a cost of c(e) = ce with c > 0. The individual will not exert an effort bigger than 1 -ε as the intensity cannot further be reduced by making a bigger effort. Note that λ 0 = 1.

In this particular case, the maximization problem (2.3) becomes

V = sup (α,e)∈[0,1]×Σ E e - 1 γ e -γ(-Π(α)-(1-α) t 0 ∞ 0 xµ J (ds,dx)-c T 0 esds) = sup α∈[0,1] e γΠ(α) V α .
As explained in Section 2, we first find the value of V α for each α ∈ [0, 1] and then we find the optimal insurance cover for a particular type of premium. We have therefore Proposition 3.1. The value V α = -1 γ e -γY α 0 is given by

(1) If L G (γ(1 -α)) ≤ cγ + 1 then e ≡ 0 and V α = -1 γ e (L G (γ(1-α))-1)T .
(

) If L G (γ(1 -α)) > cγ + 1 then e ≡ 1 -ε and V α = -1 γ e (ε(L G (γ(1-α))-1)+γc(1-ε))T . 2 
Remark 3.2. We can see in the previous proposition, that in this example the optimal prevention effort can decrease with the insurance coverage and therefore be complements. In case a zero coverage enforces maximal effort, that is L G (γ) > cγ + 1, there will exist a threshold value α 0 such that for every coverage greater than α 0 the insured person will feel secure enough to make no effort.

Remark 3.3. We would like to mention that in the case of linear cost and linear effect on the frequency, an explicit optimal effort can be obtained even in the presence of a terminal reimbursement. We provide the explicit form in Remark D.1, which requires the results presented in the next section.

We assume next that the insurance premium is given by

Π(α) := α(1 + θ)E 0 [J T ] = α(1 + θ)T E 0 [Z i ],
where θ ≥ 0 is the safety loading that reflects the insurance price. For this particular premium, we can find explicitly the optimal coverage of the buyer. To simplify the proof of the next proposition, suppose that Z i = 1 for all i so then J is equal to the Poisson process N of intensity λ(e) under P e .

Proposition 3.2. There exist values θ 1 ≤ θ 2 such that the optimal coverage is given by

α (θ) = 1 - log(1 + θ) γ 1 {1+θ<θ 1 } + 1 - log( 1+θ ε ) γ 1 {1+θ<θ 2 } . If e γ ≤ 1 + cγ, then θ 1 = e γ and θ 2 = 1. If not, ε(1 + cγ) ≤ 1 + θ i ≤ e γ , for i = 1, 2.
Let us comment the results in the example of this section. Depending on the value of θ, the buyer could decide to take insurance or not. When it is the case, she can elect an intermediate cover, meaning a cover that may not be full cover. As a function of the price θ, the coverage choice is decreasing: it can decrease continuously from 1 to 0 if (1 + θ 2 ) = εe γ , or it will jump suddenly to no-coverage if not. This differs from some results in the literature, for instance [START_REF] Bensalem | Prevention efforts, insurance demand and price incentives under coherent risk measures[END_REF], where the optimal proportion of coverage α is either 0 or 1.

Numerical results

We present some numerical illustrations of the results obtained in the previous subsection. We set the parameters T = 1, γ = 0.5 and c = 10. Figure 1 and Figure 2 show the results in Proposition 3.1, that is the optimal effort of the insurance buyer and the value of her problem as a function of the coverage α. We assumed in this example that the losses are distributed uniformly over the interval [0, 10].

Figure 3 shows the choice of the optimal coverage as a function of the loading factor θ, the result obtained in Proposition 3.2. Recall that such result holds under the assumption that the process J is a Poisson process.

With the parameters mentioned above we fall into the first case in the proof of Proposition 3.2. The optimal coverage, as a function of the loading factor, decreases continuously from full-coverage to no-coverage.

Solving the general insurance problem

We move now to the general problem with a terminal reimbursement, in which additional tools are required to deal with the non-Markovian otimization problem of the insurance buyer. 

Optimal prevention effort

In this section, we fix α ∈ [0, 1] and we find the value of V α . To do so, we follow the approach of [START_REF] Sannikov | A continuous-time version of the principal-agent problem[END_REF] and [START_REF] Cvitanić | Dynamic programming approach to principal-agent problems[END_REF] and introduce the dynamic continuation utility process. We solve the problem of self-protection by using the dynamic programming principle, which associates the certainty equivalent of the buyer to a particular stochastic differential equation. Let us mention that there are some similarities between the techniques used in the Bellman Optimal Principle (see for instance [START_REF] Karoui | Les aspects probabilistes du contrôle stochastique[END_REF], [START_REF] Lim | Exponential utility maximization in an incomplete market with defaults[END_REF] and [START_REF] Brachetta | A BSDE-based approach for the optimal reinsurance problem under partial information[END_REF]) and our approach, which can thus be understood as a reformulation of the former one.

For e ∈ [0, ∞) and h : (R, B(R)) → (R, B(R)), we define the function f α by

f α (e, h) := c(e) + λ(e) γ ∞ 0 (exp [γ(h(x) + (1 -α)x)] -1) dG(x) - ∞ 0 λ 0 h(x)dG(x), (4.1) 
and

F α (h) := inf e∈[0,∞) f α (e, h). (4.2) Assumption 4.1.
The maps e → λ(e) and e → c(e) are such that for every h the function f α (•, h) defined in (4.1) admits a unique minimizer in [0, +∞), that we denote by e (h).

Note that this assumption is satisfied if both λ and c are strictly convex functions of e. In Section 3.1, we provide an example where λ and c are piecewise linear and where Assumption 4.1 is still satisfied.

We present now the main result of this section, whose proof is postponed to Appendix B. 

Y α t := Y α 0 + t 0 F α (H α s )ds - t 0 ∞ 0 H α s (x)μ 0 J (ds, dx), t ∈ [0, T ],
belongs to S 2 , has bounded jumps and satisfies Y α T = ξ α .

(b) The optimal prevention effort for problem (2.5) is given by

e t = e (H α t (•)). (4.3) 
(c) The value of the problem under coverage α, is given by

V α = - 1 γ e -γY α 0 . (4.4) 
Let us comment on the previous result before concluding the section. It is proved in the appendix that the dynamic version of the value of the buyer satisfies V α t = -1 γ e -γY α t for any t ∈ [0, T ]. The value Y α t can be interpreted thus as the deterministic amount of cash that the insurance buyer would pay at time t rather than taking a chance on an uncertain higher loss after time t. This value Y α t is known in the economic literature as the certainty equivalent at time t. The predictable function H α can be thought of as the sensitivity to accidents, as it tells by how much the process Y α decreases when there is a jump. Note that the optimal effort of the buyer is completely characterized by the function H α . Theorem 4.1 means that by making the optimal prevention effort, the insurance buyer gets her certainty equivalent before entering the insurance contract at time 0. She is indifferent then between losing the amount in cash Y α 0 or running the project with a coverage α and perform the optimal effort over the period [0, T ].

Optimal insurance cover

Recall Problem (2.4)

V = sup α∈[0,1] e γΠ(α) V α ,
where the value of V α is given by Theorem 4.1 and Π(α) is the insurance premium paid for a linear insurance coverage α. We study now this optimization problem under the following assumptions.

Assumption 4.2. The insurance premium Π is a lower semicontinuous, non-decreasing function of α.

In the actuarial science literature, various premium functionals are analyzed (see [START_REF] Laeven | Premium Calculation and Insurance Pricing[END_REF] or [START_REF] Deelstra | Risk theory and reinsurance[END_REF]), such as the safety loading, the standard deviation principle, the zero utility principle, the Escher principle etc. For all these cases, the premium Π would be continuous and non decreasing, and satisfies in particular our mild Assumption 4.2. We also assume the following regularity condition on the reimbursements.

Assumption 4.3.

There exists a constant L > 0 such that

ξ α 1 -ξ α 2 2 L 2 ≤ L|α 1 -α 2 | 2 , ∀α 1 , α 2 ∈ [0, 1].
Let us give some examples of reimbursements satisfying the previous assumption. We have of course the contracts with no reimbursement, that is, ξ α = 0 for every α ∈ [0, 1]. We can mention also the reinsurance contracts with a clause of profit commission discussed in Section 2, that is, ξ α = p(B -αJ T ) + . Finally, the ECOMOR contracts with a no claim bonus, that is ξ α = b α 1 R =0 , satisfy the previous assumption if the map α → b α is Lipschitz.

We present now the main result of this section, whose proof is deferred to Appendix C.

Theorem 4.2. Under Assumptions 4.2 and 4.3, there exists an optimal insurance cover, denoted α . The value of the insurance problem is then given by V = V α e γΠ(α ) .

Conclusion

We considered in this paper an optimal insurance demand model, where the protection buyer has the possibility to exert a costly, non observable effort to reduce the probability that a loss occurs. This corresponds to a self-protection model in continuous time, formulated as a stochastic control problem in the weak sense. After proving that this problem satisfies a dynamic programming principle, we use it to connect the value of the insurance buyer with a stochastic differential equation. We prove that the only way the seller can provide time dynamic incentives is through the presence of a terminal reimbursement which depends on the cummulative losses. Indeed, if there is no reimbursement, the associated SDE is explicitly solvable and the optimal prevention effort process of the buyer is constant. The optimal effort is determined at time 0, and there is no incentive for the insured to modify it afterwards.

Our results heavily depend on the fact that the considered process distributions are all equivalent. If the effort also impacted the jumps size distribution, the process laws would not necessarily be absolutely equivalent to a reference probability measure, and much more arguments would be needed to solve the optimization problem, that we leave for further research.

Appendices

A Dynamic programming principle

For all F-stopping time τ with values in [t, T ] and for any e ∈ Σ τ , we define

L T (τ, e) = E e τ - 1 γ e γ(-ξ α +(1-α) T τ ∞ 0 xµ J (ds,dx)+ T τ c(es)ds) ,
where E e τ denotes the conditional expectation with respect to F τ under the probability measure P e and Σ τ denotes the restriction of Σ to the controls on [τ, T ]. The continuation utility is defined for all F-stopping time τ by V α τ = ess sup e∈Στ L T (τ, e). (A.1)

We have then the following Dynamic Programming Principle.

Lemma A.1. Let t ∈ [0, T ] and τ be a predictable F-stopping time with values in [t, T ]. Then

V α t = ess sup ε∈Σ E ε t e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ t c(εs)ds) V α τ . Proof. Denote Ṽ α t := ess sup ε∈Σ E ε t e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ t c(εs)ds) V α τ . First we prove that V α t ≤ Ṽ α t .
From Equation (A.1) and by the tower property we have

V α t = ess sup ε∈Σ E ε t e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ t c(εs)ds) E ε τ - 1 γ e γ(-ξ α +(1-α) T τ ∞ 0 xµ J (ds,dx)+ T τ c(εs)ds)
.

For ε ∈ Σ, recall the definition of D ε given in (2.2). From Bayes' formula and by noticing that for all ε ∈ Σ,

D ε T D ε τ
does not depend on the values of ε before time τ , we have

E ε τ - 1 γ e γ(-ξ α +(1-α) T τ ∞ 0 xµ J (ds,dx)+ T τ c(εs)ds) = E τ - D ε T D ε τ 1 γ e γ(-ξ α +(1-α) T τ ∞ 0 xµ J (ds,dx)+ T τ c(εs)ds) ≤ ess sup e∈Στ E e τ - 1 γ e γ(-ξ α +(1-α) T τ ∞ 0 xµ J (ds,dx)+ T τ c(es)ds) = V α τ .
Hence V α t ≤ Ṽ α t . Now we prove V α t ≥ Ṽ α t . Let ε ∈ Σ and e ∈ Σ τ and define ν u = ε u 1 0≤u<τ + e u 1 τ ≤u≤T , notice that ν belongs to Σ. By the definition of V α t and by the tower property we have

V α t ≥ E ν t - 1 γ e γ(-ξ α +(1-α) T t ∞ 0 xµ J (ds,dx)+ T t c(νs)ds) = E ν t - 1 γ e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ t c(εs)ds-ξ α +(1-α) T τ ∞ 0 xµ J (ds,dx)+ T τ c(es)ds) = E ν t e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ t c(εs)ds) E ν τ - 1 γ e γ(-ξ α +(1-α) T τ ∞ 0 xµ J (ds,dx)+ T τ c(es)ds)
.

From Bayes' formula

E ν τ - 1 γ e γ(-ξ α +(1-α) T τ ∞ 0 xµ J (ds,dx)+ T τ c(es)ds) = E τ - D ν T D ν τ 1 γ e γ(-ξ α +(1-α) T τ ∞ 0 xµ J (ds,dx)+ T τ c(es)ds) = E τ - D e T D e τ 1 γ e γ(-ξ α +(1-α) T τ ∞ 0 xµ J (ds,dx)+ T τ c(es)ds) = L T (τ, e),
and

V α t ≥ E ν t e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ t c(εs)ds) L T (τ, e) .
From Bayes' formula and by the tower property

E t D ν T D ν t e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ t c(εs)ds) L T (τ, e) = E t D ν τ D ν t e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ t c(εs)ds) L T (τ, e) . Notice that D ν τ D ν t = D ε τ D ε t . Therefore V α t ≥ E ε t e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ
t c(εs)ds) L T (τ, e) and this inequality holds for all e ∈ Σ τ .

To conclude, note that the family (L T (τ, e)) e∈Στ is directed upwards. Indeed, for any e 1 and e 2 in Σ τ , define e 3 := e 1 1 L T (τ,e 1 )≥L T (τ,e 2 ) + e 2 1 L T (τ,e 1 )<L T (τ,e 2 ) .

Note that e 3 belongs to Σ τ , since L T (τ, e 2 ) and L T (τ, e 1 ) are F τ -measurable and τ is predictable. We also have the following inequality L T (τ, e 3 ) ≥ max {L T (τ, e 1 ), L T (τ, e 2 )} .

From [START_REF] Neveu | Martingales à temps discret[END_REF], Proposition VI.1.1, there exists a sequence (e n ) n∈N in Σ τ such that (L T (τ, e n )) n∈N is non-decreasing almost surely and ess sup e∈Στ L T (τ, e) = lim n→∞ L T (τ, e n ) almost surely. We have finally from the monotone convergence theorem

V α t ≥ lim n→∞ E ε t e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ t c(εs)ds) L T (τ, e n ) = E ε t e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ t c(εs)ds) lim n→∞ L T (τ, e n ) = E ε t e γ((1-α) τ t ∞ 0 xµ J (ds,dx)+ τ t c(εs)ds) V α τ .

2

B Proof of Theorem 4.1.

We have mentioned that Theorem 4.1 is a consequence of the dynamic programming principle and the theory of BSDEs. To begin this section, consider the following BSDE with jumps

Y α t = ξ α + T t ∞ 0 H α s (x)μ 0 J (ds, dx) - T t F α (H α s (•))ds, 0 ≤ t ≤ T. (B.1)
We are interested in solutions to the BSDE with bounded jumps, as we will show that solving the problem of self-protection is equivalent to solving this BSDE. We start with an auxiliary result.

Lemma B.1. Let Y α : (Ω × [0, T ], O) -→ (R, B(R)), H α : (Ω × [0, T ] × R, P ⊗ B(R)) -→ (R, B(R) satisfy (B.1) and suppose that Y α has bounded jumps. Then (Y α , H α ) ∈ S 2 β × H 2, β for any β ≥ 0.
Proof. Let β ≥ 0 be fixed. First, let us prove that H α ∈ H 2, β . As proved in [START_REF] Morlais | A new existence result for quadratic bsdes with jumps with application to the utility maximization problem[END_REF], since the jumps of Y α are bounded, there exists a predictable function Hα such that for all t ∈ [0, T ],

∞ 0 | Hα t (x) -H α t (x)| 2 λ 0 dG(x) = 0, P 0 -a.s., (B.2) and | Hα t (x)| ≤ M h ∀ t ∈ [0, T ], ∀ α ∈ [0, 1]. (B.3)
This gives

||H α || 2, β = || Hα || 2, β ≤ E T 0 ∞ 0 e βt M 2 h λ 0 dG(x)dt ≤ M 2 h λ 0 e βT β .
We will therefore consider this version of H α from now on. Next, let us prove that Y α ∈ S 2 β by showing that its norm in S 2 β is finite

||Y α || 2 S 2 β = E 0 sup t∈[0,T ] e βt |Y α t | 2 .
Notice that

|Y α t | ≤ |ξ α | + T t ∞ 0 |H α s (x)|μ 0 J (ds, dx) + T t |F α s (H α s (•))|ds.
Moreover since H α is bounded, it follows that the optimizer in F α is bounded from above by a constant that we denote e max . Then, we have that the optimization of f α over e is actually over a set of the form [0, e max ]. Hence

|F α (H α s (•))| ≤ c(e max ) + λ 0 γ 1 + e γM h M J 0 e γ(1-α)x dG(x) + λ 0 M h =: K M h .
Leading to

|Y α t | ≤ |ξ α | + M h (N T -N t ) + (K M h -λ 0 M h )(T -t).
Then from Cauchy-Schwarz inequality, we obtain

|Y α t | 2 ≤ 3 |ξ α | 2 + M 2 h (N T -N t ) 2 + (K M h -λ 0 M h ) 2 (T -t) 2 ≤ 3 Π(α) 2 + M 2 h N 2 T + (K M h -λ 0 M h ) 2 T 2 .
Finally, we have

||Y α || 2 S 2 β ≤ 3E 0 sup t∈[0,T ] e βt Π(α) 2 + M 2 h N 2 T + (K M h -λ 0 M h ) 2 T 2 .
As the term inside the parenthesis does not depend on t and since N T follows a Poisson distribution of parameter λ 0 T under P 0 , we obtain

||Y α || 2 S 2 β ≤ 3 e βT Π(α) 2 + M 2 h (λ 2 0 T 2 + λ 0 T ) + (K M h -λ 0 M h ) 2 T 2 < ∞.
2 We present now the main result of this section, from which Theorem 4.1 follows directly. We characterize the certainty equivalent of the insurance buyer as the unique solution to the BSDE we considered.

Proposition B.1.

There exists a unique solution (Y α , H α ) ∈ S 2 × H 2, to BSDE (B.1) such that Y α has bounded jumps. The optimal prevention effort for problem (2.5) is given by

e t = e (H α t (•)).
Moreover, the process Y α satisfies

V α t = - 1 γ e -γY α t , ∀t ∈ [0, T ].
Proof. The proof follows the ideas of the proof of Theorem 3.1 in [START_REF] Euch | Optimal make-take fees for market making regulation[END_REF], and is divided in six steps.

Step 1. For e ∈ Σ, let us define the process

U e t := V α t e γ((1-α) t 0 ∞ 0 xµ J (ds,dx)+ t 0 c(es)ds) .
Lemma A.1 implies that the process U e is a P e -supermartingale for all e in Σ. From the Doob regularization theorem (see [START_REF] Karatzas | Brownian motion[END_REF] Theorem 3.13), we can consider the càdlàg version4 of U e . Let us prove that

sup 0≤t≤T E e [|U e t | p ] < ∞,
for a certain p > 1 which will entail that U e is uniformly integrable for every admissible effort e. Indeed, start by noticing that for every t we have

J t = t 0 ∞ 0 xµ J (ds, dx) ≤ T (M J ) 2 ,
from which, since ξ α ∈ [0, Π(α)], we obtain

V α t ≥ L T (t, 0) = E 0 t - 1 γ e γ(-ξ α +(1-α) T t ∞ 0 xµ J (ds,dx)) ≥ - 1 γ e γ(1-α)T (M J ) 2 =: -M V .
It follows that the non-positive process V α is bounded. Next, notice that the density measure

D e T = exp - T 0 (λ(e s ) -λ 0 )ds + T 0 log λ(e s ) λ 0 dN s ≤ e (λ 0 -λ∞)T .
Finally, since e ∈ Σ, let p > 1 be such that E P 0 e γp T 0 c(es)ds < ∞. It follows that

E e [|U e t | p ] ≤ (M V ) p e γp(1-α)T (M J
) 2 e (λ 0 -λ∞)T E P 0 e γp T 0 c(es)ds < ∞, so we conclude the desired result. As a final observation, note that with the same arguments we can prove

|L T (0, e)| ≤ E e 1 γ e γ(-ξ α +(1-α) T 0 ∞ 0 xµ J (ds,dx)+ T 0 c(es)ds) ≤ 1 γ e γ(1-α)T (M J ) 2 e (λ 0 -λ∞)T E 0 e γ T 0 c(es)ds .
Since the random variable on the right-hand side belongs to L p ⊂ L 1 , we conclude that L T (0, e) is finite for every e ∈ Σ (see Remark 2.1).

Step 2. By applying the Doob-Meyer decomposition theorem, we obtain

U e t = M e t -A e t , (B.4) 
where M e is a P e -martingale and A e an integrable non-decreasing predictable process with A e 0 = 0. As A e is a càdlàg non-decreasing process, there exists a continuous non-decreasing process A e,c and a purely discontinuous process A e,d , equal to the sum of the jumps of A e , i.e. A e,d t = 0≤s≤t ∆A e s , such that

A e = A e,c + A e,d .
We take A e,c 0 = A e,d 0 = 0. The martingale representation theorem 5 gives that under P e there exists a predictable function H e such that

M e t = V α 0 + t 0 ∞ 0 H e s (x)µ J (ds, dx) - t 0 ∞ 0 H e s (x)λ(e s )dsdG(x). (B.5)
Step 3. From (A.1), V α is a negative process. Let Y α be the process defined by

V α t = - 1 γ e -γY α t , ∀t ∈ [0, T ]. (B.6)
Note that Y α T = ξ α . The jump times of J are equal to the jump times of the Poisson process N which are totally inaccessible stopping times 6 . It follows that the jump times of J are totally inaccessible stopping times under P e . From [START_REF] Jacod | Limit theorems for stochastic processes[END_REF] since U e is a negative process and A e,c is non-decreasing.

Step 4. We prove in this step that Y α and H α defined respectively in (B.6) and (B.9) solve the BSDE (B.1). Note that we have

V α T = -1 γ e -γξ α , hence E e [U e T ] = E e [V α T e γ( T 0 ∞ 0 (1-α)µ J (ds,dx)+ T 0 c(es)ds) ] = L T (0, e).
Using the inequality for the difference of suprema and U e ≤ M e , from Equation (B.4), we obtain Note that from the boundedness of the intensity λ, we have U e t ≤ V α t e γ((1-α)Jt+c(0)t) =: ζ t < 0, and

0 = sup e∈Σ E e [U e T ] -V α 0 = sup e∈Σ E e [U e T -M e T ]. ( 
D e T ≥ exp T 0 log λ ∞ λ 0 dN s =: η T > 0.
Since A e,d ≥ 0 and f α (e t , Ĥt (x))dt -dI t ≥ 0, we obtain from Equation (B.12) and the monotone convergence theorem

0 ≤ γ sup e∈Σ E η T T 0 ζ s-f α (e s , Ĥα s )ds -dI s - Âs γ = -γ inf e∈Σ E η T T 0 (-ζ s-) f α (e s , Ĥα s )ds -dI s - Âs γ = -γE η T T 0 (-ζ s-) (F α ( Ĥα s )ds -dI s - Âs γ ≤ 0, leading to  ≡ 0, I t = t 0 F α ( Ĥα s )ds.
Equation (B.10) becomes

dY α t = F α ( Ĥα t )dt - ∞ 0 Ĥα t (x)μ 0 J (dt, dx).
Notice that the process Y α has bounded jumps, since V α is bounded and therefore has bounded jumps. By using Lemma B.1 we get that Ĥα is bounded and (Y α , Ĥα ) ∈ S 2 β × H 2, β for any β ≥ 0.

Step 5. The aim of the following step is to prove the representation (4.4) of the value function and to find the optimal prevention effort. To do so, consider from Equation (B.1)

Y α 0 = ξ α + T 0 ∞ 0 H α s (x)μ 0 J (ds, dx) - T 0 F α (H α s )ds, Hence for all e ∈ Σ E e - 1 γ e -γ(ξ α -T 0 ∞ 0 (1-α)xµ J (ds,dx)-T 0 c(es)ds) = E e - 1 γ e -γ(-T 0 ∞ 0 (1-α)xµ J (ds,dx)-T 0 c(es)ds+Y α 0 -T 0 ∞ 0 H α s (x)μ 0 J (ds,dx)+ T 0 F α (H α s )ds) = - 1 γ e -γY α 0 E e e γ( T 0 ∞ 0 ((1-α)x+H α s (x))µ J (ds,dx)+ T 0 (c(es)-λ0 ∞ 0 H α s (x)dG(x)-F α (H α s ))ds) . Denote for t ∈ [0, T ] Ŷ α t := t 0 ∞ 0 ((1 -α)x + H α s (x)) µ J (ds, dx) + t 0 c(e s ) -λ 0 ∞ 0 H α s (x)dG(x) -F α (H α s ) ds.
By applying Itô's formula, we obtain

E e - 1 γ e -γ(ξ α -T 0 ∞ 0 (1-α)xµ J (ds,dx)-T 0 c(es)ds) = - 1 γ e -γY α 0 E e 1 + T 0 γe γ Ŷ α s- c(e s ) -λ 0 ∞ 0 H α s (x)dG(x) -F α (H α s ) ds + T 0 ∞ 0 e γ Ŷ α s- e γ((1-α)x+H α s (x)) -1 µ J (ds, dx) = - 1 γ e -γY α 0 E e 1 + T 0 γe γ Ŷ α s-(f α (e s , H α s ) -F α (H α s )) ds + T 0 ∞ 0 e γ Ŷ α s- e γ((1-α)x+H α s (x)) -1 μe J (ds, dx) ≤ - 1 γ e -γY α 0 .
By taking the supremum over e ∈ Σ, we then obtain

V α ≤ - 1 γ e -γY α 0 .
It follows that the optimal effort is given by the minimizer e (H α ) and V α = -1 γ e -γY α 0 .

Step 6. In this last step, we want to prove the uniqueness of the solution to Equation (B.1). By repeating the same arguments from the previous step, we have that for any two solutions

(Y α , H α ), (Y α , H α ) ∈ S 2 × H 2, ,
where Y α and Y α have bounded jumps, and for any t ≥ 0 we have

V α t = - 1 γ e -γY α t = - 1 γ e -γY α t , leading to Y α t = Y α t and H α t = H α t , for t ∈ [0, T ]. 2 20 
C Proof of Theorem 4.2

Proof. The proof of the theorem will be in two steps. First, we prove that α → Y α 0 is continuous. Then we look at the continuity of α → V α e γΠ(α) .

Step 1. Notice that by using Lemma B.1, we can assume that H α is bounded by a constant M h that can be chosen independently of α since the jumps of V α are uniformly bounded. Define therefore the set Ĥ := {h ∈ H : |h t (x)| ≤ M h for every t, P 0 -a.s.}.

To prove that α → Y α 0 is continuous, we will show that the generator F α of the BSDE (B.1), restricted to functions in Ĥ, verifies the following two properties:

(a) The family (F α ) α∈[0,1] is such that for any h ∈ Ĥ, the map (t, ω) → F α (h t (ω, .)) is F t ⊗ B([0, t])- measurable. Moreover the family (F α ) α∈[0,1] is equi-Lipschitz, i.e., there exists K 1 > 0 such that, for dt × dP 0 -almost every (t, ω) ∈ R + × Ω ∀ α ∈ [0, 1], |F α (h 1 t (ω, •)) -F α (h 2 t (ω, •))| ≤ K 1 |||h 1 t (ω, .) -h 2 t (ω, .)||| t (ω).
(b) The function α → F α (h) is equi-Lipschitz, i.e., there exists K 2 > 0 such that, for dt × dP 0 -almost every

(t, ω) ∈ R + × Ω, |F α 1 (h t (ω, •)) -F α 2 (h t (ω, •))| ≤ K 2 |α 1 -α 2 |.
Start by noticing that if |H α | ≤ M h , the optimizer e in F α (H α ) is bounded from above. Indeed, the term

1 γ ∞ 0 e γ(H α (x)+(1-α)x) -1 dG(x) - ∞ 0 λ 0 H α (x)dG(x)
is bounded (uniformly in α) so then, since c(e) → ∞ as e → ∞, we have f α (e, H α ) → ∞. Then, we have that the optimization of f α over e is actually over a set of the form [0, e max ].

Using (4.1) and (4.2), we get for α ∈ [0, 1], h 1 , h 2 ∈ H and for dt × dP 0 -almost every λ(e) γ M J 0 e γ(ht(ω,x)+(1-α 1 )x) dG(x) -λ(e) γ M J 0 e γ(ht(ω,x)+(1-α 2 )x) dG(x)

(t, ω) ∈ R + × Ω |F α (h 1 t (ω, •)) -F α (h 2 t (ω, •))| ≤ sup e∈[0,emax] λ(e) γ M J 0 (e γ(h 1 t (ω,x)+(1-α)x) -1)dG(x) - λ(e) γ M J 0 (e γ(h 2 t (ω,x)+(1-α)x) -1)dG(x) + λ 0 M J 0 h 1 t (ω, x)dG(x) -λ 0 M J 0 h 2 t (ω, x)dG(x) = sup e∈[0,emax] λ(e) γ M J 0 e γ(1-α)x (e γh 1 t (ω,x) -e γh 2 t (ω,x) )dG(x) + λ 0 M J 0 h 1 t (ω, x) -h 2 t (ω, x) dG(x) ≤ sup e∈[0,emax] λ ( 
= sup e∈[0,emax]
λ(e) γ M J 0 e γht(ω,x) (e γ(1-α 1 )x -e γ(1-α 2 )x )dG(x) .

From the mean-value theorem, there exists α 3 ∈ [α 2 , α 3 ] such that

|F α 1 (h t (ω, •)) -F α 2 (h t (ω, •))| ≤ sup e∈[0,emax]
λ(e) γ We prove now that α → Y α 0 is continuous. For any α 1 , α 2 ∈ [0, 1], property (a) allows us to use the following estimate from [START_REF] Papapantoleon | Existence and uniqueness results for bsde with jumps: the whole nine yards[END_REF], Proposition 3.13

Y α 1 -Y α 2 2 S 2 β + H α 1 -H α 2 2 H 2, β ≤ K0 ξ α 1 -ξ α 2 2 L 2 β + K 0 F α 1 (H α 2 s ) -F α 2 (H α 2 s ) 2 H 2 β ,
with K0 , K 0 > 0. In particular, we have, using property (b)

E |Y α 1 0 -Y α 2 0 | 2 ≤ K0 ξ α 1 -ξ α 2 2 L 2 β + K 0 F α 1 (H α 2 s ) -F α 2 (H α 2 s ) 2 H 2 β ≤ K0 Le βT |α 1 -α 2 | 2 + K 0 (K 2 ) 2 e βT β |α 1 -α 2 | 2 ,
and by taking α 1 → α 2 we then have E |Y α 1 0 -Y α 2 0 | 2 → 0 leading to the continuity of Y α 0 in α. We can conclude from Theorem 4.1, that V α is continuous in α.

Step 2. As the premium Π is assumed to be lower semicontinuous and V α is negative, we obtain that α → V α e γΠ(α) is upper semicontinuous and therefore attains a maximum over the compact [0, 1]. This leads to the existence of an optimal insurance cover α defined as the solution of Problem (2.4). 2

D The problem with no reimbursement

We present here the proofs for the problem in which ξ α = 0 for every α ∈ [0, 1]. Such proofs are based on the main result of the paper, that is, Theorem 4.1. For readers who have not gone through such result yet, we recall that it mainly says that for each reimbursement ξ α there exists a unique pair (Y α , H α ) ∈ S 2 × H 2, such that we can write

ξ α = Y α 0 + T 0 F α (H α s )ds - T t ∞ 0
H α s (x)μ 0 J (ds, dx).

Moreover, the optimal effort of the insurance buyer is given by e t = e (H α t (•)),

where e is the unique minimizer of the function f α (•, h) defined in (4.1).

Proof of Theorem 3.1. The unique processes satisfying the conditions in Theorem 4.1(a) are given by (Y α , H α ) such that Y α t = -c(e ) + λ(e ) γ (L G (γ(1 -α)) -1) (T -t), 0 ≤ t ≤ T, H α t ≡ 0, 0 ≤ t ≤ T,

(D.1)
where e is the unique minimizer in (3.1), that is F α (0) = f α (e , 0). Indeed, since uniqueness is known, we just need to show that the required conditions are met. Note that the optimal response to H α ≡ 0 is finite and constant, therefore the process e is admissible. Moreover, note that 

Y α t = -ce + (1-e ) γ (L G (γ(1 -α)) -1) (T -t), 0 ≤ t ≤ T, H α t ≡ 0, 0 ≤ t ≤ T,
where the optimal effort, obtained as the optimizer of a linear function, is e ≡ 0 if L G (γ(1 -α)) ≤ cγ + 1 and e ≡ 1 -ε otherwise. We conclude from the representation V α = -1 γ e -γY γ 0 . 2

Remark D.1. In the case of linear cost and linear effect on the frequency, the optimal effort can be computed even in the presence of an optimal reimbursement. Indeed, the optimization in (4.2) is linear and, by denoting A h := ∞ 0 exp γ(h(x) + (1 -α)x) dG(x), we obtain

e t = 0, if cγ ≥ A H α t -1, 1 -ε, if cγ < A H α t -1.
We can see directly the dependence of the optimal effort on the function H α , which conveys the information of the random variable ξ α .

Proof of Proposition 3.2. From Equation (2.3) we have

V = sup α∈[0,1]
V α e γα(1+θ)T , so from Proposition 3.1, we have the objective function

V α e γα(1+θ)T = -1 γ e T (e γ(1-α) -1+γα(1+θ)) , α ≥ 1 -1 γ ln(cγ + 1), -1 γ e T (ε(e γ(1-α) -1)+γc(1-ε)+γα(1+θ)) , α < 1 -1 γ ln(cγ + 1).
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 12 Figure 1: Optimal effort as a function of the coverage
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 3 Figure 3: Optimal coverage as a function of the loading factor
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 11 We have the equality U e T -M e T = -A e,c T -A e,d T . Note that A e,c can be rewritten as -dA e,c t = γU e t-f α (e t , Ĥα t (x))dt -dI t . α (e s , Ĥα s )ds -dI s -

M J 0 e 0 M J 0 e

 000 γht(ω,x) | -γxe γ(1-α 3 )x ||α 1 -α 2 |dG(x) ≤ λ γM h xe γx |α 1 -α 2 |dG(x) ≤ K 2 |α 1 -α 2 |, with K 2 := λ 0 e γM h M J 0 xe γx dG(x).

| 2 +

 2 |F α (H α s (•))| ds = T 0 c(e ) + λ(e ) γ (L G (γ(1 -α)) -1) ds < ∞, so then (Y α , H α ) belongs to S 2 β × H 2, β for any β ≥ 0. We conclude since Y α is continuous and Y α T = 0. 2Proof of Proposition 3.1. From the proof of Theorem 3.1, we see that the unique processes satisfying the conditions in Theorem 4.1(a) are given by (Y α , H α ) such that

  Proposition I.2.24, since A e,d is a predictable process, ∆A e,d τ = 0 a.s. on {τ < ∞} for all totally inaccessible stopping time τ . Hence, we have [A e,d , J] = 0 a.s. = ξ α and where Y α is independent of e, by definition (B.6). By the equality d [Y α , N ] t = Ĥα t (x)µ J (dt, dx) and since the bracket [Y α , N ] t can be defined pathwise, we get that Next, Y α being independent of e, its predictable jump part Ãd is independent of e and in particular

	is independent of e. Ât :=	∆A e,d t t-U e	is also independent of e.
	Equation (B.10) then leads to I being independent of e. Finally, note that
	t From the definition of U e									f α (e t , Ĥα t (x))dt -dI t = -	dA e,c t t-γU e	≥ 0,
			Y α t = -	1 γ	log -e -γ((1-α) t 0	∞ 0 xµ J (ds,dx)+ t 0 c(es)ds) γU e t
					= -	1 γ	log (-γU e t ) +	0	t	0	∞	(1 -α)xµ J (ds, dx) +	0	t	c(e s )ds.	(B.7)
	From (B.4) and (B.5),												
		dU e t =	∞	H e t (x)µ J (dt, dx) -	∞	λ(e t )H e t (x)dtdG(x) -dA e,c t -e,d t .
						0										0
	By applying Itô's formula										
	d log (-γU e t ) = -	0	∞	λ(e t )	H e t (x) U e t-	dtdG(x) +	0	∞	log 1 +	H e t (x) U e t-	µ J (dt, dx) -	dA e,c t U e t-	+ log 1 -	∆A e,d t t-U e	.
	Hence from Equation (B.7), we get	
	dY α t = c(e t ) +	λ(e t ) γ	0	∞	H e t (x) U e t-	dG(x) dt +	dA e,c t γU e t-	-	1 γ	log 1 -	∆A e,d t U e t-
			-	1 γ	0	∞	log 1 +	H e t (x) t-U e	-γ(1 -α)x µ J (dt, dx).	(B.8)
	By defining														
	Ĥα t (x) :=	1 γ				log 1 +	H e t (x) t-U e	-γ(1 -α)x ,	(B.9)
			I t :=		0	t		f α (e s , Ĥα s (x))ds +	dA e,c s γU e s-	, Ãd t :=	1 γ	s≤t	log 1 -	∆A e,d s s-U e	.
	Equation (B.8) becomes											
													dY α t = dI t -d Ãd t -	∞	Ĥα t (x)μ 0 J (dt, dx),	(B.10)
																0
	with Y α T ∞														
	0														
					∞		Ĥα t (x)μ 0 J (dt, dx) =	∞	Ĥα t (x)(µ J (dt, dx) -λ 0 dG(x)dt),
					0											0

  -e γh 2 t (ω,x) )dG(x) + |||h 1 t (ω, •) -h 2 t (ω, •)||| t (ω). Let |h 1 | ∨ |h 2 | ≤ M h .From the mean-value theorem, we have the existence of h 3with K 1 := e γM J e γM h + 1.Assumption (b) is also verified as for |h| ≤ M h and α 1 , α 2 ∈ [0, 1]|F α 1 (h t (ω, •)) -F α 2 (h t (ω, •))| ≤ sup e∈[0,emax]

	e) γ	e γM J	0	M J	(e γh 1 t (ω,x) t (ω, x) ∈ [h 1 t (ω, x), h 2 t (ω, x)]
	such that				
	|F				

α (h 1 t (ω, •)) -F α (h 2 t (ω, •))| ≤λ 0 e γM J M J 0 e γh 3 t (ω,x) |h 1 t (ω, x) -h 2 t (ω, x)|dG(x) + |||h 1 t (ω, •) -h 2 t (ω, •)||| t (ω) ≤ K 1 |||h 1 t (ω, •) -h 2 t (ω, •)||| t (ω),

We specify below the filtration in our model.

The assumptions about the boundedness of arrival intensity and claim sizes and the fact that no exogenous factor affects the arrival intensity simplify the discussion in this paper. A more realistic approach could be to consider a stochastic arrival intensity. Some references of models using such arrival intensity can be found in[START_REF] Brachetta | Optimal proportional reinsurance and investment for stochastic factor models[END_REF],[START_REF] Brachetta | A BSDE-based approach for the optimal reinsurance problem under partial information[END_REF],[START_REF] Cao | Optimal reinsurance-investment strategy for a dynamic contagion claim model[END_REF],[START_REF] Schmidt | Catastrophe insurance modeled by shot-noise processes[END_REF] . We leave this point to further research.

Note however that some companies (John Hancock, Aetna, Axa) offer rewards or discounts to their clients who accept to enter a health prevention program, by wearing a connected device. In that case, the effort of the insurance buyer is directly observable and there is no moral hazard.

Notice that from Assumption 2.1, there exists an optimal control e such that U e is a P e -martingale and thus the process V has a càdlàg version under P e . Since all the measures are equivalent, it follows that every U e has a càdlàg version under P e .

From[START_REF] Jacod | Limit theorems for stochastic processes[END_REF], Theorem III.1.26, P 0 is the unique weak solution to the martingale problem associated to X 0 . From Theorem III.4.29 it follows that P 0 satisfies the martingale representation theorem, as so does any measure P e due to Theorem III.5.24.

From[START_REF] Jacod | Limit theorems for stochastic processes[END_REF] Definition I.2.20: "A stopping time T is called totally inaccessible if P [T = S < ∞] = 0 for all predictable times S".

This research paper benefited from the support of the Chair "Prevent'Horizon", under the aegis of the Risk Foundation with partnership of UCBL, Actuaris, AG2R La Mondiale, G2S, Covea, Groupama Gan VIE, Groupe Pasteur Mutualité, Harmonie Mutuelle, Humanis Prevoyance, La Mutuelle Générale. It was also supported by ANID FONDECYT/POSTDOCTORADO/3201005, Basal Program CMM-AFB 170001 from ANID (Chile) and ANR project Pacman, ANR-16-CE05-0027.

Define

f θ 1 (α) := -1 γ e T (e γ(1-α) -1+γα(1+θ)) , f θ 2 (α) := -1 γ e T (ε(e γ(1-α) -1)+γc(1-ε)+γα(1+θ)) , and the point ᾱ := 1 -1 γ ln(cγ + 1). Notice that f θ 1 and f θ 2 are concave functions, with a global maximum over R given by α θ

There are two main cases that we analyze separately If (1 + θ) > e γ then α θ 1 < 0 and we have α (θ) = 0. We have then

The problem reduces to maximize f θ 1 and f θ 2 over the intervals [0, ᾱ] and [ᾱ, 1] respectively and compare their values.

Therefore, the map f θ 2 is increasing over [0, ᾱ], and the map f θ 1 is increasing over [ᾱ, α θ 1 ] and decreasing over

. Depending on whether or not (1 + θ) ≤ εe γ , the map f θ 2 will be increasing over [0, α θ 2 ] and decreasing over [α θ 2 , ᾱ] or just decreasing over [0, ᾱ]. We compare the values f θ 1 (α θ 1 ) and f θ 2 (α θ 2 ) or f θ 2 (0) to determine α (θ). This will give us a smooth transition of α (θ) from the value α θ 1 to either α θ 2 or 0 and will also dictate what happens for the next values of θ.

Both maps f θ 1 and f θ 2 are decreasing over [ᾱ, 1], so α (θ) corresponds to the maximum of f θ 2 over [0, ᾱ]. Depending on whether or not (1 + θ) ≤ εe γ , the maximum will be attained either at α θ 2 or 0. The solution α (θ) in this interval pastes smoothly with the one in the previous paragraph.

If e γ ≤ (1 + θ), then f θ 2 and f θ 1 are decreasing over [0, 1] so α (θ) = 0. 2